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The mechanical equations of material systems that gieee previously by M. Mathisson are derived
with the help of retarded potentials for a system th&bund in MINKOWSKI space and is characterized
by its mass and angular impulse to a sufficient degree of xdpmtion. That will permit an intuitive
interpretation of the gravitational multipoles thatraventroduced by MATHISSON and which replace the
system. If one can restrict the development of tagigtional potential outside of the world-tube to the
monopole and dipole terms then the pole strength will tiigeenergy-impulse four-vector, and the dipole
strength will give the angular impulse. If one demaihds$ the gravitational equations must be satisfied
then one will obtain the law of the conservation osmand the equations of motion of the system.

In a paper that appeared recentlly MATHISSON found equations of motion for a
material system from the general EINSTEIN gravitatioeguations. MATHISSON
obtained these equations of motion, which differ frommc¢lassical ones in general, by a
variational method that he had previously developed.

The purpose of the present article is to derive thesdieqgsdbut only in a special
case) from a more immediate method that makes itiges® give a more intuitive
physical interpretation.

1. Matter shall fill up a fixed region in space; i.e., #rergy-impulse tensar’” (a,
£ =1, ..., 4) shall vanish outside of a fixed world-tube {tues exclude the presence of
an electromagnetic field; we will then show that wen lift that restriction). At a
sufficiently large distance, we can set:

0
9ap= Qgp + Vap (1)



Lubanski — New equations of motion for material systemdINKOWSKI space 2

0 0
in which g,, are the components of the metric for MINKOWSKI sp&ee., - g; =

0 0
94,=1,i,k... =1, 2, 3, while the otheg,,= 0), and thegss are very small quantities.

We will consider thgs,sto be a tensor fielegainst the background of MINKOWSKI
space. If we neglect the higher powerg/gfand their derivatives in the statement of the
curvature tensoR,z,sthen we will get the EINSTEIN equations of gravitatioiz, :

Rop—309apR=~KTop (2)

(« = gravitational constant) in the approximation of lingavitation:

w0
300,,=~KTap (D =g¥ WJ : (3)
6¢ﬂ
—4Z =0, 4
PV 4)
in which we have:
@y =y -3y, or. (5)

Later on, we will take the quantitieg,s to be simply gravitational potentials.
Everywhere outside of matter, the gravitational potentwill satisfy the system of
equations:

D¢, =0, (6)
9. _
S =0 4)

In order to not go any deeper into the structure ofenatve can extend the exterior
solutions to the interior of the tube in a completelynfal way that points to the fact that
the solutions will possess singularities along a fixed davbme, just as the
NEWTONIAN potential, which satisfies the LAPLACE equeatiAg = O outside of the
matter, is represented by a function that possessgslaiities in the interior of matter.
If the regionV is likewise filled with matter of density then the NEWTONIAN
potential will be determined by the equation:

If we take an arbitrary reduction poiftin the regionV then at a sufficiently large
distance away from it we can developrlirito the following series:
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1 1 (6(1/r)j i
==+ y' +
r0 0

r ox
in whichy' mean the coordinates of the point relativ®©tave further get:

a(L/r)
ox’

o=~ [oav+( 2] [oyavs .

The successive terms in this series represenpdtential by the poles, dipoles, and
multipoles of higher order that are found at thesluction point. We see that these

2
. : . 1 (1 . .
potential have singularities of the type, (—j , etc. At larger distances, one will
ro\r

already find a good approximation for the potentibé body by using just the first term
of the series.

Figure 1

We will use this analogy to look for solutionstte system of equations (6), (4) that
have the type of a pole, dipole, etc.; i.e., wd lebk for solutions that have singularities
along the lineL, which is temporarily taken to be inside the natibe. We assume that
the solutions to the system (3), (4) can be reptegseoutside the tube by a series of
multipoles, and that at large distances one cdizeea good approximation by using the
first term of this series. Equations (4) place coastraint on the reduction line We
will associate the line with the system very intimately; we will find meafical laws for
the material system from this.

O B

\Y

Figure 2.
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2. In order to give an expression for the potential of #ipule, we must introduce a
definition. Let there be a time-like world-lineg(Fig. 2). We will measure out an interval
s from the arbitrary time poimd, along this line. g is the proper time for a material point
whose motion is represented by Since we are measuring the paramstalong the
line L, we can construct a scalar field over all of spachenfollowing way: We define
the past light cone at each pof@t and assign the value gfto the pointO, which
represents the poim\ where the lineL cuts the light cone. At the same time, we
introduce the vector fieltf, wherel is the vector that conneaBwith A. Sincel? lies
on the light cone, we will have:

171,=0. (8)

We further denote a four-dimensional tangerit tiy u”; i.e., when the ling is given
by the equationz” = x%(s), its tangent will be given by:

U = dx”
ds

If we useu” andl“ then we can introduce the scatany means of the equation:
n=1%u,. 9)

In the proper system — i.e., in the system in whiCls parallel to the time axis »
will mean the (space-like) distance between the p@rasdA (). In the proper system
u=0,u"=1,son=1*=ta—to. However, due to (7)|%* =r? andl* =-r. (* is always
negative, since it was chosen to be in the past.) Wehen haven = —r in the proper
system.

MATHISSON gave the rules for the differentiation thfe quantities that were
introduced (with respect to the coordinates of the worldtpamthe previously-cited
paper P]. We shall state them here without prooy.(

os |

ox“? - FH ’ (10)
ol u,l

7 = et = (11)

We can now imagine that every functibthat measures arssalongL is a function
that is defined over all space. It will follow from (1i®gt its gradient will be:

() In the figure, the segme@B — i.e., the projection d& onto the normal tas; — is the measure of
the separatio®A of the points in the proper system.

0
(") From now on, we shall writg,;, instead ofg , .
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, (12)

in which a dot means differentiation with respecs.toWe will find the derivatives of
with the help of the given formula:

on
ox“

:—ua+lﬁ”(1+l”ua). (13)

3. By considering these relations, we can establisin, mot further assumptions, that
the identity:

ol =0 (14)
n

is true everywhere, except along the lindor any arbitrary functiofi(s). We will thus
choose the desired solution to equations (6), (4) to tevéerm:

m®?
¢% =

n

(15)

The relation above represents the potential of a; palmely, it has a singularity of
type 1 /r along the lind.. If one chooses the desired equation of equations Etisfy
the relation (15) then (6) will be fulfilled, and thenclitions (4) will still remain, which
will impose some restrictions on”(s) and the line..

Namely, one has:
af | | I 1’
0 _ L weefu, 2 |4 e s e 00 (16)
2 B n n n

This equation should be valid for any arbitréfty However, sincé” / n is always a
finite quantity, and 1 h grows without bound along the lihewith this approximation,
any term that we find for the coefficients of In/and 1 /n® must vanish. The
arbitrariness in” will then lead to the following conditions (MATHISSON]):

m®#=mu’J’

(17)
m=0, mu® = 0.
In order to interpret the result this obtained, we mntizat:
T
p7 = [0y (18)
2 r

represents the solution to (3), (4).
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We now compare this solution with (15), and ideally in pheper system while
neglecting the acceleration, since we will be dealiitg wnly the principal meanings of
the quantitiesm that were introduced into (17). We then ®f denote the energy-
impulse tensor of incoherent matter:

T?=3 uvv?, (19)

in whichv? is the velocity relative to the point of reduction, whige will assume to the
center of mass of the system. Moreover, we asshatette velocity is sufficiently small
that we can neglect its square. (Speed of ightl..) One will therefore have:

™= pu, (20)
s__ K H__ K1l Kk (0(dr) i _
o= et o &t 277( o’ joz,uy (21)

If y are the coordinates of the center of mass thers¢bend term of the series
development will vanish. If one compare the values

m m
¢44:_:__
n r

that follow from (15) (in the proper system) withl( then one will see that means the
mass of the material system in equation (17), upécconstant coefficiert/ 27z In the
absence of forces (we have assumed the MINKOWSKkdaund and the absence of
an electromagnetic field), one can derive the lawomservation of mass for the material
system that is represented by our pole to a sefficilegree of approximation from the
conditions (17), along with the uniform motion detcenter of mass of the system along
a line.

4. Up to now, we have obtained results that agreth whe classical ones.
Considering the dipole term will yield somethingwmeBy considering the fact thatf{is)
fulfills the equation f = 0 thenof / ax? will also fulfill that condition, we would like to
look for a solution of equations (6) that takesfthren:

§=2 (”‘W}m‘w . (22)

ox’ n n

The pole termm / n is considered in this expression, in additiontte proper dipole

AapB
potentialai{ m j :

X n
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Since equations (6) will already be fulfilled by this@sption, we must still satisfy
the conditions (4). The expressid#™ / ax” will assume the form:

097 1 1 1
— AT+ =B +=C“, 23
ox¥  nt n* n (23)

in which ():
1l

u ,u
A% = ' [gﬂﬁzuﬁuﬂ—e%wn—f (23a)

W »
B = 11| —g +4u(ﬂ|ﬂ)_3|ﬂ|ﬂ | g l,u _eu(alm l,u
» n n? % n n n

16 Azﬂ [,u +2U(4 ﬂ)j+maﬂ [uﬂ_ij, (23b)
n> n n n

e Iﬂlﬂ e Iﬂlﬂ | N Iﬁlﬂ |G % 2
Ca— m/lﬂF_Sm/] ﬂ? _m/]ﬂ 2 _3

n n n n
| 10

s _ e s LU (23c)
n n n

As in (16), the expressions of equal order imlafe combined. Also, just as in (16),

2 3
the vanishing of the factors éf (Ej , and (ij will follow from the vanishing of the
n \n n

entire expression (23) for an arbitrafy

A7 =0, (24a)
B? =0, (24b)
c?=0. (24c¢)

In order to be able to bring these equations to a ceindweffortlessly, we will make
use of a method of decomposition. One can represerieasyr that is symmetric i3

(Mg must be symmetric im5 due to the symmetry of the gravitational potentials) as
follows:

Mm% ="M +n? P+ U+ g% v +p' L P+ WU U+ WU U+ wul P

mP="mP+n? P +rPu’+mu’

() Ualp=% U lg+ugl).
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in which all tensors on the right-hand side that atemeu” vector are orthogonal tdf"
‘mM%uz=0, n?uz=0, p'u=0, ‘'mPus=0, nu,=0, etc. (25)

This decomposition is always possible and unique. Howévaiso shows that one
must not considem'® in the most general form. It follows from the eggtoved

identity:
a (fu f
_ = __ 26
ax”[ n j n (26)

that all of the terms that hawd as a coefficient will contribute an expression &f fbrm:

0 [Qa/]uﬂj _ Q'aﬂ

ox n n

to the potential. We can then regard these termsasns that were already considered
in the monopole potential (viz., the second term in (2&)jth no loss of generality, we

can then pose:
Mm% ="m'% + n P + P u” + p! U7 . (27)
Substituting this in (24a) above will yield:

u,l [
m"”ﬂ[gw +2U,u, — 62+ 3_*;’} = 0.
n n
However, since:
u,l [
uﬂ[gw+2uﬂuﬂ—6—“nﬂ) +3—;]2/”j =0,

all that will remain is:

. u,l 1
( rn"”/”+n/“u”)[gw+2uﬂuﬂ _6—Mnﬂ) + B—afj =0,

and if we consider (25):

*m/‘”ﬁuﬁ: *m/‘”ﬁm = n‘“ u, = n‘“ Usg = 0
then we will get:

. |l
( m"”ﬂ+n/“u”)[gw+3%j= 0. (28)

We would like to consider this condition in the propertesys The orthogonality
conditions for m*® andn® with respect tai, can be expressed as follows:
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*n.(]a4 — *m4a,8 — 0’ n4a — na4 = 0.

Furthermorel; / n = i are the direction cosines for the guiding ray. Tlibsection
cosines fulfill only the condition that:

g“yu+1=0, (29)

but otherwise they are completely arbitrary, and in @aler, linearly-independent.
Sinceu = 0, equation (28) will decompose into two parts:

*m"”ﬂ(gw +3I;]—Ifj =0 @z 4), (28a)

Ll
n# [gﬂ ; +3%j =0 @=4). (28b)

In the proper system, it will then follow thdj:(
milald = ma g (m?ug=0), (30a)
n = pgl. (30b)

If we bring the orthogonality ofn*®’ andn? to u, under consideration — i.e., the
vanishing of the components*”?, ‘m’'®, andn® — then we will get:

mAA = (g -t W), (31a)
n = p(g¥ —u' UA). (31b)
The relations (31) are presented in tensor form, sp whié be independent of the
coordinate system. Since'® is symmetric ina, we will get the following expressions
for "'m'? andn? ():
M ="m? (@ - A + '’ (- u) - (g¥-uT ), (32)
n? = p(g¥-u' V) + n2. (33)

We now consider what sort of contribution the expoessit? + P u? + n* *
makes to the potential more closely. The potentidlahaes from it has the form:

() ‘mAa =1 ot 4 P ),

("M =1 (-,
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4= 3 (I + DU + BT
ox’ n
0 B a B O v O A
= g d (P +pu L0 "m” + pu g 0 (‘mi+pu”) 6) m' + pu
ox” n ox’ n ox’ n ox n
I %[pg”ﬂ -2 (mu” +pu”uﬂ)} ; (34)

the identity (26) was employ in the proof of this.

The first three terms in the relation (34) can(ih the use of the covariant and
contravariant derivatives, which are converted imdadinary derivatives for the
MINKOWSKI background) represented as follows:

Yr=0"&+0°F & -g%0, &, (35)

in which & fulfills the conditionC1é” = 0. As one can easily prove, the identity:

oy”*
=0
ox?

will follow from this.

This part then imposes no restriction on the raimgiterms of the potential. It will
then define a physically inessential term (in etedynamics, this part has its analogue in
the four-dimensional gradients that one can adtdalectromagnetic potential), and one
can omit it with no loss of generality. The neattnh in (34) be linked quite simply to the
term p’ u?u” without affecting the orthogonality, and furtheittwthe monopole term.
Therefore, it suffices to choos@“ in the form:

Mm% =n™ ¥+ P u? + p'ulf, (36)
in whichn® is already antisymmetric.

Before we go on to the consequences of the vamgsbi the factors of the higher
powers of 1 h, we must speak about the physical sense affhendp’. As in no.3, we

AapB

. . m . . .

will compare the potentiah® = ai{ j with the known relation (18) in the proper
X n

system, in which we will substitute the energy-itgputensor of incoherent matter for

T% while neglecting the accelerations and the squafeshe velocities. From a

comparison of theg** components, we will get:

fo- K _Lizﬂ_i(0<1(r)jzﬂyi .

2m=r 27, 2\ ox
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2 (1) o (1)
n ox'\n ox \r ro

We see from this that’ fundamentally represents a static moment relative to the
reduction point. Previously, was assumed to be entirely arbitrary, exceptithed to
be inside the tube; however, if one lets it go tiglothe center of mass of the section of
the tube that is orthogonal to it then the moméoatva will vanish.
For that reason, from now on, we will assume th&t the “center of mass line,” so
we will then have:
p'=0. (37)

For the sake of interpreting the’” we must compare the expressions for the
components”.

2m= r 271, 2T\ ox
.m0 (Y. m" . d (1)_ m'" .0 (1)
-+ | |= +nf— | = |=———n*—| =
n ox'{ n n ax*\n r ox< \r

From the comparison, one sees that:

nk = Z’uykvi ’ (38)
up to some constant coefficients.

The equation above demands antisymmetry on the-hgnd side. Its validity is
exhibited by, e.g., systems that move like rigidlibs whose ellipsoid of inertia is a
sphere. The dipole will then be a satisfactoryragimation; the quadrupole term must
be considered in the case of a triaxial ellipsdidthertia.

Since we would like to truncate with the dipolatewe assume antisymmetry on the
right-hand side, and for that reason, we will have:

nik — %Z,U(kai _ yin) — Qik’ (39)

in whichQ“ is the moment of impulse tensor. As we will 58 will be fundamentally
the moment of impulse.

We now consider the terms (nizj in (23). With consideration given to (36), we
n

will obtain:

(n — "m®” —nﬂu”)[uﬂ —Ifj =0. (40)

It follows from this (e.g., in the proper systermat:
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A =S —nfu? = Q- (41)

Multiplication byu” yields:
Q7= nu,. (42)

Sincen® is antisymmetricQ? must be orthogonal ta’:
Q%ug = nu,u,=0. (43)

If one multiplies (41) by then it will follow that:

n’ = n"u,=- n"u,. (44)
Substituting the relation above in (41) yields:
"Mgp= NP +n?u,u” —n"u,u”. (45)

Two equations follow from the symmetry of the right-thade and the antisymmetry
of the left-hand side of the relation above:

m% =0, (46)
n +n”uu” -nuu’ =0. (47)

Differentiating the equation®”’ ug = 0 with respect ts yields:
nu,=- n"u,. (48)

For that reason, we can replace (47) with:

n” —n®yu” +n™u,u’ =0, (49)

With consideration given to the antisymmetryn8f, (49) will yield the relations (48) and
(47). Equation (49) is a relativistic generalization of lth@ of conservation of angular
momentum.

Finally, we consider the terms in h in (23). It follows from them that:

| | [ v’
ah ﬂ-l—+n “ 4P ﬂu +n” ﬂu - Ly r—+mu’+mu” =0. (50)
n n n

With the use of the relations (49) and (44), we get:
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mu® +mu” +2n = 0. (51)

Differentiating (44) with respect ®yields:

n’ =- i%u, -n"u,. (51)
However, it follows from (49) thaﬁ”ﬂuﬂ, son’=- ﬁ”ﬂuﬂ. Moreover, the vanishing of

the quantityn”ﬂuﬂ is linked with the relation:
i%u,= - n"li,, (52)
and for that reason we will get:

mu’ +mu? +2n"i; = 0. (53)

After multiplying this equation by, , we will see that:

[m=0,] (54)

so it will follow from (53) that:

mu? +2n"i, = 0. (55)

The center of mass of a separate (i.e., isolated) system that is endowed with a moment
of impulse no longer moves uniformly along a line.

The motion of the center of mass is still couphdth the moment of impulse in the
absence of forces, as in this case. MATHISSON doequations (49), (55) in the
previously-cited paper by using a variational methm the general case of a
RIEMANNIAN background. Independent terms appeatieete that were due to the
curvature of the background and would vanish fer MiINKOWSKI background. The
consideration of the MINKOWSKI background as a spletase has the advantage that it

allows one to compare the potential of the mulgpuolith the successive terms in a
T

known expression for the gravitational potenﬁ&zﬁ j & gv, which will yield an

meor

intuitive, physical interpretation of the quant#tighat were introduced.

Up to now, we have assumed that the energy-impaissorT? vanishes outside of
matter. We thus excluded the electromagnetic .fieckfom the linearity of the basic
equations (3) and (4), we see, with no further mggions, that in order for one to have
T% # 0 outside of matter, one will need to find onlyedntegral of equation (3) and add
it to the series of multipoles that representssthiation to the linear system. The integral
was given by MATHISSONJ] in the case where the material system was coupleoh
electric pole.

In conclusion, | would like to express my than@dHerrn Doz. Dr. M. MATHISSON
for suggesting this topic and for his valuable reksavhile we were discussing it
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