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 In the 1885 issue of these Berichte, and then in somewhat more detail in volume 26 of the 

Mathematischen Annalen, I gave a rigorous basis for LAGRANGE’s method of multipliers for the 

problem that can be regarded as the most general problem of the maximum and minimum of a 

simple integral (1): 

 

 Among all continuous functions y, …, yn of x that satisfy r given first-order differential 

equations and possess given values at the two given limits x0 and x1, find the ones for which a given 

integral: 
1

0

1 1( , , , , , , )

x

n n

x

f x y y y y dx   

attains a greatest or least value. 

 

 However, if one imagines that the differential equation: 

 

0y  − f = 0 , 

 

in conjunction with the limit condition that y0 should vanish for x = x0 , will give the value of the 

function y0 a the location x = x1 as just: 

y01 = 
1

0

x

x

f dx  

 

then one will see that this problem is itself once more only a special case of the following one: 

 

 
 (1) One can always restrict oneself to the first differential quotients of the unknown functions, since when higher 

differential quotients originally appear, one only needs to set the lower derivatives of each unknown function equal to 

new variables and then add those defining equations as new condition equations in order to reduce the problem to one 

with only first differential quotients. 
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 Among all continuous functions y0, y1, …, yn of the independent variable x that fulfill r + 1 

given first-order differential equations: 

 

(1)   0 1 0 1( , , , , , , , , )k n nx y y y y y y     = 0 ,  k = 0, 1, …, r < n 

 

identically, and the last n of which possess given values x0 and x1 of x, but the first one y0 possesses 

a given value for only x = x0, moreover, find the ones that assign a greatest or least value to the 

function y0 at the location x = x1 . 

 

 I have already addressed that most general problem in the calculus of variation for one 

independent variable previously (these Berichte 1878), but at the time, I simply assumed that the 

LAGRANGE rule was obvious. 

 The differential equations that it implies are formed in a completely symmetric way with 

respect to the variables y, and in that way they immediately make the reciprocity relations that 

exist between the present problem and the one in which y0 switches roles with one of the other n 

variables y1, …, yn quite intuitive. 

 Therefore, although the first special problem, insofar as it is disproportionally more important 

than all of the interesting problems up to now in the calculus of variations, is still subordinate to 

it, the general problem, and above all the question of whether its solutions must necessarily satisfy 

the LAGRANGE differential equations, still attracts some interest. 

 The goal of the following analysis is to solve that problem. It will be shown that Lagrange’s 

method of multipliers can, in fact, also remain valid for the general problem, and indeed, they are 

even simpler to establish here in some respects than they were for the previously-treated special 

problem. Namely, whereas certain exceptional cases can occur in the latter problem (1), the 

LAGRANGE rule is true here with no exceptions, and that also immediately explains the fact that 

the LAGRANGE equations are reduced linear differential equations relative to the multipliers in 

the general problem, but unreduced ones in the special one. 

 Naturally, the derivation of the differential equations of the general problem must also be 

combined with a discussion of those equations, i.e., one must also answer the question of when a 

solution to the problem is possible and determinate, and that again induced me to actually carry 

out the reduction of the differential equations of the problem to a first-order partial differential 

equation with only n + 1 independent variables that had been only suggested in 1878. 

 

 

§ 1. – Deriving the differential equations of the problem  

and the number of its integration constants. 

 

 If finite equations occur among the given differential equations (1), or if the differential 

quotients 0y , 1y , …, ny  can be eliminated completely from them, then can always imagine that 

 
 (1) A new and highly original way of establishing the LAGRANGE method by TURKSMA will appear shortly in 

the Math. Ann. and also ignores those exceptions, moreover. 
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one or more of the unknowns y is determined as a function of x and the remaining ones. Thus, it is 

no loss of generality when one assumes that the determinant: 

 

(2)      
0 0 1 1 r ry y y         

 

is neither zero by itself nor does it vanish identically as a consequence of the condition equations 

(1). 

 If the problem is soluble at all in general (i.e., with no restriction on the prescribed boundary 

values) then as long as the latter do not take on entirely special exceptional values, it must, in any 

event, also admit solutions for which the determinant (2) is not identically zero. 

 I imagine that those solutions have been found already and denote them by just y0, y1, …, yn 

(such that in what follows y0, y1, …, yn will mean well-defined continuous functions of x, but also 

that their first derivatives with respect to x0 and x1 will be assumed to be continuous). 

 Therefore, for all continuous variations y1, …, yn that vanish for x = x0 and x = x1 and satisfy 

the r + 1 linear differential equations: 

 

(3)  
0

( )
n

k i i k i i

i

y y y y   
=

   +  = 0 , 

 

the variation y0 must assume the value zero at the location x = x0 , as well as the location x = x1 . 

 One then addresses the problem of deriving differential equations from the demand that our 

solutions y0, y1, …, yn must necessarily satisfy and which, at the same time, also allows one to 

determine those solutions, and one will again arrive at the problem of calculating the values of 

those r +1 variations y0, y1, …, yr from equations (3), which are soluble for the differential 

quotients of those variations themselves. 

 To that end, I multiply the r + 1 condition equations (3) by the temporarily-undetermined 

factors k, and then add them and write the sum in the form: 

 

(4)    
0 0 0 0

n r n r
k k i

i k k i i k k i

i k i k

d yd
y y y y

dx dx

 
     

= = = =

    
  + −  

  
     = 0 . 

 

Now, from the assumption that was made about the determinant (2), the r + 1 equations: 

 

(5)     
0

r
k k

k k

k

d y
y

dx





 
 

=

  
 − 

 
  = 0 ,  = 0, 1, …, r 

 

are soluble for the differential quotients of the multipliers 0, 1, …, r, and they therefore define 

an abbreviated system of r + 1 first-order linear differential equations in the 0, 1, …, r, and x 

that admit the linearly-independent system of solutions: 
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0 = 
0

 , 1 = 
1

 , …, r = 
r

 ,  = 0, 1, …, r. 

 

If one successively assigns those r + 1 different systems of values to the multipliers then one will 

get the r + 1 equations: 

 

0 0 1 0

n r n r
k k

i k k i k k

i k r k

d yd
y y y y

dx dx


 

 


 
     

= = = + =

   
  + −  

   
     = 0 

 

from (4), and since all variations y should vanish for x = x0 , the equations: 

 

(6)  
0 0

n r

i k k i

i k

y y  
= =

    = − 
1

0
0 0 1 0

xn r n r
k k

i k k i k k

i k r kx

d y
y y dx y y

dx


 

 


 
     

= = = + =

  
  − − 

 
     

 

will arise from them upon integrating between the limits x0 and x1 . The determinant of those r + 

1 equations: 
0 1

0 1 0 0 1 1

r

r r ry y y              

 

is not zero, so it immediately yields the desired solutions y0, y1, …, yr to equations (3). 

 Furthermore, if we choose x0 and x1 such that this determinant does not vanish for x = x0 and x 

= x1 either then equations (6) will also still be soluble for y0, y1, …, yr at those two locations. 

When applied to the values x0 and x1 of x, on the one hand, they will show that y0, y1, …, yr 

already assume the desired value of zero at the location x = x0 by themselves, and on the other 

hand, they will imply the r + 1 linearly-independent equations: 

 

(7)   

1

0

0 0

r r

i k k

k x x

y y 



  
= = =

 
  

 
   = − 

1

0
1 0

x n r
k k

k k

r kx

d y
dx y y

dx


 

 


 
  

= + =

  
 − 

 
   

 

for the values y01, y11, …, yr1 of those variations at the location x = x1 . One will obtain values 

for the y1 themselves that have the form: 

 

y1 = − 
1

0
0 1 0

xr n r
k k

k k

r kx

d y
c dx y y

dx


  
  

 

 
  

= = + =

  
 − 

 
     

 

from them. However, one can bring the constant factors c

  under the integral sign and then 

combine all integrals into one. In that way, when one sets: 

 

(8)  
0

r

kc 





=

  
k

 , 
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one will find that: 

(9)    y1 = − 
1

0
1 0

x n r
k k

k k

r kx

d y
dx y y

dx


 

 


 
  

= + =

  
 − 

 
   , 

and from (8), the: 

0 = 
0

 , 1 = 
1

 , …, r = 
r

  

 

in that are, in turn, solutions to the differential equations (5). 

 The basic demand of our problem that y0 must vanish for x = x1 at the same time as y1, …, 

yn will then reduce to the demand that the equation: 

 

(10)   0

yW   
1

0

0
0

1 0

x n r
k k

k k

r kx

d y
dx y y

dx


 



 
  

= + =

  
 − 

 
   = 0 

 

must be fulfilled by all continuous functions yr+1, …, yn that vanish at the two limits x0 and x1 

and fulfill the r conditions (1): 

 

(11)   
yW 

   
1

0
1 0

x n r
k k

k k

r kx

d y
dx y y

dx


 

 


 
  

= + =

  
 − 

 
   = 0,   = 1, 2, …, r. 

However, if one sets: 

(12) y = 
1

r

z u

  



=

+ , 

 

in which the  are constants and z and u


 mean continuous functions of x that vanish for x = x0 

and x = x1 , and of which the z should remain as arbitrary as possible, while the u


 are chosen 

suitably, then that demand will go to the one that the equation: 

 

(10)     
0 0

1

r

s u
W W 




=

+  = 0 

 

must be a mere consequence of the r equations: 

 

 
 (1) Naturally, one can also conclude immediately from equations (7) that one of the n + 1 equations: 

 
1

0

0
0

1 0

x n r
k k

k k

r kx

d y
dx y y

dx


 



 
  

= + =

  
 − 

 
   = 0 

 

must be a consequence of the remaining ones. 
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(11)     
1

r

s u
W W 

 





=

+  = 0 . 

 

 If one can now choose the functions u


 in such a way that the determinant: 

 

(13)     r  1 2

1 2
r

r

u u u
W W W  

 

is non-zero then equations (11) will not restrict the arbitrariness of the z in any way, but only 

associate every given system of functions zr+1, …, zn with a system of constants 1, …, r that 

satisfy those r equations. 

 Therefore, a relation of the form: 

 
0

sW   1 1 r r

s sW W + +  

 

must exist in that case for all continuous functions z that vanish at both limits, in which the  are 

constants that are independent of the choice of functions z. 

 However, if one sets: 

(14)     − 0

1

r

k k

 



  
=

+   k  

 

then, from (10) and (11), one can write that relation as: 

 
1

0
1 0

x n r
k k

k k

r kx

d y
dx z y

dx


 



 
 

= + =

  
 − 

 
    0 . 

 

Their existence then demands that the coefficient of each independent z in it must vanish. 

 However, from (14), along with the 0

k , the functions: 

 

0 = 0 , 1 = 1 , …, r = r 

 

are again solutions of the differential equations: 

 

(5)    
0

r
k k

k k

k

d y
y

dx





 
 

=

  
 − 

 
  = 0 ,   = 0, 1, …, r . 

 

 Therefore, as long as the determinant (13) is not always zero for all continuous functions u

  

that vanish at both limits, it must necessarily give solutions 0, 1, …, r to the r + 1 equations (5) 

that also simultaneously fulfill the n – r equations: 
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(15)   
0

r
k k

k k

k

d y
y

dx




 
 

=

  
 − 

 
  = 0 ,   = r + 1, …, n . 

 

If we now assume, conversely, that the determinant r is not zero, no matter what continuous 

functions that vanish at both limits one might also set the u


 equal to then that might originate in 

the fact that each individual element: 

 

u
W 

   
1

0
1 0

x n r
k k

k k

r kx

d y
dx u y

dx


  
 



 
 

= + =

  
 − 

 
   

 

is always zero in its own right. However, that requires that each of the sums must satisfy: 

 

0

r
k k

k k

k

d y
y

dx


 



 
 

=

  
 − 

 
   0 , 

 

which then leads directly to the previous result once more. 

 However, it can also be the case that only all of the sub-determinants of degree p of the 

determinant r vanish identically for any 1 < p  r, while any sub-determinant of degree p – 1, say: 

 

p−1  1 2 1

1 2 1
p

p

u u u
W W W −

=  , 

is not zero for all u


. 

 If one then sets: 
1u ,  2u

, …, 1pu
− ;  = r + 1, …, n 

 

equal to any continuous functions of x that vanish at both limits and do not make p−1 vanish and 

then develops the determinant: 

p  1 2

1 2
p

p

u u u
W W W  

 

in the elements pu
W   then that will give: 

(16) p  
1

p

p

u
c W 


=

 , 

in which the coefficients: 

c  
p

p

u
W 




 

of the p elements: 
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pu
W    

1

0
1 0

x n r
k k

k k

r kx

d y
dx u y

dx


  
 



 
 

= + =

  
 − 

 
   ,  = 1, 2, …, p 

 

and therefore the functions: 

1

p

ru +
, …, p

nu  

 

as well, are themselves independent constants, and c  p−1 is non-zero in each case. 

 However, if one sets: 

(17)      
1

p

kc 





=

   k  

then one can write formula (16) as: 

 

p  
1

0
1 0

x n r
p k k

k k

r kx

d y
dx u y

dx


 



 
 

= + =

  
 − 

 
   . 

 

 Now, by assumption, p is zero for all arbitrary functions 
1

p

ru +
, …, p

nu  that vanish at both 

limits, so the quantities: 

0 = 0 , 1 = 1 , …, r = r , 

 

which already satisfy the differential equations (5), due to (17), will, at the same time, also be 

solutions to the differential equations (15), and one then sees that: 

 

 In every case, the solutions y0, y1, …, yn to our problem must possess the property that the n + 

1 differential equations: 

(18)    
0

r
k k

k k

k

d y
y

dx




 
 

=

  
 − 

 
 , i = 0, 1, …, n  

 

produce common solutions 0, 1, …, r . 

 

 r + 1 new unknowns will be added to the original n + 1 unknowns y0, y1, …, yn in the multipliers 

0, 1, …, r . However, along with the n + 1 differential equations (18) for them that were just 

obtained, one will also have the r + 1 given differential equations (1) themselves and therefore 

precisely as many equations as unknowns. 

 However, in order for be able to assign given values to the solution y0 at x = x0 and the solutions 

y1, …, yn at the two given places x0 and x1, those solutions must include 2n + 1 arbitrary constants. 

 Now, equations (18) will remain unchanged when one replaces 0, 1, …, r with c 0, c 1, 

…, c r , in which c is an arbitrary constant. Of the arbitrary constants that come about when one 

completely integrates the system of differential equations (1) and (18), only one of them will 

appear as a common factor in the solutions  then. As a result, solving our problem can be possible 

and determinate only when the system of differential equations has order 2n + 2. 
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 However, if one sets: 

 

(19)   0 0 + 1 1 + … + r r 

 

then one can write the differential equations (18) more concisely as: 

 

(20)     
i

d

dx y




 = 

iy




, i = 0, 1, …, n , 

 

and one easily sees that the system of differential equations (1), (20) will have order 2n + 2 if and 

only if the n + r + 2 equations: 

(21) 
iy




 = vi , k = 0 

determine the n + r + 2 unknowns: 

 

(22) 0y , 1y , …, ny , 0, 1, …, r . 

 

 In fact, if equations (21) can be solved for those unknowns then let: 

 

(23) iy  = ( )iy , k = (k) 

  

be the solutions, and their substitution will be indicated by enclosing them in ( ). 

 One can then replace equations (1), (20) with the 2n + 2 first-order differential equations in y0, 

y1, …, yn , v0, v1, …, vn, and x : 

(24) idy

dx
 = ( )iy , idv

dx
 = 

iy

 
 
 

 , 

and the r + 1 finite equations: 

 

(25)      k = (k) . 

 

The complete integration of the system (24) implies the solutions y of equations (1), (20) 

immediately, and upon substituting its solutions in (25), one will also get the solutions  to those 

equations. Therefore, along with the system (24), the original system (1), (20) will certainly have 

order 2n + 2. 

 On the other hand, from our assumption on the determinant (2), the last r + 1 equations (21) 

will not allow us to eliminate the y  in any case. Hence, should an equation that is free of the 

quantities (22) be derivable from all n + r + 2 equations (21), then it could not be free of all v in 

any event. However, if equations (21) imply the equation: 

 

 (x, y0, y1, …, yn , v0, v1, …, vn) = 0 
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then once one has: 

replaced vi with the corresponding 
iy




, 

along with the latter equation, the equation: 

 

0 0

n n

i

i ii i i

d
y

x y v dx y= =

   
+ +

   
   = 0 

 

will also become an identity because of equations (1), and it will then follow from equations (20) 

that: 

(26)    
0 0

n n

i

i ii i i

y
x y v y= =

   
+ +

   
   = 0 , 

so one will also have: 

(27) 
0

n

i i i i

d

v y dx y=

   
− 

   
  = 0 . 

 

Now, equation (26) is, in turn, either a mere consequence of equations (1) or it is not. 

 In the first case, from (27), one of the n + 1 equations (20) is also a consequence of the 

remaining ones and equations (1). Equations (1), (20) then reduce to less than n + r + 2 equations, 

so it will no longer suffice to define all n + r + 2 unknowns y and  as functions of x, and the 

problem will be indeterminate. 

 That case will always occur, among other things, when one has introduced x as only an 

auxiliary variable that is extraneous to the original problem. Namely, equations (1) will then be 

free of x, and at the same time homogeneous of order zero in the differential quotients 0y , 1y , …, 

ny . From (1) (by itself, resp.) one will get: 

  0 , 

as well as: 

0

n

i

i i

y
y=





   0 . 

 

However, if one differentiates both relations completely with respect to x and subtracts the 

derivatives from each other then one will see that equations (1) also imply the equation: 

 

0

n

i

i i i

d
y

y dx y=

  
 − 

  
  = 0 . 

 

 By contrast, when equation (26) is not merely a consequence of equations (1), from (27), one 

can replace equation (26) itself with one of the n equations (20). However, the system (1), (20) 

will then contain only n second-order differential equations, and it is then clear that its integration 

(in the event that the system determines all unknown functions at all) can only introduce fewer 
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arbitrary constants in each case than it does in the general case. Solving the problem will then be 

either impossible or, in turn, indeterminate. 

 

 

§ 2. – Reducing the differential equations of the problem. 

 

 From the foregoing, the solution of our problem can be possible and determinate only when 

the n + r + 2 equations: 

(21) 
iy




 = vi , k = 0 

 

are soluble for the n + r + 2 unknowns iy  and k , and the substitution ( ) of the solutions will take 

its differential equation to the 2n + 2 first-order differential equations: 

 

(24) idy

dx
 = ( )iy  , idv

dx
 = 

iy

 
 
 

 

 

Now, it is known that these differential equations possess the canonical form and are therefore 

equivalent to a first-order partial differential equation with n + 2 independent variables, but without 

the unknown function itself. 

 However, the peculiarity in the system (24) is that it can always be reduced to a system of only 

2n + 1 first-order differential equations, and then likewise to a first-order partial differential 

equation with only n + 1 independent variables that does not, however, include the unknown 

function itself. 

 If one defines H to be a function of the variables x, y0, y1, …, yn , v0, v1, …, vn by the equation: 

 

(28) H  
0

( ) ( )
n

i i

i

v y
=

 −    
0

( )
n

i i

i

v y
=

 , 

 

and one varies the variables y and v then when one observes the identities: 

 

iy

 
 

 
  vi , (k)  0 , 

that will immediately give: 

H  
0

( )
n

i i i

i i

y v y
y

 
=

   
 −  

   
  , 

i.e.: 

(29)     
i

H

v




  ( )iy , 

i

H

v




  − 

iy

 
 
 

 . 
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Therefore, equations (24) will possess the canonical form: 

 

(30) idy

dx
 = 

i

H

v




, idv

dx
 = − 

i

H

y




. 

 

However, at the same time, from (28) and (29): 

 

H  
0

n

i

i i

H
v

v=




  

 

is then homogenous of degree one in the variables v0, v1, …, vn . 

 If one sets: 

(31)      
0

hv

v
  − ph 

then H will take the form: 

 

(32)    H  v0 F (x, y0, y1, …, yn , p0, p1, …, pn) , 

 

and when one calculates the values of the partial differential quotients of H from that and employs 

the relation: 

hdp

dx
  − 0

0

1 h
h

dv dv
p

v dx dx

 
+ 

 
 

 

then one will see that the system (30) will, in its own right, again reduce to the 2n + 1 first-order 

differential equations between x, y0, y1, …, yn, p0, p1, …, pn : 

 

(33)  0dy

dx
 = 

1

n

h

h h

F
F p

y=


−


 ,  hdy

dx
 = −

h

F

p




,  hdp

dx
 = 

0

h

h

F F
p

y y

 
+

 
, 

 

whose integration will determine v0 by the quadrature: 

 

log v0 = − 
0

F
dx

y




 + const. 

 

With that, it is once more shown in a new way that when our problem is indeterminate, the 

solutions y to its differential equations can no longer include more than 2n + 1 arbitrary constants. 

However, at the same time, those differential equations themselves are reduced to a first-order 

partial differential equation with only n + 1 independent variables that include the unknown 

function itself, at least in general. 

 Since the system (33) is equivalent to the partial differential equation: 
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0y

x




 = 0 0 0

0 1

1 2

, , , , , , , ,n

n

y y y
F x y y y

y y y

   
 

   
 . 

If: 

y0 = Y0 (x, y0, y1, …, yn, , 1, …, n) 

 

is any complete solution of it then the 2n + 1 equations, with the 2n + 1 arbitrary constants , 1, 

…, n , , 1, …, n : 

y0 = Y0 , 
0

h

Y






 = 0

h

Y







, ph = 0

h

Y

y




 

 

will define the complete integral equations of the system (33) (1). 

 However, one will get the function F directly from (21), (28), (31), and (32) when one uses the 

n + r + 1 equations: 

0

hy

y









 = − ph ,  k = 0 

to determine the n + r + 1 unknowns: 

 

0y , 1y , …, ny  ; 0 : 1 : … : r  

 

and substitute the values of the y  in: 

F = 0

1

n

h h

h

y p y
=

 −  . 

 

 One then gets the following rule for reducing the differential equations of the problem to a 

partial differential equation (2): 

 

 One solves the n + r + 1 equations: 

 

0

0h h

y

y y y

 
+

   
= 0 , k = 0 ,  h = 1, 2, …, n ; k = 0, 1, …, r 

 

for the n + r + 1 unknowns: 

0y , 1y , …, ny  ; 0 : 1 : … : r , 

 

and upon substituting the solutions y , one will convert the equation: 

 
 (1) JACOBI, Werke, Bd. V, pp. 291.  

 (2) These Berichte, 1878, pp. 20.  
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0y

x




 = 0

0

1

n

h

h h

y
y y

y=


 −


  

 

into a first-order partial differential equation between the unknown function y0 and the n + 1 

independent variables x, y1, …, yn . 

 If one has found any complete solution to that partial differential equation: 

 

y0 = Y0 (x, y0, y1, …, yn, , 1, …, n) 

 

then one will get the complete solutions y to the differential equations (1), (20) immediately upon 

solving the n + 1 equations with the 2n + 1 arbitrary constants , 1, …, n, , 1, …, n : 

 

y0 = Y0 , 
0

h

Y






 = 0

h

Y







, 

 

and at the same time, the ratios of their multipliers  will be determined, while one can ultimately 

find the latter from one of equations (20) by a mere quadrature. 

 

____________ 

 

 

 


