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§ 1. 
 

 In the following paper, I will employ the point calculations that were taught in the 
Ausdehnungslehre of 1862 (Grassmann’s book, volume one, part two, especially) (*).  I 
will then make no use of the regressive multiplication, because I do not regard its 
introduction as advantageous from a pedagogical standpoint.  Only experience will teach 
us whether one can manage without that product.  This is known to be true in mechanics; 
kinematical considerations, as in the present treatise, suggest the use of a special 
regressive product, which one can, however, introduce independently, as Peano did in the 
last-cited paper below. 
 One can as little do without the extension of a vector or product of two vectors – viz., 
a bivector, which will be denoted by a line | − in geometry as one can do without the 
concept of perpendicularity.  (By contrast, one does not need the extension of a product 
of points.)  I therefore understand the extension of the vector a – which will be denoted 
by | a – to mean the bivector bc whose factors are perpendicular to a, and are so arranged 
that the area of the surfaces of the parallelogram that is defined by b and c is equal to the 
length of a.  Therefore, the sense shall be such that when one looks along a, a right 
rotation through an angle < 180o of the vector c will bring it into the direction of c.  One 
understands the extension of the bivector de – which will be denoted by | de – to be the 
vector f for which | f = de.  The law of distribution is then true for extensions, so one will 
have a | b = b | a, (| ab) | c = abc is then equal to a number, namely, the volume of the 
parallelepiped that the three vectors a, b, c define, and: 
 

| (c | ab) = (c | b) a – (a | c) b, 

                                                
 (*) One finds a brief presentation by an original method in Peano: Calcolo geometrico secondo 
l’Ausdehnungslehre di H. Grassmann, Torino, 1888.  In German, under the title: The Gründzüge des 
geometrischen Kalküls, German version by Schepp, Leipzig, 1891.  Carvallo: “La méthode de 
Grassmann,” Nouv. Annales, 3me Série, t. 11 (1892), pp. 8.  Peano: “Saggio di calcolo geometrico,” Accad. 
d. Scienza di Torino, 1895/96. 
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(ab) | cd = (a | c) (b | d) – (a | d) (b | c) = cd | ab, 
 
which are two formulas that essentially agree with the ones in nos. 180 and 176 of the 
second Ausdehnungslehre (Grassmann’s book, v. 1, pt. 2, pp. 136). 
 The operation ω that Peano introduced relates to second and third-degree forms.  One 
can always write a second-degree form F: 
 

F = Pa + bc, 
 
where P is an arbitrary point, and a, b, c are vectors.  Therefore, the vector a does not 
depend upon the choice of P (Grassmann, loc. cit., no. 347, pp. 222); let that vector be 
denoted by ωF.  If a = 0 then F will be equal to a bivector, one must set ωF = 0. 
 A third-degree form F can be represented as either a product of three vectors F = abc 
or as the product of a point with a bivector F = Pab (Carvallo, page 26, no. 21).  In the 
former case, one understands ωF to be zero, while in the latter case, where the bivector 
ab does not depend upon the choice of the point P, one understands ωF to mean just that 
bivector. 
 The operation ω is distributive in both cases. 
 In order to minimize the number of brackets, I, with Carvallo and Peano, have 
omitted the brackets around a product of points that Grassmann had applied in order to 
distinguish that product from the other ones.  The effect of | and ω shall always extend up 
to the next operation symbol, such that, e.g., one writes ω (ab) briefly as ωab, ωA(b – c) 

for ω [A (b – c)], and | (a – b)(c – d) for | [(a – b)(c – d)], when no misunderstanding can 

arise. 
 

§ 2. 
 

 Let AB, A1B1 be two pairs of points in such a position that the separation AB  is equal 

to 1 1A B .  This can be expressed by the equation: 

 
(A1 – B1)

2 = (A – B)2, 
or by: 

(B1 – A1 – B + A) | (B1 – A1 + B – A) = 0. 
 

 If one denotes the midpoints of the lines AA1 and BB1 − and thus, the points, (A + A1) 
/ 2 and (B + B1) / 2 − by A and B, resp., then one can write this equation as: 

 
(1)     [B1 – B – (A1 – A)] | (B – A) = 0. 

 
 We next assume that B – A is not equal to zero.  One can then replace this equation 

with: 
(2)     B1 – B – (A1 – A) = | (A – B) a, 
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where a is a vector that is not determined completely.  It would be convenient if one 
could separate the symbols A and B in this equation, so to speak.  However, this is not 
immediately possible, because one cannot decompose | (B – A) a into | Ba – | Aa on the 

right, since – at least, for us here – a form like | Aa has no meaning.  However, with the 

use of an arbitrary point P, one can write: 
 
 (A – B) a = ω P (A – B) a = ω (A – B) Pa 

  = ω B Pa – ω A Pa, 

 
and then decompose the latter equation into: 
 

B1 – B − | ω B Pa = A1 – A | ω A Pa, 

 
in which the symbols are separated.  If one sets the vector that both sides are equal to 
equal to b then one will have: 
 A1 – A = | ω A Pa + b = | (ω A Pa + | b) 

 B1 – B = | ω B Pa + b = | (ω B Pa + | b), 

 
or, since ω (A | b) = ω (B | b) = | b, if one sets: 

 
Pa + | b = Γ 

then one will have: 

(3)  1

1

| ,

| .

A A

B B

ω
ω

− = Γ
 − = Γ

A

A
 

 
 These formulas are then also true when one has A1 – A = B1 – B.  Namely, one will 
then have: 

a = 0, Γ = | b,  | ω A Γ = | ω B Γ = b, 

 
so A1 – A = B1 – B = b, as it must be. 
 
 

§ 3. 
 

 In order to recognize the geometric meaning of these formulas, we would first like to 
assume that a point P has the following relationship with another one P1 : 
 
(4)      P1 – P = 1

2  | ω P Q R, 

 
where Q, R are given points.  If one writes: 
 

PQR = P (Q – P)(R – P) 
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then one will see that ω PQR = (Q – P)(R – P), so it is equal to a bivector whose factors 
lie in the plane PQR, and that | ω PQR is correspondingly a vector that is perpendicular to 
the plane PQR.  The length of this vector is equal to the surface area of the parallelogram 
whose sides are PQ and PR or equal to twice the area of the triangle PQR.  As far as its 
direction is concerned, when one looks outward from it, one will see R – P to the right of 
Q – P; i.e., if one places P perpendicular to the plane PQR, such that one must make a 
proper rotation around it through an angle < 180o in order to see the direction PQ in the 
direction PR then the direction of the vector will go from the foot to the head.  Instead of 
that, one can also say that if one stands on QR with one’s feet at R and one’s head at Q 
and looks towards P then the direction of the vector will go from right to left. 
 If one draws PS perpendicular to QR then the magnitude of PP1 will be equal to 
1
2 PS QR⋅ .  Therefore, if one determines an acute angle ϕ from the equation tan ϕ / 2 = 

QR then one can say that the plane P1QR defines an angle of ϕ / 2 with PQR, and indeed 
with a rotation that goes right to left when seen from QR. 
 If we secondly assume that the two points PP1 are connected with each other and 
their midpoint P by the equation: 

(5)      P1 – P = | ω P QR. 

Since P = (P + P1) / 2, one will have: 

 
P1 – P = 2 (P1 – P) = 2 (P – P), 

such that one will have: 
 P1 – P =   1

2  | ω P QR, 

 P  – P = − 1
2  | ω P QR . 

 
 P, P, P1 then lie on a straight line that is perpendicular to the plane PQR at P, the 

plane P1QR makes an angle of ϕ / 2 to the left with the plane PQR, while PQR makes an 

angle of ϕ / 2 to the right.  P and P1 will then have the same distance from a point T on 
QR.  One can then set QR = UT if one determines the point U on QR suitably, and then 
writes equation (5) as: 

P1 – T + T – P = | ω P UT . 

It will follow from this that: 
 
 (P1 − T) | (P1 − T) + (P1 − T) | (T – P) = (P1 − T) ω P UT, 

 (T − P)  | (P1 − T) + (T − P)  | (T – P)  = (T − P) ω P UT, 

 
and by subtraction, that: 
 
 (P1 − T)2 – (P – T)2  = (P1 + P – 2T) ω P UT, 

  = 2 (P – T) ω P UT. 
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 However, one has ω P UT = (U – P) (T – P), and as a result, the right-hand side is 

zero, so 1PT  = PT . 

 Therefore, P1 emerges from P by a rotation around the axis QR through the angle ϕ, 
and in fact, a rotation that proceeds to the left when seen from QR.  The magnitude and 
sense of the rotation, and its axis are determined completely by the line segment QR. 
 
 

§ 4. 
 

 One can alter the second-degree form Γ by altering the point P.  One can then write: 
 

Γ = Qa + (P – Q) a + | b. 
 
Here, (P – Q) a + | b is a bivector that one can set equal to | b′.  One will obtain a 
distinguished form for Γ when b′ is parallel to a, so one will get: 
 
(6)      (P – Q) a + | b = λ | a, 
 
if one understands λ to mean a number (*). 
 The multiplication by a will give a | b = λ a | a, and then: 
 

 (P – Q) a = 
( | ) | ( | ) |

|

a b a a a b

a a

−
= 

1

|a a
a (| ab), 

 
|

|

ba
P Q

a a

 − + 
 

a = 0. 

 
 The first factor on the left must then be a vector that is parallel to a that one can set 
equal to µ a if one understands µ to mean a number.  That will yield: 
 

Q = P + 
|

|

ba

a a
 − µ a. 

 
 By substituting this into equation (6), one sees that m remains completely arbitrary, 
such that Q can be chosen arbitrarily in a certain line that is parallel to a.  One finally has: 
 

Γ = Qa + 
|

|

a b

a a
 ⋅⋅⋅⋅ | a, 

 
as the normal form of Γ.  Formula (3) then yields: 
 

                                                
 (*) The following reduction is identical with the search for the central axis of a system of forces, which 
can also be represented by a second-degree form.  
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A1 – A = | ω A Q a + λ a. 

 
 Now, if ρ is an arbitrary number, and one sets: 
 
 A1 – (λ – ρ) a = 1A′ , 
 A  + ρ a = A′, 
 
then A′ and 1A′  will be two points, the first of which emerges from A by a displacement ρa 

parallel to a, while one must displace the second one by (λ – ρ) a in order to obtain A1 .  
With that, one will have: 

 A = 1

2

A A′ ′+
 + 1

2 (λ – 2ρ) a, 

 A Q a = 1

2

A A′ ′+
 − Qa, 

 1A′  − A′ = | ω 1

2

A A′ ′+
 – Qa. 

 
 The last formula shows that 1A′  emerges from A′  by a rotation around the axis that 

goes through Q and is parallel to a, which will be denoted by (Q, a).  A1 then arises from 
A by a translation parallel to a and a rotation around an axis parallel to a. 
 The second-degree form Γ thus represents a screwing motion, or a wrench (*). 
 Now, if Γ′ is a second wrench that, like Γ, must take the points A, B to A1 , B1 , resp., 
in any case, then one must have: 
 
(7)     ω A Γ = ω A Γ′, ω B Γ = ω B Γ′. 
However, if one has: 

ω A T = 0 

 
for a second-degree form T then one will set: 
 

T = A d + ef, 

 
where d, e, f are vectors.  One will then arrives at the equation: 
 

ω A ef = ef = 0, 

 
so T = A d, or, when one sets the point A + d = R, one will have T = A R. 

 Equations (7) will then be fulfilled when: 
 

Γ′ – Γ = A R = B S. 

                                                
 (*) Grassmann, loc. cit., pp. 223.  Remark.  
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 However, this relation between four points A, B, R, S says that they lie upon a 

straight line, so two vectors R – A and S – B will be equal.  If one then sets: 

 
 R = A + ρ (B – A), 

 S = A + σ (B – A) 

then it will follow that ρ = σ – 1, so: 
Γ′ − Γ = ρ AB, 

 
where ρ is an arbitrary number.  Any wrench of the form: 
 

Γ + ρ AB 

 
will then take AB to A1B1, such that there is an entire pencil of wrenches that will 
accomplish that objective. 
 

§ 5. 
 

 Should there be a wrench among this pencil that is a pure rotation then one must be 
able to determined ρ in such a way that Γ′ = Γ + ρ AB is equal to a line segment (*). 

 However, one will then have Γ′ Γ′ = 0 = ΓΓ + 2ρ (Γ AB), so: 

 

ρ = −
2( )

ΓΓ
ΓAB

. 

 
 Let ρ be so determined.  If one then brings Γ′ into the form: 
 

Γ′ = Pa′ + | b 
 
with the help of a point P, in which a′ and b are vectors, then it will follow from: 
 

0 = Γ′ Γ′ = 2 P (a′ | b) 
 
that b will be perpendicular to a′ when a′ ≠ 0.  One can then set: 
 

b = | a′c, 
 
where c is again a vector, and one will get: 
 

Γ′ = Pa′ + a′c = (P – c) a′, 
 

                                                
 (*) Loc. cit., no. 286.  
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or with P – c = Q, a′ = R – Q, where Q and R are points, so Γ′ = QR will, in fact, be a line 
segment.  However, if a′ = 0 then one will have Γ′ = | b, and that will represent a pure 
translation.  There will then be a rotation that takes AB to A1B1 when one has a′ = ωΓ′ ≠ 
0.  However, one will have: 
 

ωΓ′ = ωΓ + ρω AB = ωΓ + ρ (B – A), 

 
so if one had ωΓ′ = 0 then one would have: 
 

ωΓ = ρ (B – A). 

However, the normal form of Γ is: 
Γ = Qω Γ + λ | ωΓ, 

 
so here it will be equal to Qρ (A – B) + ρλ | (A – B), and that will imply: 

 
 A Γ = − ρ Q AB + ρλ A | (A – B), 

 B Γ = − ρ Q AB + ρλ B | (A – B), 

 ω A Γ = − ρω Q AB + ρλ | (A – B), 

 ω A Γ = − ρ ω Q AB + ρλ | (A – B), 

 
such that A1 – A = B1 – B, so only a displacement will be necessary. 
 
 

§ 6. 
 

 The derivation of formula (2) from (1) is justified only when A – B is not equal to 

zero.  However, if the two points A and B coincide then one will determine a unit vector 

a such that one has: 
(A1 – A) | a = (B1 – B) | a . 

 
If ρ is the common value, and one sets: 
 

A1 – A = ρ a + a1, B1 – B = ρ a + b1 
 

then it will follow that a | a1 = a | b1 = 0.  Therefore, if one defines the points A′ and B′ by 
the equations: 

A′ = A + ρ a,  B′ = B + ρ a 
 

then one will have A1 – A′ = a1, B1 – B′ = b1, and these vectors will be perpendicular to a 
when they are not zero.  Furthermore, one has: 
 

A1 + A′ = 2A + ρ a, B1 + B′ = 2B + ρ a . 
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 The lines A1A′ and B1B′ will then be met by the line (A, a) in their midpoints, when 

they do not vanish.  As a result, one can take AB to A1B1 by just a displacement through 
ρa, or in connection with a rotation through 180o around the axis (A, a). 

 
 

§ 7. 
 

 We now go on to the consideration of three points, and let ABC and A′B′C′ be two 
congruent triangles.  Let the midpoints: 
 

1
2 (A + A1), 1

2 (B + B1), 1
2 (C + C1) 

 
of the three lines AA1, BB1, CC1 be denoted by A, B, C. It will first be assumed that these 

three points do not lie on a straight line and that no two of them will coincide, either.  
One can then apply the considerations of § 2 to the three pairs of points AB, BC, CA, and 
thus find three second-degree forms A, B, Γ such that 
 

(8)  1 1 1

1 1 1

| , | , | ,

| , | , | .

A A B B C C

B B C C A A

ω ω ω
ω ω ω

− = Γ − = − =
 − = Γ − = − =

A B C

B C A

A B

A B
 

 
One must then also have: 
 

ω A (Γ – B) = 0, ω B (A – Γ) = 0, ω C (B – A) = 0, 

 
so, from § 4, three points P, Q, R must then exist that imply: 
 
(9)    Γ – B = A P, A – Γ = B Q, B – A = C R, 

 
and must then fulfill the equation: 
(10)     A P + B Q + C R = 0. 

 
If one multiplies this by BC, CA, and AB then it will follow that: 

 
ABCP = ABCQ = ABCR = 0, 

 
and thus, since A, B, C should not lie on a straight line, PQ and R must lie in the plane 

ABC.  One can thus set: 

P = α A + β″ B + γ C, 

 
where α, β″, γ are numbers that fulfill the condition α + β″ + γ = 1, and obtain: 
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AP = β″ AB – γ CA. 

 
 Similarly, there are numbers β, β′, γ′, γ″ for which it follows that: 
 
 BQ = β BC – γ′ AB, 

 CR = β′ CA – γ″ BC . 

 Equation (10) then demands that: 
 

(β″ – γ′ ) AB + (β – γ″) BC + (β′ – γ) CA = 0, 

 
and upon multiplying this equation by A, B, C, in turn, one will get the three equations: 

 
β″ – γ′  = 0, β – γ″ = 0, β′ – γ = 0, 

resp., which will yield: 
 Γ − B = β″ AB – β′ CA, 

 A − Γ = β  BC – β″ AB, 

 B − A = β′  CA – β  BC, 

and furthermore: 
 A – β BC = B – β′ CA = Γ – β″ AB. 

 
Finally, if one denotes the common value of these three second-degree forms by Σ then it 
will follow that: 
 

A = Σ + β BC,  B = Σ + β′ CA, Γ = Σ + β″ AB,  

and 
(11)  A1 – A = | ω AΣ, B1 – B = | ω BΣ, C1 – C = | ω CΣ . 
 
 There is then a wrench that takes the triangle ABC to the congruent one A1B1C1 .  If 
there is yet a second wrench Σ′ that accomplishes the same thing then one must have: 
 

ω A (Σ′ – Σ) = ω B (Σ′ – Σ) = ω C (Σ′ – Σ) = 0. 

 
There must then exist three points U, V, W, such that one has: 
 

Σ′ – Σ = A U = B V = C W. 

 
However, it follows from these equations that: 
 

AB U = 0, AC U = 0; 

 
i.e., U is necessarily identical with A, and therefore: 
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Σ′ – Σ = 0. 
 

 There is then only one wrench that satisfies equations (11). 
 
 

§ 8. 
 

 If the three points A, B, C lie on a straight line then one will set: 

 
 A = A – a, A1 = A + a, 

 B = B – b, B1 = B + b, 

 C = C – c, C1 =  C + c, 

 
where a, b, c are vectors.  The following equations must then be true: 
 

(12) 

( ) | ( ) 0,

( ) | ( ) 0,

( ) | ( ) 0.

b a

c b

a c

− − =
 − − =
 − − =

B A

C B

A C

 

 
 The three vectors B – A, C – B, A – C will be parallel, since A, B, C lie on a straight 

line.  If q is a unit vector that is parallel to them then it will follow from the last three 
equations that: 
(13)     a | q = b | q = c | q = ρ . 
 Therefore, if one sets: 

(14)     
1

1

1

,

,

a q a

b q b

c q c

ρ
ρ
ρ

= +
 = +
 = +

 

then one will have: 
a1 | q = b1 | q = c1 | q = ρ . 

 
 If one now defines three points by the equations: 
 

A′ = A + 2ρ q,  B′ = B + 2ρ q,  C′ = C + 2ρ q 
 
then one will get: 

 1

2

A A′+
= A + ρ q, A1 – A′ = 2a1,  

 1

2

B B′+
= B + ρ q, B1 – B′ = 2b1,  

 1

2

C C′+
= C + ρ q, C1 – C′ = 2c1 . 
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 The lines A1A′, B1B′, C1C′ will then be met perpendicularly by the line (A, q) at their 

midpoints, when they are not all equal to zero, and therefore A1B1C1 will emerge from 
A′B′C′ by rotating through 180o around the axis (A, q), and A1B1C1 will arise from ABC 

by a displacement through 2ρ q and the rotation that was just referred to.  If the three 
vectors a1b1c1 are zero then one will arrive at a displacement; one will thus also have a 
screwing motion here.  However, this is contained in formulas (11) of the previous 
paragraphs only as a limiting case that corresponds to approximating ϕ / 2 by 90o. 
 The above conclusion is also possible when two of the points A, B, C coincide, since 

two of equations (12) will then become non-illusory, and the vector q will then be 
determinate. 
 However, if A = B = C then one will determine q such that it will be perpendicular to 

the vector b – a and c – a.  Since one will then have: 
 

(b – a) | q = 0,  (c – a) | q = 0, 
 
equations (13) will be true, along with their further consequences. 
 q can be indeterminate when the three vectors a, b, c are coplanar.  If one takes q to 
be perpendicular to the plane abc in that case then it will follow that ρ = 0, while 
everything else will remain as before. 
 Finally, the plane abc can be indeterminate when a, b, c are parallel.  If one then 
determines q such that one has a | q = 0 then one will have ρ = 0, and the previous results 
will be true. 
 

§ 9. 
 

 The congruent triangles ABC and A1B1C1 will now have yet a fourth point D and D1, 
resp., added to them, which will lie in such a way that: 
 

AD  = 1 1A D ,  BD  = 1 1B D ,  CD  = 1 1C D . 

 
Let the middle of DD1 – i.e., the point 12 (D + D1) – be denoted by D.  We will next 

assume that no three of the four points A, B, C, D lie on a straight line.  One can then 

apply the considerations of § 7 to each of the four triangles ABC, ABD, ACD, BCD, and 
thus obtain the equations: 
 

(15)  
1 1 1

1 1 1

1 1 1

| , | , | ,

| , | , | ,

| , | , | ,

A A A A B B

B B C C C C

D D D D D D

ω ω ω
ω ω ω
ω ω ω

− = Γ − = − =
 − = Γ − = − =
 − = Γ − = − =

A A B

B C C

D D D

B A

B A

B A

 

 
(16)  A1 – A = | ω A Σ, B1 – B = | ω B Σ, C1 – C = | ω C Σ, 

 
where A, B, Γ, Σ are four second-degree forms. 
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 Comparing the two values of A1 – A and B1 – B gives: 
 

ω A (Σ – Γ) = 0, ω B (Σ – Γ) = 0, 

 
from which, it will follow that: 

Σ – Γ = − ν AB, 

  
where ν is a number.  Comparing B1 – B and C1 – C likewise yields: 
 

Σ – B = − µ CA, 

 
and the comparison of B1 – B and C1 – C yields: 
 

Σ – A = − λ BC . 

 Therefore: 
 D1 – D = | ω D Σ + λ | ω DBC, 

   = | ω D Σ + µ | ω DCA, 

  = | ω D Σ + ν | ω DAB . 

 
 Since ω DBC = (B – C) (C – D) = BC + CD + DB, in order for the three 

expressions above to be equal, one must have: 
 
 λ (DB + BC + CD) = µ (DC + CA + AD) 

  = ν (DA + AB + BD). 

 
If one then multiplies this by D then it will follow that: 

 
(17)    λ BCD = µ CAD = ν ABD, 

 
and the further multiplication by A, B, and C will give: 

 
λ ABCD = µ ABCD = ν ABCD = 0. 

 
 These equations can be fulfilled in two ways: In one case, ABCD ≠ 0, and λ = µ = ν 

= 0, and one must add to equations (16): 
 
(16*)     D1 – D = | ω D Σ. 

 
 The tetrahedron ABCD will thus be taken to A1B1C1D by the wrench Σ. 
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 In the other case, ABCD = 0, and the four points A, B, C, D lie in a plane.  One can 

then determine the number ρ such that ρ ABC is equal to the three products in (17) that 

are set equal to each other, and one will then get: 
 
(16** )    D1 – D = | ω D Σ + ρ | ω ABC . 

 
 

§ 10. 
 

 The tetrahedron A1B1C1D1 was assumed to be such that the six separations of the four 
edges were equal to the corresponding lengths of the edges of the tetrahedron ABCD.  
Therefore, the two figures are either congruent or symmetric.  Since taking equations (16) 
to equations (16*) can be performed by a wrench Σ, the two tetrahedra will be congruent, 
and therefore if they are symmetric then equations (16) and (16** ) must be true.  
However, they assume that the four points ABCD lie in a plane. 

 We thus have the theorem: 
 
 If two tetrahedral are symmetrically equal then the midpoints of the connecting lines 
of their corresponding edges will lie in one and the same plane, which might be called 
the middle plane. 
 
 One can show that the two tetrahedra are congruent in the first case when one proves 
the equation: 
      ABCD = A1B1C1D1 . 
 In fact, if we set, as in § 8: 
 A1 =  A + a, A = A – a, 

 B1 = B + b, B = B – b, 

 C1 =  C + c, C =  C – c, 

 D1 = D + d, D = D – d 

then it will follow that: 
 

(18) 1 1 1 1 2[ ]

2[ ].

A B C D ABCD d c b a

bcd acd abd abc

− = − + −
 + − + −

ABCD ABD ACD BCD

A B C D
 

 
 Since a product of four vectors is zero, one will have: 
 

Bacd = Bacd + (A – B) acd = Aacd, etc., 

 
and therefore the second bracket will be: 
 
 = A (bcd – acd + abd − abc) 

 = A (b – a) (c – a) (d – a). 
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 Now, if u, v, w, t are four vectors then one will have: 
 

(| ut) (| vt) (| wt) = 0, 
 
since the three factors will be vectors that are perpendicular to t, and thus coplanar. 
 On the other hand, in order to give a different proof, let | vt = v′, | wt = w′, so one has: 
 

v′ w′ | u t = (v′ | u) (w′ | t) – (v′ | t)(w′ | u). 
 
 However, v′ | t = t | v′ = tvt is equal to 0, and likewise w′ | t, so one will have: 
 

v′ w′ | ut = 0, 
and this is the equation to be proved. 
 However, one has: 

2 (b – a) = | ω (B – A) Σ. 

 
 Therefore, if one brings the wrench Σ into the form Pe + fg, where e, f, g are vectors, 
with the help of an arbitrary point then it will follow that: 
 

ω (B – A) Σ = e (B – A), 

so 
 b – a = 1

2 | (A – B) e, 

 c – a = 1
2 | (A  – C) e, 

 d – a = 1
2 | (A – D) e, 

 
such that from the formula that was just proved, one will have: 
 

(b – a)(c – a)(d – a) = 0. 
 
One can write: 
 
ABC (d – a) – ABD (c – a) + ACD (b – a) + a [ABC – ABD + ACD – BCD] 

 
for the first bracket in equation (18). 
 The coefficient of a is equal to (A – D)(B – D)(C – D), so the second summand will 

be equal to zero, since it is the product of four vectors. 
 However, the first summand will be equal to: 
 

1
2 [ABC | (A – D) e – ABD | (A – C) e + ACD | (A – B) e], 

 
and when one introduces ABC = A (B – A)(C – A), etc., this will become: 
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= 
2

A
[(B – A)(C – A) | (A – D) e − (B – A) (A – D) | (A – C) e  

+ (C – A)(D – A) | (A – B) e] . 

 
 Now, if u, v, w, t are once more four arbitrary vectors then one will have: 
 
 uv | wt = (u | w)(v | t) – (u | t)(v | w), 
 vw | ut = (v | u)(w | t) – (v | t)(w | u), 
 wu | vt = (w | v)(u | t) – (w | t)(u | v), 
 
so by addition, one will get (*): 
 

uv | wt + vw | ut + wu | vt = 0. 
 

 As a result of this equation, the coefficient of 1
2A will be equal to zero, and therefore 

ABCD = A1B1C1D1 . 
 

§ 11. 
 

 One can also prove the theorem about symmetric tetrahedra in yet another way.  We 
imagine that a perpendicular has been dropped from D to the plane ABC, whose base 
point in this plane is the point: 

A + β (B – A) + γ (C – A), 
 
where β and γ are numbers.  Since | ω ABC is a vector that is perpendicular to the plane 
ABC, one can set: 
(19)   D = A + β (B – A) + γ (C – A) + λ | ω ABC . 
 
One will then have: 
    D1 = A1 + β (B1 – A1) + γ (C1 – A1) + λ | ω A1B1C1 
 
for the congruent tetrahedron. 
 Therefore, one will have: 
 
(19*)   D1 = A1 + β (B1 – A1) + γ (C1 – A1) + λ | a A1B1C1 , 

 
for the symmetric case, so: 
 
(20)   D = A + β (B – A) + γ (C – A) + λ | ω (A1B1C1 − ABC). 

 
 However, with the notations of the previous paragraph, one has: 
 

A1B1C1 − ABC = 2 [ABc + BCa + CAb + abc], 

                                                
 (*) Grassmann, loc. cit., no. 185.  
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so, since ωabc = 0, one will have: 
 
 ω (A1B1C1 − ABC) = 2ω [ABc + BCa + CAb] 

  = 2 [(B – A) c + (C – B) a + (A – C) b] 

  = 2 [A (b – c) + B (c – a) + C (a – b)] 

  = A | (C – B) e + B | (A – C) e + C | (B – A) e. 

 
 In order to be able to extend this, one must also represent the right-hand side, which is 
a sum of bivectors, as such.  To that end, we convert it into: 
 

(A – C) | (C – B) e + (B – C) | (A – C) e + C [|(C – B) e + | (A – C) e + | (B – A) e], 

 
which is equal to the first sum, since the bracket vanishes.  It then follows from this that: 
 
 | ω (A1B1C1 − ABC) = | [(A – C) | (C – B) e] + | [(B – C) | (A – C) e] 

  = [(A – C) | e] (C – B) – [(A – C) | (C – B)] e 

  + [[(B – C) | e] (A – C) – [(A – C) | (B – C)] e 

  = A [(B – C) | e] + B [(C – A) | e] + C [(A – B) | e]. 

 
 However, this expression represents a vector that is contained in the plane ABC; if 

one adds – 1 / 2 times it to the point: 
 

A + β (B – A) + γ (C – A) 

 
in the plane ABC, using the prescription of equation (20), then a point in that plane will 

again arise in D. 

 
§ 12. 

 
 If the two symmetric tetrahedra ABCD and A1B1C1D1 are given then the wrench will 
be determined completely, so the numbers λ, µ, ν and ρ in (17) and (16** ) will be, as 
well.  However, if one assumes that Σ and ρ are arbitrary and then calculates A1B1C1D1 
from equations (16) and (16** ) then the triangle A1B1C1 will be congruent to ABC.  
Furthermore, one will have: 
 

D1 – D – (A1 – A) = | ω (D – A) Σ + ρ | ω ABC, 

so 
 (D1 – D)2 – (D − A)2  = 2 (D – A) | (D1 – D – A1 + A) 

  = 2ρ (D – A) ω ABC, 

  = 2ρ (D – A) (B – A) (C – A). 

  Therefore, one will have: 
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1 1D A  = DA  and likewise 1 1D B  = DB , 1 1D C  = DC , 

 
only when either ρ = 0 or the four points A, B, C, D lie in a plane.  Only then will one 

get a tetrahedron that is congruent or symmetric to ABCD as a result. 

 Now, in the latter case, this will yield: 
 

A1B1C1D1 + ABCD = 2 [ABCD + abcd + F], 

where 
F = ABcd – ACbd + ADbc + BCad – Bdac + CDab . 

 
 However, since abcd vanishes (as the product of four vectors) and ABCD vanishes 

because the four points lie in a plane, only F needs be calculated. 
 It is equal to: 
 
 AB (c – a)(d – a) – AB (b – a)(d – a) + AD (b – a)(c – a) 

 + AB (ad – ac) – AC (ad – ab) + AD (ac – ab) 

 + BC ad – BD ac + CD ab. 

 
 The last six summands, when combined differently, yield: 
 

(AB + BC + CA) ad + (BA + AD + DB) ac + (AC + CD + DA) ab 

= (A – C)(B – C) ad + (B – D)(A – D) ac + (A – D)(C – D) ab = 0, 

 
since each summand will vanish by itself as the product of four vectors. 
 If one denotes the three vectors A – B, A – C, and A – D by u, v, w then the first part 

of F will be equal: 
 

1
4  A {u | ve (| we + ρ | uv) – v | ue (| we + ρ | uv) + w | ue | ve}. 

 
 The content of the bracket is ρT1 + T2, where: 
 
 T1 = u | ve | uv – v | ue | uv, 
 T2 = u | ve | we – v | ue | we + w | ue | ve . 
 However, one has: 
 u | ve | wt = wt | (u | ve) 
  = wt [v (u | e) – e (u | v)], 
so 
 T1 = − uve (u | v) – vue (v| u) = 0. 
 
 When one applies the same conversion to T2, one will find that: 
 

T2 = e [vw (u | e) + wu (v | e) + uv (w | e)]. 
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 The bracket does not vanish for arbitrary vectors u, v, w.  However, here, these three 
vectors are coplanar, so one can set: 

w = µ u + ν v, 
which yields: 

T2 = e [µ vu (u | e) + ν vu (v | e) + µ uv (u | e) + ν uv (v | e)] = 0. 
 
With that, one has shown that: 
(21)     A1B1C1D1 = − ABCD 
 
will be true for any arbitrary value of ρ, only when the four points A, B, C, D lie in a 

plane, such that the tetrahedra will then be symmetric. 
 
 

§ 13. 
 

 If, as was assumed, A, B, C, D lie in a plane then one can set: 

 
(22)    D = A + µ (B – A) + ν (C – A) ; 

 
equations (16) and (16** ) will then yield: 
 

D1 – D = (1 – µ – ν) (A1 – A) + µ (B1 – B) + ν (C1 – C) + ρ | ω ABC, 

 
so the vector: 
 D1 – (1 – µ – ν) A1 – µ B1 – ν C1 
will be equal to: 
 D1 – (1 – µ – ν) A – µ B – ν C + ρ | ω ABC . 

 
If this equals x then equation (22) will yield: 
 

x = 
2

ρ ω ABC, 

and it will then follow that: 
 

(23)   

1 1 1 1

(1 ) ,
2

(1 ) ,
2

D A B C

D A B C

ρµ ν µ ν ω

ρµ ν µ ν ω

 = − − + + −

 = − − + + +


ABC

ABC

 

 
 If ρ = 0 then D will be a point of the plane ABC, D1 will be a point of the plane 
A1B1C1 that corresponds to it under a congruent transformation, and the two tetrahedra 
ABCD, A1B1C1D1 will then be zero. 
 Equations (23) imply the theorem: 
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 The perpendiculars that one drops from the vertices D and D1 to the middle plane are 
equal in length and meet the triangles ABC and A1B1C1, resp., at corresponding points. 
 
 If one substitutes the value of: 

| ω (A1B1C1 − ABC) 
 
that was found in § 11 in formula (20) then it will follow that: 
 
D = A + β (B – A) + γ (C – A) − 1

2 [A (B – C | e) + B (C – A | e) + C (A – B | e)]. 

 
 Comparing this with (22) then yields: 
 
 1 – µ – ν  = 1 – β – γ = 1

2 (B – C | e), 

 µ  = β − 1
2 (C – A | e), 

 ν  = γ − 1
2 (A – B | e), 

and thus, from (19) and (19*): 
 

D = A + ( )1
2 ( | )eµ + −C A (B – A) + ( )1

2 ( | )eν + −A B (C – A) + λ | ω ABC. 

 
 One gets a similar expression for D1; it arises from the foregoing one when one 
replaces A, B, C with A1, B1, C1, resp., and λ | ω ABC with − λ | ω ABC.  We have similar 
expressions in (23); we shall now prove that the two agree.  If one writes the expression 
above as: 

(24)   
1 1 1 1

(1 ) ,

(1 ) ,

D A B C X

D A B C Y

µ ν µ ν
µ ν µ ν

= − − + + +
 = − − + + +

 

then one will get: 
 
 X + Y  = λ | ω (ABC – A1B1C1) + λ (C – A | e)(B – A) + λ (A – B | e)(C – A) 

  = λ [| ω (ABC – A1B1C1) + (B – C | e) A + (C – A | e) B + (A – B | e)(C] = 0, 

 
as was shown above in § 11. 
 By contrast, one has: 
 
 X – Y = − λ (C – A | e)(b – a) − λ (A – B | e)(c – a) + λ | ω (ABC + A1B1C1) 

  = λ | ω (ABC + A1B1C1) − 1
2 λ (C – A | e) | (A – B) e − 1

2 λ (C – A | e) | (A – C) e. 

 
 It follows further that: 
 
 A1B1C1 + ABC  = 2ABC + 2Abc + 2Bca + 2Cab, 

 ω (A1B1C1 + ABC) = 2ω ABC + 2 (bc + ca + ab), 

  = 2ω ABC + 2 (b – a) (c – a), 

so 
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 X – Y  = 2λ | ω ABC + 1
2 | [| (A – B) e ⋅⋅⋅⋅ | (A – C) e] − 1

2 | (C – A | e) | (A – B) e  

 − 1
2 (A – B | e) | (A – C) e . 

 If one sets: 
B – A = u, C – A = v 

 
then when one multiplies the right-hand side above by λ / 2, it will become: 
 

| (| ue ⋅⋅⋅⋅ | ve) + (v | e) | ue – (u | e) | ve = U. 
 
 When one replaces | ue with w in: 
 

w | ve = (w | e) | v – (w | v) | e, 
it will follow that: 

| ue ⋅⋅⋅⋅ | ve = − (vue) | e = (euv) | e. 
 
 On the other hand, it follows from the fact that | (e | uv) = u (v | e) – v (u | e) that: 
 

− | e [| e (| uv)] = (v | e) | ue – (u | e) | ve. 
 

 However, the left-hand side is equal to e (euv) + | uv ⋅⋅⋅⋅ (e | e).  Therefore: 
 

U = (euv) e – (euv) e + (e | e) | uv = (e | e) | uv, 
so 

X –Y = 2λ | ω ABC + 1
2  (e | e) | (B – A)(C – A), 

 
or, since ω ABC = (B – A)(C – A), one will have: 

 

X – Y = 
2

λ
(4 + ε 2) | ω ABC, 

 
if one denotes the length of e by ε.  One will then have: 
 

X = − Y = 
2(4 )

4

λ ε+
 | ω ABC, 

 
and comparing (23) with (24) will give: 
 

ρ = − 
2(4 )

4

λ ε+
. 

 
 If the aforementioned midpoints of two congruent tetrahedra lie in a plane, so one 
has: 

D = A + µ (B – A) + ν (C – A), 
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then equations (16) and (16*) will yield: 
 

D1 – D = A1 – A + µ (B1 – B – A1 + A) + ν (C1 – C – A1 + A), 
 
and both of them together will imply that: 
 
 D  = A   + µ (B  –  A) + ν (C  –  A), 
 D1  = A1 + µ (B1 – A1) + ν (C1 – A1), 
 
which say that A, B, C, D lie in a plane. 
 
 

§ 14. 
 

 The considerations of §§ 3 and 4 show that when Σ is a second-degree form, the 
formula: 

(25)     P1 – P = | ω 1

2

P P+ Σ 

 
will represent a congruent transformation of space.  In order to derive an expression for 
P1 in terms of P from it, we assume that Σ has been put into the normal form: 
 

Σ = Ua + λ | e, 
 
where e is a unit vector that is parallel to the vector a, and λ is a number.  Since: 
 

ω 1 |
2

P P
e

+ 
 
 

= | e, 

one will then have: 
P1 – P = λe + 1

2 | ω PUa + 1
2 | ω P1Ua 

or 
(26)   P1 – P = P – U + λe + 1

2 | (P – U) + 1
2 | (P1 – U) a. 

 
 It will then follow from this that: 
 

a | (P1 – U) = a | (P – U) + λa | e, 
 | a (P1 – U) = | a (P – U) − 1

2 {( P – U) (a | a) – a [a | (P – U)]} 

  − 1
2 {( P1 – U) (a | a) – a [a | (P1 – U)]}. 

 
 If one substitutes this into (26) then one will get: 
 
 P1 – U = P – U + λe  − | (P – U) a − 1

4 (P – U) (a | a) + 1
4 a [a | (P – U)] 

  − 1
4 (P1 – U)(a | a) + 1

4 a {[ a | (P – U)] + λ (a | e)}. 
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 If one sets the length of the vector a equal to 2 tan ϕ / 2, such that one has: 
 

a = 2 tan
2

ϕ
 ⋅⋅⋅⋅ e, 

then one will get: 
 

 P1 – U = P – U + λe – 2 tan
2

ϕ
| (P – U) e – tan2

2

ϕ
(P – U) 

  + tan2
2

ϕ
e (e | P – U) – tan2

2

ϕ
(P1 – U) 

  + tan2
2

ϕ
e {[ e | (P – U)] + λ}, 

from which, it will follow that: 
 

(27)  P1 – P = (P – U) cos ϕ + λe + 2 sin2
2

ϕ
e (e | P – U) – sin ϕ | (P – U) e. 

 
 If one sets tan ϕ / 2 = µ in this equation and goes over to orthogonal coordinates then 
one will obtain the well-known Euler formulas for the transformation of these 
coordinates from them. 
 While formula (25) loses its validity for ϕ = 180o, this is not the case for (27).  
Moreover, it gives: 

1

2

P P+
 = U + 1

2 e + e (e | P – U) 

 
which is a point in the axis (U, e), and since: 
 

(P1 – P) | e = − 2 (P – U) | e + λ (e | e) + (e | e) [e | P – U] = 
2

λ
, 

 
the projection of P1 – P onto the axis will be constant, as it must be for a rotation through 
180o. 
 In formula (27), one can write: 
 

(P – U) e = ω UPe, 
 

U + (P – U) cos ϕ + 2 sin2 e (e | P – U) 
 

 = P 21 2sin
2

ϕ − 
 

 + 2 sin2
2

ϕ
U + 2 sin2

2

ϕ
e(e | P – U) 

 = P + 2 sin2
2

ϕ
[e (e | P – U) – (e | e)(P – U)] 
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 = P + 2 sin2
2

ϕ
[e (e | P – U)] . 

 
 It then follows from this that: 
 

(28)   P1 = P − 2 sin2

2

ϕ
| e (| ω UP) – sin ϕ | ω UP e + λe, 

 
or, when one denotes the second-degree form Ue by Π, since e = ωΠ, that: 
 

P1 = P + 2 sin2

2

ϕ
| (| ω Π ⋅⋅⋅⋅ | ωPΠ) + sin ϕ | ω PΠ + λω Π . 

 
 If one now considers the general formula: 
 
(29)   1P′  = P + | (ωΣ′⋅⋅⋅⋅ | ωP Σ′) + τ | ω P Σ′, 
 
where τ is a numerical coefficient, and Σ′ is a second-degree form whose normal form is: 
 

ξ U e + η | e, 
 
where ξ and η are numbers, such that one can assume that ξ is positive, then one will get: 
 
 1P′  = P + | (ξe (ξω PUe + ηe) + τ (ξω PUe + η | e) 

  = P + ξ 2 | e (| ω PUe) + τξ | ω PUe + τηe . 
 
 The right-hand side will be identical with (28) when: 
 

ξ 2 = 2 sin2 
2

ϕ
,  τξ = sin ϕ, τη = λ. 

 
 One can thus determine the wrench Σ′ and the number τ such that the same congruent 
transformation is represented by formula (29) as the one that is represented by formula 
(28).  It will follow that: 
 

ξ = 2 sin
2

ϕ⋅ ,      τ = 2 cos
2

ϕ⋅ ,      η = 
1

sec
22

ϕ
. 

 
(29) will then represent a screwing motion when ξ 2 + τ 2 = 2. 
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§ 15. 
 

 If we understand Σ to mean an arbitrary wrench then the problem suggests itself of 
considering the space transformation that is given by: 
 
(30)   P1 = P + ρ | (ωΣ ⋅⋅⋅⋅ | ω PΣ) + σ | ω PΣ, 
 
where ρ and σ are numbers. 
 If we replace the point P and the one P1 that corresponds to it with another pair of 
associated points QQ1 then it will follow that: 
 

Q1 − P1 = Q – P + ρ | ω Σ ⋅⋅⋅⋅ | ω (Q – P) + σ | ω (Q – P) Σ. 
 
 Now let Σ have the normal form: 
 

Σ = ξ U e + η | e, 
 
as was assumed above, so one will get: 
 

ω (Q – P) Σ = ξ (P – Q) e, ω Σ = ξ e; 
thus: 
 Q1 – P1 = Q – P + ξ 2 ρ | e [| (P – Q) e] + σξ | (P – Q) e 
  = Q – P + ξ 2ρ [P – Q – e (P – Q) | e] + σξ | (P – Q) e 
 | (Q1 – P1) = | (Q – P)(1 – ξ 2ρ) – ξ 2ρ (P – Q | e) | e + σξ (P – Q) e. 
 
 The multiplication of both expressions then gives: 
 
 (Q1 – P1) | (Q1 – P1) = (Q1 – P1)

2 
 
 = (1 – ξ 2ρ)(Q – P)2 + ξ 2ρ (1 – ξ 2ρ)(P – Q | e)2 + ξ 2ρ (1 – ξ 2ρ)(P – Q | e)2 
 + ξ 4ρ 2 (P – Q | e)2 − σ 2ξ 2 [(P – Q)2 − (P – Q | e)2] 
 
 = [(1 – ξ 2ρ)2 + ξ2σ 2] (Q – P)2 + [2 ξ 2ρ  − σ 2ξ 2 − ξ 4ρ 2] (P – Q) | e)2. 
 
 If one sets: 

1 − ξ 2ρ = λ cos κ, ξσ = λ sin κ 
then one can write this as: 
 

(Q1 – P1)
2 = (Q – P)2 ⋅⋅⋅⋅ λ2 + (1 – λ2)(P – Q | e)2. 

 
Formula (30) then represents a congruent transformation only when λ = 1.  However, 
since: 

e | (Q1 – P1) = (1 − ξ 2ρ) (e | Q – P) – ξ 2ρ (P – Q | e) 
or 
(31)     (Q1 – P1) | e = (P – Q) | e, 
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the last equation can be written as: 
 
(32)  (Q1 – P1)

2 – (P1 − Q1 | e)2 = λ 2 [(Q – P)2 – (Q – P | e)2]. 
 
 (Q1 – P1)

2 – (P1 − Q1 | e) is the square of the projection of the segment PQ onto a 
plane that is perpendicular to the vector e.  Therefore, equation (32) says that the 
component of P1Q1 that is perpendicular to e is λ times as long as the component of PQ 
that is perpendicular to e, while equation (31) shows that the components of these 
segments that are parallel to the e are equal.  One can then say that equation (30) 
represents an affine space transformation, under which the dimensions that are parallel to 
e remain unchanged, but the ones that are perpendicular to e will be extended by a factor 
of λ, while a screw around an axis that is parallel to e will be present. 
 

§ 16. 
 

 In § 9, we assumed that no three of the four points A, B, C, D were on a straight line. 

 However, if the three points A, B, C do lie on a straight line, without two of them 

coinciding, then one must add the three equations: 
 
 (D – A) | d = (D – A) | a, 

 (D – B) | d = (D – B) | b, 

 (D – C)  | d = (D – C)  | c, 

 
to the three equations (12) of § 8, which say that the point D1 is just as far from the three 
points A1, B1, C1 as D is from A, B, C. 
 Two cases will now be possible: In one case, D likewise lies on the line ABC.  If q is 

a unit vector on that line then the three equations above will say that: 
 

q | a = q | b = q | c = q | d = ρ, 
 
with the notation of (13).  If one then sets: 
 

d = ρ q + d 
 

then one must have q | d1 = 0.  If one then defines the point D′ by the equation: 
 

D′ = D + 2ρ q 
 

then 1

2

D D′+
= D + ρ q will be a point on the axis (A, q), and: 

 
q | (D1 – D′) = 2q | d = 0. 
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 From § 8, the displacement 2ρ q, and possibly the rotation through 180o around the 
axis (A, q) that takes ABC to A1B1C1, will thus make D overlap with D1 . 

 However, if the four points A, B, C, D do not lie on the same line then (in agreement 

with § 9) one will assume that A, B, C lie on a line that does not, however, contain C.  

The last two systems (15) and (16) will then be valid, and a comparison of the different 
expressions for the vectors in question will give the relations: 
 
 A = Σ + α BC, 

 B = Σ + β AC, 

 
which agree with formulas (16) for A1 – A, B1 – B, C1 – C, but for D1 – D they will yield: 
 
 D1 – D = | ω D Σ + α | ω DBC, 

  = | ω D Σ + β | ω DAC . 

 
 Since one must have α DBC = β DAC, one can set both equal to ρ ABC and set: 

 
D1 – D = | ω D Σ + ρ | ω ABC, 

as was found in (16** ). 
 The considerations of §§ 12 and 13 are then unchanged, except that one must set ν = 
0 in the latter. 
 In the first of the two cases that were treated in those paragraphs, the two tetrahedra 
ABCD and A1B1C1D1 were congruent, since there was a screw that changed the one into 
the other.  Therefore, the figures were symmetric in the second case.  One can therefore 
state the theorem: 
 
 If three of the four midpoints of the connecting lines of corresponding corners of two 
congruent tetrahedra lie on a straight line then the fourth one will also lie on that line. 
 
 Such a theorem is not true for symmetric tetrahedra.  In order to prove it directly, we 
employ the Ansatz of § 11, which will yield: 
 

D = A + β (B – A) + γ (C – A) + 1
2 | ω (A1B1C1 + ABC). 

 
From § 13, however, one has: 
 

ω (A1B1C1 + ABC) = 2 [ω ABC + (b – a)(c – a)]. 

 
 Since A, B, C lie on a straight line, one will have ω ABC = 0, and from equations 

(14), one will have (b – a)(c – a) = (b1 – a1)(c1 – a1).  It will then follow that: 
 

D = A + β (B – A) + γ (C – A) + πλq, 
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which proves the theorem. 
 

§ 17. 
 

 The formulas of the previous paragraph will also still be true when the point D 

coincides with A or B.  However, if three of the four points coincide in A and the fourth 

one is D then the three equations at the beginning of the previous paragraph will become: 

 

(33)     

( ) | ( ) 0,

( ) | ( ) 0,

( ) | ( ) 0.

d a

d b

d c

− − =
 − − =
 − − =

D A

D A

D A

 

 
 Either D = A, or the three vectors d – a, d – b, d – c are perpendicular D – A, and 

thus coplanar.  In the second case, there will then be three numbers α, β, γ such that: 
 

α (d – a) + β (d – b) + γ (d – c) = 0. 
 

If α + β + γ ≠ 0 then it will follow from this equation that: 
 

D1 − 1 1 1A B Cα β γ
α β γ
+ +
+ +

 = D − A B Cα β γ
α β γ

+ +
+ +

. 

 
 Let these two equal vectors be called m.  If one denotes the two points: 
 

A B Cα β γ
α β γ

+ +
+ +

 by E and 1 1 1A B Cα β γ
α β γ
+ +
+ +

 by E1 

 
then E1 and E will be corresponding points on the two planes A1B1C1 and ABC that go to 
each other under congruent transformations. 
 One will then have: 
 

1

2

E E+
 = A, D1 = E1 + m, D = E + m, D = A + m. 

 
 Since one must have: 

m | (d – a) = m | (d – b) = m | (d – c) = 0, 
one must also have: 

m | (b – a) = 0,  m | (c – a) = 0 
 
such that one will have m || q.  If one further sets: 
 

 D′ = 
A B Cα β γ

α β γ
′ ′ ′+ +

+ +
+ m  = 

A B Cα β γ
α β γ

+ +
+ +

 + 2ρ q + m 
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  = E + 2r q + m, 
then it will follow, on the one hand, that: 
 

 D1 − D′ = 1 1 1( ) ( ) ( )A A B B C Cα β γ
α β γ

′ ′ ′− + − + −
+ +

 

  = 2 1 1 1a b cα β γ
α β γ

+ +
+ +

 

with 
q | (D1 − D′) = 0, 

and on the other hand: 

1

2

D D′+
 = A + ρ q + m. 

 The point 1

2

D D′+
 then lies on the axis (A, q) that will be met perpendicularly by the 

line D′D1 when it is not zero, and the motion that was depicted in § 8 will take the 
tetrahedron ABCD to A1B1C1D1, such that the case that was treated above will be that of 
congruence.  Therefore, if D coincides with A then the two tetrahedra must be 

symmetric.  This can also be inferred from a consideration of the difference A1B1C1D1 – 
ABCD, as in § 10, which, since: 
 

ABC = ABD = ACD = BCD = 0 

here, will reduce to: 
2A (bcd – acd + acd – dbc). 

However, since one has: 

d = 
a b cα β γ
α β γ

+ +
+ +

, 

it will follow that: 
 

bcd = 
abcα

α β γ+ +
, acd = − 

abcβ
α β γ+ +

, abd = − 
abcγ

α β γ+ +
, 

 
and this will imply that: 

A1B1C1D1 – ABCD = 0. 
 
 If α + β + γ = 0 then αa + βb + γc = 0, so the three vectors a, b, c will be coplanar.  
The vector q will then be perpendicular to the plane of those three.  It follows from 
equations (33) that: 
 

(D – A) | (b – a) = 0,  (D – A) | (c – a) = 0, 

 
which show that D – A is parallel to q.  Equations (33) then imply: 
 

q | d = q | a = q | b = q | c = 0. 
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 Thus, a rotation through 180o around the axis (A, q) will succeed in taking ABCD to 

A1B1C1D1. 
 

§ 18. 
 

 The theorems of §§ 10, 16, 16 on the midpoints of segments that connect 
corresponding vertices of two congruent or symmetric tetrahedra can be deduced from 
the known properties of orthogonal transformations with real coefficients, since each 
symmetric or congruent space transformation is indeed orthogonal. 
 If: 

(34)    
1 11 12 13

1 21 22 23

1 31 32 33

,

,

x A a x a y a z

y B a x a y a z

z C a x a y a z

= + + +
 = + + +
 = + + +

 

 
are the transformation formulas, and ξ, η, ζ are the coordinates of the midpoint of the 
segment that connects the point (x, y, z) with its corresponding point (x1, y1, z1) then one 
will have: 

11 12 13

21 22 23

31 32 33

2 ( 1) ,

2 ( 1) ,

2 ( 1) .

A a x a y a z

B a x a y a z

C a x a y a z

ξ
η
ζ

= + + + +
 = + + + +
 = + + + +

 

 The determinant: 

11 12 13

21 22 23

31 32 33

a s a a

a a s a

a a a s

−
−

−
 = ϕ(s) 

 
is the so-called characteristic function of the substitution (34), and it is known that: 
 

ϕ(0) = ε = ± 1, 
 
according to whether the transformation is congruent or symmetric. 
 Equation ϕ(s) can have s = + 1 or s = − 1, along with complex values, for its roots.  If 
s = + 1 is a µ-fold root and s = − 1 is an ν-fold root then one will have: 
 
 µ + ν  = 1 or 3, 
 (− 1)ν = ε, 
 
and for an m-fold root all sub-determinants of degree (4 – m) will vanish in the 
determinant ϕ(s), while those of degree (3 – m) will not all be zero (*). 
 Therefore, the following cases are possible: 
 

                                                
 (*) Stickelberger: “Über reelle orthogonale Transformationen,” Beilage zum Programm des 
Polytechnikums, Zurich, 1877, page VII. 
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 ε = + 1, ν = 0 or 2, 
  − 1,  1 3. 
 
 However, ϕ(−1) is the determinant of equations (35).  Thus, if ν = 1 then it will 
vanish.  A linear equation will then exist between the quantities: 
 

2ξ − A,    2η – B,    2ζ − C, 
 
or the midpoints of the segments considered will lie on a plane under a symmetric 
transformation. 
 The transformation is likewise symmetric for ν = 3, but all first-degree determinants 
will vanish for s = − 1; i.e., one will have: 
 

a11 = a22 = a33 = − 1, 
 
or the midpoints will coincide at the same point. 
 One is dealing with congruent transformations for ν = 2.  The second-degree sub-
determinants vanish for s = − 1, so two linear equations will exist between the quantities 
2ξ − A, 2η – B, 2ζ – C, and the midpoints of the segments will lie on a line. 
 
 For congruent transformations the midpoints will either fill up all of space or they 
will lie on a line, while for symmetric transformations they will lie on a plane or coincide 
in a point. 
 
 These theorems can be deduced with no difficulty from the general theorems that H. 
Wiener gave on the transformation of a spatial system into an equal one [Berichte d. 
math.-phys. Klasse d. kgl. Sächs. Gesellsch. d Wissensch. (1891), pp. 659.] 
 
 

_____________ 
 

 


