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§1.

In the following paper, | will employ the point calctitms that were taught in the
Ausdehnungslehref 1862 Grassmann’shook, volume one, part two, especially). (|
will then make no use of the regressive multiplicatibecause | do not regard its
introduction as advantageous from a pedagogical standpoimiy. e&perience will teach
us whether one can manage without that product. Thkiso#n to be true in mechanics;
kinematical considerations, as in the present tesatssiggest the use of a special
regressive product, which one can, however, introduce indepdypdasPeanodid in the
last-cited paper below.

One can as little do without the extension of a veatgroduct of two vectors — viz.,
a bivector, which will be denoted by a line-{ in geometry as one can do without the
concept of perpendicularity. (By contrast, one doesneetl the extension of a product
of points.) | therefore understand the extension ofvdetora — which will be denoted
by |a— to mean the bivectdoc whose factors are perpendiculaatcand are so arranged
that the area of the surfaces of the parallelogramgiaefined byb andc is equal to the
length ofa. Therefore, the sense shall be such that when otes Blonga, a right
rotation through an angle < 186f the vectorc will bring it into the direction ot. One
understands the extension of the biveder which will be denoted byde — to be the
vectorf for which |f =de The law of distribution is then true for extensioss,one will
havea|b =b|a, (|ab) | c = abcis then equal to a number, namely, the volume of the
parallelepiped that the three vectar®$, c define, and:

|clab)=(c|b)a—-(alc)h,

() One finds a brief presentation by an original methmdPéano: Calcolo geometrico secondo
I’Ausdehnungslehre di H. Grassmanhorino, 1888. In German, under the titlEhe Griindziige des
geometrischen KalkijlsGerman version by Schepp, Leipzig, 1891Carvallo: “La méthode de
Grassmann,” Nouv. Annales;3Série, t. 11 (1892), pp. $eano:“Saggio di calcolo geometrico,” Accad.
d. Scienza di Torino, 1895/96.
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(ab) |[cd=(a|c) (b|d)—-(@]d) (b|c)=cd|ab,

which are two formulas that essentially agree with dlnes in nos. 180 and 176 of the
secondAusdehnungslehr@rassmann’dook, v. 1, pt. 2, pp. 136).

The operatiorwthatPeanointroduced relates to second and third-degree forms. One
can always write a second-degree férm

F =Pa+bc

whereP is an arbitrary point, and, b, c are vectors. Therefore, the vectodoes not
depend upon the choice Bf(Grassmannloc. cit., no. 347, pp. 222); let that vector be
denoted byF. If a= 0 thenF will be equal to a bivector, one must &t = 0.

A third-degree forn¥ can be represented as either a product of three véctoadc
or as the product of a point with a bivector Pab (Carvallo, page 26, no. 21). In the
former case, one understands to be zero, while in the latter case, where the borect

ab does not depend upon the choice of the pBjmtne understandsF to mean just that
bivector.

The operatiorwis distributive in both cases.

In order to minimize the number of brackets, |, withrvallo and Peanq have
omitted the brackets around a product of points @rassmanrhad applied in order to
distinguish that product from the other ones. The e@iéefandwshall always extend up
to the next operation symbol, such that, e.g., one waitE) briefly asaab, a(b — 9
for w[A (b — 9], and | &—B(c — g for | [(@ — B(c — d], when no misunderstanding can
arise.

§2.

Let AB, A.B; be two pairs of points in such a position that the sépar@B is equal
to AB . This can be expressed by the equation:

(AL-By)*=(A-B7
or by:
(Bi—Ai—B+A) | B.— A +B—A) =0.

If one denotes the midpoints of the life&; andBB; — and thus, the pointsA(+ A;)
/2 and B +Bj) / 2—- by 2 and®3, resp., then one can write this equation as:

(1) B:—-B-(A—-A]| (B -2)=0.
We next assume th& — 2l is not equal to zero. One can then replace this euati

with:
(2) Bl—B—(Al—A):|@l—‘B)a,
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wherea is a vector that is not determined completely. Iulddbe convenient if one
could separate the symbdisandB in this equation, so to speak. However, this is not
immediately possible, because one cannot decomp@se i) a into |Ba — |2a on the

right, since — at least, for us here — a form liRe|has no meaning. However, with the
use of an arbitrary poif, one can write:

& -B)a=wP A -B)a=w® —-B) Pa
= wB Pa— w2 Pa,

and then decompose the latter equation into:

B, -B- | wB Pa:Al—A| w? Pa,
in which the symbols are separated. If one sets the véetbboth sides are equal to
equal tob then one will have:

Ai—A =|wA Pa+tb=| (@A Pa+|b)
Bi.—B =|wB Patb=| (wS Pa+ |b),

or, sincew (2 | b) = w(B | b) = |b, if one sets:

Pa+|b=T
then one will have:
—A=|aRT,
(3 A _
B —-B=|aRT.

These formulas are then also true when oneAhasA = B; — B. Namely, one will
then have:
a=0, I=|b, |wAT = |wBT =D,

S0A; —A=B; —B =Db, as it must be.

§3.

In order to recognize the geometric meaning of theseuiasnwe would first like to
assume that a poiRthas the following relationship with another dhe

(4) PL-P=1|wPQR
whereQ, R are given points. If one writes:

PQR=P(Q-PA(R-B
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then one will see thawPQR= (Q — P(R — B, so it is equal to a bivector whose factors
lie in the planePQR and that pPQRIis correspondingly a vector that is perpendicular to
the plandPQR The length of this vector is equal to the surface af¢he parallelogram
whose sides arBeQ andPR or equal to twice the area of the trianBI@R As far as its
direction is concerned, when one looks outward fromng will seeR — Pto the right of
Q - P, i.e., if one place® perpendicular to the plarfQR such that one must make a
proper rotation around it through an angle <°li@0order to see the directid®Q in the
directionPR then the direction of the vector will go from tfe®t to the head. Instead of
that, one can also say that if one stand®Q&with one’s feet aR and one’s head &
and looks towardP then the direction of the vector will go from rigbtleft.

If one drawsPS perpendicular taQR then the magnitude d®P; will be equal to

1+ PSOQF. Therefore, if one determines an acute aggfeom the equation tag / 2 =

QR then one can say that the pldh€@R defines an angle af / 2 withPQR and indeed

with a rotation that goes right to left when seemfQR
If we secondly assume that the two poiRf3 are connected with each other and
their midpoint3 by the equation:

©)) P.—P=|wP QR
Since = (P + Py) / 2, one will have:

PL-P=2F.-P) =2 -P),

such that one will have:

P, B, P1 then lie on a straight line that is perpendicularh® plane3QR at P, the
planeP;QR makes an angle @f/ 2 to the left with the planQR, while PQRmakes an

angle ofg / 2 to the right. P andP; will then have the same distance from a p@imin
QR One can then s€R = UT if one determines the poikt on QR suitably, and then
writes equation (5) as:

P1-T+T-P=|wP UT.
It will follow from this that:

Pr=N[P:-T+FP-T)[T-A=F-T) &P UT,
(T-P) [P1=-T)+(T-P) [(T-H =(T-P) wP UT,

and by subtraction, that:

(Pi-T?=P-T)? = (P +P -2 wP UT,
=2 -T) wP UT.
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However, one haae3 UT = (U —B) (T —*), and as a result, the right-hand side is
zero, soPT = PT.

Therefore,P1 emerges fronk by a rotation around the ax@R through the angl@,
and in fact, a rotation that proceeds to the left whem $®mQR The magnitude and
sense of the rotation, and its axis are determined ctehpley the line segme @R

§4.
One can alter the second-degree forby altering the poinP. One can then write:

M=Qa+(P-Q)a+|b.

Here, P — Q a + | b is a bivector that one can set equal t®.| One will obtain a
distinguished form foF whenb' is parallel toa, so one will get:

(6) P-Qa+|b=A1]a,

if one understandé to mean a number)(
The multiplication bya will give a|b =A a|a, and then:

.- (alb)]a-(ala)|b_ 1
P-Qa ala al

(P—Q+|b—aja: 0.

ala

a(|ab),
a

The first factor on the left must then be a vethat is parallel t@ that one can set
equal to a if one understands to mean a number. That will yield:

Q=P+ P2 _ 2
ala

By substituting this into equation (6), one sd&s M remains completely arbitrary,
such thaQ can be chosen arbitrarily in a certain line tegsarallel tca. One finally has:

F:Qa+a—Ib Oa,
ala

as the normal form df. Formula (3) then yields:

() The following reduction is identical with the searon the central axis of a system of forces, which
can also be represented by a second-degree form.
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Al-A=|wA Qa+la
Now, if pis an arbitrary number, and one sets:

Al-(A-p a=A,
A +pa =A,

thenA’ andA will be two points, the first of which emerges frénby a displacementa

parallel toa, while one must displace the second oneAy p) a in order to obtaid; .
With that, one will have:

a="28 s0-20a

ﬂQaz“;“—Qa

A+A
2

A-A=|w —-Qa

The last formula shows tha# emerges from\' by a rotation around the axis that

goes througl® and is parallel t@, which will be denoted by{, a). A; then arises from
A by a translation parallel tnand a rotation around an axis paralleato
The second-degree forimthus represents a screwing motion, @ranch().

Now, if " is a second wrench that, like must take the points, Bto A;, B; , resp.,
in any case, then one must have:

(7) wWAT =wAT', wBlM=wBTI'.
However, if one has:
wAT=0
for a second-degree forinthen one will set:
T=2d+ef
whered, e, f are vectors. One will then arrives at the equation:

wA ef=ef=0,

soT =20 d, or, when one sets the po#it+ d =R, one will havel =2( R.
Equations (7) will then be fulfilled when:

M-r=2AR=1BS

() Grassmannloc. cit, pp. 223. Remark.
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However, this relation between four poifs B, R, S says that they lie upon a
straight line, so two vectoR—2( andS—3 will be equal. If one then sets:

R= 2 + p (B —2),
S=A+0(B -2

then it will follow thatp=o- 1, so:
M -r =pA%B,

wherepis an arbitrary number. Any wrench of the form:
I+ pAB

will then take AB to A;B;, such that there is an entire pencil of wrenches whkht
accomplish that objective.

§5.

Should there be a wrench among this pencil that is @ q@tation then one must be
able to determineg in such a way thdt' =T + pAB is equal to a line segmen).(

However, one will then havyé I'" =0 =I'T + 20 (I" AB), so:

o Ir
20MAB)

Let p be so determined. If one then brifigsnto the form:
" =Pa +|b
with the help of a poinP, in whicha' andb are vectors, then it will follow from:
0=r'r=2P (@ |b)
thatb will be perpendicular ta° whena' # 0. One can then set:
b=|ac,
wherec is again a vector, and one will get:

M=Pad +ac=FP-9a4a,

() Loc. cit, no. 286.
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orwithP —c=Q, @ =R — Q whereQ andR are points, s6' = QR will, in fact, be a line
segment. However, & = 0 then one will havé’ = | b, and that will represent a pure
translation. There will then be a rotation th&te®AB to A;B; when one haa' = o' #

0. However, one will have:

' =d +pwAB = +p(B -,
so if one hadd™' = 0 then one would have:

a =p(B-2).
However, the normal form df is:
MN=Quwrl +A|d,

so here it will be equal tQo (A —8) + p4 | & —*B), and that will imply:

AC=-pQAB +pAA | @A —B),
BIr=—pQAB + pA B | A —B),
WAT == pwQAB + pA | & —B),
WAT == pwQAB + pA | @ —B),

such tha#A; — A =B; —B, so only a displacement will be necessary.

§ 6.

The derivation of formula (2) from (1) is justified onlshen2l — B is not equal to
zero. However, if the two poing and‘B coincide then one will determine a unit vector

a such that one has:
(A1—A) |la=(B1-B) |a.

If pis the common value, and one sets:

Ai—A=pa+a, Bi—B=pa+b
then it will follow thata | &y =a| by = 0. Therefore, if one defines the poiAtsandB’ by
the equations:

A=A+ pa, B =B+pa

then one will haveé\; — A" = a3, B; —B' = by, and these vectors will be perpendiculaato
when they are not zero. Furthermore, one has:

A+A =2+pa B +B =28 +pa.
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The linesA;A" andB;1B' will then be met by the lin€(, a) in their midpoints, when

they do not vanish. As a result, one can #@aBao AiB; by just a displacement through
03, or in connection with a rotation through 2&®ound the axis(, a).

§7.

We now go on to the consideration of three points,lendBC andA'B'C' be two
congruent triangles. Let the midpoints:

1(A+A), 1(B+By, Z(C+Cy
of the three lineg\A, BB;, CC; be denoted b¥t, 9B, €. It will first be assumed that these
three points do not lie on a straight line and thatwm of them will coincide, either.
One can then apply the considerations of § 2 to the paieg of pointsAB, BC, CA, and
thus find three second-degree forB, I such that

®) A-A=|lwAT, B-B=|wBA, (C-C=|w¢B,
B-B=|wBl, C-C=|wCA, A- A=wAB.

One must then also have:

wA (T-B) =0, wB (A-T)=0, we (B-A) =0,
so, from § 4, three poin® Q, R must then exist that imply:
(9) -B=2AP, A-T=8BQ, B-A=¢R

and must then fulfill the equation:
(20) AP+BQ+CR=0.

If one multiplies this byB¢, ¢, and2(B then it will follow that:
ABEP =ABCQ =ABER =0,

and thus, sincél, B, ¢ should not lie on a straight linBQ andR must lie in the plane
ABE. One can thus set:
P=a2+[( 9B +yC,

wherea, [', yare numbers that fulfill the conditian+ £’ + y= 1, and obtain:
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AP = (' AB — ye.
Similarly, there are numbefs 3, y, y”for which it follows that:

BQ =LBC — yAB,
CR =p4'¢A—-y"BC.
Equation (10) then demands that:

(B7=y)AB + (B-y) B+ (B'—)) €A =0,
and upon multiplying this equation By, 8, €, in turn, one will get the three equations:

B’-y =0, B-y'=0, [-y=0,

resp., which will yield:
F-B=0"AB - [¢A,
A-T =0 BC-[B"AB,
B-A=0 ¢A - BC,
and furthermore:
A-BBEC=B-p'¢A =T —[F"AB.

Finally, if one denotes the common value of theseetbezond-degree forms Bythen it
will follow that:

A=3 + (B¢, B=X+p¢, =2+ B"AB,
and
(11) A —A=|wAZ, B, -B=|wBz, C-C=|wCex.

There is then a wrench that takes the triad@€ to the congruent on&;B,C; . If
there is yet a second wrenghthat accomplishes the same thing then one must have:

wAE -)=wB ' -2)=we (¥-%)=0.
There must then exist three poiktsV, W, such that one has:
2 -2=AU=8BV=CW.
However, it follows from these equations that:
ABU=0, ACU=0;

i.e.,U is necessarily identical with, and therefore:
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2'-2=0.

There is then only one wrench that satisfies equafiills

§8.

If the three point8l, B, ¢ lie on a straight line then one will set:

A =2-a A=2 +a,
B:%—b, Blz%+b,
C=c¢-—c, C.= € +¢c,

wherea, b, c are vectors. The following equations must then be true

(B-2A)[(b-a)=0,
(12) (€-B)|(c-b)=0,
&A-¢)|(@a-c)=0.

The three vector® — 2, ¢ — B, A — € will be parallel, sincél, 93, ¢ lie on a straight
line. If qis a unit vector that is parallel to them then itl fallow from the last three
equations that:

(13) alg=blg=c|g=p.

Therefore, if one sets:

a=pq+aq,
(14) b=pq+h,
c=pq+¢q
then one will have:
alg=bh|g=c|qg=p.

If one now defines three points by the equations:
A =A+2pq, B'=B+20q, C=C+20q

then one will get:

5 =Q[+,0q, A —A = 2a,
Bl;B:%‘F,Oq, B, —-B' = 2,
Cl;C=¢+,0q, C-C=2;.
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The linesAyA', B1B', C,C' will then be met perpendicularly by the liri#, @) at their

midpoints, when they are not all equal to zero, andetbsx A;B:C; will emerge from
A'B'C' by rotating through 18Caround the axis?(, q), andA;B;C; will arise fromABC

by a displacement throughp? and the rotation that was just referred to. If thee
vectorsa;b;c; are zero then one will arrive at a displacement; witlethus also have a
screwing motion here. However, this is contained irmtdas (11) of the previous
paragraphs only as a limiting case that corresponds toamaitang ¢ / 2 by 96.

The above conclusion is also possible when two of tihegsd, B, ¢ coincide, since
two of equations (12) will then become non-illusory, d@hd vectorg will then be
determinate.

However, if2l =B = ¢ then one will determing such that it will be perpendicular to

the vectoh — aandc — a Since one will then have:

(b-3[q=0, €-319=0,

equations (13) will be true, along with their further cojsnces.

g can be indeterminate when the three veciols c are coplanar. If one takesto
be perpendicular to the plaradc in that case then it will follow thgb = 0, while
everything else will remain as before.

Finally, the planeabc can be indeterminate whex b, c are parallel. If one then
determineg) such that one has| q = 0 then one will hav@ = 0, and the previous results
will be true.

§9.

The congruent trianglesBC andA;B1C; will now have yet a fourth poird andDs,
resp., added to them, which will lie in such a way that:

AD = AD,, BD = BD,, CD =C,D,.

Let the middle oDD; — i.e., the point;(D + D;) — be denoted b®. We will next
assume that no three of the four po#itsB, ¢, © lie on a straight line. One can then

apply the considerations of § 7 to each of the fourdiesABC, ABD, ACD, BCD, and
thus obtain the equations:

A-A=|wAl, A-A=|wAB, B- B=|wBA,
(15) B-B=|wBl, C-C=|w¢B, (G-C=|wCA,
D,-D=|w®l, D,-D=|w®B, D,-D=|wdA,

(16) Ai-A=|wAS, Bi-B=|wB3Z C-C=|wes,

whereA, B, I', = are four second-degree forms.
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Comparing the two values 8f — A andB; —B gives:
wA(Z-T)=0, wB (Z-T)=0,

from which, it will follow that:
2 - =—-vAB,

wherevis a number. Comparirgy —B andC; —C likewise yields:
> -B=-ucx,
and the comparison @& —B andC; — C yields:
>-A=-1%BC.
Therefore:
D;-D=|w® I+ | wDBC,

= |wD Z+ u| wOC,
= |wD Z+V|wOAB .

SincewDBC = (B —¢) (€ — ) =BC + €D + DB, in order for the three
expressions above to be equal, one must have:

A®B +BC+ED) =y (D€ +CA+AD)
=y (DA +2AB +BD).

If one then multiplies this b then it will follow that:

(a7 ABED = 4 CAD = v ABD,

and the further multiplication b3, %5, and¢ will give:
AABCD = yABECD = v ABCO = 0.

These equations can be fulfilled in two ways: In orsec#B¢D # 0, andAd = 4 =v
=0, and one must add to equations (16):

(16) D;-D=|w? Z.

The tetrahedroABCD will thus be taken téyB:1C,D by the wrenclz.
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In the other cas@B¢® = 0, and the four point¥, B, &, © lie in a plane. One can
then determine the numbgrsuch thafpo 248¢ is equal to the three products in (17) that
are set equal to each other, and one will then get:

(167) Di—-D=|wD I +p|wABC .

§ 10.

The tetrahedroA;B,C1D; was assumed to be such that the six separations fafuthe
edges were equal to the corresponding lengths of the efldks tetrahedrorABCD.
Therefore, the two figures are either congruent or symene$ince taking equations (16)
to equations (16 can be performed by a wrenEhthe two tetrahedra will be congruent,
and therefore if they are symmetric then equations (18) @6 ) must be true.
However, they assume that the four po#tf8¢® lie in a plane.

We thus have the theorem:

If two tetrahedral are symmetrically equal then the midpoints otdimaecting lines
of their corresponding edges will lie in one and the same plane, which begtalled
the middle plane.

One can show that the two tetrahedra are congru¢he ifirst case when one proves
the equation:
ABCD= A]_B]_C]_Dl .
In fact, if we set, as in § 8:

Al=A+a, A =U-3a
Bi=B+b, B =8B-b,
Ci=C+c, C=¢-c
D;=9+d, D=9-d

then it will follow that:

(18) { ABC D - ABCD=2[ABCD d-ABD c+ACD b-BED §

+2[Abcd-B acd+¢ abd-® abc
Since a product of four vectors is zero, one will have:
Bacd=Bacd+ (A —B) acd=2Aacd etc.,
and therefore the second bracket will be:

=9 (bcd — acd+ abd— abg
=A(b-9(c-39d-2.
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Now, if u, v, w, t are four vectors then one will have:
(ud (vt (Jwt) = 0,

since the three factors will be vectors that aregratgular tat, and thus coplanar.
On the other hand, in order to give a different proofl Jet v, |wt =w, so one has:

VW ut= (v [u) W [t)—V [)W |u).
HoweverV |[t=t|V =tvtis equal to O, and likewis# |t, so one will have:

VW |ut=0,
and this is the equation to be proved.
However, one has:

2b-9=|w(B-2A) 3.

Therefore, if one brings the wrenZhnto the formPe + fg, whereeg, f, g are vectors,
with the help of an arbitrary point then it will follothat:

w(B-A)Z=e(B -2,
SO
b—a=3| @& -B)e
c-a=3| @ -Q)e
d-a=3| @ -D)e,

such that from the formula that was just proved, otfiehave:
(b-38(c-4g(d-3g=0.
One can write:
ABC (d—3a —ABD (c— g +ACD (b— 9 +a[ABC —ABD +2ACD —BED]

for the first bracket in equation (18).
The coefficient of is equal toY —D)(B —D)(¢ - D), so the second summand will

be equal to zero, since it is the product of four vectors.
However, the first summand will be equal to:

1[ABC | @A -D) e—ABD | (A —¢) e +ACD | A —B) ],

and when one introduc@gB¢ =2 (B —)(¢ —2A), etc., this will become:
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N 2

[(B-A)(C-A)|A-D)e-(B-A) RA-D)|@-C)e
+(C-2A)(D-A) | &L —*B) €.
Now, if u, v, w, t are once more four arbitrary vectors then one \aeh
uv|wt = (u|w)(v|t)—ultv|w),
vw|ut = (v]wWw]|t) = [t)(w]u),
wu|vt = (W]v)(u[t) - W ][t)(u]v),
so by addition, one will get)

uv|wt+vw|ut+wu|vt=0.

As a result of this equation, the coefficientjadl will be equal to zero, and therefore
ABCD= A]_B]_C]_Dl.

811
One can also prove the theorem about symmetrichestra in yet another way. We

imagine that a perpendicular has been dropped fota the planeABC, whose base
point in this plane is the point:

A+BB-A+y(C-A,
whereSand yare numbers. Sincerd ABCis a vector that is perpendicular to the plane
ABC, one can set:
(19) D=A+B8B-A+y(C-A+1|wABC.

One will then have:
Di=A1+BB1—-A)+y(Ci-A) + 1| wAB:1C,

for the congruent tetrahedron.
Therefore, one will have:

(19) Di=Ai+BBi—A)+y(Ci—A)+A]a ABCi,

for the symmetric case, so:

(20) D=A+L(B-A) + y(€—-2A) + A | w(AB:C; — ABO).
However, with the notations of the previous paragrapé,has:

AB,.Ci—-ABC=2 [Q[%C +BCa+ cAb + abd,

() Grassmannloc. cit, no. 185.
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S0, sinceaabc= 0, one will have:

w(A1B1C1 — ABQ = 2w[ABc + B&a + CAb|
=2[B-Wc+E@-B)a+ A -0C) b
=2R(b-9+B(c-g+C(a—Db]
=A|C€-VB)e+B|RA-)e+C|(B-A)e

In order to be able to extend this, one must also repiréise right-hand side, which is
a sum of bivectors, as such. To that end, we convetbit

RA-O)|@€-B)e+B-O)|RA-C)e+C[|(C-B)e+ | -C)e+| (B -2 g,
which is equal to the first sum, since the bracketstaes. It then follows from this that:

| (AB:CL - ABQ = | [ -O) [ € -B) €] + | [(B-O) | @1 -C) €]
=[@-¢) e (€-B)-[A-¢)|€-B)]e
+[(B-¢ g (A-)-[A-)[(B-I)]e
=2A[(B-0) el +B [(€-2A) |e] + C[(A-*B) | €.

However, this expression represents a vector thadngained in the plangs¢; if
one adds — 1/ 2 times it to the point:

A+L(B-2A) +yE -2

in the plan€(*B ¢, using the prescription of equation (20), then a pointan pkane will
again arise iro.

§12.

If the two symmetric tetrahed®BCD andA;B,C,D; are given then the wrench will
be determined completely, so the numbérg;, v andp in (17) and (16) will be, as
well. However, if one assumes ti¥at@ndp are arbitrary and then calcula&®:CiD;
from equations (16) and (18 then the triangleA;B:C; will be congruent tocABC.
Furthermore, one will have:

Di-D-—A1-A) = |w® -2A) Z + p| wABC,
SO
(D1-D)*- (D -A? =2 @ -2A) | D1 -D-A: +A)
=20 (D —2A) wABC,
=200 —-2A) (B -2 (€ -2).
Therefore, one will have:
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D,A = DA and likewise DB, = DB, DC, = DC,

only when eithejp = 0 or the four pointgl, B, ¢, © lie in a plane. Only then will one

get a tetrahedron that is congruent or symmetrit8&® as a result.
Now, in the latter case, this will yield:

AB:.C,D; + ABCD=2 [QUB@@ + abcd+ F],
where
F =2ABcd-2¢hd + ADbc + Bcad —Boac + ¢Dab.

However, sinceabcd vanishes (as the product of four vectors) AfBICD vanishes

because the four points lie in a plane, dhlyeeds be calculated.
It is equal to:

AB (Cc-aJd-39 -AB (b-gd(d-3g +AD (b-3g(c -3
+2B (ad —ag —2A¢ (ad — abh +AD (ac — abh
+ B¢ ad-BD ac+ D ab.

The last six summands, when combined differentlydyiel

(AB +BC +¢A) ad+ (BA +AD + DB) ac+ RAUC + €D + DA) ab
=R-OB-Qad+ B -D)(A-D)ac+ A -D)(¢ -D)ab=0,

since each summand will vanish by itself as the produdurfifectors.
If one denotes the three vect@trs- B, A — ¢, and —© by u, v, w then the first part

of F will be equal:
+ A {u|ve(lwe+p|uv) —v|ue(|we+ p|uv) +w|ue|ve.
The content of the bracketg8; + T,, where:

Ti=u]|ve|uv—Vv|ue]|uy,
T,=u|ve|we—v|ue|we+w]|ue|ve.
However, one has:
ulve|wt=wt|u|ve
=wt[v(u|e)—e(u|v)],
SO
T, =-uve(u|v) —vue(vju) = 0.

When one applies the same conversiofxt@ne will find that:

T,=e[vw(u|€) +wu(v|e) +uv(w]|e).
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The bracket does not vanish for arbitrary vectong w. However, here, these three
vectors are coplanar, so one can set:
W=uu+ vy,
which yields:
T,=e[uvu(u|e)+vvu(v|e)+uuv(u|e) +vuv(v]e]=0.

With that, one has shown that:
(21) A]_B]_C]_Dl =-ABCD

will be true for any arbitrary value gf, only when the four pointd, 8, ¢, © lie in a
plane, such that the tetrahedra will then be symmetric

§13.
If, as was assumed, B, ¢, D lie in a plane then one can set:
(22) D=A+uB-A)+vE-A);
equations (16) and (16 will then yield:
Di-D=Q-u-vV)(A1—A) +uB;-B) + v (C;—C) + p| wABC,

So the vector:

D;— (1 —/J—V)A]_—IUB]_—VC]_
will be equal to:

Di—-(1-u-v)A—uB-vC+p| wABC .

If this equals< then equation (22) will yield:

X == wABC,

N

and it will then follow that:

D =(1- u-v)A+uB+vc-L e,
2
(23)
D, :(1_/1_V)A1+/181+VC1+§CJ2153¢’

If o =0 thenD will be a point of the plandBC, D, will be a point of the plane
A;B1C; that corresponds to it under a congruent transformasiod the two tetrahedra
ABCD, A;B1C1D; will then be zero.

Equations (23) imply the theorem:
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The perpendiculars that one drops from the vertidesd D; to the middle plane are
equal in length and meet the triangkeBCand AB;C,, resp.,at corresponding points

If one substitutes the value of:
| C()(A]_BJ_CJ_ - ABC)

that was found in 8 11 in formula (20) then it will folldhat:
D=A+LB-A)+yEC-A)-I[A(B-C|leg+B(C-Ale)+C (A-B|e).
Comparing this with (22) then yields:

1-p-v=1--y=5(B-C|e),
U =p-3(€-2Ale),
v=y-3@-B]e),
and thus, from (19) and (99

D=A+(u+i(C-Ale))(B-A+(v+i(A-Ble))(C-A+|wABC

One gets a similar expression 1Dg; it arises from the foregoing one when one
replacedA, B, C with A, By, Cy, resp., andl | wABCwith - A | wABC We have similar
expressions in (23); we shall now prove that the twoeagteone writes the expression

above as:
(24) D=(Q-u-v)A+uB+vC+ X,
D, =@A-pu-V)A+uB+vC+Y,

then one will get:

X+Y =) | w(ABC—AB.Cy) + A (€ =2 [&)(B —2A) + A (A —B | €)(€ —2)
=[] W(ABC—ABiC) + (B -C |&) A+ (€ -2 &) B + @ —B |&)(¢] =0,

as was shown above in § 11.
By contrast, one has:

X-Y=-A(C-A)b-9-A@-B|e)(c—9 +A|wABC+ABCy)
=) | W(ABC+ABC) - 1A (€ -A ) | @A -B)e-i1(@E-Ale | @A-¢)e

It follows further that:

A1B1C; + ABC = 208¢ + Zbc + ZBca + 2Cab,
w(A1B1C1 + ABO = 2wAB¢ + 2 (bc +ca+ ab),
=20ABC+20b-9 (c-9,
o)
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X=Y=2|wABE+I|[|A-B)eOQ A -C) e 2| (C€-A|e) | A -B)e
-1(@A-Blo|@-0e.
If one sets:
B-A=u Cc-A=v

then when one multiplies the right-hand side abové bg, it will become:
| uedve) + (v]|e) |ue—(u]e) |ve=U.
When one replacesig with win:
w|ve=(w|e) |v—W]|V)|e
it will follow that:
luedve=-(vug |e=(euy | e
On the other hand, it follows from the fact tha|(v) =u (v|e) —v (u | e) that:
—lefle(uy] =(v]e) [ue—(u]e)|ve
However, the left-hand side is equakt@euy) + |uv e |€). Therefore:
U=(u)e—(uye+(e|e)|uv=_(e|e) |uv,

SO
X Y= 2} | wABE + 1 (e]e) | (B —A)(C ),

or, sincewABC = (B —2A)(C —2A), one will have:
_4 2
X-Y= E(4 +£9) | wABC,

if one denotes the length eby & One will then have:

_A(4+¢)

X==Y | WwABC,

and comparing (23) with (24) will give:

__A(4+¢£?)
p= yE.

If the aforementioned midpoints of two congruestrdhedra lie in a plane, so one
has:

D=A+u(B-2A) +v(€-A),
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then equations (16) and ().6vill yield:
Di-D=A-A+uB:-B-A+A)+v(C,-C-A+A),
and both of them together will imply that:

D =A +u(B - A+v(C - A,
Di =A1+u(B1—A) +v(Ci—A),

which say tha#, B, C, D lie in a plane.

§ 14.

The considerations of 88 3 and 4 show that whes a second-degree form, the
formula:

+
(25) Pl—P:|a)Pl P

>

will represent a congruent transformation of spaceortter to derive an expression for
P, in terms ofP from it, we assume that has been put into the normal form:

>=Ua+A]|e

wheree is a unit vector that is parallel to the veapandA is a number. Since:

a)(aJrPlej: |e,
2

P, —P=Je+3| wPUa+3| wPUa

one will then have:

or
(26) P.—P=P-U+Jde+i|P-U +i|(P-U)a

It will then follow from this that:

al|Pi—-U)=a|P-U +Ja]e
la(P.-U)=la(P-U-3{(P-U (ala) -ala|P - U]}
—3{(P1-VU) (ala)-ala| P.— U]}

If one substitutes this into (26) then one wilt:ge

Pi-U=P-U+Je-|P-Ua-4(P-U@la) +ialal P- U]
- 4(Pi-U)(ala) +1afla| P- U]+ (ale}.
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If one sets the length of the vectoequal to 2 ta / 2, such that one has:

4

a=2tan- [¥,
2

then one will get:

P.—U=P-U+Je —2tan§| (P—L»e—tar%g(P—U)
+taﬁge(e|P—U)—taﬁg(Pl—U)

+tar?§e{[e|a°—w]+/l},

from which, it will follow that:
(27) P.—P=(P-Ucosg+le+2 siﬁ%e(e|P—U)—sin¢| P-Ve

If one sets ta / 2 = in this equation and goes over to orthogonal coordinhes
one will obtain the well-knownEuler formulas for the transformation of these
coordinates from them.

While formula (25) loses its validity fop = 18C, this is not the case for (27).
Moreover, it gives:

P+R

=U+je+e(e|P-U)

which is a point in the axid), €), and since:

(Pi-P)le=-2FP-U|e+i(e|e)+(e]e [GIP—U]=%,

the projection oP; — P onto the axis will be constant, as it must be fastation through
180.
In formula (27), one can write:

(P-Ue=wUPg
U+(@P-Ucosg+2sife(e|P-U)
=P (1—25ir12£j +2sin2u +23iﬁ£e(e|P—U)
2 2 2

:P+2siﬁg[e(e|P—U)—(e|e)(P—U)]
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=P+2 siﬁg[e(e|P—U)] .
It then follows from this that:
(28) P1:P—25irfg|e(| wUP) — sing | wUP e+ Je,
or, when one denotes the second-degree gy 1, sincee = alTl, that:
P.=P+2 sir?g| (|wn O «PM) + sing | wPM + Awn .
If one now considers the general formula:
(29) P =P+|(@OQwPZ)+1|wP¥,
wherer is a numerical coefficient, arld is a second-degree form whose normal form is:
fUe+nle

whereé andn are numbers, such that one can assumeftisgtositive, then one will get:

P =P+ | (fe (wPUe+ ne) + 1 (wPUe+ 17| €)
=P+ &% |e(|wPU8 + 1&| wPUe+ 1r7e .

The right-hand side will be identical with (28) when:
EZ:ZSiﬁg, £=sing, m=A

One can thus determine the wrectand the number such that the same congruent
transformation is represented by formula (29) as thetloateis represented by formula
(28). It will follow that:

5=ﬁ&in%, r:ﬁmos%, n:%sec%

(29) will then represent a screwing motion wifeht 7%= 2.
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§ 15.

If we understand to mean an arbitrary wrench then the problem suggesiisatse
considering the space transformation that is given by:

(30) P1=P+p| (& 0 wP%) + 0| wPZ,
wherep andgare numbers.

If we replace the poinP and the ond>; that corresponds to it with another pair of
associated point®Q; then it will follow that:

Q-P1=Q-P+plwzQwQ-PA+0o|lw@Q-P
Now letZ have the normal form:
>=¢Uetn|e
as was assumed above, so one will get:
wQ-Px=¢{(P-Qe w2={e
Q-P1=Q-P+&ple[| P-Qe+at|P-Qe

=Q-P+&p[P-Q-dP-Qld+a¢|P-Qe
|@Q:-P) =|Q-P(1-¢%0-¢%p(P-Qle) |e+dé(P-Qe

thus:

The multiplication of both expressions then gives:
(Qu—P1) | @ —Py) = (@Q—Py)’

=(1-EDQ-P*+&p(1-E°P(P-Qle’ +E%p(L-E°p)(P - Q| &7
+&p?(P-Qlef - g% ?[(P-Q°-(P-Qle]

=[(1-E%0°+ &0 (Q-P*+[2&%0 - 0?82~ Ep? (P-Q | e
If one sets:

1-&%p=Acosk, E&o=Asink
then one can write this as:

(Q-P)*=Q-P’D¥+ (1 -F)(P-Qle>

Formula (30) then represents a congruent transformatynwhenA = 1. However,
since:

el @ -P)=(1-&°0) (e|Q-P)-&°p(P-Qle
or
(31) Qi—Pyle=P-Q]|e



Ldroth — The motion of a rigid body. 26

the last equation can be written as:
(32) Q-P)’-P1-Q[8°=2%[(Q-P°-Q-Ple).

(Q1 — P)? — (P. — Q| € is the square of the projection of the segnfe@tonto a
plane that is perpendicular to the vector Therefore, equation (32) says that the
component oP;Q; that is perpendicular teis A times as long as the componentPg)
that is perpendicular t@, while equation (31) shows that the components of these
segments that are parallel to theare equal. One can then say that equation (30)
represents an affine space transformation, under whétimensions that are parallel to
e remain unchanged, but the ones that are perpendicudawitbbe extended by a factor
of A, while a screw around an axis that is paralled tall be present.

§ 16.

In 8 9, we assumed that no three of the four p&ints, ¢, © were on a straight line.
However, if the three point¥, B, ¢ do lie on a straight line, without two of them
coinciding, then one must add the three equations:

®-2)]d=®-2) |a,
(®-B)|d=® -*B) | b,
®-0¢) |d=®-9¢) |c,

to the three equations (12) of § 8, which say that the i just as far from the three

pointsAg, B1, C; asD is fromA, B, C.
Two cases will now be possible: In one cadikewise lies on the lin@B¢. If qis

a unit vector on that line then the three equationseolvsay that:
qla=qlb=qlc=qld=p,
with the notation of (13). If one then sets:
d=pq+d
then one must hawg| d; = 0. If one then defines the pobt by the equation:

D'=D+20q

U

then Dl;D =% + pqwill be a point on the axig, g), and:

q|O:-D)=2|d=0.
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From § 8, the displacemenp?, and possibly the rotation through 2&0ound the
axis @, g) that takeABCto A;B1Cs, will thus makeD overlap withD; .

However, if the four pointg(, 9B, ¢, © do not lie on the same line then (in agreement
with 8§ 9) one will assume thé&t, B, ¢ lie on a line that does not, however, contéin

The last two systems (15) and (16) will then be valid, aedmparison of the different
expressions for the vectors in question will give #lations:

A =3 + a’BC,
B =2 + ¢,

which agree with formulas (16) féy — A, B; —B, C; —C, but forD; —D they will yield:

Di-D=|w?® %+ a| wdBC,
= |wD X+ LB wDAC .

Since one must have®B¢ = SDOAE, one can set both equalgRB¢ and set:

Di1—-D=|w? Z+p|wABC,
as was found in (18).

The considerations of 88 12 and 13 are then unchanged, éxaephe must set =
0 in the latter.

In the first of the two cases that were treatethase paragraphs, the two tetrahedra
ABCD andA;B:C,D; were congruent, since there was a screw that chahgeohe into
the other. Therefore, the figures were symmetric insd@nd case. One can therefore
state the theorem:

If three of the four midpoints of the connecting lines of correspondingeof two
congruent tetrahedra lie on a straight line then the fourth one will aésorithat line.

Such a theorem is not true for symmetric tetrahetivaorder to prove it directly, we
employ the Ansatz of § 11, which will yield:

D=A+L(B-A) +yC-A) + %l w(A1B:1C; + ABO).
From § 13, however, one has:
w(A1B:C; + ABO) = 2 [wABC + (b — g(c — 9.

Since¥, B, ¢ lie on a straight line, one will haw@2(*6¢ = 0, and from equations
(14), one will havelf — g(c — 8 = (b1 —az)(cL —ay). It will then follow that:

D=A+[(B-A) +y(C-2) + maq,
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which proves the theorem.
§17.

The formulas of the previous paragraph will also s#ltbue when the poin®
coincides withl or 5. However, if three of the four points coincide2irand the fourth
one is® then the three equations at the beginning of the previoagrnagh will become:

®-20)|(d-a)=0,
(33) (®-2A)|(d-b)=0,
(®-2A)|(d-c)=0.

Either® = %, or the three vectord — 3 d — i d — care perpendicula® — 2, and
thus coplanar. Inthe second case, there will thahree numbers, S, ysuch that:

a(d-g+pd-P+y(d-9=0.

If a+ [+ y# 0 then it will follow from this equation that:

D, - IA+BBHYC |y aA+[B+yC
Y g+ Bty a+B+y

Let these two equal vectors be caled If one denotes the two points:

—aA+,BB+yC by E andal'AiJr’mBlwCl by E;
a+p+y a+pB+y

thenE; andE will be corresponding points on the two plaBeB,C; andABCthat go to
each other under congruent transformations.
One will then have:

Ezazﬂq[h:&+m,D=E+m, D=9 +m

Since one must have:
mld-9g=m|d-B=m|d-9=0,
one must also have:

m|b-3=0, m|lc-9=0
such that one will haven ||g. If one further sets:

_ aA’+,BB’+yC+m _ aA+pB+yC
a+p+y a+p+y

DI

+20q+m
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=E+27q+m,
then it will follow, on the one hand, that:

D, -D = a(A-A)+B(B-B)+y(G-C)

a+pB+y
-2 aa +pBb+yc
a+pB+y
with
q|D.1-D) =0,
and on the other hand:
D, +D =2A+pqg+m.

U

The point D, ; D then lies on the axi®l( g) that will be met perpendicularly by the

line D'D; when it is not zero, and the motion that was degian 8 8 will take the
tetrahedrorABCD to A;B;C1D3, such that the case that was treated above wiktdteof
congruence. Therefore, © coincides with2l then the two tetrahedra must be

symmetric. This can also be inferred from a casrsition of the differencé;B,;Ci1D; —
ABCD, as in § 10, which, since:

ABCE =ABD =ACD =BED =0
here, will reduce to:
22 (bcd — acd+ acd — dbg.
However, since one has:

d= aa+ [b+yc
a+pB+y
it will follow that:
bed = aabc | acd= - pabc . abd=- yabc |
a+p+y a+p+y a+p+y

and this will imply that:
A]_B]_C]_Dl —ABCD=0.

If a+ [+ y=0thenaga+ fo + c =0, so the three vectoasb, c will be coplanar.
The vectorg will then be perpendicular to the plane of tholsee¢. It follows from
equations (33) that:

(®-2A)|b-39=0, ©-A)|C-9=0,
which show tha® —2( is parallel tog. Equations (33) then imply:

gld=qla=qg|b=qg|c=0.
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Thus, a rotation through 18@round the axis?(, g) will succeed in takinABCD to
A]_B]_C]_D]_.

§18.

The theorems of 88 10, 16, 16 on the midpoints of segmumatis connect
corresponding vertices of two congruent or symmetti@bedra can be deduced from
the known properties of orthogonal transformationshweéal coefficients, since each
symmetric or congruent space transformation is indeddgonal.

If:

X = Ata, Xt g, ¥ 3,7
(34) Y= B a,xt a, ¥+ 8,7
z=CHa,x+a,y 3,7

are the transformation formulas, aédds, { are the coordinates of the midpoint of the
segment that connects the poity, z) with its corresponding poink{, yi1, z1) then one
will have:

26 =A+(a,+1)x+ 8, ¥+ 3,32

21 =B+3a, X+ (a,+1) y+ 8,2

20 =C+a,x+ a,y+(a,;+1) 2
The determinant:

a,=sS a, as;

Ay, Ay~ S Q3 =¢(9

8y a3, 3~ S

is the so-calle@haracteristicfunction of the substitution (34), and it is known that
p0)=£==%1,

according to whether the transformation is congruesiyommetric.
Equationg(s) can haves= + 1 ors= - 1, along with complex values, for its roots. If
s=+ 1is aufold root ands =- 1 is anv-fold root then one will have:

H+Vv =1or3,
-1)'=¢

and for anm-fold root all sub-determinants of degree (4my} will vanish in the
determinantj(s), while those of degree (3m) will not all be zero ).
Therefore, the following cases are possible:

() Stickelberger: “Uber reelle orthogonale Transformationen,” Beilagem Programm des
Polytechnikums, Zurich, 1877, page VII.
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e=+1, v=2O0or?2,
-1, 1 3.

However, ¢(-1) is the determinant of equations (35). Thusy i# 1 then it will
vanish. A linear equation will then exist between thentjties:

Zf_Aa 2,7_81 ZZ_C!

or the midpoints of the segments considered will lieaoplane under a symmetric
transformation.

The transformation is likewise symmetric for= 3, but all first-degree determinants
will vanish fors= - 1; i.e., one will have:

a1 =ap=azx=-1,

or the midpoints will coincide at the same point.

One is dealing with congruent transformations wor 2. The second-degree sub-
determinants vanish far= — 1, sotwo linear equations will exist between the quantities
2&- A 2n-B, 2{—C, and the midpoints of the segments will lie on a line.

For congruent transformations the midpoints will either fill up all of gpac they
will lie on a line, while for symmetric transformations thell ki@ on a plane or coincide
in a point.

These theorems can be deduced with no difficulty froengeneral theorems thidt
Wienergave on the transformation of a spatial system artocequal one [Berichte d.
math.-phys. Klasse d. kgl. Sachs. Gesellsch. d Wisseig891), pp. 659.]




