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 Mechanics – On discontinuous, elastic displacements, Note by the correspondent 
GIAN ANTONIO MAGGI. 
 
 
 The teaching of mathematical physics in the current year has given us an occasion to 
return to the topic of discontinuous, elastic displacements that we pointed out in a 
preceding communication (1) as a concrete interpretation of Volterra’s polydromic 
displacements, and on the question of the double representation of physico-mathematical 
elements by means of discontinuous functions and polydromic functions, which are 
mutually related to each other, permit me to announce the principal points of my 
exposition in this brief communication. 
 
 1. Instead of the continuous displacements that are, as a rule, considered exclusively 
in the theory of elastic equilibrium, in our study we will address discontinuous 
displacements, of which, experiment provides obvious examples, and the simplest type of 
them are displacements that present discontinuities of the first kind at a certain surface, 
but which correspond entirely to dilatation parameters (2) and consequently to pressure 
parameters (2) that are regular in such a way that despite the tear that is represented by the 
discontinuous displacement at the surface in question, the elements of dilatation, 
deformation, or internal tension will remain distributed continuously in the body 
considered.  That is the kind of elastic displacement that first attracted the attention of 
Weingarten (3) as the principal object of his geometric research.  I shall begin with that 
concept in order to first of all treat the question of the possibility of such displacements. 
 
 
 2. I caution you that I intend that the position of elastic equilibrium for the body in 
question that will be considered is determined by means of a corresponding displacement 
of its natural position under which the displacement of any infinitesimal particle can be 
composed in a known way from a certain rigid displacement and a certain dilatational 
displacement that has its origin at the natural position of the particle.  Given that, imagine 
that dilatation parameters are associated with any point (x, y, z) of the domain that 
represents the natural – or reference − position of the elastic body considered, and that 
they are regular (4) functions of that point.  Note that the so-called Saint Venant equations 

                                                
 (1) See, these Rendiconti, fasc. of 5 Nov. 1905.  
 (2) What we call dilatation parameters and pressure parameters are the six quantities that others call the 
components, characteristics, etc., of dilatations, or deformation, pressure, or tension, respectively.  The 
term “parameters” does not seem opportune to me, because these quantities, which might very well vary 
from point to point, behave like constants in the examination of an infinitesimal particle around the point, 
where the first kind exhibits with a kinematical aspect (strain or deformation) and the second kinds exhibits 
a dynamical aspect (stress or tension). 
 (3) See, these Rendiconti, fasc. on 3 February 1901.  
 (4) That is, uniform, continuous, finite, and endowed with derivatives of a similar kind up to the order 
that happens to be considered; in the present case, that would be the second.  
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must be satisfied (1): By virtue of them, by means of their first derivatives, one can 
associate the general point (x, y, z) in question with the total (i.e., exact) differentials: 
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of the components p, q, r of the rotation that relates to that point (x, y, z).  It then follows 
that if the p, q, r are thought of as formed with the aid of them and the dilatation 
parameters above then one can further associate the point (x, y, z) considered with the 
total (exact) differentials: 
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of the components ξ, η, ζ of the displacement that relates to that point. 
 Given that, in the first place, let the domain that represents the body be simply 
connected.  For any closed path C, (1) then gives: 
 

1 2 3( )
C

p dx p dy p dz+ +∫  = 0, etc.; 

 
with that, the p, q, r become regular functions of the relevant point in that domain.  One 
imagines introducing the functions in (2) that that will give, in turn: 
 

1 2 3( )
C

dx dy dzξ ξ ξ+ +∫  = 0, etc.; 

 
with that, the ξ, η, ζ also become regular functions.  One concludes that if the body is 
represented by a simply-connected domain with regular dilatation parameters then it 
cannot correspond to anything but regular displacements, and consequently, 
displacements of the kind considered would not be possible.  That proposition, which was 
emphasized by Weingarten (2), reduces to the analogous theorem of Volterra for 
polydromic displacements (3). 
 Suppose instead that the domain is multiply-connected, so for any system of simple 
paths that do not belong to circuits that define the complete contour of a cap that is 
included in the domain, but which pair-wise form the contour of a zone that is included in 
the domain (i.e., paths that are reducible to each other), (1) give: 
 

 1 2 3( )
C

p dx p dy p dz+ +∫ = ∆p, 

                                                
 (1) Cf., for example, Marcolongo, Teoria dell’equilibrio dei corpi elastici, Milano, Hoepli, 1904, Chap. 
III, § 6.  
 (2) loc. cit.  
 (3) See, these Rendiconti, fasc. on  5 February, 1905. 
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(3) 1 2 3( )
C

q dx q dy q dz+ +∫  = ∆q, 

 1 2 3( )
C

r dx r dy r dz+ +∫    = ∆r, 

 
in which ∆p, ∆q, ∆r denote constants that depend upon the system of paths and are 
generally assumed to be non-zero.  The p, q, r can then be formally represented as 
polydromic functions that have one or more fundamental moduli of peridocity, according 
to the order of multiplicity of the connection in the domain.  However, the mechanical 
significance of the p, q, r – namely, that they are the components of the rotation that 
relates to the point (x, y, z) – does not seem to allow for any point of the domain that lies 
upon various paths that begin at a point at which one assumes a certain value as initial 
value to attain various limits, but does allow for that situation to be verified by certain 
points that define the points of discontinuity of the rotations.  On the other hand, one 
imagines that the domain has been rendered simply-connected by means of diaphragms 
that intersect the individual fundamental systems of circuits that are mutually reducible, 
so the p, q, r will be defined as uniform and discontinuous functions in the new domain 
that present a discontinuity of the first kind at any diaphragm, which is, conforming to 
(3), characterized by the differences ∆p, ∆q, ∆r of the limits that they tend to at any point 
of the diaphragm from opposite sides of it.  It then results that the location of any tear can 
be conceived of as being freely mobile, together with the corresponding diaphragm, along 
the relevant circuits.  However, we would not like to say that one can ignore their 
existence for the mechanical interpretation under discussion.  We would like to say that 
the dilatation parameters above allow an infinitude of problems that can be deduced from 
each other by moving the location of the discontinuity in the indicated fashion. 
 In the domain that has been reduced to a simply-connected one, in which one can 
distinguish the two sheets of the diaphragm as distinct parts of the contour, one can 
operate on the p, q, r as if they were regular functions.  With that, for any system of 
simple paths that have their extremes on the corresponding points of two opposite sheets 
of the same diaphragm, (2) will give: 
 

 1 2 3( )
C

dx dy dzξ ξ ξ+ +∫  = ∆ξ, 

 1 2 3( )
C

dx dy dzη η η+ +∫  = ∆η, 

 1 2 3( )
C

dx dy dzζ ζ ζ+ +∫  = ∆ζ, 

 
in which the ∆ξ, ∆η, ∆ζ denote three constants that relate to the diaphragm. 
 Since the continuity of the dilatation parameters requires that one have: 
 

∆xx = 0, …, ∆yx = 0, …, 
one will get: 
 ∆ξ = ∆a + (z – z0) ∆q – (y – y0) ∆r, 
 ∆η = ∆b + (x – x0) ∆r – (z – z0) ∆q, 
 ∆ζ = ∆c + (y – y0) ∆p – (x – x0) ∆p, 
 
in which ∆p, ∆q, ∆r have the preceding significance, and ∆a, ∆b, ∆c are new constants. 
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 One then finds a discontinuity in the displacement at the same location as the first 
one, and that discontinuity will be represented by a rigid displacement (1).  Moreover, 
with that peculiarity, one can prove the possibility of a displacement of the type 
considered in a body that is represented by a multiply-connected domain: It will then 
once more reduces to the analogous theorem of Volterra for polydromic displacements 
(2). 
  One can then immediately define corresponding polydromic and continuous 
functions that satisfy (2) from the uniform and discontinuous functions, and thus revert to 
Volterra’s polydromic displacements.  These functions have the quality of not involving 
the diaphragms.  However, as far as their ability to represent displacements with the 
indicated position of the problem is concerned, as well as for the mobile position of the 
diaphragms – i.e., the location of the discontinuities of the uniform displacement – the 
considerations that were made previously a propos of rotations are still valid. 
 
 
 3. Permit me to add the following observations in regard to the discussion of the 
relationships between polydromy and discontinuity. 
 Set: 

V = − 
(1/ )r

d
nσ

σ∂
∂∫ , 

 
in which σ denotes a regular surface that has a certain contour, n denotes the normal at its 
generic point, which points in a certain sense, and r is the distance from that point to a 
certain point that is taken on the surface P and has coordinates x, y¸ z, so: 
 

dL =
V V V

dx dy dz
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 

 
will represent the differential of the work that corresponds to a motion of a magnetic pole 
of unit intensity that is placed at P, as well as the force that is exerted on a magnetic layer 
that has its location on the surface σ and a specific magnetic moment of unit magnitude 
that is oriented like n, and also the force that is exerted on an electric current of unit 
intensity that circulates in the line that is represented by the contour of σ in the positive 
sense with respect to the the normal n.  For any closed, simple path C that belongs to a 
circuit that is the concatenation of such lines, whose senses agree with that of the normal 
n, one will have: 

C

V V V
dx dy dz

x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
∫  = 4π . 

 
On the basis of that result, L – viz., the work that corresponds to a path that goes from 
one fixed point P0 to the point P – can be defined as either a uniform, discontinuous 
function of the surface σ or as a polydromic, continuous function of the multiply-

                                                
 (1) See the cited notes of Weingarten and Volterra.  
 (2) Loc. cit.  
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connected domain that one obtains from the space, minus the contour of σ, in which an 
infinitude of values of P are represented by: 
 

L  + 4πv, 
 

in which L  denotes the value of the preceding uniform, discontinuous function at P, and 
v denotes the difference between the number of turns in the sense of n and in the opposite 
sense, concatenated with the contour of σ, that one makes along the path considered.  
Now, just as one did for the physical significance, one can make the first or second 
hypothesis according to whether one is dealing with the magnetic layer or the electric 
current. 
 In other cases, the two hypotheses can be assumed indifferently.  Thus, Volterra, in 
his celebrated memoir “Sur les vibrations lumineuses dans les milieux birefringents” (1), 
has invalidated the results of Sofia Kovalevskij and concluded that Lamé’s hypothesis 
that luminous vibrations that emanate from a center in a birefringent medium and 
propagate as wave surfaces will lead to expressions for the vibrations in terms of 
polydromic functions that have parallels to the optical axes that are described at the 
center for their critical lines.  He reaches that conclusion by proceeding with uniform, 
discontinuous functions on the plane of the aforementioned parallel, which lend 
themselves to analogous conclusions.  Finally, let me note that this discontinuity can be 
seen in the results of Lamé by observing that the vibration at any point on each stratum of 
the wave surface will have non-zero amplitudes at any point in the directions of the 
tangents to the spherical intersections that pass through the point, and at any instant, in 
order to have identity of the phase, their senses must agree for all points of that spherical 
intersection.  Thus, each of the two halves that the spherical intersection is divided into 
by the plane of the parallels to the optical axes that go through the center and tend to that 
place will tend to an arc of the circle that is placed in that plane, so one sees that the 
vibrations that belong to the points that are situated in the opposite part of the 
aforementioned plane and tend to the same point of the plane will compete for limits that 
are equal and of opposite sense. 
 

 
 
 
 

 

                                                
 (1) Acta Mathematica, Tome 16.  


