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 The way that Pfaff adopted for the integration of an equation of the form: 
 

X1 dx1 + X2 dx2 + … + Xm dxm = 0 
 

rests upon the repeated application of one and the same transformation, which can be 
expressed by the following problem: 
 
 Determine x1, x2, …, xm as mutually independent functions of m new variables t, α2, 
…, αm that give identically: 

I.      
1

m

h h
h

X dx
=
∑  =

2

1 m

i i
i

d
N

α
=
∑A , 

 
where N is a function of t, α2, …, αm , but the quantities A2, …, Am are functions of just 
α2, …, αm , 
 
and it is necessary for the entire construction of the Pfaff method, as well as the general 
applicability of the Pfaff method, that this problem is always soluble for an even m, 
while, in general, no solution is allowed when m is odd.  Neither the one case nor the 
other one has actually been proved up to now. 
 Namely, as far as I can see, it will always be assumed that the so-called first Pfaff 
system of ordinary differential equations by itself already suffices to solve the problem.  
However, this is correct only as long as the skew determinant that is defined from the 
elements: 

αiχ = i

i

XX

x x
χ

χ

∂∂ −
∂ ∂

 

 
does not vanish (a case that will generally be considered exclusively, as a rule).  The goal 
of the present note is to show this, as well as to place the Pfaff method on firm 
foundations, and everything that does not seem immediately necessary for this purpose 
has been left aside, while in line with the desire to found the method in an absolutely 
clear manner, perhaps one might excuse the presence of entirely too much rigor in regard 
to some other points, namely, the ones that one ordinarily considers to be self-
explanatory. – 
 
 The requirement (I) first leads to the condition: 
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and likewise gives the following values for the Ai : 
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These should be free of t.  Therefore, equation (1) and the m equations: 
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are the necessary and sufficient conditions that the problem is supposed to satisfy by way 
of independent functions x1, x2, …, xm of the variables t, α2, …, αm . 
 One now has: 

(4)    
N

t

∂
∂

B  ≡ 
1 1

m m
h h h h

h h

NX x X x
N

t t t t= =

∂ ∂ ∂ ∂
−

∂ ∂ ∂ ∂∑ ∑ , 

 

    
i

N

α
∂
∂

B
 = 

2

1 1

m m
h h h

h
h hi i

X x xN
N NX

t t tα α= =

∂ ∂ ∂∂ + +
∂ ∂ ∂ ∂ ∂∑ ∑B . 

One then has: 
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As a result of conditions (1) and (3), one must then have for αi = t, α2, …, αm : 
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and likewise formulas (4) and (5) yield: 
 
 II. One can, conversely, replace the original conditions (1) and (3) with the m 
conditions (6), as long as it is possible to satisfy the latter ones without making ∂N / ∂t = 
0.  By comparison, if it then follows from equations (6) that ∂N / ∂t = 0 then one must add 
the condition (1) to these equations. 
 
 Conditions (6), however, may be deduced in another, simpler way. 
 Since: 
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one can, in fact, next write these equations as: 
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Now, should x1, …, xm be independent functions of t, α2, …, αm then: 
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would be non-zero.  The conditions (6) thus decompose into the following ones: 
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However, by means of the formula: 
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it can be converted into: 
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If one then sets: 

(7)      h

h

X X

x x
χ

χ

∂ ∂−
∂ ∂

= αχh 

 
then conditions (6) finally reduce to the following m equations: 
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The present problem will then be solved in all situations by the m + 1 equations (1) and 
(8), assuming that one can satisfy them by independent functions x1, …, xm . 
 The latter is, however, always the case, as long as the determinant: 
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of the m + 1 equations (8) and (1) is zero. 
 Therefore, if ∆ = 0 then one can always satisfy these equations by values of ∂xχ / ∂t, 
which are not all zero.  However, if (1) and (8) were fulfilled by the assumptions: 
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where u1, u2 , …, um are not all zero, then, since t itself does not appear at all in equations 
(1) and (8), u1, u2 , …, um , M are functions of only x1, x2 , …, xm , and when, say, u1 is 
non-zero, the values: 
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when coupled with the value: 
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i.e., the m + 1 equations that emerge from (1) and (8) when one assumes that t = x1 . 
 Equations (9), however, define a system of m – 1 ordinary differential equations 
between x2, …, xm, and x1 .  Therefore, if: 
 

xχ = ϕχ(x1, α1, …, αm) 
 

are its complete solutions then the values: 
 

x1 = x1,  x2 = ϕ2, …,  xm = ϕm , 
 
in which they all fulfill the condition equations of the transformation, and likewise: 
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which are then non-zero, yield solutions of the given problem *). 
                                                
 *) If one wishes to also find the associated values of the coefficients Ai themselves then one must only, 
after substituting any complete solution, compute from (10) by a simple quadrature: 
 

N = 
1

1

M
dx

u
eγ
∫

, 



A. Mayer. On the Pfaff problem.                                                5 

 The problem is, in fact, always soluble, as long as the determinant ∆ is zero, and 
indeed its solution will then be obtained by complete integration of a system of m – 1 
ordinary differential equations. 
 By contrast, it possesses no solution when ∆ is non-vanishing.  Equations (1) and (8) 
can then be satisfied only for the values: 
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and this contradicts the demand that x1, x2, …, xm should be independent functions of t, 
α2, …, αm . 
 However, as a skew determinant of degree m + 1, ∆ is zero when m is even, and 
generally non-zero when m is odd.  Therefore, one has the theorem: 
 
 III.  The given transformation problem is soluble when and only when m is an even 
number, and indeed in this case its solution requires the complete integration of a system 
of m – 1 ordinary differential equations. 
 
 How one can construct the Pfaff method for the integration of any linear total 
differential equation simply and naturally from this theorem was set down by Gauss in 
his announcement of the Pfaff treatise *) in such classic brevity and clarity that it would 
be completely superfluous to go into it here. 
 By contrast, the validity in regard to the first Pfaff system emerges from the foregoing 
alone, or the statement made by equations (8) would still not be clear.  We thus now fix 
our attention on the case: 

m = 2n 
more closely! 
 In general, the determinant: 
 

A = ±∑  α11 α22 … αmm 

 
is non-zero here.  However, if this is the case then equations (8) are mutually 
independent.  Therefore, equation (1), when it, together with equations (8), defines a 
system of vanishing determinant ∆, must necessarily a mere consequence of these m 
equations. 
 In fact, when A is not zero, none of the sums: 
                                                                                                                                            
and substituting this value for N in the formula that arises from (2): 
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where one can give the arbitrary constant γ the value 1, since it can have no influence upon the demand that 
Ai must be free of x1, and is then removed from the transformation I itself.  This latter computation, 
however, can be completely spared, when one has introduced the initial values of x2, …, xm as arbitrary 
constants in the solutions of system (9) using the Jacobi method (Crelle J., 17, pp. 156). 
 *) Gauss, Werke III, pp. 231. 
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vanish, where one understands Aχh to mean the coefficient of the element αχh in the 
determinant A.  However, one must then have each Xh = 0.  Therefore, let, say: 
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be non-zero.  If we then take t = x1 then equations (8) become: 
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so ∂ log N / ∂x1 has a finite and non-zero value.  From II, equations (8) alone therefore 
suffice for a solution to this problem in the case considered. 
 On the contrary, if A = 0 for even m then, for that reason, the skew determinant of 
degree m: 
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does not need to be zero.  It is then independent of X1, while for a given X2, …, Xm the 
equation A = 0 is a partial differential equation of first order for X1 .  However, when ∆11 
is non-zero then not all sub-determinants of mth degree vanish in the determinant ∆, and 
the m + 1 equations (8) and (1) then reduce to only m equations, but no fewer.  They then 
uniquely determine their unknowns, which are the ratios: 
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As long as one can then give values to these unknowns that satisfy equations (1) and (8), 
these are the only values that satisfy these equations in the case we assumed.  However, 
one obtains such values when one sets ∂ log N / ∂t = 0 and then determines the ratios of 
the ∂xχ / ∂t from the m + 1 equations: 
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Such a determination is possible.  Then since, by assumption, the skew determinant A of 
degree m = 2n vanishes, all of its sub-determinants of degree m – 1 are also = 0, and the 
first m equations (11) then reduce to m – 2 equations.  In the case in question then, 
equations (1) and (8) necessarily yield ∂ log N / ∂t = 0 and then, from II, system (8) alone 
no longer suffices as a solution of the problem, but this will instead first occur by means 
of equations (11). 
 When illuminated in this light, the problem does not, by any means, need to be 
indeterminate in the case where the determinant becomes A = 0 for a given m *).  Rather, 
such an indeterminacy will first enter the picture when the determinant A vanishes, as 
well as all of its sub-determinants of order m – 2 or even lower order, and indeed there 
always exists an even indeterminancy in a singular way; i.e., in such a case, one can 
always choose an even number of the m – 1 ratios: 
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arbitrarily, or, what will always be most convenient, set them equal to zero.  Then, when 
all of the sub-determinants of degree 2r in a skew determinant vanish, then, as Frobenius 
had proved ** ), all sub-determinants of degree 2r – 1 also vanish.  Since m = 2n, the 
vanishing of all sub-determinants of degree m – 2p in the determinant A necessarily 
implies the vanishing of all sub-determinants of degree m – 2p – 1, and this then reduces 
the m + 1 equations (11) to m – 2p – 1 equations, such that one can also therefore satisfy 
                                                
 *) For the total differential equation: 
 

f1 dx1 + f2 dx2 + … + pn dxn – dz = 0, 
 

e.g., the one that is equivalent to the partial differential equation of first order that is free of z: 
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equations (8) and (1) reduce to the known 2n – 1 equations: 
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and the transformation problem remains completely determined here. 
 
 ** ) Borchardt’s J., 82, pp. 242. 
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them by values of ∂xχ / ∂t, which are not all zero, after one has set a certain 2p of the 
variables x equal to arbitrary constants. 
 If one recalls the Jacobi method for presenting the various total differential equations 
by the introduction of the initial values from the outset, which is what the integration of 
the given equation will successively come down to in the Pfaff method, then one easily 
overlooks how this advantage is handed down by the first p – 1 reductions step-by-step, 
with each step decreasing by two units. 


