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 1. Introduction. – We know that in the gravitational field of relativity (i.e., the one 
that is defined by the equations Rµν = 0), the waves that are called “gravitational” 
propagate with the speed of light.  We shall now see in the present paper that if one 
imposes an oscillation of very high frequency upon the potentials gµν in that same 
continuum then the result will be a wave of Maxwellian type.  In other words, the 
elements of the curvature Rαβµν verify certain equations, namely, Rα

µβν;α = 0, which we 
shall deduce directly from Rµν = 0 and which reduce to Maxwell equations in an 
approximation that is based precisely upon the high value of the frequency.  One will 
then find that the wave is Maxwellian in the first approximation, even if the curvature of 
the medium of propagation takes on a finite value, and for oscillations whose amplitude 
can be as small as one pleases.  We emphasize that point because in the case of the 
classical result that is concerned with gravitational waves, the principal part of the 
curvature is due precisely to the wave, and it propagates in a medium that is almost 
Euclidian. 
 In view of obtaining the stated result, it would seem essential to separate space and 
time is such a way that we adopt the classical form for the element of arc length: 
 
(1.1)     ds2 = c2 dt2 – dσ2, 
with 
 dσ2 = ars drr dxs  (r, s = 1, 2, 3) 
 
in which the functions ars and c depend upon four variables xr and t (t stands for x0).  We 
will then see how it is possible to replace the equations Rµν = 0 with a system that is 
invariant with respect to the spatial variables xr and in which time figures like a parameter 
that no longer has a tensorial character.  That system will then provide some new 
equations in which the elements of curvature Rαβµν will be grouped into two tensors Ers 
and Hrs that are tri-dimensional (r, s = 1, 2, 3) and have order two, in the first 
approximation, and from the standpoint of the structure of the equations, they play the 
same role that the vectors E and H do in Maxwell’s equations. 
 
 
 2. Notation. – We shall encounter some equations that are invariant in space-time, as 
well as some other ones that are invariant only in spatial sections.  In order to distinguish 
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them, we agree that when Greek letters are employed as indices, they must take on the 
four values 0, 1, 2, 3, while Latin characters will be limited to only the values 1, 2, 3. 
 Furthermore, any tensorial symbol that is given an overbar, such as: 
 

Rµν , Rαβµν , αβνΓ  

 
for example, will represent a four-dimensional system in space-time, while the bar will be 
omitted for the systems that correspond to spatial sections.  In that way, it will be possible 
to distinguish between a system in three-dimensional space such as Ruυ rs , and another 
three-dimensional system, such as u rsR υ , which will represent one subset of the 

components of the tensor Rαβµν . 

 Meanwhile, we shall employ two different letters to represent the metric tensor: 
namely, gµν for the space-time, and ars for the spatial sections.  That means that one can 
always choose the coordinates to make g0i = 0 in such a way that one will have the 
element of arc length (1.1), in which: 
 
(2.1)    g00 = c2, ars = − grs . 
 
The system ars will then determine the metric of a whole family of spatial sections that 
are parameterized by time t, and the three-dimensional space thus-determined will often 
be represented by the symbol E (3). 
 An easy calculation gives: 
 g = − c2 a, a = || ars ||, 
(2.1a) 
 g00 = c−2, g00 = 0, grs = − ars. 
 We write: 

(2.2)     Ars = 
1

2
rsa

c t

∂
∂

. 

 
The system thus-defined is a tensor in E (3), since on the one hand, the elements 

/i kx x′∂ ∂  of a transformation do not depend upon time, and the operator ∂ / ∂t will 
permute with them, on the other.  Meanwhile, it is important to note that the 
corresponding relation that is written in terms of the contravariant components will define 
a tensor of contrary sign.  Essentially, if one derives the two sides of the identity: 
 

ars = amn a
mr ans 

then one will get: 

−
rsa

t

∂
∂

= amr ans mna

t

∂
∂

; 

i.e.: 

(2.2a)     Ars = − 1

2

rsa

c t

∂
∂

. 

That tensor is obviously symmetric. 
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 In g00 = c2, the function c (xr, t) is an invariant of E (3), and its gradient can present 
itself as a vector in our invariant three-dimensional equations.  We adopt the notation: 
 

n

c

x

∂
∂

= cn , 
c

t

∂
∂

= c0 . 

 
 As far as the Christoffel symbols are concerned, we adopt the notation: 
 

αβνΓ =
1

2

g gg

x x x
βν αβαν

β α ν

∂ ∂ ∂ + − ∂ ∂ ∂ 
, µ

αβΓ = gµν
αβνΓ . 

 
With the aid of grs = − ars in (2.1), we will now immediately have: rstΓ  = − rstΓ .  

Moreover: 

000Γ = 001

2

g

t

∂
∂

= c c0 , 

 
and in the same way, it is easy to verify the following results: 
 

 000Γ =   c c0 , 000Γ =   
1

2
rsa

t

∂
∂

, 

 

 00rΓ = − c cr , 0r sΓ = − 1

2
rsa

t

∂
∂

, 

 
 00rΓ =    c cr , rstΓ = − Γrst , 

 

(2.3) 

0 00
00

00 0

0
0

1
, ,

, ,

, .

rs rs

r rs t t
s r r

t tr
r rs rs

c
A

c c
a cc c A

c

c

 Γ = Γ =


Γ = Γ =

 Γ = Γ = Γ


 

 
 
 3. The equations Rµν = 0 in a form that is invariant in E (3). – Consider the system 

ursR υ , which represents only one subset of the components of the tensor Rαβµν ; we shall 

see that we will have in it a tensor in E (3) as long as nothing changes in the separation of 
space and time.  That amounts to saying that we consider coordinate transformations of 
the type: 

x′ 0 = x0 = t, 
0

0

x

x

∂
′∂

= 1, 
0

r

x

x

∂
′∂

= 
0

rx

x

∂
′∂

 = 0. 

The relation: 
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ursR υ′  = 
u r s

x x x x
R

x x x x

α β µ ν

αβµν υ
∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂
 

 
will then immediately give (since no significant term will be obtained when the dummy 
indices take the value 0): 

ursR υ′  = 
a b m n

abmn u r s

x x x x
R

x x x xυ
∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂
, 

which proves our assertion. 
 The other components of Rαβµν  once more give two of those three-dimensional 

tensors whose order is equal to the number of indices that have not been replaced by the 
value 0.  The verification of the tensorial character proceeds as before, and we will have, 
in the first place: 

00r sR′  = 
0 0r s

x x x x
R

x x x x

α β µ ν

αβµν
∂ ∂ ∂ ∂

′ ′ ′ ′∂ ∂ ∂ ∂
, 

 
in which the sums give non-zero terms only for β = µ = 0, in such a way that: 
 

00r sR′  = 00

a n

a n r s

x x
R

x x

∂ ∂
′ ′∂ ∂

. 

 
One finally shows that the system Rr0mn is a third-order tensor in E (3) in exactly the same 
way. 
 Note that one can always make use of the symmetry properties of Rαβµν , which will 
give, for example: 

0r mnR = − 0rmnR = 0mnrR . 

 
As a consequence, all of the elements of the tensor Rαβµν  will then be found to be 

grouped into three three-dimensional tensors in space E (3).  The passage to the 
contravariant components will be illustrated in the subsequent calculations. 
 We shall employ the same technique to separate the derivatives ,Rαβµν σ into a certain 

number of three-dimensional tensors, such as ,urs tR υ , for example.  Here, the last index is 

given an overbar in order to specify that it amounts to covariant differentiation with 
respect to space-time.  The reader will have no trouble assuring himself that our argument 
in regard to the coordinate transformation in E (3) is valid again in order to establish the 
tensorial character of the five indices.  Of course, that new tensor will be distinct from 

,urs tR υ , which is obtained by derivation in E (3), and we shall see later on how one can 

develop the first one in such a fashion that everything will come down to derivation in the 
latter space. 
 We first address the separation of the equations Rµν = 0 that we announced.  One 

subset of the system can be written: 
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 rsR = rsg Rαβ
α β  = 0, 

or, with the aid of (2.1a): 
(3.1)     − 2

0 0
u

urs rsa R c Rυ
υ

−+ = 0. 

 
As for the rest, one will have the equations: 
 
 0nR = 0ng Rαβ

α β = 0, 

 
 00R = 00g Rαβ

α β = 0, 

which immediately gives: 
(3.2) 0

u
u na Rυ

υ  = 0, 

 
(3.3) 00

u
ua Rυ

υ  = 0. 

 
 These equations represent a form for the system Rµν = 0 that is invariant in E (3).  

One can write them as functions of the tensors ars and Ars , but that would not be 
necessary for us to achieve the objective that we are pursuing. 
 
 
 4. Symmetry of the new tensors. – We utilize the tensor: 
 

ε rst = 1/ 2a− erst,  εrst = 1/2a erst
 , 

 
in which erst

 = erst takes the following values: 
 
    0 if any two of the indices rst have the same value, 
    1 if rst represents an even permutation of the numbers 1, 2, 3, 
 − 1 if rst represents an odd permutation of the same numbers. 
 
 We would like to emphasize the fact that we have in this two types of coordinates for 
the same tensor, since the two systems coincide in normal coordinates (a = 1).  We then 
intend that we can pass from one to the other indifferently when certain indices in our 
tensorial equations are raised or lowered. 
 Moreover, we have: 
(4.1)     εuυ r ε uυ s = 2 δr 

s, 
 
in which δr 

s represents the identity matrix.  The verification is easy, and it will result that 
the latter system is a mixed tensor. 
 Another mixed tensor that will be very useful is introduced as follows: 
 
(4.2)     δuυ 

rs = εuυ r ε uυ s . 
 
One easily proves that the values of the components are: 
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   1 if u ≠ υ, r = u, s = υ, 
 − 1 if u ≠ υ, r = υ, s = u, 
 0 in other cases. 
 We then set: 
(4.3)     4 E rs = u r mns

u mnR υ
υ ε ε , 

 
(4.4)     2c Hr 

s = 0
u s

r uR υ
υε . 

 
Since u mnR υ = mnwR υ , we have E rs = Esr, and of course that will imply the symmetry of the 

covariant components: 
(4.5)     Ers = Esr

 . 
 
 Equations (4.3) can be solved for the components w mnR υ : Multiplying the two sides 

by εrab εxys and making use of (4.2), one will have: 
 

4 E rs εrab εxys = u mn
u mn ab xyR υ

υ δ δ , 

 
and since the only values that are used for the indices (uυ) are (ab) and (ba), with the 
corresponding values δab 

ab = 1 and δab 
ba = − 1, one will get: 

 
  4E rs εabr εxys = ( ) mn

abmn bamn xyR R δ−  

  = mn
abmn xyR δ . 

Finally, one has: 
(4.6) abmnR = E rsεabr εxys . 

 
 Furthermore, (3.1) and (4.6) given, in turn: 
 
  2

0 0rsc R−  = u
ursa Rυ

υ = auυ E mn εurm εsυ n 

 
   = Em

n ε υim air εsυ n = Em
n δns

im air 
 
   = Es

n anr − En
n asr . 

 
By contracting the last equality, and with the aid of (3.3), one will then have: 
 

2
0 0

rs
rsc a R− = Er

r − 3 En
n = − 2 En

n = 0, 

 
and thus, the following results: 
(4.7)   En

n = 0, 
 
(4.8)   Ers = 2

00r sc R− = u
ursa Rυ

υ . 
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 One can note that the invariant En
n is annulled as a result of the equations of 

relativity, while the tensor Ers is identically symmetric.  We shall recover some identical 
results in the case of Hrs , except that the order will be reversed. 
 One infers from the relation (4.4), in turn, that: 
 

2c H rs = 0
ri u s

i ua R υ
υε , 

2c H rs εrsn = 0
ri u

i u nra R υ
υδ  = 02 ri

i nra R , 

 
which is annulled due to (3.2).  However, H rs εrsn can be annulled only if: 
 
(4.9)   H rs = H sr. 
 On the other hand: 

H r 
r = 0

u r
r uR υ

υε = − 0
u r

ruR υ
υε , 

 
which is annulled identically as a result of the classical identity: 
 

R R Rαβµν αµνβ ανβµ+ + = 0. 

One will then have: 
(4.10)   H r 

r = 0. 
 
 Finally, another relation that will be useful in what follows is deduced from (4.4) by 
multiplying the sides by εsmn : 
 

2c Hr 
s εsmn = 0

u
r u mnR υ

υδ  = 02 r mnR , 

so 
(4.11)   02 r sR υ = c Hr 

n εnsυ . 

 
 The two tensors that we just introduced are at the basis of a new formalism that will 
permit us to shed light upon an aspect of the structure of the equations of gravitation that 
has been ignored up to now.  Granted, we are less interested in those equations than we 
are in some of its differential consequences, which we shall look into at once. 
 
 
 5. A fundamental system of equations. – Start with the Bianchi identity: 
 

, , ,R R Rαµνβ σ αµβσ ν αµσν β+ + = 0. 

 
After contracting with gαβ, the first two terms will be annulled due to Rµν = 0, and what 

will remain is: 
(5.1)    ,g Rαβ

αµσν β = 0. 
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 We shall now address the separation of those equations according to the technique 
that was employed already.  One subset of the system can be written ,0rsg Rαβ

α υ
ɺ

= 0, or: 

 
(5.2)    − 2

, 0 ,0
un

urs n rsa R c Rυ υ
−+  = 0, 

and we once more get: 
(5.3)  − 2

0, 0 0,0
u

uns nsa R c Rυ
υ

−+  = 0, 

 
(5.4)   0 ,

rs
r u sa R υ = 0, 

 
(5.5)   0 0,

rs
r n sa R = 0 

for the complete set. 
 We shall now say that it is after having transcribed the system (5.2) to (5.5) into 
functions of the tensors Ers and Hrs that one will recover the structure of Maxwell’s 
equations.  Of course, we are dealing with derivatives in space-time, and we would like to 
first develop the terms in such a way that everything comes down to derivatives in E (3).  
We then appeal to the classical development of the covariant derivative, and we will 
have: 

,urs nR υ = urs
nu rs nr u s ns ur n ursn

R
R R R R

x
υ α α α α

α υ α υ αυ υ α

∂
− Γ − Γ − Γ − Γ

∂
, 

 
for example.  Compare this equality with: 
 

,urs nR υ = urs i i i i
nu irs nr uis ns uri n ursin

R
R R R R

x
υ

υ υ υ υ

∂
− Γ − Γ − Γ − Γ

∂
 

 
With the aid of t

rsΓ  = t
rsΓ , one will then infer that: 

 
(5.6) ,urs nR υ  = 0 0 0 0

, 0 0 0 0urs n nu rs nr u s ns ur n ursR R R R Rυ υ υ υ υ− Γ − Γ − Γ − Γ . 

 
 Moreover, one will get: 
 

(5.7) 0 ,0rsR υ = 0
00 0 0 0 0 0 0

rs
rs r s s r rs

R
R R R R

t
υ α α α α

α υ α υ αυ υ α

∂
− Γ − Γ − Γ − Γ

∂
 

directly. 
 We shall momentarily suspend our calculations, with a view towards introducing a 
method of approximation that will permit us to simplify things by neglecting a large 
number of terms.  Those considerations will be the subject of the following section. 
 
 
 6. High-frequency waves. – We first consider the case of a wave whose frequency 
takes a very high value n, and it is upon that number n that our method will be based.  
Since the speed of propagation of our waves must likewise reveal the invariant c, we can 
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profit from that fact in advance and choose the unit of time in such a way that the 
potentials c2 and ars will all have the same order of magnitude.  We will then adopt the 
centimeter as the unit of length, and we will choose the unit of time to be the interval that 
is necessary for light to traverse that distance, which will obviously imply that the value 
of the speed of light in vacuo will be equal to unity.  Moreover, a frequency of 104 means 
104 waves per centimeter, as well as an equal number of periods per unit time.  In view of 
the considerations that will follow, it will then be important to note that our choice of 
units implies the following result: Not only will the potentials c2 and ars have the same 
order of magnitude, but also their rates of variation with respect to time (as a result of the 
oscillation) have the same order of magnitude as the rates of variation with respect to 
distance.  In other words, the first-order derivatives with respect to time and the ones with 
respect to the spatial variables take all of the values that have the same order of 
magnitude (except, of course, in the neighborhood of singularities; we shall consider the 
case of a domain in which the curvature remains finite).  To fix ideas, we remark that a 
frequency of n = 104 corresponds to a wave in the infrared range that is close to the limits 
of the visible spectrum.  On the other hand, and to avoid any confusion with the facts 
about light that are given experimentally, we once more recall that we would simply like 
to impose an oscillation upon the potentials gµν whose frequency is sufficiently high and 
then show that this will result in a wave that is characterized in the first approximation by 
equations that have the same structure as those of Maxwell’s system. 
 To begin, it will be convenient for us to restrict ourselves to the case in which the 
intensity of oscillation of the potentials has order n−1, and we take n ≫  104.  Our 
potentials can then be represented by sinusoidal functions in the first approximation in a 
space-time domain that extends over a reasonable number of waves and periods of 
oscillation.  That is, it will suffice to refer to the relation: 
 

1
sin 2

2

d
nx

dx n
π

π
 
 
 

= cos 2πnx 

 
for us to convince ourselves that if the intensity of oscillation of the potentials has the 
same order of magnitude as n−1 then the first-order derivatives of those same potentials 
will take on values with the same order as n0 ; i.e., they are “finite” quantities from the 
standpoint of the scale that we defined in terms of powers of n.  Moreover, the second-
order derivatives will be quantities with the same order as n, and since the 
aforementioned derivatives present themselves linearly in the equations Rµν = 0, we will 
have terms of the same order as n for a first approximation. 
 Meanwhile, we are more interested in the system (5.2) to (5.5), in which the 
potentials appear with their derivatives up to order three, and the latter appear linearly.  
That amounts to saying that we have terms of the same order of magnitude as n2.  We 
shall shortly assure ourselves that those terms are the largest ones, and that we will get 
everything while preserving only the third-order derivatives.  First of all, the coefficients 
ars and c−2 in (5.2) have an order of magnitude that is at most the same as n0 or “finite.”  
On the other hand, a simple examination of (5.6), (5.7) and the intermediate calculations 
will show that it still remains for us to decide what to do about terms such as: 
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nu rsRα
α υΓ ,  0 0r sRα

α υΓ . 

 
Now, these terms result from the product of a factor of “finite” order, such as nu

αΓ , with 

a factor of order one, such as: 
 

(6.1) n
rsR υ = 

n n
n nr rs

r s rssx x
α αυ
υ α αυυ

∂Γ ∂Γ− + Γ Γ − Γ Γ
∂ ∂

. 

 
We conclude that the covariant derivatives with respect to the two metrics – viz., the one 
on space-time and the one on E (3) – will differ only by terms that are negligible in the 
first approximation, since they have order at most one.  Similarly, the right-hand side of 
(5.7) reduces to its first term.  We shall appeal to these results in order to transcribe the 
system (5.2) to (5.5) into functions of the tensors Ers and Hrs , and along the way, some 
other terms like c0 R0rsυ and cυ R0sun will be neglected, and always as a result of the 
preceding considerations.  We shall employ the symbol ~ to indicate an equality that is 
true only in the first approximation. 
 One first starts with equation (5.2), passes to derivatives in E (3), and then multiplies 
the sides of the equation by ε msυ ; it then results (while taking into account that 0r sR υ  = − 

0rsR υ ) that: 

02
,

r sun ms ms
urs n

R
a R c

t
υυ υ

υ ε ε− ∂
+

∂
~ 0. 

 
The first term can be transformed with the aid of (4.6); (since εαur plays the role of a 
constant with respect to the covariant derivative) one will get: 
 
  ,

un ms
urs na R υ

υ ε  = ,
un ab ms

n aur bsa E υ
υε ε ε  

 
  = 2 δb

m aun Eab
, n εaur 

 
  = 2 aun Eam

, n εaur . 
 
Furthermore, upon utilizing (4.11) and neglecting terms such as c0 Hr 

n and: 
 

n ns
rH

t
υε∂

∂
, 

one will get: 

0r sms
R

t
υυε

∂
∂

~ 2
n

m r
n

H
c

t
δ ∂

∂
 ~ 2

m
rH

c
t

∂
∂

. 

 
Our equation can then be written: 
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aun Eam
, n εaur + 1

m
rH

c
t

− ∂
∂

 ~ 0, 

or rather: 

Em
a, n ε anr + 1

m
ir iH

c a
t

− ∂
∂

 ~ 0. 

 
Finally, as a result of relations such as: 
 

m
ir iH

a
t

∂
∂

~ 
rmH

t

∂
∂

, 

one will have: 

Ema, n ε anr + 1
r

mH
c

t
− ∂

∂
 ~ 0. 

 
 Let us once more transcribe this result by appending equations (5.3) to (5.5), 
transformed in the same fashion, although much more easily, with the aid of (4.8) and 
(4.11).  We will then get the complete system in the form: 
 

(6.2)  

,

,

,

,

1
~ 0,

1
~ 0,

~ 0,

~ 0.

s
u s r

ru

s
u s r

ru

rs
s

rs
s

H
E

c t

E
H

c t
E

H

υ
υ

υ
υ

ε

ε

 ∂+ ∂
∂ − ∂





 

 
It would be, so to speak, superfluous to emphasize here that one recovers the vectorial 
operations of divergence and rotation in the terms Ers

, s and Eru, υ ε uυ s in our equations 
(6.2).  As a consequence, one will easily recognize the structure of Maxwell’s equations, 
but extended to the tensors Ers and Hrs . 
 It is now important to note that in the second-order derivatives Ers, uυ , the indices (uυ) 
will permute in the first approximation, since (as we shall show in a moment) the 
difference between the covariant derivatives and ordinary derivatives will produce terms 
that drop out in the negligible part.  We have essentially seen that the elements Ers, u have 
the same order of magnitude as n2, while the r

uυΓ  are finite like n0 in such a way that the 

first term on the right-hand side of: 
 

Er
 s, uυ = ,

, , ,

r
s u r n n r n r

n s u s n u n s n

E
E E E

x υ υ υυ

∂
+ Γ − Γ − Γ

∂
 

 
will predominate with a value whose order is n3.  One will then have: 
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E r s, uυ ~ ,
r
s uE

xυ

∂
∂

~ 
2 r

s

u

E

x xυ

∂
∂ ∂

, 

so 
E r s, υ u ~ E r s, uυ . 

 
 As a consequence, one can refer to the classical calculation in order to solve the 
system (6.2) and to characterize the waves by means of the equation: 
 

(6.3)   ∆φ −
2

2 2

1

c t

φ∂
∂

 ~ 0. 

 
 Here, we intend that the function c that enters into the coefficients of our equations 
(6.2) and (6.3) can be considered to be a constant in the first approximation and in a 
neighborhood that can contain a certain number of waves. (On the one hand, the 
potentials oscillate with intensities that have order of n−1, and on the other, the variations 
of the potential that are due to gravitation are also very small, except in the neighborhood 
of singularities.) That restriction to a neighborhood is obviously necessitated by the 
curvature of the medium of propagation, but it nonetheless allows us to recognize the 
essential characteristics of electromagnetic waves in this new aspect of the structure of 
the equations of gravitation. 
  
 
 7. Extension of the results. – Up to now, our results have been limited to the case in 
which the potentials oscillate with an amplitude of order n−1.  Our approximation 
procedure will no longer be valid for a larger amplitude (for example, one with the same 
order as the gµν), because the last terms in (6.1) have the same order of magnitude as the 
second derivatives of the first terms.  In reality, there is no reason to consider the extreme 
case for which the potentials periodically change sign. 
 By contrast, we shall show that the wave will remain Maxwellian for amplitudes as 
small as one desires and independently of the curvature of the medium of propagation.  
Consider the case then in which the amplitude of oscillation of the potential has order n−r 
with r > 1, and set gµν = γµν + hµν , in such a fashion that the hµν represent the oscillatory 
part of those potentials in the first approximation.  Effectively, one can always arrange 
for the hµν to have the same order of magnitude as the amplitude of oscillation (namely, 
order n−r), and for the γµν to oscillate with amplitudes ≪  n−r−1, moreover. 
 We then note the following results: 
 
 7.1. The derivatives of order k of the hµν oscillate with amplitudes of order n−r+k, and 
the order of magnitude of those quantities does not exceed that of their amplitude of 
oscillation. 
 
 7.2. The γµν and their derivatives up to order two are at most “finite” quantities. 
 
 We now say (without worrying that we do not know what this will lead to, for the 
moment) that we shall separate equations (5.1) in such a fashion that we will keep only 
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the terms that oscillate with the largest intensity.  We shall see immediately that we will 
get all of those terms by keeping only the ones that contain the third-order derivatives of 
the hµν , and that the intensity of the oscillation will then have order n−r+3.  A simple 
examination of (5.6), (5.7), and (6.1) will effectively show us that in the terms that do not 
contain third-order derivatives, only one of the factors can be a second derivative of the 
hµν , and that all of the other factors have at most finite magnitudes, in such a way that the 
terms in question will oscillate with order at most – r + 2. 
 Furthermore, one can perform the development in (5.1) by first introducing the Eru, υ 
and Hru, υ as in the preceding section, and since the third-order derivatives enter linearly, 
one can split those tensors in such a fashion that one can represent them symbolically by: 
 

Eru, υ = Eru, υ (γ) + Eru, υ (h) 
 
in order to keep only the oscillating part with the largest intensity, namely, order – r + 3.  
The Eru, υ and Hru, υ are then tensors for which the metric is determined by the mean 
values γuυ in the first approximation. 
 Of course, the terms that we would now like to leave aside are not necessarily smaller 
than the other ones (indeed, the contrary is true for r > 2), but then if equations (5.2) to 
(5.5) must be verified then it is necessary that the terms of the oscillating part mutually 
cancel each other in the first approximation and that their sum (in each equation) reduces 
to a quantity that oscillates only with order – r + 2.  Finally, the order of magnitude of the 
latter quantities (or sums) will not exceed – r + 2 if the hµν are chosen conveniently.  
Indeed, that leaves only the question of the part that is constant in the first approximation, 
which will go back to the γµν . Briefly, one is once more led to equations (6.2) for the 
oscillating part and the waves of small amplitude will always possess characteristics that 
involve the Maxwellian structure. 
 It is further possible to extend our results to the case in which the frequency is not 
necessarily very high, but this time we will be limited to an almost-Euclidian medium of 
propagation.  Then set: 

c2 = 1 + h00 ,  grs = − δ r s – hrs , 
 

in which the hrs and h00 are elementary quantities of order one.  We shall then appeal to a 
classical approximation procedure here that will permit us, in particular, to characterize 
the waves that are called gravitational by means of equation (6.3).  Meanwhile, the 
introduction of our tensors Ers and Hrs will permit us to endow that result with a new 
element. 
 With that method, one keeps only the linear terms in a first approximation.  The 
reader will then have no trouble in assuring himself that equations (5.1) reduce to third-
order derivatives of the hµν and that one will therefore once more recover the system 
(6.2), with the difference that the covariant derivatives will be replaced by ordinary 
derivatives.  We deduce from this that in the radio-frequency domain, our waves will 
again be Maxwellian, provided that the curvature of the medium of propagation is very 
small. 
 It would not be senseless for us to make the distinction here that we exclude the 
gravitational waves, properly speaking, from our deductions.  Indeed, in that case, the 
frequency will take on extremely small values (of order 10−18 in the case of the motion of 



Matte – On some new oscillatory solutions of the equations of gravitation 14 

the Earth around the Sun and with a unit of time as above), which will introduce a critical 
aspect into the problem that we would not like to discuss here. 
 
 
 8. Conclusion. – The structure of the Maxwell equations is then recovered in the first 
approximation and as a direct consequence of the equations Rµν = 0 in order to 

characterize the waves that can exist the space-time continuum of relativity in almost all 
cases.  In summary, if the frequency takes values that correspond to infrared or larger 
then our waves will be characterized by equations (6.2) and (6.3) independently of the 
curvature of the medium.  By contrast, if the frequency is less elevated then our equations 
will remain valid only if the curvature is small.  Note once more that in the final analysis, 
it is the elements of the curvature Rαβµν  that verify such equations and that this will be 

made possible simply because of the way (which is remarkable, at the very least) by 
which the aforementioned elements can be grouped into two tensors Ers and Hrs that play 
the role of the vectors E and H in Maxwell’s equations. 
 As a consequence, the invariance of the phenomenon cannot be in doubt, since the 
oscillations that one imposes arbitrarily upon the coordinate net cannot be characterized 
by invariant equations.  We therefore have a wave, and we immediately compare it to the 
electromagnetic waves.  Now, the latter can be represented by means of vectors (at least 
the aspects of them that we know of), while the new waves, the tensors Ers and Hrs 
present a more complex structure and give us a glimpse of some great possibilities. 
 Can we now say that we have identified the electromagnetic waves in a new form in 
the continuum Rµν  = 0, but that we only know a few things about them?  One must assert 

that for the moment any attempt to interpret them in that sense will pose some problems 
whose solution does not seem to be within our reach.  First of all, do the waves that we 
just characterized even exist?  More precisely, do there exist solutions of that type that 
are regular at infinity?  That is a question that leaves us perplexed in view of the 
complexity of the equations Rµν = 0.  Nonetheless, it would be of greatest interest to 

know how to determine the possibilities from those equations in regard to the 
singularities that accompany a stationary oscillating wave or one that radiates energy, and 
it would undoubtedly imply a quantization phenomenon.  Be that as it may, we conclude 
this article by presenting two other results that further extend the analogy with the 
equations of electromagnetism. 
 
 
 Note A. – In this section, we shall address two space-time invariants (always in the 
case of g0r = 0, of course) and find a way of expressing them as functions of the tensors 
Ers and Hrs . 
 First of all, one will effortlessly verify that: 
 
 R Rαβµν

αβµν  = 0
02rs r

rs rR R R Rµν µν
µν µν+  

(A.1) = 0 0 00
0 0 002 2 4rs rs r u r

rs rs r u rR R R R R R R Rµν υ υ υ
µν υ υ υ+ + +  

 = 0 00
0 004 4rsu rs r

rsu rs rR R R R R Rυ υ υ
υ υ υ+ + . 
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On the other hand, with the aid of (2.1a) and (4.8), one will have: 
 

00rR υ = grα g0β g0µ gυν 00s uR = c−2 Erυ, 

so 
(A.2)   00

00
r

s uR R υ  = Ers E
rs. 

 
If one is then given that mnuR υ  is a tensor in E (3) then the relation (4.3) 

 
4 Ers = mnuR υ  ε mnr ε uυs 

 
will imply [taking (2.1a) into account], as before: 
 

4 Ers =
mnuR υ εmnr εuυs 

so 
(A.3) 16 Ers E

rs = mnu ab xy
abxy mn uR Rυ

υδ δ = 4 mnu
mnuR R υ

υ . 

 Now recall (4.4): 
2c Hr

s = 0
m s

r uR υ
υ ε . 

 
As in the preceding relations and taking (2.1a) into account, we also have: 
 

2c H r
s = − 2 0r u

u sc R υ
υε . 

 
Finally, by contraction, that will give: 
 

4c2 Hr
s H r

s = − 2 0
0

r mn u
r u mnc R R υ

υ δ , 

or 
(A.4)  4 Hrs H

rs = − 0
02 r u

r uR R υ
υ . 

 
The relations (A.2) and (A.4) will then permit one to write (A.1) in the form: 
 
(A.5)  R Rαβµν

αβµν = 8 (Ers E
rs − Hrs H

rs). 

 
 We similarly construct another invariant whose expression involves the universal 
tensor by way of: 

εαβγδ = g1/2 eαβγδ , 
 

in which eαβγδ = 0 or ± 1 according to the rules: 
 
    0 if any two of the indices αβγδ have the same value, 
    1 if αβγδ is an even permutation of the numbers 0, 1, 2, 3, 
 − 1 if αβγδ is an odd permutation of those same numbers. 
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The set of non-zero covariant components of that tensor can be easily represented by 
means of a tensor in E (3), as was explained in § 3.  The new tensor will have order three 
since one of the four indices αβγδ must take the value zero.  One should first note that the 
permutations 0rst and rst have the same parity (i.e., the same sign) with respect to the 
numbers 0, 1, 2, 3, and 1, 2, 3, respectively.  Furthermore, one will have g1/2 = ic a1/2, 
with i = (− 1) 1/2, in such a way that: 

ε0rst = i c εrst . 
One will then have, in turn: 
 
R Rαβµν ρσ

αβ µνρσε  = 0
02mn n

mn nR R R Rµν ρσ µν ρσ
µνρσ µνρσε ε+  

 = 0 0
0 02 2mnu s mn rs

mn s mn rsR R R Rυ υ
µν υε ε+ + 0 0 00

0 0 0 04 4n u s n rs
n u s n rsR R R Rυ υ

υ υε ε+  

 = 0 0 0
0 0 08 4n u s mnu s

n su mn suR R R Rυ υ
υ υε ε+  

 = 0 0 0
04 (2 )n u s mnu s

n su mn suic R R R Rυ υ
υ υε ε+ . 

 
The two terms in parentheses can be recovered, up to a factor, by contracting Ers with Hrs 
in two different ways by starting from (4.3), (4.4), and (4.8).  The calculations are 
analogous to the ones that gave (A.2) to (A.4) and finally imply that: 
 
(A.6)  R Rαβµν ρσ

αβ µνρσε  = 32i Ers H rs. 

 
 One must remark that the relations (A.5) and (A.6) will be possible as long as the 
form (1.1) of our element of arc length is preserved.  Meanwhile, the invariants in the 
left-hand side permit us to conclude that the functions: 
 

Ers E
rs − Hrs H rs, Ers H rs 

 
will themselves be invariant under Lorentz transformations.  We will then recover a 
property that the relativistic form of the electromagnetic equations confers upon the 
invariants: 

E2 – H2, E ⋅⋅⋅⋅ H. 
 
 
 Note B. – Starting from (6.1), we set r = 0 and separate the sums that relate to the 
index a. 
 Then: 

0
n
sR υ = 0 00 0

0 0 0 0 0 0

n n
i n i n n ns

is s i s ssx x
υ

υ υ υ υυ
∂Γ ∂Γ− + Γ Γ − Γ Γ + Γ Γ − Γ Γ
∂ ∂

. 

 
 With the aid of (2.3), we will have: 
 

  0
n
sR υ  = 

( )( )
( )

nn
s n i n i n n

is i s s ss

c Ac A
c A A c A c A

x x
υ

υ υ υ υυ

∂∂ − + Γ − Γ + −
∂ ∂
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  = ( )
nn
s n i n i

is i ss

AA
c c A A

x x
υ

υ υυ

 ∂∂ − + Γ − Γ  ∂ ∂ 
. 

If we add the term: 
  ( )n n i n

s i s ic A Aυ υ−Γ + Γ , 

 
which is zero identically, to this last result then we will immediately recognize the 
development of the two covariant derivatives in such a way that: 
 
(B.1)     0

n
sR υ = , ,( )n n

s sc A Aυ υ− . 

 
For u = n, we will recover the three equations 0sR = 0 in the form: 

 
(B.2)   , ,

n n
n s s nA A− = 0. 

 
Furthermore, upon taking (2.1) into account, equation (B.1) can be written: 
 

0n sR υ = c (Ans, υ – Anυ, s), 

 
so, after multiplying the two sides by ε sυ r and substituting by means of (4.4): 
 

2c Hn 
r = c (An s, υ – Anυ, s) ε sυ r = 2c An s, υ ε sυ r. 

 
We will then finally have: 
(B.3)   Hn 

r = An s, υ ε sυ r, 
 
and one will recover the form of the classical relation H = rot A, but extended to the 
tensor Ars . 
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