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 Once Pfaff had shown that one could reduce the solution of any first-order partial differential 

equation to the integration of several systems of ordinary differential equations, that theory 

advanced to the next essential step by the work of Cauchy (*) and Jacobi (**), who both arrived at 

the same simplification of Pfaff’s result along very different paths and showed that the complete 

integration of the first Pfaff system by itself would suffice for one to obtain a complete solution 

of the partial differential equation. 

 Jacobi, who found that theorem by generalizing Hamilton’s discoveries in mechanics (which 

is why he himself called the process the Hamiltonian method) had reproduced it in a somewhat-

different form and with a somewhat-different method of proof in his Vorlesungen über Dynamik 

(***), and there especially the type of derivation was much simpler and more concise than when 

one goes down the trail that Cauchy had blazed. Moreover, the Jacobi method has the advantage 

over Cauchy’s that it not only leads to a complete solution of the partial differential equation, but 

at the same time, it also shows how one can obtain all integral equations of the corresponding 

system of ordinary differential equations from that solution by mere partial differentiation. With 

Cauchy’s method, it is only when it is used in the correct way for discovering a complete solution 

to all first-order partial differential equations that one can pose without exception that one will 

very soon discover classes of equations that can be inferred from completely integrating the 

equation by that method from a closer scrutiny of Jacobi’s rule, at least in its later formulation. 

 Indeed, Jacobi had later overshadowed all of the previous integration methods for first-order 

partial differential equations quite conclusively with his brilliant “new method” (Crelle’s Journal, 

v. 60). Nonetheless, Jacobi’s older method still remained most interesting, on the one hand, 

because it had the shortest derivation, but then mainly due to the fact that it defined the most-

natural starting point for all of Jacobi-Hamilton theory. 

 Based upon that, it seems desirable to me for investigate whether one might not be able to 

modify the aforementioned method in such a way that it might subsume all first-order partial 

differential equations, and that modification is found by a direct application of the rule that Cauchy 

 
 (*) Execises d’Analyse et de Physique mathématique, t. II. 

 (**) Crelle’s Journal, 17. 

 (***) Lecture 19, as well as pp. 364, especially. 
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gave for deriving the general solution to the simpler problem of finding a complete solution to the 

partial differential equation: 

1

1

, , , , , ,n

n

V V V
H x x x

x x x

   
+  

   
 = 0 . 

 

 It is only necessary to consider equations of that form since one can reduce any first-order 

partial differential equation that does not contain the unknown function itself to one in which the 

unknown function no longer appears explicitly. 

 Namely, if: 

1

1

, , , , , ,n

n

x x
f x x x

x x

  
 

  
 = 0  

 

is the given partial differential equation then, to that end, one needs only to initially inquire 

indirectly about whether an equation exists from which the desired solution x can be determined 

algebraically instead of starting from the direct determination of x. 

 In fact, when one imagines that that this solution is defined by an equation of the form: 

 

V (x1, …, xn, x) = const. 

 

then the function V must satisfy the equation: 

 

1
1, , , , , , n

n

VV

xx
F x x x

V V

x x

 
 
 − −

  
   

 = 0  

 

identically, and conversely when one has found any solution to the latter equation, the value of x 

that one gets from the substitution: 

V = const. 

 

will be a solution of the given equation because one will have (*): 

 

i

x

x




= − i

V

x

V

x









 

for it. 

 
 (*) Jacobi had later abandoned the reduction method that he himself had proposed (Crelle’s J., v. 23, pp. 18) in a 

remarkable way and replaced it in his great treatise (Crelle’s J., v. 60, pp. 1) with another one that can indeed be quite 

useful for certain transformations but is illusory as a direct method of reduction. On that topic, cf., Imschenetsky, 

(Grunert’s Archiv, t. 50, pp. 315). 
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 Now, when Jacobi applied that to first-order differential equations that do not include the 

unknown function itself in his Vorlesungen über Dynamik, pp. 364, he gave the following 

formulation to the Hamiltonian method: 

 

 When the problem that was posed is that of finding a complete solution to the given first-order 

partial differential equation: 

(1)     1

1

, , , , , ,n

n

V V V
H x x x

x x x

   
+  

   
 = 0 , 

and one writes: 

p1, …, pn for 
1

V

x




, …, 

n

V

x




, 

 

resp., one can next pose the following system of 2n first-order differential equations: 

 

(2)  kdx

dx
 = 

k

H

p




, kdp

dx
 = − 

k

H

x




, 

 

and integrate it completely. In order to do that, one introduces the values: 

 

a1, …, an, b1, …, bn 

of the quantities: 

x1, …, xn, p1, …, pn , 

 

resp., for the arbitrarily-chosen initial values a of x in place of the arbitrary constants in the 

integral equations of that system, and one finally expresses the integral: 

 

(3)      V = 
1

x m

k

k ka

H
dx p H

p=

 
− 

 
  

 

in terms of the quantities x, x1, …, xn, a1, …, an by means of those equations. One will then have 

the 2n equations: 

(4)  
k

V

x




 = pk , 

k

V

a




 = − bk , 

 

which one can consider to be the complete integral equations of the system (2), and at the same 

time, the given expression for V will be a complete solution of the partial differential equation (1) 

when one adds an arbitrary solution of the partial differential equation (1). 

 

 One sees immediately that this theorem is subject to some exceptions. For example, as long as 

H is a homogeneous function of degree one in p1, …, pn (and that case will always occur when 

equation (1) is obtained from a partial differential equation in the way that given above, in which 
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the unknown function itself occurred), it will yield only the entirely-useless value V = 0 in place 

of the desired solution, and it would be impossible for it to lead to the complete integral equations 

of the system (2). 

 I would next like to seek to reveal the true basis for those exceptions, and to that end, Jacobi’s 

method of proof will be subjected to a closer scrutiny in § 1. The discussion of the Jacobi-

Hamilton integration method that is not restricted by any sort of exceptions will then follow in § 

2. I shall expressly point out that it is only one special case (and indeed the simplest one) of the 

more general Cauchy method. Cauchy himself has also emphasized a particular complete solution 

from all of the ones that can be obtained by his procedure as the simplest one, although it was a 

different one: viz., Hamilton’s solution. That is not precise. The derivation of the general Cauchy 

method from Jacobi’s principles in § 3 will show that the consistent application of that method 

can never lead to Hamilton’s solution. Finally, some theorems about the determination of the 

solution to a first-order partial differential equation by a boundary condition will be suggested, and 

how one can also arrive at Cauchy’s more theorems by the direct method in § 2. 

 

 

§ 1. 

 

 Jacobi’s proof of the cited theorem is based essentially upon the following fact: 

 When one varies the initial values a1, …, an, b1, …, bn and denotes the variations that arise in 

that way by the symbol , one will arrive directly at the formula: 

 

V = 
1

( )
n

k k k k

k

p x b a 
=

−  

 

from the defining equation (3) by an easy calculation that I will omit here, since an entirely-similar 

one will be found in the following §. However, when one initially considers V to be a function of 

the quantities x1, …, xn, a1, …, an, one will: 

 

V = 
1

n

k k

k k k

V V
x a

x a
 

=

  
+ 

  
  . 

 

As a result, for all values of the variations: 

 

a1, …, an, b1, …, bn, 

one will have the identity: 

1

n

k k k k

V V
p x b a

x a  

 
=

     
− + +    

     
  = 0 . 

 

Now, Jacobi deduced equations (4) from that formula with no further analysis. However, that 

deduction is correct only when the variations: 
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x1, …, xn, a1, …, an 

 

are independent of each other, just as the original ones: 

 

a1, …, an, b1, …, bn 

were, and since one will have: 

xk = 1

1

k k
n

n

x x
b b

b b
 

 
+ +

 
 

 

when one sets all a = 0, that independence will exist only when the determinant: 

 

1 2

1 2

n

n

xx x

b b b

 


  
  

 

is non-zero, i.e., when the n constants b1, …, bn can all be determined from the n solutions x1, …, 

xn, or in other words, when the 2n arbitrary constants of the complete integral equations of the 

system (2) can be expressed in terms of the initial and final values of the variables x, x1, …, xn 

alone. 

 Now, that is indeed always the case when the function H possesses the property that the 

determinant: 
2 2 2

1 1 2 2 n n

H H H

p p p p p p

  


     
  

 

is non-zero because the n equations: 

k

H

p




 = kdx

dx
 

 

will then determine all n quantities p1, …, pn as functions of: 

 

x, x1, …, xn, 
1dx

dx
, …, ndx

dx
, 

 

and therefore, in that case, the system of 2n first-order differential equation (2) can always be 

reduced to a system of n second-order differential equations in terms of x1, …, xn, and x alone and 

whose complete integration must necessarily involve 2n arbitrary constants. 

 By contrast, when that determinant is zero, the quantities p1, …, pn can be eliminated 

completely from the n equations above, and a relation that is free from arbitrary constants will then 

exist between the variables x1, …, xn and their first differential quotients, so in general, the 

complete solutions x1, …, xn will no longer include 2n arbitrary constants. For example, when H 

is linear in the p1, …, pn, only n arbitrary constants will enter into those solutions. 

 However, as soon as one no longer has the right to pose the equations: 
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k

V

x




 = pk , 

the justification for the conclusion that: 

V

x




 + H = 0 

 

will also break down. That is because that equation is obtained from the double manner of 

expressing the differential quotients of the function V: 

 

  
dV

dx
= 

1

n

k

k k

H
p H

p=


−


  

and 

dV

dx
= 

1

n
k

k k

dxV V

x dx x=

 
+

 
  

 

as merely a consequence of those equations. 

 One then sees that Jacobi’s method of proof tacitly includes an assumption that is not fulfilled 

for an arbitrary function H, and it is therefore clear from the outset that Jacobi’s rule cannot imply 

a generally-valid method of integrating first-order partial differential equations. 

 

 

§ 2. 

 

 Now that the inadequacy of the Jacobi-Hamilton method and the basis for the flaw in it has 

been explained, I would now like to show how one can arrive at an entirely-general integration 

method by a very slight alteration of Jacobi’s argument. For the sake of clarity, I will then go to 

work somewhat more thoroughly than I did before. 

 Let: 

H = H (x, x1, …, xn, p1, …, pn) 

 

be a given arbitrary function of the 2n + 1 variables x, x1, …, xn, p1, …, pn, and let the following 

2n first-order ordinary differential equations be given: 

 

(1)  kdx

dx
 = 

k

H

p




, kdp

dx
 = − 

k

H

x




. 

 

One integrates those equations completely, and once one has expressed the 2n integration constants 

in terms of the values: 

a1, …, an, b1, …, bn 

that the variables: 

x1, …, xn, p1, …, pn 
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assume for the arbitrarily-chosen initial value a of x, one will find: 

 

(2)  xk = [xk] , pk = [pk] , 

 

in which the [xk] and [pk] are then certain functions of x, a, a1, …, an, b1, …, bn that reduce to ak 

and bk, resp., for x = a. 

 For the sake of better understanding, the substitution of the solutions (2) will be suggested by 

enclosing a variable in square brackets. 

 The determinant: 

1 2

1 2

[ ][ ] [ ] n

n

xx x

a a a

 


  
  

 

can never be zero because it takes the value 1 for x = a. It will then follow from this that the n 

equations: 

 

(3)  [xk] = xk 

 

must always be soluble for the n quantities a1, …, an . 

 Having done that, one calculates the expression: 

 

(4)     V = 
1 1

xn m

k k k

k k ka

H
a b p H dx

p= =

 
+ − 

 
   

 

as a function of x, a, a1, …, an, b1, …, bn by a simple quadrature. 

 Upon differentiating that expression with respect to c, which one understands to means any 

one of the constants ak or bk, one will next get: 

 

V

c




 = 

1 1

[ ]
[ ]

xn m
k

k k k

k k k ka

xH H
a b dx p

c c p x c= =

         
+ −    

         
   . 

 

However, as a consequence of equations (1), one has: 

 

k

H

x

 
 
 

 = − 
[ ]kd p

dx
 

and 

k

H

c p

  
 

  
 =  

[ ]kd x

c dx




 = 

[ ]kxd

dx c




 

 

identically. The expression under the integral sign will then become: 
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 = 
1

[ ] [ ] [ ]
[ ]

m
k k k

k

k

x d p xd
p

dx c dx c=

  
+ 

  
  

 = 
1

[ ]
[ ]

m
k

k

k

xd
p

dx c=




 , 

 

and one will find by performing the integration that: 

 

V

c




 = 

1 1

[ ]
[ ]

n m
k k

k k k k

k k

x a
a b p b

c c c= =

   
+ − 

   
   . 

 

When one first sets c = a and c = b, that will give: 

 

 
i

V

a




 = 

1

[ ]
[ ]

m
k

k

k i

x
p

a=




  

 
i

V

b




 = 

1

[ ]
[ ]

m
k

i k

k i

x
a p

b=


+


 . 

 

When one compares that with the previous values, it will then follow that one must have: 

 

(5)  
1

[ ]( )m
k

k

k k i

xV
p

x a=

  
− 

  
  = 0 , 

 

(6)  
1

[ ]( ) ( )m
k

k

k k i k

xV V
p

x a b=

    
− +   

     
  = 0 

identically. 

 For i = 1, 2, …, n, equation (5) represents a system of n equations that are linear and 

homogeneous in the n quantities: 

( )
k

k

V
p

x

 
− 

 
 . 

 

From the previous remarks, the determinant of this system is non-zero. The system therefore 

consist of nothing but the single equation: 

 

( )
k

k

V
p

x

 
− 

 
 = 0 , 

 

from which it will follow from (6) that one must likewise have: 
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( )
i

i

V
a

b

 
− 

 
 = 0 . 

 

 One will then see that the complete solutions (2) of the system (1) of 2n equations must satisfy: 

 

(7)  
( )

k

V

x




= pk , 

 

(8)   
( )

k

V

b




= ak 

 

identically. Those equations are not identical, per se, because the quantities pk and ak do not enter 

into the left-hand sides at all. As a result, they are integral equations of the system (1). Moreover, 

they are 2n in number, and they include 2n arbitrary constants, namely, the 2n initial values a1, …, 

an, b1, …, bn. Finally, none of the equations (7) and (8) can be a consequence of the remaining ones 

because a quantity pk or ak will enter into each of them that is missing from all remaining ones. 

 Equations (7) and (8) will then define a system of complete integral equations for the 

differential equations (1). 

 In the same double way by which we formed the partial differential quotients of V with respect 

to ai and bi, we can also form the differential quotients of this function with respect to x now. The 

definition (4) implies directly: 

dV

dx
 = 

1

n

k

k k

H
p H

p=

 
− 

 
 . 

 

On the other hand, one will obtain it indirectly from the function (V) when one imagines 

substituting the values (3) for x1, …, xn : 

 

dV

dx
 = 

1

[ ]( ) ( )n
k

k k

d xV V

x x dx=

   
+       
 , 

or from (1) and (7): 

dV

dx
 = 

1

( ) n

k

k k

V H
p

x x=

  
+ 

  
 . 

 

Subtracting those two formulas will show that the complete solutions to the system (1) must also 

fulfill the equation: 

0 = 
( )V

H
x


+


 

 

identically. From (7), one can write this as: 
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(9)  0 = 1

1

( ) ( ) ( )
, , , , , ,n

n

V V V
H x x x

x x x

   
+  

   
. 

 

Initially, all that we know about that equation, in which the variables p no longer occur at all, is 

that it must be fulfilled identically under the substitution of the values (3). However, when we 

assign the values to the n quantities a1, …, an that follow from equations (3) in the identity that 

arises in that way, which is true for all arbitrary values of the ak and bk, that substitution will, in 

turn, cancel out, which explains the fact that equation (9) must be an identity in its own right. 

 The function (V) will then satisfy the partial differential equation (9), and indeed when one 

adds an arbitrary constant to it, one will have a complete solution to that equation because it 

includes n arbitrary constants b1, …, bn, and they cannot be eliminated from the partial differential 

quotients: 

1

( )V

x




, 

2

( )V

x




, …, 

( )

n

V

x




 

 

since otherwise one of the n equations (7) would be a consequence of the remaining ones. 

 If one summarizes the results that were obtained then that will give the following, generally-

valid, theorem: 

 

 I. When one deals with the problem of solving the given first-order partial differential 

equation: 

()  0 = 1

1

( ) ( ) ( )
, , , , , ,n

n

V V V
H x x x

x x x

   
+  

   
 

then one can generally write: 

pk, instead of 
k

V

x




 

 

in the function H and use that function of x, x1, …, xn, p1, …, pn to define the system of 2n ordinary 

differential equations: 

()  kdx

dx
 = 

k

H

p




, kdp

dx
 = − 

k

H

x




. 

 

If one has integrated that system completely and expressed the 2n integration constants in its 

solutions in terms of the values: 

a1, …, an, b1, …, bn 

of the quantities: 

x1, …, xn, p1, …, pn 

 

for the arbitrarily-chosen values a of x then one substitutes those solutions in the expression: 
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1

n

k

k k

H
p H

p=


−


  

and calculates: 

V =
1 1

xn n

k k k

k k ka

H
a b dx p H

p= =

 
+ − 

 
   

 

as a function of x, a1, …, an, b1, …, bn by a simple quadrature. Finally, if one eliminates the 

quantities a1, …, an from that function by means of the values of x1, …, xn that were found and 

denotes the resulting function of x, x1, …, xn, b1, …, bn by (V) then the formula: 

 

V = (V) + const. 

 

will yield a complete solution to the partial differential equations (), and at the same time, one 

will have the complete integral equations for the ordinary differential equations () in the form of 

2n equations: 

( )

k

V

x




 = pk , 

( )

k

V

b




 = ak . 

__________ 

 

 

 If one applies that theorem to a partial differential equation of the form: 

 

1

1

, , , , , , ,n

n

z z z
F z x x x

x x x

   
+  

   
 = 0 , 

 

once one has previously reduced it to an equation in which the unknown function no longer occurs 

in the given way, then one will be led to the following general theorem that will replace Theorem 

V on pp. 366 of Jacobi’s Vorlesungen, which is true to only a limited extent, and which one can 

more easily prove directly in the way that is given there: 

 

 II. Let: 

F (z, x, x1, …, xn, p1, …, pn) 

 

be an arbitrarily-given function 2n + 2 quantities z, x, x1, …, xn, p1, …, pn, and let the following 

system of 2n + 1 ordinary differential equations between them be given: 

 

kdx

dx
 = 

k

F

p




,      kdp

dx
 = − k

k

F F
p

x z

 
−

 
,      

dz

dx
 = 

1

n

k

k k

F
p F

p=


−


 . 

 

One has to integrate that system completely and introduce the values: 
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a1, …, an, b1, …, bn and c 

 

into the 2n +1 integral equations in place of the arbitrary constants, and they will contain the 

quantities: 

x1, …, xn, p1, …, pn, z – (x1 p1 + … + xn pn), 

 

resp., for the arbitrarily-chosen initial values a of x. If one then expresses the quantity z in terms 

of only x, x1, …, xn, a, b1, …, bn by means of the integral equations then the expression that one 

obtains: 

z = Z 

 

will be a complete solution of the first-order partial differential equation: 

 

1

1

, , , , , , ,n

n

z z z
F z x x x

x x x

   
+  

   
 = 0 , 

 

and at the same time, the 2n + 1 equations: 

 

k

Z

x




 = pk , 

k

Z

b




 = k

Z
a

c




, 

x = Z 

 

will be the complete integral equations of the ordinary differential equations above. 

 

 Finally, when one applies that theorem to a partial differential equation in the unsolved form: 

 

1

1

, , , , , ,n

n

z z
x x z

x x


  
 

  
 = 0 , 

 

one will arrive at the following theorem, which substitutes for the first formulation of the Jacobi-

Hamilton method (Crelle’s J., v. 17): 

 

 III. Let: 

 (x1, …, xn, x, p1, …, pn) 

 

be an arbitrarily-given function of the 2n + 1 variables x1, …, xn, x, p1, …, pn, and let the following 

2n first-order ordinary differential equations in those variables be given: 

 

1

1

dx

p





= 2

2

dx

p





 = … = n

n

dx

p





 = − 1

1

1

dp

p
x z

  
+

 

 = … = − n

n

n

dp

p
x z

  
+

 

 = 

1

1

n

n

dz

p p
p p

  
+ +

 

, 
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one integral of which is  = const. If one has found the 2n – 1 remaining integrals of that systems, 

and after eliminating p1 by means of the equation  = 0, one expresses its 2n – 1 arbitrary constants 

in terms of the values: 

a2, …, an, c, b2, …, bn 

of the quantities: 

x2, …, xn, z, p2, …, pn 

 

for the arbitrarily-chosen value a1 of x1 then one sets: 

 

c = b1 + a2 b2 + … + an bn 

 

and eliminates the 2n – 2 quantities: 

a2, …, an, p2, …, pn 

 

from the 2n – 1 integrals. In that way, one will get an equation between x1, …, xn, z, b1, b2, …, bn 

that will yield a complete solution with the n arbitrary constants b1, b2, …, bn of the first-order 

partial differential equation: 

1

1

, , , , , ,n

n

z z
x x z

x x


  
 

  
 = 0 

when it is solved for z. 

 

 

§ 3. 

 

 Above all, the foregoing considerations had the goal of replacing the Jacobi-Hamilton method 

with another one that is as simple as possible and shares the same brevity and clarity of derivation 

as the latter method but is no longer subject to any exceptions. However, one will easily see, at the 

same time, that those considerations also include the means for proving Cauchy’s more-general 

rule, i.e., solving the problem of finding the solution to the partial differential equation: 

 

1

1

, , , , ,n

n

V V V
H x x

x x x

   
+  

   
 = 0 

 

that reduces to a given function of x1, x2, …, xn for x = a. 

 To that end, one does in fact need only to replace the initial values b1, …, bn in the previous § 

with any other n arbitrary constants 1, …, n by means of n equations of the form: 

 

b1 = 
1

f






, …, bn = 

n

f






, 
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in which f is an arbitrarily-given function of the initial values a1, …, an, and the new constants 1, 

…, n, and in place of formula (4) as the definition of V as a function of x, a1, …, an, 1, …, n, 

one poses the formula: 

V = 
1

x n

k

k ka

H
f p H dx

p=

 
+ − 

 
 . 

If one lets: 

xk = [xk] , pk = [pk] 

 

denote the complete solutions, as expressed in terms of x and the 2n constants a1, …, an, 1, …, 

n, to the 2n first-order ordinary differential equations that are equivalent to the partial differential 

equation above then the determinant of the functions [x1], …, [xn] relative to the initial values a1, 

…, an will still be non-zero now, and indeed to the same degree. When one now, in turn, takes the 

differential quotients of the function V with respect to ai, i, and x in the double way, one will be 

led to the following theorem by almost the same argument as before verbatim, which includes 

Cauchy’s solution to the stated problem as a special case, as well as being a special case of 

Theorem I in the previous §: 

 

 IV. Let: 

f (a1, …, an, 1, …, n) 

 

be an arbitrarily-given function of the 2n quantities a1, …, an, 1, …, n whose partial differential 

quotients: 

1

f

a




, …, 

n

f

a




 

 

are independent of each other relative to 1, …, n. Moreover, let: 

 

H (x, x1, …, xn, p1, …, pn) 

 

be an arbitrary given function of x, x1, …, xn, p1, …, pn, and let the system of 2n first-order ordinary 

differential equations in those variables be given: 

 

(1)  kdx

dx
 = 

k

H

p




, kdp

dx
 = − 

k

H

x




. 

 

One integrates that system completely and expresses the 2n integration constants in terms of the 

values: 

a1, …, an, b1, …, bn 

of the quantities: 

x1, …, xn, p1, …, pn 
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resp., for x = a. When one sets: 

(2)   b1 = 
1

f

a




, …, bn = 

n

f

a




, 

 

one will get the complete solutions to the system (1): 

 

(3)  xk = [xk] , (4) pk = [pk] , 

 

as functions of x, a1, …, an, 1, …, n, and one will get: 

 

(5) [sic] V = 
1

x n

k

k ka

H
f p H dx

p=

 
+ − 

 
  

 

by a simple quadrature. If one eliminates the quantities a1, …, an from V by means of the n 

equations (3) and defines the 2n equations: 

 

k

V

x




 = pk , 

k

V






 = 

k

f






. 

 

with the function V of x, x1, …, xn, 1, …, n thus-obtained then they will be the complete integral 

equations of the system (1), and at the same time, that function V will itself be the complete solution 

of the first-order partial differential equation: 

 

(6)  1

1

, , , , ,n

n

V V V
H x x

x x x

   
+  

   
 = 0 

that assumes the given value: 

V = f (x1, …, xn, 1, …, n) 

for x = a. 

 

 The latter will follow immediately from formula (5) when one adds that equations (3), from 

which one determines the initial values a1, …, an, will reduce to: 

 

xn = an 

for x = a. 

 I have expressed that theorem for the special of the complete solution to equation (6) in order 

to simultaneously show how to represent the complete integral equations of the system (1) by 

means of it. However, it is clear, with no further analysis, that the part of the theorem that refers to 

the solution of the partial differential equation (6) will also not be true in general when one assigns 

certain constants to the quantities 1, …, n, i.e., one takes f to be an entirely-arbitrary function of 

a1, …, an, since the only change that assumption will produce in the derivation of the theorem is 

that the differentiation of V with respect to the  will drop out. However, one must not overlook 
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the fact that certain special exceptions can occur in the latter case, namely, when complete 

solutions of the system (1) take on infinite or indeterminate values under the substitutions (2) for 

the function f that was just chosen. 

 Moreover, one can derive that theorem from the following theorem, which shows how to find 

the solution of equation (6) that is equal to an arbitrarily-given function of x1, …, xn for x = a from 

any given complete solution to it: 

 

 V. Let an arbitrary first-order partial differential equation be given between V and the 

independent variables x, x1, …, xn and into which V itself does not enter, and let: 

 

V =  (x, x1, …, xn, c1, …, cn) + const. 

 

be a complete solution of it. If one then sets: 

 

(7)  V =  – a + fa , 

 

in which a arises from  when one switches x, x1, …, xn with a, a1, …, an, resp., and: 

 

fa = f (a1, …, an) 

 

is an arbitrarily-given function of a1, …, an, and one eliminates the quantities: 

 

a1, …, an, c1, …, cn 

 

from it with the help of the 2n equations: 

 

(8)  
kc




 = a

kc




, (9) a

k

f

a




 = a

ka




, 

 

then the resulting function V of x, x1, …, xn will have the two properties: It satisfies the given partial 

differential equation, and it takes the value: 

 

V = f (x1, …, xn) 

for x = a. 

 

 Namely, if one considers the quantities a1, …, an, c1, …, cn in (7) to be functions of the 

independent variables then differentiating that formula with respect to xi will give: 

 

i

V

x




 = 

1 1

n n
a k a a k

k ki k k i k k i

c f a

x c c x a a x

  

= =

        
+ − + −   

         
  . 

 

For those functions a1, …, an, c1, …, cn that satisfy equations (8) and (9), one will then have: 
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i

V

x




 = 

ix




, 

 

just as one had for the original complete solution. The given value of V will then be a solution to 

the given partial differential equation, and it will reduce to f (x1, …, xn) when one sets x = a because 

equations (8) will be fulfilled by: 

a1 = x1,       …,      an = xn 

for x = a. 

 One can ultimately derive many other solutions of the same first-order partial differential 

equation from a known complete solution with that help of that theorem. However, not every 

arbitrary solution can be obtained in that way. In particular, it should be emphasized that neither 

the theorem above nor Cauchy’s method can ever lead to Hamilton’s solution whose arbitrary 

constants are the initial values a1, …, an, and which reduce to zero or a constant for x = a. Rather, 

one will get Hamilton’s solution (if it even exists) by eliminating the constants c1, c2, …, cn from 

V =  – a by means of the n equations: 

kc




 = a

kc




. 

 

 If one demands that the desired solution V should take the given value: 

 

V = f (x, x1, …, xn) , 

 

not for x = a, but for an arbitrarily-given equation: 

 

 (x, x1, …, xn) = 0 , 

 

then one can reduce that problem to the previous one by imagining that one has introduced a new 

variable u into the partial differential equations in place of x by means of the equation y = u, along 

with its complete solution and the given function f. In that way, one will arrive at the following 

theorem: 

 

 VI. In order to use the complete solution: 

 

V =  (x, x1, …, xn, c1, …, cn) + const. 

 

to a first-order partial differential equation between x, x1, …, xn, and V in order to derive the 

solution to that equation that will take the given value: 

 

V = f (x, x1, …, xn) 

 

as soon as one poses the given condition equation: 
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 (x, x1, …, xn) = 0 

 

between the independent variables, one exhibits the 2n + 3 equations: 

 

V =  – a + fa , a = 0 , 

 

kc




 = a

kc




, a a

k k

f

a a

 
−

 
 = a

ka







, 

 

in which k = 1, 2, …, n, ak = a, a1, …, an, and eliminates the 2n + 2 quantities: 

 

a, a1, …, an, c1, …, cn,  

 

from it. The resulting value of V will be the desired solution. 

 

 Here, as in what follows, in general, Fa will always be understood to mean the function that 

emerges from a given function F of x, x1, …, xn by the substitution: 

 

x = a,  x1 = a1, …,  xn = an . 

 

 Since one can ultimately reduce any first-order partial differential equation that includes the 

unknown function itself to another partial differential equation in which the new unknown function 

no longer enters explicitly, and any solution of which will produce a solution to the original 

equation when it is set equal to a constant, whereas conversely any solution to the given equation 

that includes an arbitrary constant will lead to a solution to the transformed equation that one can 

complete by multiplication by an arbitrary constant by solving the given equation for the arbitrary 

constant, Theorem VI will show one how to solve the following problem: 

 Determine the solution to a first-order partial differential equation between x, x1, …, xn such 

that for an arbitrarily-given equation: 

 (x, x1, …, xn) = 0 , 

another, likewise-given, equation: 

f (x, x1, …, xn) = 0 

will exist. 

 That most-general problem will be solved by the 2n + 5 formulas: 

 

(10)    

0, 0, 0, 0,

0,

0,

a a a

a

k k

a a a

k k k

F F f

FF

c c

F f

a c a






 




= = = =
 

+ =
 

   
+ + =

  
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from which the 2n + 4 quantities: 

a, a1, …, an, c1, …, cn, , ,   

 

are eliminated. In so doing, one assumes that a complete solution to the given partial differential 

equation is defined by the equation F = 0 between x, x1, …, xn, and the n arbitrary constants c1, …, 

cn . 

 Here, I shall highlight the following two more-specialized theorems that include the previous 

ones V and VI as special cases, and can be easily verified directly in a similar way: 

 

 VII.  If: 

x = X (x1, …, xn, c1, …, cn) 

 

is the complete solution to a first-order partial differential equation between x, x1, …, xn then one 

will obtain the solution to that equation that will become equal to the given function f (x1, …, xn−1) 

for xn = a when one eliminates the 2n quantities a1, …, an−1, c1, …, cn, , from the 2n + 1 equations: 

 

x = X ,  Xa = fa , 

 

k

X

c




 = a

k

X

c





,  a

k

X

a




= a

k

f

a




,  

 

in which k = 1, 2, …, n, h = 1, 2, …, n – 1. 

 

 VIII.  From the complete solution: 

 

x = X (x1, …, xn, c1, …, cn) 

 

to a first-order partial differential equation between x, x1, …, xn, one will obtain the solution x to 

that equation that assumes the given value: 

 

x = f (x1, …, xn) 

 

as soon as the given condition equation: 

 

(x, x1, …, xn) = 0 

 

exists when one eliminates the 2n + 2 quantities: 

 

a1, …, an, c1, …, cn, ,  

from the 2n + 3 equations: 

x = X ,      Xa = fa,      a = 0 , 
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k

X

c




 = a

k

X

c





,  a a

k k

X f

a a

 
−

 
= a

ka







.  

 

 Theorem VII is interesting because it mediates the transition from the method for integrating 

first-order partial differential equations that was given in Theorem III to the more general Cauchy 

method. 

 
 One can give Theorems V-VIII a more concise formulation with the help of the remark that, as the formulas in 

question show, the solution that is produced by those theorems will always correspond to a certain maximum or 

minimum of the given one. 

 They simplify appreciably for the special case of linear partial differential equations and lead to a symmetric 

expression for the known Jacobi rules for determining the solution of such an equation by a boundary condition 

(Crelle’s J., v. 23, pp. 26). 

 

 Leipzig, October 1870. 

__________ 


