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I. Zitterbewegung.
II. DE BROGLIE-waves and quantum laws in a kinematigi.

The new fundamental dynamical laws that are derived &éathhor include an additional term that
depends upon the angular momentum in comparison to tsagbequations. The new term has the effect
that a particle of madd and angular momentu@ will possess @roper frequencythe center of mass of
the particle oscillates with a frequencyvof Mc? / 277Q (Section ).

The phase of the zitterbewegung will depend upon the properadf the particle and will not be a
single-valued function of the coordinates, in general. Tiammym laws of the older quantum theory have
the consequence that the phase will be single-valuedndfintroduces the PLANCK constant into the
conditions for single-valuedness then that will neaélgséead to the valueh / 4 for the angular
momentum of the electron. That will immediately yi@lchew conception of the DE BROGLIE-waves
(Section 11). In all of the considerations, we sltaihtent ourselves with the non-relativistic approXioma

|. Zitterbewegung.

The foundations of the present work are defined by thmtems of motion of a
particle that the author has obtained from generaliviéla[“Neue Mechanik materialler
System,” Acta Phys. Pd.(1937), 163; formulas (6.1) and (6.2)]:

(Il) Mua’ +QHVUV :Pa,
(1.2) Q7 - QM v +Q7 U= 0.

The equations, when presented in this form, relate IldK@WSKI space (velocity
of light = 1) and allow a LORENTZ transformation. Al with the constant ma$s,
the four-velocityu” of the center of mass (differentiation with resgecproper time will
be denoted by a dot), the forB& and the components of angular momentafff will
enter into our equation. Angular momentum will then beaatisymmetric tensor that
satisfies the orthogonality relation:

(1.3) Q%u, = 0.
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Its components in a LORENTZ coordinate system in wtlilod center of mass is
instantaneously at rest can be arranged into a vector

(1.4) Q%=0 (=1,23), 0% Q" = (v, wy, m,).

The Q% term in (1.1), which will follow necessarily from geral relativity, is of the
greatest physical significance.

We replace equation (I.1) with its non-relativistic apgmation. That will come
about upon neglecting magnitudes of ordéc (v = velocity of the center of mass= 3
x 10" cm sec).

We would thus like to regard the angular momen@fff as a constant; in fact,
equation (1.2) will yield, in the non-relativistic approxation:

(1.5) — =
(square brackets the mean vector product,tend differentiation will be denoted by a
dot), and the right-hand side will vanish when one passd® limit ofv/c = 0. w and

v (the velocity of the center of mass) will be spatectors now.
We shall first consider an uncharged parti€é<£ 0). Equation (1.1) will then yield:

(1.6) Mé- L[] =0
C

in our non-relativistic approximation. If we now pointetiraxis in the direction of
constantv-vectors then equations (1.6) will read, in terms ofrttil@ee components:

v, ==k,
(1.7) v, = ki,
2
v=0, =M< " oo
K O

The first two equations yield:

P v, —ky, =0,
(18) v, +kV =0.

The third of equations (1.7) means that a motion with @nselocity takes place in
the z-direction. If we disregard this inessential motioertithe center of mass will
remain in thexy-plane during its motion, where one introduces the integfrél8) (with
two arbitrary constants) into (1.7), which will be dwt@n with two constants:
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) . (1
vV, =asin| —+a |,
k
) 1
vV, =acos| —+a |, z=0.
k

The amplitudea and the initiala will be arbitrary constants. The center of mass
regularly describes a circle with the period:

O = 2tk
In fact, we have:
X = Asin 277i ,
(1.9) ©
y = Acos 27i
C]

Ais an arbitrary constant. We ignore the initiagle & and the regular motion in thxg-
plane as inessential. The frequency will amount to

2
(1.10) -1 _Mc
o 20

The center of mass of an isolated particle thaspeses angular momentum performs
a circular motion with a frequency v (when one egarded a uniform, rectilinear
motion). The radius of the circle is arbitrary aitd plane is orthogonal to the constant
angular momenturf).

For an electron, we will find aitterbewegungi.e., a high-frequency periodic motion.
If:

(1.11) o="

(in the following section, we will see that theterbewegung itself will yield this value)
then:

2Mc? h
V= , O=——.
h 2Mc?

(1.12)

The forceP? in (1.1) is the sum of two forces: The effect thditof the remaining
electrons exert upon the electron and the radiagantion of the electron. We consider
(returning to its non-relativistic approximatioetradiation reaction force, in which we
replace (1.7) by the following system:

() Qs the angular momentuabout the center of mass
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Vv, =—qy, — Ky,
v, —kv—qv,
(1.13) v, =—qv,
2 €
== e=charge
4= 3 ue ( ge)

We would again like to disregard any motion in gdirection that converges to a
uniform motion (or rest). The motion will then talplace in thexy-plane, and the
integral system of (1.3) will include an amplitudeand an initial angler as arbitrary

constants:
. g -t
v, =ae’ sm(wﬂrj :

_ t
v =ae‘“co{—+aj ‘
y k'

If one introduces (1.14) into (1.13) then one vaiitain the equations fét andS:

(1.14)

K q
— 4+ = ]_, - 1+ = O,
" as % as

which will imply that:
q° q
(1.15) K :k(HFj’ B=—

The frequency will now be equal to:

1 g
.16 vV = — 1-—+..
(116) 271K’ [ k? j

and will differ very slightly from the frequency.1D) for the electron, for which, we will

have:
2 22
qy)’ _ 16( 2
k 9( hc )’

If one integrates (I.14) twice then that will yehe orbit, which will correspond to a
damped zitterbewegung of frequengy(up to a uniform, rectilinear motion). Since the
initial amplitude and angle are arbitrary, the freqcy and damping coefficient will be
expressed in terms of constants of the electrohe radius vector, which points away
from the pointx = y = 0, performs auniform rotation, just as it does in the case of
undamped motion (1.9).

(1.17) The phase anglg— ¢ = %ﬁ =2/nt
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The continuoug*-spectrum. We have the conservation law:
c’M [bto] O

2 + 2

Vv V

1-— cz\/ 1-—

\/ c? c?

for the energy of a free, non-radiating electron.
We would like to determine the order of magnituwdeéhe second term on the right,
namely, the energy of acceleratiép. Letv < c (slow electrons).

(1.18) = constant

_h (2nv)’r? _ 1677

/ —M3ctr?,
4T C h

(1.19) +Eq =

For zitterbewegung that corresponds to a velafity= 27& r = 1/3 ¢, we will haver
=h/12mMc, so:

2

+Eq = erg.

From the estimates (which need to be supplemenitéda relativistic computation
for large velocities), one will be led to the fallong consideration: If thg-electrons all
have the same total energy (i.e., kinetic energgnergy of acceleration) due to their
configuration about the nucleus then it cannot dd ghat they have the same kinetic
energy if the energy of acceleration is differeat tlifferent electrons. They will
gradually lose their energy of acceleration by atdn, and will asymptotically
approximate a motion wittlifferentconstant velocities.

II. DE BROGLIE-waves and quantum lawsin a kinematical light

Our treatment of zitterbewegung was non-relattjishdeed, we assumed that ¢
was small in a coordinate system in which the ceatfeoscillation was at rest. Our
fundamental equations, however, came from theivedtt school, so the consideration
of our results in arbitrary LORENTZ coordinate gyas must then follow from the laws
of relativity. Ifx,y, z t are the space-time coordinates in a LORENTZ coatdisystem
in which the center of oscillation moves with thenstant velocityv then one will have

the formula:
(1.1) ¢ — o= 2/ s= 2;7%,

instead of (1.17), in whick is theproper time(as measured from any initial point) of the
center of oscillation. The angle must be measured inc@-movingcoordinate system
that always remains parallel to itself. We t@ieto be thephaseof the zitterbewegung.
We have the following formula for the proper timereent of the center of oscillation,



Mathisson — The jittering electron and its dynamics 6

which is correct up to the order of magnitugé €)* (v means the velocity of the center

of oscillation, now):
2 2
ds=dt [1-L =dt— = dt
c 2c

dx = vy dt, dy=v, dt, dz=v, dt,

Since:

VLV =V,
we will then have:

(1.2) ds:dt—z—iz(vX dx+ v, dy + v, d2).

Since the components of the velocity remain constidoe difference between the
phase angles at two world points will then equal:

p-p= 28 — ot T (k- )+ (=) + Vi 2 - )

Now, let the line along which the center of ostiin moves in space be covered with
equidistant points; let the basic interval bhe We ask: What is the smallestfor which
the phase will be a single-valued function of thesipon inside of an elementary
interval? Thus, the space-dependent componertiteophase angle in the last formula
will be considered to be a time-dependent compondriie answer to our question is
clear: For two consecutive points {/, 2 and &, Y1, z1) that correspond to each other
inside of their respective intervals, and are thegsarated from each other bywe will
have:

V(=)= WUz g vA
2c’0 2c’0

Due to (1.12), that will yield:
h
(11.3) A My

Thus, we arrive at a simple explanation for the BROGLIE wavesThe difference
between the system time and proper time increagesughly one perio® when the
center of oscillation traverses the arc length That can be recognized from (l1.2)
immediately:

If a force field acts upon the electron then wdl assume that the zitterbewegung,
when considered from a coordinate system in whied tenter of oscillation is
instantaneously at rest, can be replaced with tbeom (1.9) with sufficient accuracy
during a time interval that is short, but still lImdes many proper periods. We shall
further assume that the plane of oscillation resairallel to itself during the oscillation,

so the position of the electrons relative to theegiposition of the center of oscillation
will be determined by the phase angle. The fohag will be necessary to stimulate
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zitterbewegung with a frequency d12? / h is very large in comparison to the force that
acts upon the electrons inside the atom, and it seetmsahthat we should disregard the
influence of the atomic forces on the proper peridde zitterbewegung will then be
similar to the workings of the clock of relativity thgor The frequency will then be
constant when it is measured in the proper time of émeec of oscillation. As for the
phase angle, we will then have formula (11.1). Fréws Ansatz, which corresponds to an
undamped zitterbewegung, the motion will be representadtime-integrated” form.

What we must now determine is the orbit of the ceaterscillation. This related
problem is dynamical in nature, and we would like to addté@ss later treatise (in some
other form). However, for the time being, we can sslablish the following:

Theorem: The quantum laws for the motion of the center of oscillation, namely:
(1.4) <j>d5=n h, dS=M (v, dx+ vy dy + v, d2)

have the fact that the phase of the zitterbeweggiagsingle-valued function of the state
coordinates xy, z Vx, Vx, Vx Of the center of oscillation (up to a relativistiorrection) as
a consequence.

We assume that the center of oscillation returnbeécstime point of its orbit in state
space infinitely often during its motion, or at leasines arbitrarily close to every point
of its orbit (i.e.,periodicvs. quasi-periodicmotion, resp.).

Proof. We would like to take the broadest possible meaninghl®rmuantum laws
(11.4): The integral shall be an integral multipletofor every closed path in state space.
[One frees oneself from the assumption that thezesaparation variables for which the
guantum constraints (11.4) are valid individually by meahshis formulation. The path
of integration does not need to be a path that actgmlgs through the center of
oscillation in state space then in the case for wthiehequations of motion are presented
in canonical form, which we do not need to assume.] Kewehe quantum law will
then imply that:

(I.5) F(P) =e"™ is single-valued  (ieS= [ dS);

i.e., F is single-valued in state space, when considered to bectoin of the variable
stateP.
From formula (11.2), we will have:

1

1.6 ds=dt-
(11.6) 2Mc?

ds

for the element of proper tinds of the center of oscillation, which is precise upud (
0)*, and in whichdSis defined by (I1.4). We will then get:
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(1.7) ¢ —¢o= 271

Pds _ 4nMc® 27T P
— = jpods

t—t)-—
RO h %) h

for the difference between the phase angles gidlmésP, andP along the curve in state
space when we integrate along that curve.
The phase will then be given by:

(1.8) d@-%) = F(p) o b h

and our theorem will be proved by means of (11.5).
The theorem can be extended to several electrithsw further changes.

In the case of a lattice field, one must spealpaxsing to corresponding points in
different cells, instead of returning to the sartetes The coordinates that cover the
respective cells will then enter into formula ()I(#hich will be equal for corresponding
points).

The quantum law (11.4) connects with the purelypdmatically-conceived single-
valuedness demand, in addition to which, any dynah@quations must be assumed. If
one takes NEWTONIAN dynamics, as well, then ond geit the BOHR quantization
process.

In order to come to (I.4), we see that it is reseey to introduceNac? / h as the
proper frequency of the electrotdowever, from (1.10), that will yield the value/ ldr
for the angular momentum.

The theory of relativity will appear for a secamie as the fundamental prerequisite
for quantum theory by means of formula (11.4). (Thest fundamental quantum-
mechanical consequence of the theory of relatisigitterbewegung itself; its differential
laws can be arrived at by using just the speciabmh of relativity and the theory of
gravitation.) The relativistic distinction betweproper time and system time comes into
play in the quantum law (11.4). Using it, one danmulate the law that for each complete
circuit the proper time will return to the systeime after one, two, three, etc., proper
periods. From (11.8), the phase that moves witd ¢enter of oscillation will take on
values that belong tostanding waven state space in the course of tinfgP) will give
the phase shift at the poift when compared to an oscillation of all state eptmat
happens with the frequenciv2?® / h.

Perhaps other quantum states will be realizedigdiyys for which the circuit of the
center of oscillation is performed with the profrequency in time, along with the one,
two, ..., n-quantum states.

Zitterbewegung experiences a strong damping. MNaniem (1.15), when one
neglectsy’ in comparison td¢, one will get the damping constant:

&871

(11.9) F=iz=7

av,

a andv are the fine structure constant and the propgquércy, resp.:
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2me® 1 2Mc?

hce 137’ h

We assume that zitterbewegung will be continually stimulated byutheusding
radiation. The resonant frequency of the electron in a sundang radiation field always
exists: It is represented by an intensity thatnggeneral, insignificant, but sufficient for
the stimulation of a small zitter-amplitude, whigk can assume.




