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1. Introduction. — We know that in the gravitational field of relativitye., the one
that is defined by the equatiof, = 0), the waves that are called “gravitational’
propagate with the speed of light. We shall now see impthsent paper that if one
imposes an oscillation of very high frequency upon theem@tls g, in that same
continuum then the result will be a wave of Maxwelliggpe. In other words, the
elements of the curvatui,s,, verify certain equations, namelR’ 5., = 0, which we
shall deduce directly froniR,, = 0 and which reduce to Maxwell equations in an
approximation that is based precisely upon the high valubeofrequency. One will
then find that the wave is Maxwellian in the first apgnaation, even if the curvature of
the medium of propagation takes on a finite value, anddoillations whose amplitude
can be as small as one pleases. We emphasizedinatbpcause in the case of the
classical result that is concerned with gravitationaves, the principal part of the
curvature is due precisely to the wave, and it propagatesnredium that is almost
Euclidian.

In view of obtaining the stated result, it would seem ssleto separate space and
time is such a way that we adopt the classical fimmthe element of arc length:

(1.1) ds = df —dd?,
with
dd® = as dr d¥X r,s=1, 2, 3)

in which the functionsys andc depend upon four variablgsandt (t stands fo®). We
will then see how it is possible to replace the equatR,, = 0 with a system that is
invariant with respect to the spatial variabteand in which time figures like a parameter
that no longer has a tensorial character. That systdl then provide some new
equations in which the elements of curvatReg,, will be grouped into two tensokss
and H,s that are tri-dimensionalr(s = 1, 2, 3) and have order two, in the first
approximation, and from the standpoint of the structurthefequations, they play the
same role that the vectdésandH do in Maxwell's equations.

2. Notation. — We shall encounter some equations that are invaniapiace-time, as
well as some other ones that are invariant only itiapsections. In order to distinguish
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them, we agree that when Greek letters are emplayaddices, they must take on the
four values 0, 1, 2, 3, while Latin characters will ibgited to only the values 1, 2, 3.
Furthermore, any tensorial symbol that is given asrloar, such as:

R,uv’ Ra/],uv ! ra/j’v

for example, will represent a four-dimensional systerspace-time, while the bar will be
omitted for the systems that correspond to spatialosect In that way, it will be possible
to distinguish between a system in three-dimensionalespach afR,,s , and another
three-dimensional system, such &,., which will represent one subset of the

components of the tens&, ;,, -

Meanwhile, we shall employ two different letters represent the metric tensor:
namely,g,, for the space-time, arajs for the spatial sections. That means that one can
always choose the coordinates to make= 0 in such a way that one will have the
element of arc length (1.1), in which:

(2.1) Qoo = &4, as=—Gs .

The systena,s will then determine the metric of a whole family gdatial sections that
are parameterized by timeand the three-dimensional space thus-determined welh of
be represented by the symigo(3).

An easy calculation gives:

g=-c"a a=|las]l

(2.1a)
gOO — C_2, gOO — 0’ grs - _ ars.
We write:
(2.2) - 103,
2c ot

The system thus-defined is a tensorBn(3), since on the one hand, the elements
ox' /0x* of a transformation do not depend upon time, dwe dperatod / at will
permute with them, on the other. Meanwhile, it important to note that the
corresponding relation that is written in termdted contravariant components will define
a tensor of contrary sign. Essentially, if one\aes the two sides of the identity:
ars —_ am amr ans
- n

then one will get:

8= _ _mr gns 08, .
ot ot

ie.:
_i aal‘S

(2.2a) A'S = .
2c ot

That tensor is obviously symmetric.
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In goo = €2, the functionc (X, t) is an invariant of (3), and its gradient can present
itself as a vector in our invariant three-dimensigglations. We adopt the notation:

dc =C @ =
ox" ’ ot

As far as the Christoffel symbols are concernedaeapt the notation:

= _1(09, , 995 09 = =
[ == =2+ - : Cap =0T -
> 2[axﬂ ox”  oxX o0 = 9 Lo
With the aid ofgs = — as in (2.1), we will now immediately havef , = -T .
Moreover:
= 109
Moo= =—2=C @,
000 2 at G

and in the same way, it is easy to verify the follmywesults:

= = 10a,
r = CC01 r = = S ’
000 000 2 at
= = 10a,
loy=—CG, M= ———,
00 0; 2 at
_I‘OO: c Q’ 1 Frst: - rrst ’
_ _ .1
r 0: &’ r O:_ ,
00 c rs CA’S
(2.3) e =a%cg, I,,=cA,
Il Cr I -
r00: ?’ rrst _rrst'

3. The equations Few =0inaformthat isinvariant in E (3). — Consider the system

R,.,» Which represents only one subset of the component&adbnsorﬁaﬂw; we shall

see that we will have in it a tensorBn(3) as long as nothing changes in the separation of

space and time. That amounts to saying that we cormdedinate transformations of
the type:

ox° ox®  ox
x’O:xO:t ’0: , :r: ’0:
oXx [6) oXx

The relation:
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= = Ox7ox’ ox ox
Rjrsu - Raﬂ,uv axru axr axs a){u

will then immediately give (since no significant temill be obtained when the dummy
indices take the value 0):

= = 0x* ox ax" ox"
Riws = Roomn a0 337 9= a7
which proves our assertion.
The other components o@m once more give two of those three-dimensional
tensors whose order is equal to the number of indiashdve not been replaced by the

value 0. The verification of the tensorial charactecpeds as before, and we will have,
in the first place:

— = Ox"oxf oX' oX
Reos = Ro oxX" axX° axX° ox’

in which the sums give non-zero terms only s+ £ = 0, in such a way that:

=, —  ox? ox"
RrOOs = RaOOnW%'

One finally shows that the systéRamn is a third-order tensor i (3) in exactly the same
way.

Note that one can always make use of the symmetry piepef R,z , which will
give, for example:

R =-R

romn —

ormn = RmnrO :

As a consequence, all of the elements of the teﬁg% will then be found to be
grouped into three three-dimensional tensors in sgad8). The passage to the
contravariant components will be illustrated in the eghbent calculations.

We shall employ the same technique to separate the deew&j,,, ,into a certain

number of three-dimensional tensors, sucmp for example. Here, the last index is

given an overbar in order to specify that it amountsdwariant differentiation with
respect to space-time. The reader will have no troubl&riag himself that our argument
in regard to the coordinate transformatiorkig3) is valid again in order to establish the
tensorial character of the five indices. Of courbat hew tensor will be distinct from

Risv.t» Which is obtained by derivation & (3), and we shall see later on how one can

develop the first one in such a fashion that everythitigcame down to derivation in the
latter space.

We first address the separation of the equatiﬁ);],s: 0 that we announced. One
subset of the system can be written:
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Rs: gaﬂRrsﬂ = 0’
or, with the aid of (2.1a):
(31) - aUURJrsu + C_Z_RrsO: O

As for the rest, one will have the equations:
|-:\>0n = gwﬂ?&Onﬁ7 = O’

|':\>oo: gaﬂaoop’: 0,
which immediately gives:
(3.2) a"“Rg, =0,

(3.3) @Ry = 0.

These equations represent a form for the sysft_gvnrp 0 that is invariant irE (3).

One can write them as functions of the tens@mg¢sand A;s , but that would not be
necessary for us to achieve the objective that we aselipgr

4. Symmetry of the new tensors. — We utilize the tensor:
grst = a—l/2 erSt grst = a.lIZGrst
in whiches = €' takes the following values:

0 ifany two of the indicest have the same value,
1 ifrst represents an even permutation of the numbers 1, 2, 3,
-1 ifrstrepresents an odd permutation of the same numbers.

We would like to emphasize the fact that we have mtilho types of coordinates for
the same tensor, since the two systems coincidermalaoordinatesa(= 1). We then
intend that we can pass from one to the other inéifiidy when certain indices in our
tensorial equations are raised or lowered.

Moreover, we have:

(4.1) Euwr EYY°=24°,

in which & ® represents the identity matrix. The verificationasye and it will result that
the latter system is a mixed tensor.
Another mixed tensor that will be very useful isattuced as follows:

(4.2) A" = &ur £V5.

One easily proves that the values of the componeets ar
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1 fuzuou, r=u, S=y,
-1 fuzu r=u, s=u,
0 in other cases.
We then set:
(43) 4E rs = Rumnguurgmns,
(4.4) ZH*=R,,&"".

SinceR,,,,,= R,..» We haveE ™ =E*, and of course that will imply the symmetry of the

covariant components:
(4.5) Ers = Esr.

Equations (4.3) can be solved for the componéyts,.: Multiplying the two sides
by &an &ysand making use of (4.2), one will have:

rs —_ D mn
4E &rab gxys— mena—agua—xy !

and since the only values that are used for the indiegdsafe @b) and pa), with the
corresponding valued,® = 1 andd,"® = - 1, one will get:

4E s Eabr ngS = (ﬁabmn_ _Rbamr) o xn;/n
= Rabmna—x;m'

Finally, one has:
(4.6) Rmn= E ®&br &ys -
Furthermore, (3.1) and (4.6) given, in turn:
C?Ryso = @”Ryey = @ E ™ &um &
=En'€“" & &yn=Em' dhe" @
=E{" @y — En" ag.
By contracting the last equality, and with the aid o8)3one will then have:
c’a®*R.,,=E -3E"=-2E=0,

and thus, the following results:
4.7) E,"=0,

(48) EfS = C_ZROOS = auu I:_gjrsu'
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One can note that the invariakt” is annulled as a result of the equations of
relativity, while the tensoE;s is identically symmetric. We shall recover somentd=l
results in the case &fs , except that the order will be reversed.

One infers from the relation (4.4), in turn, that:

2C H rs :ari ROUUEJJUSl
2cH ° &rsn :ari ROuua—me = 2ari F§0nr )

which is annulled due to (3.2). However'® &, can be annulled only if:

(4.9 H®=H""
On the other hand:
Hrr: ﬁrmuguur:_ ﬁ guur,

Oruv

which is annulled identically as a result of the cleslsdentity:

ﬁaﬂyv + Faol,ul/,fj7 + Rvﬂy = O
One will then have:
(4.10) H,"=0.

Finally, another relation that will be useful in whallows is deduced from (4.4) by
multiplying the sides b¥smn:
2c Hr ° Esmn= F_ermua—m?wu :2ﬁr0mn’
SO

(4.11) 2R..,=CH" & .

rosv

The two tensors that we just introduced are at thes lodisa new formalism that will
permit us to shed light upon an aspect of the structutteecgéquations of gravitation that
has been ignored up to now. Granted, we are lesgdbeer in those equations than we
are in some of its differential consequences, whichhaé ok into at once.

5. A fundamental system of equations. — Start with the Bianchi identity:
I:_eaf,ul/[],c'r + Fa0/,11,G’c'r,|/ + _R;r,um/,/] = O

After contracting withg®, the first two terms will be annulled due E_sz 0, and what

will remain is:
(5.1) g”’R

auov,B

0.
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We shall now address the separation of those equamwading to the technique
that was employed already. One subset of the systarbe writteng” R =0, or:

arsu, 0

(52) _aunﬁursu,ﬁ + C_Z_F%rw@ =0,
and we once more get:

(5.3) _auuﬁunso,y + C_ZT%nso@ =0,
(54) arSROUUSZ O’

(5.5) AR s =0

for the complete set.

We shall now say that it is after having transcribeel system (5.2) to (5.5) into
functions of the tensorks and H,s that one will recover the structure of Maxwell’s
equations. Of course, we are dealing with derivativepate-time, and we would like to
first develop the terms in such a way that everything sothosvn to derivatives i& (3).
We then appeal to the classical development of thar@t derivative, and we will
have:

D aﬁL,II'SU =l =l
= TR T Ryo T 2Ry, -T R

ursu,n 6X” nu ' Marsu nr

for example. Compare this equality with:

r F_Q _r I Ruisu _Fnis_Rur'u _F rzL_ersi

ursu,n 6X” nu' Nirsu nr

With the aid of ' = ', one will then infer that:

rs ?

(56) ﬁursu,ﬁ = Rursun_rnu R.)rsu_rnr RLOSI_r °F uﬁu_r O Rur@
Moreover, one will get:

D ROrSU T ap T oD T O T ar
ROrsuO ot _roo Rmsu_rOr R(hsu_rOs ROrau_r(D/ R(rsa

(5.7)

directly.

We shall momentarily suspend our calculations, witheav towards introducing a
method of approximation that will permit us to simplifyings by neglecting a large
number of terms. Those considerations will be thgest of the following section.

6. High-frequency waves. — We first consider the case of a wave whose frequency
takes a very high value, and it is upon that numberthat our method will be based.
Since the speed of propagation of our waves must likeneisml the invariant, we can
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profit from that fact in advance and choose the unitime in such a way that the
potentialsc® andas will all have the same order of magnitude. We willrtlzglopt the
centimeter as the unit of length, and we will chobseunit of time to be the interval that
is necessary for light to traverse that distandaclvwill obviously imply that the value
of the speed of lighih vacuowill be equal to unity. Moreover, a frequency of b@eans
10" waves per centimeter, as well as an equal numberriofiseper unit time. In view of
the considerations that will follow, it will then beportant to note that our choice of
units implies the following result: Not only will theotentialsc?> anda,s have the same
order of magnitude, but also their rates of variatiomwatspect to time (as a result of the
oscillation) have the same order of magnitude as tles m@ft variation with respect to
distance. In other words, the first-order derivativéh wespect to time and the ones with
respect to the spatial variables take all of the vallas have the same order of
magnitude (except, of course, in the neighborhood of sintjafgrive shall consider the
case of a domain in which the curvature remains finite).fix ideas, we remark that a
frequency ofi = 10 corresponds to a wave in the infrared range that ig ¢ithe limits
of the visible spectrum. On the other hand, and todasay confusion with the facts
about light that are given experimentally, we once mecall that we would simply like
to impose an oscillation upon the potent@gls whose frequency is sufficiently high and
then show that this will result in a wave that is eletgrized in the first approximation by
equations that have the same structure as those of Maxsystem.

To begin, it will be convenient for us to restrict olwss to the case in which the
intensity of oscillation of the potentials has ordet, and we taken > 10*. Our
potentials can then be represented by sinusoidal functioin ifirst approximation in a
space-time domain that extends over a reasonable numbsaves and periods of
oscillation. That is, it will suffice to refer tibie relation:

i(isin 2nnxj = C0S 2nX
dx\ 2mn

for us to convince ourselves that if the intensifyoscillation of the potentials has the
same order of magnitude &S then the first-order derivatives of those sameepidls
will take on values with the same orderrs i.e., they are “finite” quantities from the
standpoint of the scale that we defined in termpafers ofn. Moreover, the second-
order derivatives will be quantities with the sameder asn, and since the
aforementioned derivatives present themselvesrlin@athe equation®,, = 0, we will
have terms of the same ordemdsr a first approximation.

Meanwhile, we are more interested in the syster) (5o (5.5), in which the
potentials appear with their derivatives up to oritieee, and the latter appear linearly.
That amounts to saying that we have terms of theesarder of magnitude ag. We
shall shortly assure ourselves that those termshardargest ones, and that we will get
everything while preserving only the third-orderidatives. First of all, the coefficients
as andc 2 in (5.2) have an order of magnitude that is attrtios same ag® or “finite.”

On the other hand, a simple examination of (5%))(and the intermediate calculations
will show that it still remains for us to decide athio do about terms such as:
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Fnua ﬁ0/rsu ! FOra ﬁOa'su .

Now, these terms result from the product of a facfdfinite” order, such ad™, ", with
a factor of order one, such as:

6.) R, = 2w T o T T 0P 0T,
ox*  ox

We conclude that the covariant derivatives with resfrethie two metrics — viz., the one
on space-time and the one Br(3) — will differ only by terms that are negligible tihe
first approximation, since they have order at most d®imilarly, the right-hand side of
(5.7) reduces to its first term. We shall appeal to theselts in order to transcribe the
system (5.2) to (5.5) into functions of the tendégsandH,s, and along the way, some
other terms likecy Rorsy and c, Rosun Will be neglected, and always as a result of the
preceding considerations. We shall employ the symbolirdicate an equality that is
true only in the first approximation.

One first starts with equation (5.2), passes to derestivE (3), and then multiplies

the sides of the equation lsy'® ; it then results (while taking into account tit,, = -
R,.,) that:

_ ) oR
aunRurSUYngmsy + CZE mg artOSU - O

The first term can be transformed with the aid of (4$hce .- plays the role of a
constant with respect to the covariant derivative)witleget:

unp my — qunpab me/
a Rursu,n‘g =a’'E n ‘gaur‘gbsu‘g
=2 d)m a Eab, n &aur
=2a" B, &ur -

Furthermore, upon utilizing (4.11) and neglecting terms aschH, " and:

NGNS
"ot
one will get:
a_ n m
£ms’h~ 2co" oH " _5c0H~
ot ot ot

Our equation can then be written:
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LOH™
aun Eam’n gaur +C l—r - 0,
ot
or rather:

m

Ema’n ganr_l_ C—l dr aL - 0
ot

Finally, as a result of relations such as:

L OH™  oH™
a _~
at ot

one will have:

4OH'
Eman tganr'l' Cl—m -~ O

Let us once more transcribe this result by appending egsa(5.3) to (5.5),
transformed in the same fashion, although much more easily the aid of (4.8) and
(4.11). We will then get the complete system in thenfo

Eruu‘guus'+'£aHr "‘0,
’ Cc
10E?°
6.2 H, &Y -=—~0,
6.2) ‘ c ot
E® ~0,
H'™ ~0.

It would be, so to speak, superfluous to emphdseze that one recovers the vectorial
operations of divergence and rotation in the teEfs andE., , £"’® in our equations
(6.2). As a consequence, one will easily recogtheestructure of Maxwell's equations,
but extended to the tensdfg andH;s .

It is now important to note that in the secondesrderivative€,s ., the indicesyv)
will permute in the first approximation, since (a® shall show in a moment) the
difference between the covariant derivatives arttinary derivatives will produce terms
that drop out in the negligible part. We have eSa#ly seen that the elemeris , have
the same order of magnitudergswhile thel " are finite liken® in such a way that the

first term on the right-hand side of:
r aErS u r n n r n r
Esuw= , +FnUESYU—F E -IT'E

aXU £Y nu 2] St

will predominate with a value whose ordenis One will then have:
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Er oE,, O°E|
Y axax
SO
Ers,uu"‘Ers,uu-

As a consequence, one can refer to the classicallaabn in order to solve the
system (6.2) and to characterize the waves by meahs efjuation:

10°p

(6.3) Ap— o
Here, we intend that the functi@nthat enters into the coefficients of our equations

(6.2) and (6.3) can be considered to be a congtatite first approximation and in a
neighborhood that can contain a certain number aves. (On the one hand, the
potentials oscillate with intensities that haveesrdfn™, and on the other, the variations
of the potential that are due to gravitation as® alery small, except in the neighborhood
of singularities.) That restriction to a neighbavdois obviously necessitated by the
curvature of the medium of propagation, but it ribaess allows us to recognize the
essential characteristics of electromagnetic waveakis new aspect of the structure of
the equations of gravitation.

7. Extension of the results. — Up to now, our results have been limited todase in
which the potentials oscillate with an amplitude atler n™>.  Our approximation
procedure will no longer be valid for a larger aitole (for example, one with the same
order as the@,,), because the last terms in (6.1) have the sader of magnitude as the
second derivatives of the first terms. In realihgre is no reason to consider the extreme
case for which the potentials periodically charige.s

By contrast, we shall show that the wave will remgaxwellian for amplitudes as
small as one desires and independently of the tunevaf the medium of propagation.
Consider the case then in which the amplitude oillaton of the potential has ordai’
with r > 1, and set,» = yv + hy, in such a fashion that timg, represent the oscillatory
part of those potentials in the first approximatioiffectively, one can always arrange
for the h,, to have the same order of magnitude as the amplitd oscillation (namely,
ordern™), and for they,, to oscillate with amplitudesc n™™, moreover.

We then note the following results:

7.1. The derivatives of ordérof theh,, oscillate with amplitudes of order™*, and
the order of magnitude of those quantities doesexaeed that of their amplitude of
oscillation.

7.2. They,, and their derivatives up to order two are at rffisite” quantities.

We now say (without worrying that we do not knowatw this will lead to, for the
moment) that we shall separate equations (5.1)céh & fashion that we will keep only
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the terms that oscillate with the largest intensitye shall see immediately that we will
get all of those terms by keeping only the ones thatagotite third-order derivatives of
the h,, , and that the intensity of the oscillation will thbave orden™3. A simple
examination of (5.6), (5.7), and (6.1) will effectivelyoghus that in the terms that do not
contain third-order derivatives, onbne of the factors can be a second derivative of the
h,v, and that all of the other factors have at niogie magnitudes, in such a way that the
terms in question will oscillate with order at most+ 2.

Furthermore, one can perform the development in (5. Tir&tyintroducing thek, ,
andH,y, , as in the preceding section, and since the third-orderatiegs enter linearly,
one can split those tensors in such a fashion thatameepresent them symbolically by:

Ew, v =Ewn v (W +Enw v (h)

in order to keep only the oscillating part with the largesnsity, namely, order —+ 3.
The E,, , andH,,, , are then tensors for which the metric is determinedhleymean
valuesy;, in the first approximation.

Of course, the terms that we would now like to leasiele are not necessarily smaller
than the other ones (indeed, the contrary is true fol), but then if equations (5.2) to
(5.5) must be verified then it is necessary that ¢énms$ of the oscillating part mutually
cancel each other in the first approximation and that siken (in each equation) reduces
to a quantity that oscillates only with order + 2. Finally, the order of magnitude of the
latter quantities (or sums) will not exceed + 2 if theh,, are chosen conveniently.
Indeed, that leaves only the question of the part thainistant in the first approximation,
which will go back to they, . Briefly, one is once more led to equations (6.2) ffer t
oscillating part and the waves of small amplitude willegys possess characteristics that
involve the Maxwellian structure.

It is further possible to extend our results to the @asehich the frequency is not
necessarily very high, but this time we will be lindit® an almost-Euclidian medium of
propagation. Then set:

C2:1+h001 grs:_a_rs—hrs,

in which theh,s andhgo are elementary quantities of order one. We shatl #8ppeal to a
classical approximation procedure here that will permitiruparticular, to characterize
the waves that are called gravitational by means of equg6.3). Meanwhile, the
introduction of our tensorg,s andHs will permit us to endow that result with a new
element.

With that method, one keeps only the linear terms irsh &pproximation. The
reader will then have no trouble in assuring himself doptations (5.1) reduce to third-
order derivatives of thé,, and that one will therefore once more recover ttstesy
(6.2), with the difference that the covariant derivaiveill be replaced by ordinary
derivatives. We deduce from this that in the radio-fraquedomain, our waves will
again be Maxwellian, provided that the curvature of thdinme of propagation is very
small.

It would not be senseless for us to make the distindtiere that we exclude the
gravitational waves, properly speaking, from our deductioimsleed, in that case, the
frequency will take on extremely small values (of ordér®id the case of the motion of
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the Earth around the Sun and with a unit of time asegbavhich will introduce a critical
aspect into the problem that we would not like to discess.h

8. Conclusion. — The structure of the Maxwell equations is themveced in the first
approximation and as a direct consequence of the equaﬁpps 0 in order to

characterize the waves that can exist the spaceecomgnuum of relativity in almost all
cases. In summary, if the frequency takes valuesctiraéspond to infrared or larger
then our waves will be characterized by equations (6.@)(&8) independently of the
curvature of the medium. By contrast, if the freqyesdess elevated then our equations
will remain valid only if the curvature is small. Notecenmore that in the final analysis,

it is the elements of the curvatu%,ﬂw that verify such equations and that this will be

made possible simply because of the way (which is hcabée, at the very least) by
which the aforementioned elements can be grouped itaemsorsE,s andH,s that play
the role of the vectors andH in Maxwell's equations.

As a consequence, the invariance of the phenomenon cbh@nontdoubt, since the
oscillations that one imposes arbitrarily upon the coatdimet cannot be characterized
by invariant equations. We therefore have a wave, andhwediately compare it to the
electromagnetic waves. Now, the latter can be sgoted by means of vectors (at least
the aspects of them that we know of), while the newesathe tensorg.,s and H;s
present a more complex structure and give us a glimpsere great possibilities.

Can we now say that we have identified the electrowiagwaves in a new form in

the continuumR,, = 0, but that we only know a few things about them? @ust assert

that for the moment any attempt to interpret thenhat sense will pose some problems
whose solution does not seem to be within our reactst &rall, do the waves that we
just characterized even exist? More precisely, deetbk&ist solutions of that type that
are regular at infinity? That is a question that leawssperplexed in view of the

complexity of the equation:ﬁﬂv: 0. Nonetheless, it would be of greatest interest to

know how to determine the possibilities from those equoatiin regard to the
singularities that accompany a stationary oscillatingen@ one that radiates energy, and
it would undoubtedly imply a quantization phenomenon.tte as it may, we conclude
this article by presenting two other results that furteetend the analogy with the
equations of electromagnetism.

Note A. — In this section, we shall address two space-time mnii(always in the
case ofgyr = 0, of course) and find a way of expressing them as amgbf the tensors
Es andHs .

First of all, one will effortlessly verify that:

ﬁnl,f],ul/ _RaﬂllV = ﬁrs,,ul/ _RfSllV + Z_RO[IV _ROﬂV
(A1) =R,, R*+2R,, R¥+2R, R*+4 R, R
= ﬁrsuu ﬁfSUU +4_RSOU _RSOU + 4_%00 _F\QOU .
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On the other hand, with the aid of (2.1a) and (4.8), ahéave:

ﬁI’OOU — gra gO,B gO,u guv ROOU — C—2 Eru,
SO
(A.2) Roo,R® =EsE®

If one is then given thaR  is a tensor ifE (3) then the relation (4.3)
4Ers: F_in gmnrguus
will imply [taking (2.1a) into account], as before:

4Es= R™ Emnr uvs
o)
(A.3) 16Es E°=R™" R,,, 0,20, °= 4R, R™".
Now recall (4.4):

mus

2cH°=R_ €

rOuy
As in the preceding relations and taking (2.1a) into accewmglso have:

2cH's=-c*R"™ ¢,

Finally, by contraction, that will give:

4 H H's=-Cc’R o, R™™ 3.,
or
(A.4) 4H H®=- 2R, R™.

rOuv

The relations (A.2) and (A.4) will then permit one tate/(A.1) in the form:

(A.5) R . R =8 [EsE®-HsH®.

apfuv

We similarly construct another invariant whose expogssnvolves the universal
tensor by way of:

Eapys = 91/2 €apys »
in whichegg,s= 0 or+ 1 according to the rules:

0 if any two of the indicegf)yd have the same value,
1 if afyois an even permutation of the numbers 0, 1, 2, 3,
-1 if afyois an odd permutation of those same numbers.
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The set of non-zero covariant components of thatoteaan be easily represented by
means of a tensor & (3), as was explained in& The new tensor will have order three
since one of the four indicegByd must take the value zero. One should first notetheat
permutations st andrst have the same parity (i.e., the same sign) with oeédpethe
numbers 0, 1, 2, 3, and 1, 2, 3, respectively. Furtherroeewill haveg? = ic a'?,
withi = (- 1)* in such a way that:

Eorst =1C &st -
One will then have, in turn:

Do o po — phMnw D po Do p po

R Rl/] ‘gyvpa =R n ‘gyvpa +2 R’O RO ‘gyvpa
—9D DO DMy T phlw P 0 O T
=2R™" n S;"":’,qus-F 2R" I%nnr%Ou rs+ 4R™" I:%0 S‘guu05+ 4 Rﬂ Ro rs‘gw rs

— 8ﬁn0uu ROOS‘S + 4_Fqnn|w _Fﬁmo %o w
= 4dic (2R R, "¢, + R™ R E,,).

Osw

The two terms in parentheses can be recovered, ufatboas, by contractindg,s with H'
in two different ways by starting from (4.3), (4.4), and (4.8)he calculations are
analogous to the ones that gave (A.2) to (A.4) and fimaibly that:

(A.6) R R 7€, =33 EsH™.

Voo
One must remark that the relations (A.5) and (A.6) badlpossible as long as the

form (1.1) of our element of arc length is preserved. riMéule, the invariants in the
left-hand side permit us to conclude that the functions:

Ers Ers - Hrs H rs, Ers H s

will themselves be invariant under Lorentz transfornmestio We will then recover a
property that the relativistic form of the electromagnetquations confers upon the
invariants:

E? —H?, E H.

Note B. — Starting from (6.1), we set= 0 and separate the sums that relate to the
indexa.

Then:
Rpw= ST T T T
ox*  ox

With the aid of (2.3), we will have:

ﬁn - a(C 'tbn) _6(C Ans)

= +c(FTO A -T)A)+¢ A-
Osv 6X 6)(“ ( is U 17 s) Q}& Q‘.%




Matte — On some new oscillatory solutions of the eqnatas gravitation 17

0A" OAT . .
= - +e(Fy A -T, A).
C( aXS a>(u j C( IS AJ 12 S)

If we add the term:
C(_rsz AT + ruis Ani) ’

which is zero identically, to this last result the/e will immediately recognize the
development of the two covariant derivatives inhsaavay that:

Osv

(B.1) R, = C(A', = A,).
Foru =n, we will recover the three equatioRg = 0 in the form:

(B.2) AT A =0,

n,s sn

Furthermore, upon taking (2.1) into account, eguatB.1) can be written:
ﬁnoﬂ, =C(Asv—Aws),
so, after multiplying the two sides lsy’" and substituting by means of (4.4):

2cH, " =c(Pnsuv—Ans) ¥ =20 A "

We will then finally have:
(B.3) Hn' :Ansufsura

and one will recover the form of the classical tielaH = rot A, but extended to the
tensorAys .
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