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 The mechanical equations of material systems that were given previously by M. Mathisson are derived 
with the help of retarded potentials for a system that is found in MINKOWSKI space and is characterized 
by its mass and angular impulse to a sufficient degree of approximation.  That will permit an intuitive 
interpretation of the gravitational multipoles that were introduced by MATHISSON and which replace the 
system.  If one can restrict the development of the gravitational potential outside of the world-tube to the 
monopole and dipole terms then the pole strength will give the energy-impulse four-vector, and the dipole 
strength will give the angular impulse.  If one demands that the gravitational equations must be satisfied 
then one will obtain the law of the conservation of mass and the equations of motion of the system. 
 
 
 In a paper that appeared recently [1], MATHISSON found equations of motion for a 
material system from the general EINSTEIN gravitational equations.  MATHISSON 
obtained these equations of motion, which differ from the classical ones in general, by a 
variational method that he had previously developed. 
 The purpose of the present article is to derive these equations (but only in a special 
case) from a more immediate method that makes it possible to give a more intuitive 
physical interpretation. 
 
 
 1.  Matter shall fill up a fixed region in space; i.e., the energy-impulse tensor Tαβ (α, 
β = 1, …, 4) shall vanish outside of a fixed world-tube (we thus exclude the presence of 
an electromagnetic field; we will then show that we can lift that restriction).  At a 
sufficiently large distance, we can set: 
 

gαβ = 
0

gαβ  + γαβ ,     (1) 
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in which 
0

gαβ  are the components of the metric for MINKOWSKI space (viz., −
0

iig  = 
0

44g = 1, i, k … = 1, 2, 3, while the other 
0

gαβ = 0), and the γαβ are very small quantities. 

 We will consider the γαβ to be a tensor field against the background of MINKOWSKI 
space.  If we neglect the higher powers of γαβ and their derivatives in the statement of the 
curvature tensor Rαβγδ then we will get the EINSTEIN equations of gravitation, viz.: 
 

Rαβ – 1
2 gαβ R = −κ Tαβ     (2) 

 
(κ = gravitational constant) in the approximation of linear gravitation: 
 

1
2 αβϕ□ = −κ Tαβ  

2

g
x x

αβ
α β

 ∂≡ ∂ ∂ 
□ ,   (3) 

 

x

β
α
β

ϕ∂
∂

 = 0,      (4) 

in which we have: 
β
αϕ  = 1

2
β ν β
α ν αγ γ δ− .     (5) 

 
 Later on, we will take the quantities ϕαβ to be simply gravitational potentials.  
Everywhere outside of matter, the gravitational potentials will satisfy the system of 
equations: 

αβϕ□  = 0,      (6) 

 

x

β
α
β

ϕ∂
∂

 = 0.      (4) 

 
 In order to not go any deeper into the structure of matter, we can extend the exterior 
solutions to the interior of the tube in a completely formal way that points to the fact that 
the solutions will possess singularities along a fixed world-line, just as the 
NEWTONIAN potential, which satisfies the LAPLACE equation ∆ϕ = 0 outside of the 
matter, is represented by a function that possesses singularities in the interior of matter.  
If the region V is likewise filled with matter of density ρ then the NEWTONIAN 
potential will be determined by the equation: 
 

ϕp = 
PQ

dV
r

ρ
∫ . 

 
 If we take an arbitrary reduction point O in the region V then at a sufficiently large 
distance away from it we can develop 1 / r into the following series: 
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1

r
 = 

00

1 (1/ ) i
i

r
y

r x

∂ +  ∂ 
 + … 

 
in which yi mean the coordinates of the point relative to O; we further get: 
 

ϕp = 
00

1 (1/ ) i
i

r
dV y dV

r x
ρ ρ∂ +  ∂ 
∫ ∫ + … 

 
 The successive terms in this series represent the potential by the poles, dipoles, and 
multipoles of higher order that are found at this reduction point.  We see that these 

potential have singularities of the type 
1

r
, 

2
1

r
 
 
 

, etc.  At larger distances, one will 

already find a good approximation for the potential of a body by using just the first term 
of the series. 

 

P 

r 
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Figure 1 

 
 We will use this analogy to look for solutions to the system of equations (6), (4) that 
have the type of a pole, dipole, etc.; i.e., we will look for solutions that have singularities 
along the line L, which is temporarily taken to be inside the matter tube.  We assume that 
the solutions to the system (3), (4) can be represented outside the tube by a series of 
multipoles, and that at large distances one can realize a good approximation by using the 
first term of this series.  Equations (4) place one constraint on the reduction line L.  We 
will associate the line L with the system very intimately; we will find mechanical laws for 
the material system from this. 
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Figure 2. 
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 2.  In order to give an expression for the potential of a multipole, we must introduce a 
definition.  Let there be a time-like world-line L (Fig. 2).  We will measure out an interval 
s from the arbitrary time point A0 along this line. (s is the proper time for a material point 
whose motion is represented by L.)  Since we are measuring the parameter s along the 
line L, we can construct a scalar field over all of space in the following way: We define 
the past light cone at each point O, and assign the value of s to the point O, which 
represents the point A where the line L cuts the light cone.  At the same time, we 
introduce the vector field lα, where lα is the vector that connects O with A.  Since Iα lies 
on the light cone, we will have: 

lα lα = 0.      (8) 
 
 We further denote a four-dimensional tangent to L by uα; i.e., when the line L is given 
by the equations xα = xα(s), its tangent will be given by: 
 

  uα = 
dx

ds

α

. 

 
If we use uα and lα then we can introduce the scalar n by means of the equation: 
 

n = lα uα .      (9) 
 
 In the proper system – i.e., in the system in which uα is parallel to the time axis – n 
will mean the (space-like) distance between the points O and A (*).  In the proper system 
ui = 0, u4 = 1, so n = l4 = tA − t0 .  However, due to (7), (l4)2 = r2 and l4 = − r. (l4 is always 
negative, since it was chosen to be in the past.)  We will then have n = − r in the proper 
system. 
 MATHISSON gave the rules for the differentiation of the quantities that were 
introduced (with respect to the coordinates of the world-point) in the previously-cited 
paper [2].  We shall state them here without proof (** ). 
 

s

xα
∂

∂
= 

l

n
α ,      (10) 

 
l

x
α
β

∂
∂

 = − gαβ + 
u l

n
α β .     (11) 

 
 We can now imagine that every function f that measures arcs s along L is a function 
that is defined over all space.  It will follow from (10) that its gradient will be: 
 

                                                
 (*) In the figure, the segment OB – i.e., the projection of la onto the normal to 

A
uα  − is the measure of 

the separation OA of the points in the proper system.   

 (** ) From now on, we shall write gαβ , instead of 
0

g αβ .  
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( )f s

xα
∂
∂

 = 
ldf

ds n
α  = 

l
f

n
αɺ ,    (12) 

 
in which a dot means differentiation with respect to s.  We will find the derivatives of n 
with the help of the given formula: 
 

n

xα
∂
∂

 = − uα + (1 )
l

l u
n

αα
α+ ɺ .    (13) 

 
 

 3.  By considering these relations, we can establish, with no further assumptions, that 
the identity: 

f

n
□  = 0      (14) 

 
is true everywhere, except along the line L, for any arbitrary function f(s).  We will thus 
choose the desired solution to equations (6), (4) to have the form: 
 

ϕαβ = 
m

n

αβ

.      (15) 

 
 The relation above represents the potential of a pole; namely, it has a singularity of 
type 1 / r along the line L.  If one chooses the desired equation of equations (6) to satisfy 
the relation (15) then (6) will be fulfilled, and the conditions (4) will still remain, which 
will impose some restrictions on mαβ(s) and the line L. 
 Namely, one has: 

x

αβ

β
ϕ∂
∂

= 
2

1 1l l l l u
m u m m

n n n n n n

ν
β β βαβ αβ αβ ν

β
  

⋅ − + −  
   

ɺ
.  (16) 

 
 This equation should be valid for any arbitrary lα.  However, since lα / n is always a 
finite quantity, and 1 / n grows without bound along the line L with this approximation, 
any term that we find for the coefficients of 1 / n and 1 / n2 must vanish.  The 
arbitrariness in lα will then lead to the following conditions (MATHISSON [2]): 
 
 mαβ = m uα uβ, 

(17) 
 m = 0, muα

ɺ  = 0. 
 
In order to interpret the result this obtained, we remark that: 
 

ϕαβ = − ( )

2
t rT

dV
r

αβκ
π

−
∫     (18) 

represents the solution to (3), (4). 
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 We now compare this solution with (15), and ideally in the proper system while 
neglecting the acceleration, since we will be dealing with only the principal meanings of 
the quantities m that were introduced into (17).  We then let Tαβ denote the energy-
impulse tensor of incoherent matter: 
 

Tαβ = v vα βµ∑ ,     (19) 

 
in which vα is the velocity relative to the point of reduction, which we will assume to the 
center of mass of the system.  Moreover, we assume that the velocity is sufficiently small 
that we can neglect its square.  (Speed of light c = 1.)  One will therefore have: 
 

T44 = µ∑ ,       (20) 

 

ϕ44 = − 
2 r

κ µ
π ∑

= −
0

1 (1/ )

2 2
i

i

r
y

r x

κ κµ µ
π π

∂ −  ∂ 
∑ ∑ − …  (21) 

 
 If yi are the coordinates of the center of mass then the second term of the series 
development will vanish.  If one compare the values: 
 

ϕ44 = 
m

n
 = − 

m

r
 

 
that follow from (15) (in the proper system) with (21) then one will see that m means the 
mass of the material system in equation (17), up to the constant coefficient κ / 2π.  In the 
absence of forces (we have assumed the MINKOWSKI background and the absence of 
an electromagnetic field), one can derive the law of conservation of mass for the material 
system that is represented by our pole to a sufficient degree of approximation from the 
conditions (17), along with the uniform motion of the center of mass of the system along 
a line. 
 
 
 4.  Up to now, we have obtained results that agree with the classical ones.  
Considering the dipole term will yield something new.  By considering the fact that if f(s) 
fulfills the equation f□  = 0 then ∂f / ∂xα will also fulfill that condition, we would like to 
look for a solution of equations (6) that takes the form: 
 

ϕαβ = 
m m

x n n

λαβ αβ

λ

 ∂ + ∂  
.    (22) 

 
The pole term mab / n is considered in this expression, in addition to the proper dipole 

potential 
m

x n

λαβ

λ

 ∂
 ∂  

. 
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 Since equations (6) will already be fulfilled by this assumption, we must still satisfy 
the conditions (4).  The expression ∂ϕαβ / ∂xβ will assume the form: 
 

x

αβ

β
ϕ∂
∂

= 
8 4

1 1 1
A B C

n n n
α α α+ + ,   (23) 

in which (*): 
 

Aα = mλαβ ( )

22 6 3
u u l l

g u u
n n

λ β λ β
λβ λ β

 
+ − + 

 
,     (23a) 

 

 Bα = ( ) ( )

24 3 6
u l u ll l l u l u

m g m g
n n n n n

ν ν
λ β λ βλ βλαβ λαβ ν ν

λβ λβ
 

− + − + − 
  

ɺ ɺ
ɺ  

+ ( )

26 2
u ll l ll u

m u
n n n n

ν
λ βλ β βαβν

β
  

+ + −  
 

ɺɺ
,   (23b) 

 

 Cα = 
2

2 2 2
3 3

l l l l l ll u l u l u
m m m

n n n n n n

ν ν ν
λ β λ β λ βλαβ λαβ λαβν ν ν

  
 − − −  
   

ɺ ɺɺ ɺ
ɺɺ ɺ  

+ 
l l l u

m m
n n n

ν
β βαβ αβ ν−

ɺ
ɺ .    (23c) 

 
 As in (16), the expressions of equal order in 1 / n are combined.  Also, just as in (16), 

the vanishing of the factors of 
1

n
, 

2
1

n
 
 
 

, and 
3

1

n
 
 
 

 will follow from the vanishing of the 

entire expression (23) for an arbitrary lα: 
 

Aα = 0,      (24a) 
Bα = 0,      (24b) 
Cα = 0.      (24c) 

 
 In order to be able to bring these equations to a conclusion effortlessly, we will make 
use of a method of decomposition.  One can represent any tensor that is symmetric in αβ 
(mλβα must be symmetric in αβ due to the symmetry of the gravitational potentials) as 
follows: 
 

mλαβ = *mλαβ + nαλ uβ + nβλ uα + qαβ uλ + pλ uα uβ + wβ uλ uα + wβ uλ uα + w uα uβ uλ 
 

mαβ = *mαβ + nα uβ + nβ uα + m uα uβ,  
 

                                                
 (*) u(λ lβ) = 1

2 (uλ lβ + uβ lλ).  
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in which all tensors on the right-hand side that are not the uα vector are orthogonal to uα: 
 

*mλαβ uβ = 0, nαβ uβ = 0, pλ uλ = 0, *mαβ uβ = 0, nα uα = 0,  etc. (25) 
 
 This decomposition is always possible and unique.  However, it also shows that one 
must not consider mλαβ in the most general form.  It follows from the easily-proved 
identity: 

f u

x n

λ

λ

 ∂
 ∂  

 = 
f

n

ɺ

     (26) 

 
that all of the terms that have uλ as a coefficient will contribute an expression of the form: 
 

Q u

x n

αβ λ

λ

 ∂
 ∂  

 = 
Q

n

αβɺ
 

 
to the potential.  We can then regard these terms as the ones that were already considered 
in the monopole potential (viz., the second term in (22)).  With no loss of generality, we 
can then pose: 

mλαβ = *mλαβ + nαλ uβ + nβλ uα + pλ uα uβ.   (27) 
 
Substituting this in (24a) above will yield: 
 

( )

22 6 3
u l l l

m g u u
n n
λ β λ βλαβ

λβ λ β
 

+ − + 
 

 = 0. 

 However, since: 

( )

22 6 3
u l l l

u g u u
n n
λ β λ ββ

λβ λ β
 

+ − + 
 

 = 0, 

all that will remain is: 
 

( )*
2( ) 2 6 3

u l l l
m n u g u u

n n
λ β λ βλαβ βλ α

λβ λ β
 

+ + − + 
 

 = 0, 

and if we consider (25): 
 

*mλαβ uβ = *mλαβ uλ = nβλ uλ = nβλ uβ = 0 
then we will get: 

*
2( ) 3

l l
m n u g

n
λ βλαβ βλ α

λβ
 

+ + 
 

= 0.    (28) 

 
 We would like to consider this condition in the proper system.  The orthogonality 
conditions for *mλαβ and nβλ with respect to uα can be expressed as follows: 
 



Lubanski – New equations of motion for material systems in MINKOWSKI space 9 

 

*mλα4 = *m4αβ = 0,  n4α = nα4 =  0. 
 
 Furthermore, li / n = γi are the direction cosines for the guiding ray.  These direction 
cosines fulfill only the condition that: 
 

gik γi γk + 1 = 0,     (29) 
 
but otherwise they are completely arbitrary, and in particular, linearly-independent.  
Since ui = 0, equation (28) will decompose into two parts: 
 

*
23

l l
m g

n
λ βλαβ

λβ
 

+ 
 

 = 0  (α ≠ 4),  (28a) 

 

23
l l

n g
n
λ ββλ

λβ
 

+ 
 

 = 0   (α = 4).   (28b) 

 
 In the proper system, it will then follow that (†): 
 

*m(i | α | j) = *mα gij    (*mα uα = 0),   (30a) 
 

n(ij) = ρ gij.     (30b) 
 

 If we bring the orthogonality of *mλαβ and nαβ to uα under consideration – i.e., the 
vanishing of the components *m4αβ, *mλα4, and n4α – then we will get: 
 

 *m(λ | α | β) = *mα (gλβ – uλ uβ),    (31a) 
 

n(λβ) = ρ (gλβ – uλ uβ).    (31b) 
 
 The relations (31) are presented in tensor form, so they will be independent of the 
coordinate system.  Since mλαβ is symmetric in αβ, we will get the following expressions 
for *mλαβ and nαβ  (††): 
 

*mλαβ = *mα (gλβ – uλ uβ) + *mβ (gλα – uλ uα) − *mλ (gαβ – uα uβ),  (32) 
 

nλβ = ρ (gλβ – uλ uβ) + n[λβ].     (33) 
 
 We now consider what sort of contribution the expression *mλαβ + n(λβ) uα + n(λα) uβ 
makes to the potential more closely.  The potential that arises from it has the form: 
 

                                                
 (†) *m(λ | α | β) = 1

2 (*mλαβ + *mβ αλ). 

 (††) n[λβ] = 1
2  (nλβ – nβλ). 
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ϕαβ = 
( ) ( )m n u n u

x n

λαβ λα β λβ α

λ

∗ ∂ + +
 ∂  

 

= 
m u m u

g
x n x n

β β α β
αν

ν ν
ρ ρ∗ ∗   ∂ + ∂ ++   ∂ ∂   

 − m u m u
g

x n x n

ν ν λ λ
αβ

ν λ
ρ ρ∗ ∗   ∂ + ∂ ++   ∂ ∂   

 

+ ( )1
2 ( )

d
g m u u u

n ds
αβ α β α βρ ρ∗ − +  

ɺ ;   (34) 

 
the identity (26) was employ in the proof of this. 
 The first three terms in the relation (34) can be (with the use of the covariant and 
contravariant derivatives, which are converted into ordinary derivatives for the 
MINKOWSKI background) represented as follows: 
 

ψαβ = ∇α ξβ + ∇β ξα − gαβ ∇ν ξν,    (35) 
 
in which ξν fulfills the condition νξ□ = 0.  As one can easily prove, the identity: 
 

x

αβ

β
ψ∂
∂

= 0 

will follow from this. 
 This part then imposes no restriction on the remaining terms of the potential.  It will 
then define a physically inessential term (in electrodynamics, this part has its analogue in 
the four-dimensional gradients that one can add to the electromagnetic potential), and one 
can omit it with no loss of generality.  The next term in (34) be linked quite simply to the 
term pλ uα uβ without affecting the orthogonality, and further with the monopole term.  
Therefore, it suffices to choose mλαβ in the form: 
 

mλαβ = nαλ uβ + nβλ uα + pλ uα uβ,    (36) 
 
in which nαβ is already antisymmetric. 
 Before we go on to the consequences of the vanishing of the factors of the higher 
powers of 1 / n, we must speak about the physical sense of the nλβ and pλ.  As in no. 3, we 

will compare the potential ϕαβ = 
m

x n

λαβ

λ

 ∂
 ∂  

 with the known relation (18) in the proper 

system, in which we will substitute the energy-impulse tensor of incoherent matter for 
Tαβ while neglecting the accelerations and the squares of the velocities.  From a 
comparison of the ϕ44 components, we will get: 
 

ϕ44 = − 
2 r

κ µ
π ∑

= −
0

1 (1/ )

2 2
i

i

r
y

r x

κ κµ µ
π π

∂ −  ∂ 
∑ ∑ + … 
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= 
44 1i

i

m
p

n x n

∂  +  ∂  
 = −

441i
i

m
p

x r r

∂   − ∂  
. 

 
 We see from this that pλ fundamentally represents a static moment relative to the 
reduction point.  Previously, L was assumed to be entirely arbitrary, except that it had to 
be inside the tube; however, if one lets it go through the center of mass of the section of 
the tube that is orthogonal to it then the moment above will vanish. 
 For that reason, from now on, we will assume that L is the “center of mass line,” so 
we will then have: 

pλ = 0.      (37) 
  
 For the sake of interpreting the nλβ, we must compare the expressions for the 
components ϕ4i. 
 

ϕ4i = −
2

iv

r

κ µ
π ∑

= − 
00

1 (1/ )

2 2
i k i

k

r
v y v

r x

κ κµ µ
π π

∂ −  ∂ 
∑ ∑ + …  

= 
4i im n

n x n

λ

λ

 ∂+  ∂  
= 

4 1i
ik

k

m
n

n x n

∂  +  ∂  
= −

4 1i
ik

k

m
n

r x r

∂  −  ∂  
. 

 
From the comparison, one sees that: 
 

nik = k iy vµ∑ ,     (38) 

up to some constant coefficients. 
 The equation above demands antisymmetry on the right-hand side.  Its validity is 
exhibited by, e.g., systems that move like rigid bodies whose ellipsoid of inertia is a 
sphere.  The dipole will then be a satisfactory approximation; the quadrupole term must 
be considered in the case of a triaxial ellipsoid of inertia. 
 Since we would like to truncate with the dipole term, we assume antisymmetry on the 
right-hand side, and for that reason, we will have: 
 

nik = 1
2 ( )k i i ky v y vµ −∑  = Ωik,    (39) 

 
in which Ωαβ is the moment of impulse tensor.  As we will see, nαβ will be fundamentally 
the moment of impulse. 

 We now consider the terms in 2

1

n
 
 
 

 in (23).  With consideration given to (36), we 

will obtain: 

( )
l

n m n u u
n
βαβ αβ β α

β
∗  

− − − 
 

ɺ = 0.    (40) 

 
It follows from this (e.g., in the proper system) that: 
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n m n uαβ αβ β α∗− −ɺ  = Qα uβ.     (41) 
 
Multiplication by uβ yields: 

Qα = n uαβ
βɺ .      (42) 

 
Since nαβ is antisymmetric, Qα must be orthogonal to uα: 
 

Qα uα = n u uαβ
α βɺ = 0.      (43) 

 
If one multiplies (41) by uα then it will follow that: 
 

nβ = n uαβ
αɺ = − n uβα

αɺ .     (44) 

 
Substituting the relation above in (41) yields: 
 

*mαβ = n n u u n u uαβ βν α αν β
ν ν+ −ɺ ɺ .    (45) 

 
 Two equations follow from the symmetry of the right-hand side and the antisymmetry 
of the left-hand side of the relation above: 
 

*mαβ = 0,      (46) 
 

n n u u n u uαβ βν α αν β
ν ν+ −ɺ ɺ   = 0.     (47) 

 
Differentiating the equation nαβ uβ = 0 with respect to s yields: 
 

n uαβ
βɺ = − n uαβ

βɺ .     (48) 

 
For that reason, we can replace (47) with: 
 

0.n n u u n u uαβ βν α αν β
ν ν− + =ɺ ɺ ɺ     (49) 

 
With consideration given to the antisymmetry of nαβ, (49) will yield the relations (48) and 
(47).  Equation (49) is a relativistic generalization of the law of conservation of angular 
momentum. 
 Finally, we consider the terms in 1 / n in (23).  It follows from them that: 
 

l l ll l l u l u
n n n n u n u n u mu mu

n n n n n n n

ν ν
β β βαλ αλ α β α β α β α α αλ λ ν ν− ⋅ + + + − + +

ɺ ɺ
ɺ ɺ ɺ ɺ ɺ ɺ  = 0. (50) 

 
With the use of the relations (49) and (44), we get: 
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2mu mu nα α α+ +ɺ ɺ ɺ  = 0.     (51) 
 
Differentiating (44) with respect to s yields: 
 

nα
ɺ  = − n u n uαβ αβ

β β−ɺɺ ɺ ɺ .    (51) 

 
However, it follows from (49) that n uαβ

βɺ ɺ , so nα
ɺ = − n uαβ

βɺɺ .  Moreover, the vanishing of 

the quantity n uαβ
βɺ ɺ  is linked with the relation: 

 
n uαβ

βɺɺ = − n uαβ
βɺɺ ,     (52) 

and for that reason we will get: 
2mu mu n uα α αβ

β+ +ɺ ɺ ɺɺ  = 0.    (53) 

 
After multiplying this equation by uα , we will see that: 
 

0,m =ɺ      (54) 

so it will follow from (53) that: 

2 0.mu n uα αβ
β+ =ɺ ɺɺ      (55) 

 
 The center of mass of a separate (i.e., isolated) system that is endowed with a moment 
of impulse no longer moves uniformly along a line. 
 
 The motion of the center of mass is still coupled with the moment of impulse in the 
absence of forces, as in this case.  MATHISSON found equations (49), (55) in the 
previously-cited paper by using a variational method in the general case of a 
RIEMANNIAN background.  Independent terms appeared there that were due to the 
curvature of the background and would vanish for the MINKOWSKI background.  The 
consideration of the MINKOWSKI background as a special case has the advantage that it 
allows one to compare the potential of the multipole with the successive terms in a 

known expression for the gravitational potential − ( )

2
t rT

dV
r

αβκ
π

−
∫ , which will yield an 

intuitive, physical interpretation of the quantities that were introduced. 
 Up to now, we have assumed that the energy-impulse tensor Tαβ vanishes outside of 
matter.  We thus excluded the electromagnetic field.  From the linearity of the basic 
equations (3) and (4), we see, with no further assumptions, that in order for one to have 
Tαβ ≠ 0 outside of matter, one will need to find only one integral of equation (3) and add 
it to the series of multipoles that represents the solution to the linear system.  The integral 
was given by MATHISSON [3] in the case where the material system was coupled to an 
electric pole. 
 
 In conclusion, I would like to express my thanks to Herrn Doz. Dr. M. MATHISSON 
for suggesting this topic and for his valuable remarks while we were discussing it 
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