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 The theory of elastic distortions, which was initiated by Weingarten, to whom is due 
the basic concept (1), was developed from the beginning and enriched by copious 
interesting results of Volterra (2) and then cultivated with success in various aspects, and 
I believe that I am not mistaken in asserting that it took on its most definitive formulation 
only in the recent papers of Somigliana (3). 
 As a matter of fact, in proposing to study the deformations in elastic equilibrium that 
are provoked by discontinuities in the displacements of a given internal surface, 
Weingarten established the conditions that the parameters of dilatation (viz., components 
of the deformation, characteristics of the deformations, etc.) 
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must be continuous on that surface, in order that what one calls stresses should be 
continuous.  It then appears that for them one must intend that the pressure parameters 
(viz., pressure components, pressure characteristics, etc.): 
 
(2)   Xx , Yy , Zz , Yz  = Zy , Zx = Xz , Xy = Yx , 
 
should be homogeneous, linear functions of the preceding ones that, in turn, prove to be 
homogeneous, linear functions of the latter. 
 Volterra defined regular deformations to be ones for which (1) are finite, continuous, 
monodromic functions in the entire domain that the elastic body represents, and whose 

                                                
 (1) “Sulle superficie di discontinuità nella teoria della elasticità dei corpi solidi,” these Rendiconti (5) 10 
(1901), 1st sem.  
 (2) A series of notes in these Rendiconti (5) 14 (1905), 1st sem; “Sull’equilibrio dei corpi elastici 
molteplicemente connessi,” in Nuovo Cimento (5) 10 and 11 (1905-06); “Sur l’équilibre des corps 
élastiques multiplement connexes,” in Annales de l’École Normale (3) 24 (1907). 
 (3) “Sulla teoria delle distorsioni elastiche,” two notes in these Rendiconti (5) 23 (1914), 1st sem. and 
Nuovo Cimento (6) 11 (1916); “Sulle discontinuità dei potenziali elastici,” in Atti della R. Accademia delle 
Scienze di Torino 51 (1915-16).  
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first and second order derivatives are also finite, continuous, and monodromic (1), and it 
was that kind of deformation that formed the object of his research.  Under these 
conditions, the elastic displacement, leaving aside the case in which it degenerates into 
rigid displacements – is necessarily continuous in a simply-connected region.  The 
monodromy is always assumed, unless stated to the contrary.  Therefore, discontinuities 
can arise in a multiply-connected region, and any surface that represents a “diaphragm” 
will tend to diminish the degree of connectivity of the region, and the resulting 
discontinuity will be defined by a rigid infinitesimal displacement of the two edges of a 
slit that is imagined to have been made in the diaphragm with respect to each other.  The 
fact that one can assign an infinitude of diverse positions to the surface of discontinuity in 
relation to the assignment of the diaphragm without changing the distribution of the 
dilatation parameters translates into the possibility of representing that displacement of 
the elastic body in the form of continuous, polydromic functions of the coordinates is 
attributed to Volterra (2). 
 Therefore, we adopt Somigliana’s terminology of “Weingarten displacements” and 
“Volterra displacements” (3), which are a special case of them that confers special interest 
upon the nature of the discontinuity and the indifference, if only between certain limits, 
of the position of the surface upon which that discontinuity is verified. 
 Now, the discussion that Weingarten gave to the condition that we recalled seems to 
affirm its necessity if one is to maintain the integrity of the body considered (4).  Whereas 
in order for this to be true, it is also necessary to have continuity of the displacement and 
the specific pressure across the assumed discontinuity surface at any point of that surface 
relative to the ray that has the normal direction at that point and a pre-established sense 
(5).  Namely, the continuity of (2) is not necessary for this purpose, but only that of: 
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which are the components of the specific pressure above. 

                                                
 (1) “Un teorema sulla teoria della elasticità,” these Rendiconti (5) 10 (1905), 1st sem. and chap I, art. I of 
the cited paper in Nuovo Cimento.  
 (2)  See my note, “Sugli spostamenti elastici discontinui” in these Rendiconti (5) 17 (1908), 1st sem.  
There, I endeavored to deduce the aforementioned results of Volterra in a way that I believe is more direct.  
I take this opportunity to point out a correction on page 574, line 17 of the constants in the functions, which 
should be noted in the rest of the text, moreover.  Whoever would seek the reason for the difference in the 
behavior of the p, q, r and ξ, η, ζ is cautioned that the circuits relate to the former pre-existing application 
of the diaphragm, while it is only after interruption the corresponding circuits with them that one can 
proceed with the calculation of the latter. 
 (3) “If the stresses that exist internally are continuous all of the space that is occupied by the body then 
it will have the character of a single, unique body, but if the stresses become discontinuous or the 
displacement are discontinuous then the body can be considered to have the character of several distinct 
bodies.” loc. cit. 
 (4) “Sulle deformazione elastiche non regolari,” Atti del IV Congresso Internazionale dei Mathematici, 
Roma, 1908. 
 (5) See, e.g., my Principii della teoria matematica del movimento dei corpo, § 405.  
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 Therefore, the same Weingarten displacements do not represent a very special case 
among the possibilities. 
 The substantial progress that Somigliana made in the theory of elastic distortions 
consists of the introduction of the necessary condition above in place of the Weingarten 
condition. 
 In that way, if let D denote the difference between the limits that are approached as a 
point considered approaches a point of the surface from the side for which the sense of 
normal is taken to be positive and from the opposite side (viz., D = 

0 0
lim lim
n n> <

− ) for a well-

defined form of the discontinuity of the displacement then one will have the six 
equations: 
(4)    Dξ = ξσ , Dη = ησ , Dζ = ζσ , 
(5)    DXz = 0, DYz = 0, DZz = 0 
 
on any surface σ of discontinuity, in which the limit point is taken to be the origin and z-
axis is defined by the normal n, when taken in the positive sense.  With that, the x-axis 
and y-axis will prove to be tangent to the surface at the limit point and ξσ , ησ , ζσ will 
represent any given functions that one desires of either the curvilinear coordinates that 
belong to the surface or x, y, which are, in that case, deduced from known functions of x, 
y, z that make z = 0. 
 Somigliana proved for the first time (we recall only the results that suit our purposes) 
that the six equations (4), (5) serve to determine the discontinuity D in each of the six 
dilatation parameters (1). 
 From the expressions for these discontinuities, he then deduced the discontinuities in 
the first derivatives with respect to the coordinates of the components of the displacement 
ξ, η¸ ζ and then, with the aid of the equations of equilibrium, when the limiting force 
(i.e., the volume force) is assumed to be zero (or simply continuous on the surface σ), the 
discontinuities in the second derivatives of those functions.  In that way, Somigliana 
arrived at the result upon which he insisted especially that the discontinuities in the 
dilatation parameters are determined by equations (4), taking into account (5) and the 
equations of elastic equilibrium, as well as those of the first and second derivatives of the 
components of the displacement (2). 
 One recognizes immediately how, with the aid of the equations that one obtains, 
differentiating both sides of the equations of equilibrium with respect to the single 
coordinates will result in the determination of the discontinuities in the derivatives of 
successive order of the components of the displacement in the same way.  A result of all 
that we propose to examine here is that the previously-enumerated conditions, such as the 
ones that define a regular deformation (with the Volterra terminology), represent a 
surplus.  Therefore, to the extent that it is permissible, we shall demand the continuity of 
the dilatation parameters and the first and second derivatives of the dilatation parameters, 
and they seem to belong to a displacement that is provoked by a discontinuity of a pre-
established form. 
 The form that is representable by means of a rigid displacement of the two edges of a 
slit that is made in the discontinuity surface with respect to each other falls within the 

                                                
 (1) These Rendiconti and Nuovo Cimento, note 1.  
 (2) These Rendiconti and Nuovo Cimento, note 2. 
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category that relates to Weingarten displacements (1).  For them, one can also assert the 
continuity of the dilatation parameters.  It then remains to examine the first and second 
derivatives, and we shall now prove their continuity: That is, we prove the continuity of 
the derivatives of the components of the displacements up to those of third order, at 
which point, it jumps, of course.  I believe that the conclusions that Volterra made 
relative to the possibility of the deformation of elastic equilibrium that we speak of, 
which point to existence theorems when they are applied to auxiliary deformations (2) (by 
a calculation that is not simple), remove the opportunity to formulate the mathematical 
theory of a type of elastic equilibrium that experiment has brought to our attention by this 
direct verification of an indispensible property. 
 Preserve the significance that was attributed to x, y, z and ξ, η, ζ in (4) and (5), by 
which the x and y axes are tangent to the surface σ at the point considered, which is 
assumed to be the origin.  Then imagine, in the known way, a grid of orthogonal 
coordinate lines that are adjacent to that surface and let u and v denote the variable 
parameters along the lines of the two families that determine the points of that surface by 
their intersection.  With that, as usual: 
 

E du2 + G dv2 
 
represents the square of the differential length of an arc that goes through the point (u, v). 
 If one understands that the x and y axes are tangent to the first and second of the 
indicated line coordinates, respectively (v = const. and u = const., resp.), then one will 
verify the relations (3): 
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 Now, let ϕ denote a function of x, y, z or u, v, n, as are the ξ, η, ζ, to which, one 
attributes the properties that these functions possess (at least, in the vicinity of σ), and 
set: 
(8)     

0 0
lim lim
n n> <

−  = D,  Dϕ = ϕσ , 

 

                                                
 (1) Cited note.  
 (2) “Sull’equilibrio dei corpi elastici più volte connessi,” these Rendiconti (5) 14 (1905), 1st sem. and 
chap. II, art. II of the cited paper in Nuovo Cimento.  
 (3) Cf., my note, “Sopra una formola commutative e alcune sue applicazioni” on page 189 of the present 
volume of these Renidconti.  
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with which, ϕσ will represent a function of u, v or x, y that is deduced from a function of 
x, y, z that makes z = 0. 
 Recall the commutation formula, where the function ϕ is intended to satisfy the 
conditions that are required for its validity (1): 
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 With that, one gets from (6) that: 
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 Take ϕ to be the ξ, η, ζ.  Using (10), form the jump in their first derivatives with 
respect to the tangential coordinates x and y. 
 If the body is understood to be isotropic, i.e.: 
 

Xx = − λκ – 2µ xx , Yz =– µ yz , κ = xx + yy + zz , 
 
and analogous formulas, in which λ, µ denote the “elastic constants,” with the aid of (5), 
and invoking (1), one will find immediately that (2): 
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 Now, introduce the special form of the discontinuity in the displacement that refers to 
our present discussion, and then set: 
 
(14)  ξσ = a + qz – ry, ησ = b + rx – pz, ζσ = c + py – qx (z = 0), 
 

                                                
 (1) See my note above.  
 (2) Somigliana: the first of the cited notes “Sulle teoria delle distorsioni elastiche.”  
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in which a, b, c, p, q, r represent arbitrary constants when one fixes the limit point. 
 From (10) and (13), one has: 
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 Therefore, the jumps in each of the dilatation parameters [cf., (1)] are then zero, 
which agrees with the result that was recalled already.  From (14), all of the second 
derivatives of ξσ, ησ, ζσ with respect to x and y will then be zero.  In addition, from (14) 
and (15), one verifies that: 

(16)     δ = D
z z
σϕ ϕ∂ ∂−
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 = 0, 

 
no matter which of ξ, η, ζ  is represented by ϕ. 
 It follows from (11) and (12) that all of the jumps in the second derivatives of ξ, η, ζ 

with respect to the coordinates x, y, z are zero, except (for the moment) 
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 For them, we recall the equations of equilibrium: 
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in which X, Y, Z are meant to be continuous on the surface σ. 

 Applying D to these equations will give three equations that give D
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derivatives of the ξ, η, ζ .  They will all be zero, in such a way that it will also follow 
that: 
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 One concludes that all of the jumps in the second derivatives of ξ, η, ζ.are zero, and 
consequently, conforming to (1) the jumps in the first derivatives of the dilatation 
parameters will be zero. 
 In order to prove that the jumps in the second derivatives of those dilatation 
parameters are zero, one proves, in an analogous way, that all of the jumps in the third 
derivatives of the ξ, η, ζ.with respect to the coordinates x, y, z are zero. 
 We therefore make use of series of formulas that are established by continuing the 
procedure that was followed in order to define (10), (11), (12), into which, of course, we 
introduce the preceding results on the jumps in the second derivatives. 
 With the same significance for ϕ, while always applying (9), one gets from (6), in the 
first place: 
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in the second place, one gets from (7) that: 
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 As for the remaining three derivatives, we begin by finding the formulas that result 
from (6) and (7).  For example, we obtain: 
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 It then follows, making use of (9) and taking (10), (11), and (12) into account, that: 
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from which, conforming to the hypotheses and the preceding results: 
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 In order to find them, take the ordinary derivatives of the three equilibrium equations 
(17) with respect to x, y, and z, and suppose that ∂X / ∂x, ∂Y / ∂y, ∂Z / ∂z are continuous 
on the surface σ, and then apply D to the two sides of the equations thus formed.  That 
will give (19) as homogeneous, linear functions of the D of the remaining third 
derivatives of ξ, η, ζ, which all prove to be zero.  Finally, it then results from this that: 
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