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 Any single linear first-order partial differential equation is equivalent to a certain 
system of ordinary differential equations.  Similarly, an easily-recognizable reciprocal 
relationship exists between systems of first-order linear partial differential equations that 
admit a common solution and certain systems of linear total differential equations that 
has already been pointed out many times and employed in the individual cases, moreover; 
e.g., in Ampère’s method for integrating second-order partial differential equations that 
possess an intermediate integral. 
 In fact, if the m – 1 simultaneous partial differential equations: 
 
(I)    A1 (f) = 0, A2 (f) = 0, …, Am−1 (f) = 0, 
 
in which one generally has: 

Ai (f) = i i
m n

i m n

f f f
a a

x x x

∂ ∂ ∂+ + +
∂ ∂ ∂

⋯ , 

 
and the coefficients ika  are given functions of x1 , x2 , …, xn , possess a common solution f 

then that solution will always be a solution of the linear partial differential equation: 
 

λ1 A1 (f) + λ2 A2 (f) + … + λm−1 Am−1 (f) = 0, 
 
as well, no matter what arbitrary functions of x1 , x2 , …, xn one might set λ1, λ2, …, λm−1 
equal to, so when that solution f is set equal to an arbitrary constant, it will be an integral 
of the n – 1 ordinary differential equations: 
 

dx1 : dx2 : …: dxn : dxm : …: dxn = λ1 : λ2 : …: λm−1 : 
1

1

m
h

h m
h

aλ
−

=
∑  : … : 

1

1

m
h

h n
h

aλ
−

=
∑ , 

  
and as a result, it will also be an integral of the n – m + 1 linear total differential 
equations: 
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(II)    dxk = 
1

1

m
h
k h

h

a dx
−

=
∑ ,  k = m, m + 1, …, n, 

 
which emerge from the foregoing by eliminating the λ1 : λ2 : … : λm−1 , and one will see 
immediately that conversely when equation (II) possesses an integral f = const. – i.e., 
when there is a function f of x1 , x2 , …, xn whose differentials are identically zero as a 
result of equations (II) alone – that function will be a common solution of equations (I). 
 The problem of finding a common solution to the m – 1 linear partial differential 
equations (I) is then identical to the problem of discovering an integral to the n – m + 1 
linear total differential equations (II).  From that, one might expect that any method that 
shows us how to integrate equations (II) must, at the same time, also contain the germ of 
a method for integrating equations (I).  That thought gives rise to the following 
investigations, whose main goal is to find a way by which one can arrive at a common 
solution to several simultaneous linear first-order partial differential equations with the 
same unknown function by as few integrations as possible. 
 However, a very essential simplification can be introduced into that from the outset.  
Namely, as Clebsch showed (1), any system of partial differential equations of that kind 
that possesses a common solution at all can be reduced to a Jacobi system – i.e., to a 
system of the form (I), in particular, in which the (m – 2)(m – 1) / 2 identities exist 
between the operators A: 
 
(III)    Ai (Ak (f)) − Ak (Ai (f)) = 0, 
 
so it would only be necessary to direct one’s attention to those systems of total 
differential equations whose coefficients fulfill the conditions that follow from (III). 
 Those systems possess the property that they will be satisfied by n – m + 1 integrals, 
and one will next show that their integration comes down to the complete integration of 
m – 1 systems of n − m + 1 first-order ordinary differential equations, as Natani 
remarked before (*), under the assumption of a system of total differential equations that 
possess the given number of integrals.  However, by a transformation of the given 
equations that is constructed from them, and with the help of which, P. du Bois-
Reymond showed how to reduce the linear total differential equations that are integrable 
by an equation to just one second-order ordinary differential equation in two variables 
(** ), one can arrange that the integration of the first of those m − 1 systems will already 
suffice to completely integrate the given equations, which will simultaneously convert the 
complete solution of the equivalent Jacobi system to the complete integration of a single 
system of n – m + 1 first-order ordinary differential equations.  Finally (and this is much 
more important in the applications), that will imply that in order to ascertain a common 
solution of the Jacobi system, it is only necessary to know a single integral of that system 
of ordinary differential equations, by which, e.g., the number of integrals that one will 
need for the complete solution of a first-order nonlinear partial differential equation when 
one ignores the first one, can be reduced by precisely one-half in comparison to the 

                                                
 (1) Crelle’s J. 65, pp. 257.  
 (*) Crelle’s J. 58, pp. 303. 
 (** ) Crelle’s J. 70, pp. 312. 
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number of integrals that one was required to know for the most preferable of the earlier 
methods, namely, the Weiler-Clebsch method (*). 
 
 

§ 1. – Conditions for unrestricted integrability. 
 

 One will arrive at the systems of linear total differential equations that shall be 
considered exclusively in what follows, when one sets n – m + 1 arbitrary, mutually-
independent functions of n variables x1, x2, …, xn equal to arbitrary constants and 
completely differentiates the equations that thus arise.  When one solves the derived 
equations for n – m + 1 of the n differentials, one will get n – m + 1 simultaneous 
differential equations of the form: 
 

(1)    dxk = 
1

1

m
h
k h

h

a dx
−

=
∑ , k = m, m + 1, …, n, 

 
in which the h

ka  are given functions of all n variables, and which can be satisfied as a 

consequence of the way that they arose in such a way that one sets xm, xm+1, …, xn equal 
to suitable functions of the independent variables x1, x2, …, xm−1, which are functions that 
include n – m + 1 arbitrary constants, moreover.  In order to be able to refer to them 
briefly, I would like to call such a system of linear total differential equations (1) an 
unrestricted integrable system. 
 Conversely, when a system of linear total differential equations of the form (1) is 
given, one next asks: Under what conditions is it unrestricted integrable, and furthermore, 
when those conditions are fulfilled, how can one integrate the system? 
 Should n – m + 1 functions xm, xm+1, …, xn of the independent variables x1, x2, …, xm−1 
be given that satisfy the given equations (1) identically, if h and i are any two distinct 
numbers from 1, 2, …, m – 1 then it must follow for the functions: 
 

(2)     k

h

x

x

∂
∂

= h
ka , k

i

x

x

∂
∂

= i
ka  

 
that when one lets the characteristic d suggest that in the differentiation xm, …, xn are to 
be regarded as functions of xh and xi for which the relations (2) are valid, one will have: 
 

h i
k k

i h

da da

dx dx
− = 0, 

 
or that those functions must satisfy the equations: 
 

(3)     
h i h in

i hk k k k

mi h

a a a a
a a

x x x xλ λ
λ λ λ=

 ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
∑  = 0. 

                                                
 (*) Crelle’s J., 65, pp. 263.  
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If one introduces the general notation Ai (f) for the operation: 
 

(4)     Ai (f) = 
n

i

mi

f f
a

x xλ
λ λ=

∂ ∂+
∂ ∂∑  

 
then equations (3) can be written more briefly as: 
 
(5)     ( ) ( )h i

i k h kA a A a−  = 0. 

 
Those conditions, whose number is equal to: 
 

(n − m + 1) 
( 1)( 2)

2

m m− −
, 

 
must be satisfied by those functions xm , …, xn of the independent variables x1, …, xm−1 
that solve equations (1).  However, should those functions include n – m + 1 constants, as 
will be assumed here, that will be possible only when those conditions are already 
satisfied identically. 
 The existence of the relations (3) or (5) as identities will then be necessary whenever 
equations (1) are supposed to be unrestricted integrable.  That this is also sufficient will 
be shown in the following §, which will show how one can determine xm , …, xn as 
functions of x1, …, xm−1 and n – m + 1 arbitrary constants in such a way that equations (1) 
will be satisfied identically. 
 First, I shall point out that since, from (4): 
 

Ai (Ak (f)) − Ak (Ai (f)) = { }( ) ( )
n

i
i

m

f
A a A a

x
λ
λ λ λ

λ λ=

∂−
∂∑ , 

 
the identities (5) also imply the following: 
 
(6)     Ai (Ak (f)) = Ak (Ai (f)), 
 
which will be true for an arbitrary function f, and can conversely replace the conditions 
(5). 
 
 

§ 2. – Reducing the system (1) to m – 1 systems of n – m + 1 first-order  ordinary 
differential equations when the relations (3) are true identically.  

 
 If xm , …, xn are n – m + 1 functions of the independent variables x1 , …, xm−1 that 
fulfill equations (1) then they must next satisfy the n – m + 1 equations: 
 

(7)    
1

mx

x

∂
∂

= 1
ma , 1

1

mx

x
+∂

∂
= 1

1ma + , …, 
1

nx

x

∂
∂

= 1
na . 
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Those equations, in which then x2, …, xm−1 enter only as constants, define a system of n – 
m + 1 ordinary differential equations between xm , …, xn  and x1 . 
 Therefore, if: 
 
(8)   ϕλ (x1 , x2, …, xm−1 , xm , …, xn) = cλ ,  λ = m, m + 1, …, n 
 
are n − m + 1 mutually-independent integrals of that system then the solutions xm , …, xn  
of the equations (1) must be included in equations (8), whose integration constants cλ can 
depend upon only x2, …, xm−1 . 
 Equations (8), as complete integral equations of the system (7), are always soluble for 
xm , …, xn .  One can then employ those equations in order to introduce the xm , …, xn in 
place of cm , …, cn as new dependent variables. 
 Completely differentiating (8) and substituting equations (1) will yield: 
 

dcλ = 
1

1

m n
h
k h

h k mh h

a dx
x x

λ λϕ ϕ−

= =

 ∂ ∂+ ∂ ∂ 
∑ ∑ . 

 
However, the coefficient of dx1 in this is identically zero, because equations (8) are 
integrals of the system (7), by assumption.  When one introduces the notation (4), all that 
will remain is: 

(9)     dcλ = 
1

2

( )
m

h h
h

A dxλϕ
−

=
∑ . 

 
The newly-introduced quantities cm , …, cn will then be determined from those n − m + 1 
equations, in which one replaces the xm , …, xn on the right-hand side with the values that 
follow from equations (8). 
 However, should equations (8) remain integrals of the system (7), then the cλ would 
have to be independent of x1 ; hence, x1 cannot occur in equations (9). 
 That is in fact the case.  Namely, since: 
 

A1 (Ah (f)) = Ah (A1 (f)), 
 
from (6), and A1 (ϕλ) = 0, one will also have that: 
 

f = Ah (ϕλ) 
 
is a solution of the equation A1 (f) = 0, or that Ah (ϕλ) = const. is an integral of the system 
(7).  Therefore, after substituting the values of xm , …, xn that one gets from the integrals 
(8) of that system, the expressions Ah (ϕλ) will be independent of x1 . 
 Equations (9) will all be free of x1 then, and therefore nothing can change when one 
assigns any values to those variables. 
 The given system (1) has now been reduced to the system (9), which includes only m- 
2 independent variables.  Obviously, the latter system can be first exhibited, in general 
(i.e., as long as one cannot establish the system of integrals of equations (7) by which the 
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cλ are introduced as integration constants more precisely), only after one has found those 
integrals.  However, it will be most advantageous if one takes the cλ to be a well-defined 
system of integration constants of equations (7), namely, the initial values of the 
dependent variables, if one is to be able to define equations (9) before all integrations. 
 One can see that directly from the system (9), but it will be clearer when one starts 
from another system that is equivalent to equations (9). 
 If one lets: 
 
(10)    xk = ψk (x1, x2, …, xm−1, c m , …, cn) 
 
denote the solutions of the integrals (8) for xm , …, xn or the complete solutions of the 
differential equations (7) and introduces the cλ directly as new dependent variables in 
equations (1) then one will now get the equations: 
 

(11)    
n

k

m

dc
c λ

λ λ

ψ
=

∂
∂∑ = 

1

2

m
h k
k ha dx

xλ λ

ψ−

=

 ∂− ∂ 
∑  

 
for the determination of the cλ , in which the h

ka  are also expressed in terms of the x1, x2, 

…, xm−1, cm , …, cn by the substitutions (10) and in exhibiting them, one uses the fact that 
one will have: 

h k
ka

xλ

ψ∂−
∂

= 0 

identically by those substitutions. 
 When one solves those n – m + 1 equations for the dcm , …, dcn , one must, in turn, 
arrive at equations (9).  One can then replace the latter with equations (11), and since 
from the foregoing, equations (9) are free of x1, it will be permissible to also assign any 
arbitrary value to the variable x1 for which those equations still remain soluble directly in 
equations (11) before solving them. 
 Having assumed that, now let: 
 
(12)    xk = χk (x1 , x2 , …, xm−1 , 

0
mx , …, 0

nx ) 

 
be the complete solutions of equations (7) when expressed in terms of x1 and the values 

0
mx , …, 0

nx  of the dependent variables xm , …, xn that belong to the constant initial values 

of x1 .  The initial value 0
1x  can be chosen arbitrarily, but only when the associated values 

of the dependent variables remain arbitrary, so none of the quantities 1
ka  become infinite 

or undetermined.  The expressions χk , which are the values that one gets from solving the 
equations: 

ϕλ (x1 , x2 , …, xm−1 , xm , …, xn) = ϕλ (
0
1x , x2 , …, xm−1 , 

0
mx , …, 0

nx ) 

 
that follow from the integrals (8) for the variables xk , then have the property that they 
reduce to 0

kx  for x1 = 0
1x . 
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 If one then sets x1 = 0
1x  in the system: 

 

0
0

n
k

m

dx
x λ

λ λ

χ
=

∂
∂∑ = 

1

2

m
h k
k h

h h

a dx
x

χ−

=

 ∂− ∂ 
∑ , 

 
which is implied by (1) when one introduces the initial values 0

mx , …, 0
nx  in place of xm , 

…, xn as new variables, and in which, from the foregoing, x1 must take on an arbitrary 
value, x1 = 0

1x , then that system will reduce to: 

 

(13)    0
kdx  = 

1
0

2

m
h
k h

h

a dx
−

=
∑ , 

 
in which 0h

ka  generally denotes the value that h
ka  assumes under the substitution: 

 
x1 = 0

1x , xm = 0
mx , …, xn = 0

nx . 

 
 The initial values can be determined as functions of x2 , …, xm−1 from the n – m + 1 
equations (13), which can be exhibited before any integration of the system (7), as one 
sees. 
 However, equations (13) define a system that is just the same as the given equation 
(1), but with one less independent variable x1 .  Since one has, by assumption: 
 

h i h in
i hk k k k

mi h

a a a a
a a

x x x xλ λ
λ λ λ=

 ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
∑  = 0 

 
identically in them, one will also have: 
 

0 0 0 0
0 0

0 0

h i h in
i hk k

mi h

a a a a
a a

x x x x
λ λ

λ λ
λ λ λ=

 ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
∑  = 0 

 
identically, so the system (13) will also fulfill the conditions of unrestricted integrability.  
One can then treat this system in detail in the same way that one treated the system that 
was given before, namely, by reducing it to an unrestricted integrable system with only m 
– 3 independent variables by integrating a second system of n – m + 1 first-order ordinary 
differential equations, etc., such that one ultimately arrives at the complete integration of 
the given system (1) after integrating m – 1 systems of n – m + 1 first-order ordinary 
differential equations that are each presented independently of the others and can then be 
treated and will be obtained by means of a recurrent system of formulas that express xm , 
…, xn in terms of the x1 , x2 , …, xm−1 and the n – m + 1 arbitrary constants of the last of 
those m – 1 systems. 
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§ 3. – Reducing the unrestricted-integrable system (1) to a single system of n – m +1 
first-order ordinary differential equations.  

 
 The integration of the given unrestricted-integrable system (1) will be reduced to the 
integration of m – 1 systems of n – m + 1 ordinary differential equations by the method 
that was given in the previous §.  However, when the special case occurs in which one 
can choose the constant 0

1x  in such a way that all of the (m – 2)(n – m + 1) quantities: 

 
2
ka , 3

ka , …, 1m
ka −  

 
take the value zero for x1 = 0

1x , equations (13), to which the given system (1) will reduce 

upon integrating equations (7), will then reduce to: 
 

0
kdx  = 0, 

and will then immediately give: 
 

0
mx = const., 0

1mx + = const., …, 0
nx = const. 

 
One will then immediately have the complete solutions to the first of those n – m + 1 
systems of ordinary differential equations expressed in terms of x1 and the initial values 
of xm , …, xn for x1 = 0

1x , as long as the initial values in them can be regarded as arbitrary 

constants that are independent of x2 , …, xm−1 and yield complete solutions to the system 
(1). 
 Now, this seemingly quite special case can always be arranged by a suitable 
transformation of equations (1). 
 If one introduces m – 1 other quantities α1 , α2 , …, αm−1 as new variables in place of 
x1 , x2 , …, xm−1 by means of m – 1 arbitrary mutually-independent equations: 
 
(14)     xh = xh (α1 , α2 , …, αm−1) 

 
then that will convert equations (1) into: 

(15)     dxk = 
1

1

m
i
k i

i

b dα
−

=
∑ , 

in which: 

(16)     i
kb  = 

1

1

m
h h
k

h i

x
a

α

−

=

∂
∂∑ . 

 
At the same time, when one makes the substitutions (14) in an arbitrary function f of x1 , 
x2 , …, xn , one will get: 

i

f

α
∂
∂

= 
1

1

m
h

h h i

xf

x α

−

=

∂∂
∂ ∂∑ , 

and as a result: 
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(17)   
1

1

m
i
k

hi k

f f
b

xα

−

=

∂ ∂+
∂ ∂∑  = 

1

1 1

m n
hh
k

h ki h k

x f f
a

x xα

−

= =

 ∂ ∂ ∂+ ∂ ∂ ∂ 
∑ ∑ . 

 
Since we know from the foregoing that the original system (1) is unrestricted integrable, 
as long as the identities (3) exist, it will follow immediately that with that assumption the 
transformed system (15) will also possess that same property and therefore the relations: 
 

(18)   
n

k k k k

m

b b b b
b b

x x

ρ σ σ ρ
ρ σ
λ λ

λσ ρ λ λα α =

 ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
∑  = 0 

 
must exist identically between the coefficients i

kb  in it, in which k = m, m + 1, …, n, and 

ρ and σ are any two of the numbers 1, 2, …, m – 1, and when we set: 
 

(19)    Bρ (f) = 
n

m

f f
b

x
ρ
λ

λρ λα =

∂ ∂+
∂ ∂∑ , 

 
in general, that will imply the following: 
 
(20)    Bρ (Bσ (f)) = Bσ (Bρ (f)) . 
 
That can be easily verified by calculation. 
 Namely, from (16), one has: 
 

k kb bσ ρ

ρ σα α
∂ ∂−
∂ ∂

= 
1

1

h hm
k h k h

h

a x a x

ρ σ σ ρα α α α

−

=

 ∂ ∂ ∂ ∂−  ∂ ∂ ∂ ∂ 
∑ = 

1 1

1 1

hm m
k h h

h

x xa x x

x
µ µ

µ µ σ ρ ρ σα α α α

− −

= =

 ∂ ∂∂ ∂ ∂−  ∂ ∂ ∂ ∂ ∂ 
∑ ∑ , 

and 
n

k k

m

b b
b b

x x

σ ρ
ρ σ
λ λ

λ λ λ=

 ∂ ∂− ∂ ∂ 
∑  = 

1

1 1

n m
h k k

x xb b
a

x x

σ ρ
µ µ

λ
λ µ λ ρ λ σα α

−

= =

 ∂ ∂∂ ∂−  ∂ ∂ ∂ ∂ 
∑ ∑  

 

= 
1 1 1

1 1 1

hm m m
k h h

h h

x xa x x
a

x
µ µµ

λ
µ λ σ ρ ρ σα α α α

− − −

= = =

 ∂ ∂∂ ∂ ∂−  ∂ ∂ ∂ ∂ ∂ 
∑ ∑ ∑ . 

 
If one then forms the left-hand side of equation (18) and switches the two summation 
indices h and µ in the negative terms then one will get: 
 

n
k k k k

m

b b b b
b b

x x

σ ρ σ ρ
ρ σ
λ λ

λρ σ λ λα α =

 ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
∑  
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= 
1 1

1 1

h hm m n
hh k k k k

h mh

xx a a a a
a a

x x x x

µ µ
µ µ

λ λ
µ λσ ρ µ λ λα α

− −

= = =

 ∂  ∂ ∂ ∂ ∂ ∂ − + −  ∂ ∂ ∂ ∂ ∂ ∂   
∑ ∑ ∑ , 

 
which is a formula that shows directly that either of the two systems of identity relations 
(3) and (18) will always imply the other. 
 One can then employ precisely the same method for the integration of the system (15) 
that emerges from the given unrestricted-integrable system (1) by the substitutions (14) 
that one obtained in the previous § for the integration of (1). 
 After that, we will first have to integrate the n – m + 1 ordinary differential equations: 
 

(21)   
1

mx

α
∂
∂

= 1
mb , 1

1

mx

α
+∂

∂
= 1

1mb + , …, 
1

nx

α
∂
∂

= 1
nb  

 
completely and express the integration constants in terms of the values 0mx , …, 0

nx  of the 

variables xm, …, xn that correspond to the constant initial value 0
1α  of α1 .  The complete 

solutions of equations (21) that are thus obtained will then give us the complete solutions 
of the system (15), as well, when we set the 0

mx , …, 0
nx  in them equal to those functions 

of α2 , …, αm−1 that one gets by completely integrating the system: 
 

(22)     0
kdx  = 

1
0

2

m
i
k i

i

b dα
−

=
∑ , 

 
whose coefficients 0i

kb  will emerge from the coefficients: 

 

i
kb  = 

1

1

m
h h
k

h i

x
a

α

−

=

∂
∂∑  

when one assumes that: 
 

α1 = 0
1α ,  xm = 0

mx , …, xn = 0
nx . 

 
 However, the choice of substitutions (14) is entirely open for us, and that easily 
explains the fact that we can always make that choice in such a way that all of the 
coefficients 0i

kb  in equations (22) vanish.  In fact, at the end of the substitutions (14), we 

need only to take the form: 
 
(23)     xh = 0 0

1 1( )h hx fα α+ − , 

 
in which 0

1α  and the 0
hx  are constants, while f1 , f2 , …, fm−1 are m – 1 arbitrary functions 

of α1 , α2 , …, αm−1 , which must obviously always be chosen in such a way that equations 
(23) will be mutually independent relative to α1 , α2 , …, αm−1 . 
 From that, one will have: 
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1
kb  = 

1
0

1 1
1 1

( )
m

h h
k h

h

f
a f α α

α

−

=

 ∂+ − ∂ 
∑ , 

and for i > 1: 

i
kb  = 

1
0

1 1
1

( )
m

h h
k

h i

f
aα α

α

−

=

∂−
∂∑ . 

 
When we then assign any constant values to the quantities 0

1α  such that none of the m – 

1 functions fh become infinite or undetermined for α1 = 0
1α , so when we assume that the 

constants: 
0

1x , 0
2x , …, 0

1mx −  

 
are such that all of the hka  remain finite and well-defined for: 

 
x1 = 0

1x , x2 = 0
2x , …, xm−1 = 0

1mx − , 

 
moreover, then each ikb  = 0 when i > 1, while the quantities 1kb  will keep finite and well-

defined values for α1 = 0
1α . 

 With that choice of substitutions (14), the complete solutions of the n – m + 1 
ordinary differential equations (21), when expressed in terms of α1 and the initial values 
of xm , …, xn for α1 = 0

1α , when one considers the initial values in them be arbitrary 

constants that are independent of α2 , α3 , …, αm−1 , will also represent the solution of the 
system of total differential equations (15).  However, one will get the solutions of the 
given system (1) from that when one replaces the α1 , α2 , …, αm−1 with the values that 
follow from the substitutions (23). 
 The integration of the given system of n – m linear total differential equations: 
 

(1)    dxk = 
1

1

m
h
k h

h

a dx
−

=
∑ ,  k = m, m + 1, …, n 

 
can then be reduced to the integration of a single system of n – m + 1 ordinary differential 
equations under the assumption that the identity relations: 
 

h i h in
i hk k k k

mi h

a a a a
a a

x x x xλ λ
λ λ λ=

 ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
∑  = 0 

 
exist between the coefficients: 
 
 One introduces the quantities α1 , α2 , …, αm−1 as new independent variables in place 
of x1 , x2 , …, xm−1 , under the restrictions that were just given that the substitutions: 
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(23)    xh = 0 0
1 1( )h hx fα α+ −  

 
are chosen arbitrarily.  With that, the given system (1) will go to the following one: 
 

(15)    dxk = 
1

1

m
i
k i

i

b dα
−

=
∑ , 

from whose coefficients: 
 

(24)   

1
1 0

1 1
1 1

1
0

1 1
1 1

( ) ,

( ) , 1

m
h h

k k h
h

m
i h h
k k

h

f
b a f

f
b a i

α α
α

α α
α

−

=

−

=

  ∂= + −  ∂  


∂ = − >
 ∂

∑

∑
 

 
one eliminates x1 , x2 , …, xm−1 by the substitutions (23).  If one has then completely 
integrated the first-order ordinary differential equations: 
 

(25)   
1

mx

α
∂
∂

= 1
mb , 1

1

mx

α
+∂

∂
= 1

1mb + , …, 
1

nx

α
∂
∂

= 1
nb , 

 
which follow from (15) and which express the integration constants in terms of the initial 
values 0

mx , …, 0
nx  for α1 = 0

1α then the equations in the: 

 
α1 , α2 , …, αm−1 , xm , …, xn , 

  
and the arbitrary constants 0mx , …, 0

nx  that one obtains in that way will be the complete 

integral equations for the ordinary differential equations (25), as well as the total 
differential equations (15), and one then needs only to eliminate α1 , α2 , …, αm−1 from 
those equations with the help of formulas (23) in order to obtain the complete integral 
equations of the given system (1). 
 
 The simplest way of satisfying the requirements that are imposed upon the 
substitutions (23) in all cases is for one to set: 
 

x1 = α1 
and 

xh = 0 0
1 1( )h hx α α α+ −  

 
for h = 2, 3, …, m – 1, in which the constants 01α , 0

2x , …, 0
1mx −  only need to be chosen in 

such a way that none of the quantities will become infinite or undetermined when: 
 

x1 = 0
1α ,  x2 = 0

2x , …,  xm−1 =
0

1mx − . 

One will then get: 
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 1
kb  = 1 2 1

2 1
m

k k m ka a aα α −
−+ + +⋯ , 

 
 i

kb  = 0
1 1( ) i

kaα α− , i > 1. 

 
In the derivation of the foregoing theorem, no use was made of the equivalence of the 
unrestricted-integrable systems of linear total differential equations and the Jacobi 
systems of linear partial differential equations for the purpose of inferring the integration 
the latter from merely examining the former.  However, if one would like to draw upon 
the well-known properties of the Jacobi system then one could also convince oneself of 
the reducibility of the unrestricted-integrable system (1) to the system of ordinary 
differential equations (25) in a completely-different way without calculation.  In order to 
not block the path of investigation, I shall postpone to the conclusion of this article (§ 7) 
the second derivation of the theorem above, which connects with the line of reasoning  by 
which P. du Bois-Reymond proved that reducibility for a special case of a single linear 
total differential equation even more than the foregoing derivation does. 
 
 

§ 4. – Integrating Jacobi’s system Ak (f) = 0. 
 

 From the previous §, the complete integral equations for the ordinary differential 
equations (25), when expressed in terms of α1 and the constant initial values of xm , …, xn 
for α1 = 0

1α , are simultaneously the complete integral equations for the system of total 

differential equations (15) that emerges from the given one (1) by the substitutions (23), 
as well. 
 However, the complete integral equations for a system of first-order differential 
equations possess the property that they must be soluble for its dependent variables, as 
well as its initial values.  One can then employ the complete integral equations for the 
system (25) to determine xm , …, xn from them, in one case, and 0

mx , …, 0
nx , in the other.  

Let: 
 
(26)    xk = ψk (α1 , α2 , …, αm−1 , 

0
mx , …, 0

nx ) 

 
and 
 
(27)    0

kx = χk (α1 , α2 , …, αm−1 , xm , …, xn) 

 
be the values of the xk and the 0

kx , resp., that are obtained in that way.  Equations (27) 

must then be fulfilled identically by the substitutions (26), and as a result, the 
expressions: 

n
k k

mh h

x

x
λ

λ λ

χ χ
α α=

∂ ∂ ∂+
∂ ∂ ∂∑  
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must vanish identically.  However, since from the foregoing, those substitutions likewise 
satisfy the system (15) or the equations: 

h

xλ

α
∂
∂

= hbλ , 

 
the same thing must also be true for the expressions: 
 

Bh (χk) = 
n

hk k

mh

b
xλ

λ λ

χ χ
α =

∂ ∂+
∂ ∂∑ , 

 
which also emerges directly from the fact that the expressions Bh(χk) must be independent 
of α1 by the substitutions (26), since B1 (χk)  = 0 by our assumption, and therefore due to 
the fact that: 

B1 (Bh (f)) = Bh (B1 (f)), 
 
we will also have B1 (Bh (χk)) = 0, but those expressions will vanish when one sets α1 = 

0
1α , since χk must reduce to xk in that way, and every hkb = 0 when h > 1, moreover. 

 However, the zero result of the substitution of the values (26) in the expressions Bh 

(χk) cannot change when one back-substitutes the values (27) for the 0
kx in them, which 

will reverse the substitution itself.  Hence, one must already have: 
 

Bh (χk) = 0 
before the substitution, or: 

f = χm , χm+1 , …, χn 
  
must be solutions of the Jacobi system of m – 1 linear partial differential equations: 
 

Bh (f) = 
n

h

mh

f f
b

xλ
λ λα =

∂ ∂+
∂ ∂∑  = 0. 

  
However, as formula (17) shows, that Jacobi system emerges from the other one: 
 

Ah (f) = 
n

h

mh

f f
a

x xλ
λ λ=

∂ ∂+
∂ ∂∑  = 0 

 
in such a way that one must introduce α1 , α2 , …, αm−1 in place of x1 , x2 , …, xm−1 by the 
substitutions (23), and one must conversely convert them into the latter when one 
expresses the α in terms of the x.  The solutions f = χm , χm+1 , …, χn of the first system 
then likewise give us the solutions of the second one, as well, which is the Jacobi system 
that is equivalent to the given system (1), as long as we set the α1 , α2 , …, αm−1 in them 
equal to the values that follow from the substitutions (23). 
 That implies the following method for the complete integration of the given Jacobi 
system of m – 1 linear partial differential equations: 
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(28)  Ah (f) = 
n

h

mh

f f
a

x xλ
λ λ=

∂ ∂+
∂ ∂∑  = 0,  h = 1, 2, …, m – 1. 

 
One can use the m – 1 substitutions: 
 
(23)    xh = 0 0

1 1( )h hx fα α+ − (α1 , α2 , …, αm−1) 

 
that are chosen arbitrarily from among the restrictions that were given in the previous § 
in order to express the quantities: 
 

 1
kb  = 

1
0

1 1
1 1

( )
m

h h
k h

h

f
a f α α

α

−

=

 ∂+ − ∂ 
∑  

and 

 i
kb  = 

1
0

1 1
1

( )
m

h h
k

h i

f
aα α

α

−

=

∂−
∂∑ , i > 1 

 
in terms of α1 , α2 , …, αm−1 , xm , …, xn and construct the n – m +1 first-order ordinary 
differential equations: 
 

1

mx

α
∂
∂

= 1
mb , 1

1

mx

α
+∂

∂
= 1

1mb + , …, 
1

nx

α
∂
∂

= 1
nb  

 
with the former.  If one has integrated those equations completely and expressed the 
integration constant in terms of the initial values  of the dependent variables for α1 =

0
1α  

then the solution of the integral equations that one obtains for those initial values will 
yield n – m + 1 functions: 

0
kx = χk (α1 , α2 , …, αm−1 , xm , …, xn) 

 
that are the n – m + 1 solutions of the Jacobi system: 
 

(29)    Bh (f) = 
n

h

mh

f f
b

xλ
λ λα =

∂ ∂+
∂ ∂∑  = 0, 

 
and which will go to the n – m +1 solutions of the given Jacobi system when one 
eliminates the α1 , α2 , …, αm−1 with the help of equations (23). 
 
 
§ 5. – In order to find a solution to the given Jacobi system (28), one is only required 

to know an arbitrary integral of the ordinary differential equ ations (25). 
 

 From the last theorem, the search for all solutions to a Jacobi system of the form (28) 
will be reduced to the complete integration of a single system of n – m + 1 first-order 
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ordinary differential equations.  For the most important applications of the Jacobi 
systems, in the integration of first-order partial differential equations, and in the Pfaff 
problem, however, one does not address the general solution to the Jacobi system that 
appears at all, but one always comes down to ascertaining one solution of it.  Therefore, it 
would be of greatest importance to examine whether or not one can find a solution to the 
Jacobi systems (28) or (29) without having to integrate the system (25) completely. 
 Assuming that, one must find any integral: 
 

F (α1 , α2 , …, αm−1 , xm , …, xn) = const. 
 
of the differential equations (25).  The complete solutions of those differential equations, 
when expressed in terms of α1 and the initial values of xm , …, xn for α1 = 0

1α , will then 

satisfy the equation: 
 
(30)  U = F (α1 , α2 , …, αm−1 , xm , …, xn) − 0 0 0

1 2 1( , , , , , , )m m nF x xα α α −… … = 0. 

 
However, from § 3, when one regards the 0mx , …, 0

nx  in those solutions as independent 

of α2 , …, αm−1 , they will also satisfy the total differential equations (15) or the 
equations: 

(31)     k

h

x

α
∂
∂

= h
kb . 

 
As a result, they must also satisfy the equations: 
 

(32)    Bh (U) = 
n

h
k

k mh k

U U
b

xα =

∂ ∂+
∂ ∂∑  = 0 

 
identically, which one obtains by differentiating the equation U = 0 with respect to αh 
while considering the relations (31) (*).  In that way, the form of the equation is entirely 
equivalent to U = 0.  Precisely the same thing will also be true for every equation V = 0, 
which emerges from equation (30) by any sort of algebraic operations. 
 The first of the m – 1 equations (32) is always an identity, or in case one has not 
formed that equation directly from equation (30), but from another arbitrary equation that 
is equivalent to it, since it is a mere algebraic consequence of the equation U = 0.  In 
some situations, part of the remaining ones can also be an identity or a mere algebraic 

                                                
 (*) One can also, in turn, see that directly.  Namely, by assumption, one has B1 (F) = 0, so as a result, 
one will also have B1 (U) = 0, and since: 

B1 (Bh (F)) = Bh (B1 (F)), 
 

one will also have B1 (Bh (U)) = 0.  The value that Bh (U) takes for the complete solutions of the differential 

equations (25) will then be independent of α1 .  However, that value will vanish when one sets α1 = 0

1
α , 

since in that way, one will have xm = 0

m
x , …, xn = 0

n
x , so from (30), one will have ∂U / ∂αh = 0, and 

likewise every 
k

bλ  will vanish. 
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consequence of the equation U = 0.  However, those of equations (32) that do not possess 
that property are new integral equations of the system (25).  One can process each new 
integral equation of that sort in exactly the same way that one does with the equation U = 
0, and thus recognize the possibility of deriving a whole series of new integral equations 
from a single integral of the ordinary differential equations (25) by merely differentiating 
it, which are integral equations that will all belong to that system of complete integral 
equations for the differential equations by which one determined the dependent variables 
in terms of α1 and the initial values that are taken when α1 = 0

1α . 

 That is connected with the remark (which also could have been used before in the 
previous § in order to show that the expressions Bh (χk) that were obtained there must be 
identically zero) that equations that belong to such a system of complete integral 
equations can never yield an equation that is completely free of the initial values of the 
dependent variables, or that when one has obtained such an equation, it must necessarily 
be an identity, so one will be led in the following way in order to arrive at a solution to 
the Jacobi system (19) from the given integral F = const. or U = 0 of equations (25). 
 We bring that equation into the form: 
 
(33)   0

mx  = Um (α1 , α2 , …, αm−1 , xm , …, xn, 
0

1mx + , …, 0
nx ) 

 
by solving it for any of the initial values of the dependent variables that enter into the 
integral U = 0 – e.g., 0

mx , and then define the m – 1 equations: 

 

(34)    Bh (Um) = 
n

hm m
k

k mh k

U U
b

xα =

∂ ∂+
∂ ∂∑  = 0, 

 
the first of which is an identity.  None of those equations can be merely an algebraic 
consequence of equation (33), since 0

mx  does not enter into them at all.  If they are all 

identities, like the first one, then the value Um of 0
mx  that is obtained from U = 0 will 

immediately be a common solution to the m – 1 linear partial differential equations (29).  
However, if that is not the case then one must always be able to determine some part of 
the remaining initial values 0

1mx + , …, 0
nx  from equations (34), since it is impossible to 

eliminate those initial values completely, from the foregoing.  If we assume that 0 1mx + , …, 
0

1m hx + −  can be determined from equations (34) then we can now operate with each of the 

values that are thus obtained: 
 
 0

1mx +   = 1
1mU + (α1 , …, αm−1 , xm , …, xn , 

0
m hx + , …, 0

nx ), 

 ………………………………………………………..., 
 0

1m hx + −   = 1
1m hU + − (α1 , …, αm−1 , xm , …, xn , 

0
m hx + , …, 0

nx ) 

 
in just the same way as we did before with equation (33), and in that way, we will arrive 
at equations that cannot be merely an algebraic consequence of the foregoing ones, since 
they do not include the quantities: 
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0
mx , …, 0

1m hx + −  

 
at all, which must either be identities or part of the remaining ones must determine the 
initial values.  In that way, in the event that one has not already obtained a common 
solution to the m – 1 equations (29), one must ultimately succeed in expressing all of the 
initial values of the dependent variables that are contained in the given integral U = 0 in 
terms of α1 , …, αm−1 , xm , …, xn alone.  However, if one now defines the m – 1 equations 
Bh (f) = 0 with any of those expressions then they will be free of all initial values and 
must then be identities.  Each of those expressions is then (which would also follow 
directly from the previous §) a solution of the Jacobi system (29), and as a result also a 
solution of the given Jacobi system (28), once one has back-substituted their values for: 
 

α1 , α2 , …, αm−1  
from the substitutions (23). 
 
 Therefore, in order to find a solution to this Jacobi system of m – 1 linear partial 
differential equations with n independent variables, it is only necessary to know an 
integral of the n – m +1 ordinary differential equations (25).  By contrast, in the most 
preferable of the previous methods (*), the search for such a solution required that one 
had to know an integral of each of m – 1 systems, the first of which consisted of n – m + 
1 first-order ordinary differential equations, while each of the remaining ones consisted 
of at most that many. 
 
 

§ 6. – The integration of first-order partial differential equations  
and the Pfaff problem. 

 
 As is known, Jacobi had reduced the integration of first-order partial differential 
equations to the problem of finding a solution to each of a series of Jacobi systems of 
linear partial differential equations of the form (28) in succession.  If n independent 
variables enter into the given partial differential equation, which one can assume is free 
from the unknown function itself, then that Jacobi system will consist of: 
 

1, 2, …, m – 1, …, n – 1 
 
linear partial differential equations with: 
 

2n – 1, 2n – 2, …, 2n – m + 1, …, n + 1 
 

independent variables, resp. 
 From the method that was described in the previous §, the complete solution of the 
given equation will then require only that one must ascertain an integral of each system 
of: 
 

                                                
 (*) Cf., Clebsch, Crelle’s J., 65, pp. 261.  
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2 (n – 1), 2 (n – 2), …, 2 (n – m + 1), …, 2 
 
first-order ordinary differential equations, whereas previously (*), one was required to 
know an integral for a system of 2 (n – 1) ordinary differential equations and one for two 
systems of 2 (n – 2), …, 2 (n + m + 1), …, 2 ordinary differential equations, and in the 
worst-possible cases, that number of integrations might still be insufficient. 
 When one chooses the simplest form for the substitutions (23), the integration will 
take the following form: 
 In general, the (m – 1)th Jacobi system will have the form (** ): 
 

(35)  Ah (f) = 
n

h h

mh

p pf f f

q q p p qλ λ λ λ λ=

 ∂ ∂∂ ∂ ∂+ − ∂ ∂ ∂ ∂ ∂ 
∑  = 0,  h = 1, 2, …, m – 1, 

 
in which p1 , p2 , …, pm−1 are functions of q1 , q2 ,…, qn , pm , …, pn that are determined 
from the foregoing Jacobi system and for which the expressions: 
 

Ah (Ai (f)) – Ai (Ah (f)) 
vanish identically. 
 If one now sets: 
 
(36) q1 = α1 ,  ql = 0 0

1 1 2( )lq α α α+ − ,   …, qm−1 = 0 0
1 1 1 1( )m mq α α α− −+ − ,  

 
in which 0

1α , 0
2q , …, 0

1mq −  are arbitrarily-chosen constants, under the assumption that the 

functions p1, p2, …, pm−1 preserve well-defined, finite values for: 
 

q1 = 0
1α , q2 = 0

2q , …, qm−1 = 0
1mq − , 

 
and then eliminates q1, q2, …, qm−1 from the expressions: 
 

(37)   1 1 2 2 1 1
0

1 1

,

( ) 1
m m

i i

w p p p

w p i

α α
α α

− −= + + +
 = − >

⋯

 

 
then that will convert the given Jacobi system (35) into the following one: 
 

(38)   Bh (f) = 
n

h h

mh

w wf f f

q p p qλ λ λ λ λα =

 ∂ ∂∂ ∂ ∂+ − ∂ ∂ ∂ ∂ ∂ 
∑  = 0. 

 
From what was discussed in the previous §, one can find a solution of this as long as one 
knows an integral of the system of 2 (n – m + 1) ordinary differential equations: 
 

                                                
 (*) Cf., Clebsch, Crelle’s J. 65, pp. 265.  
 (** ) Cf., Jacobi, Vorlesungen über Dynamik, pp. 292.  Crelle’s J., 60, pp. 23.  
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(39)  
1

qλ

α
∂
∂

= − 1w

pλ

∂
∂

,  
1

pλ

α
∂
∂

= 1w

qλ

∂
∂

,  λ = m, m + 1, …, n, 

 
and one only needs to set: 
 

α1  = q1 , α2 = 
0

2 2
0

1 1

q q

q α
−
−

,  …, αm−1 = 
0

1 1
0

1 1

m mq q

q α
− −−

−
 

 
in that solution in order to obtain a solution to the given system (35). 
 In a manner that is completely analogous to how one integrated first-order partial 
differential equations, the number of integrations that are required in the Pfaff problem – 
i.e., the problem of integrating the given linear differential equation: 
 

χ1 dx1 + χ2 dx2 + … + χ2n dx2n = 0 
 
by n equations – will be diminished by almost one-half by using the procedure that was 
given.  Namely, it is not difficult to see from the method that Clebsch has prescribed for 
the solution of that problem (*), that it can be reduced to the search for solutions to n 
Jacobi systems of the form (28) that consist of 1, 2, …, n, resp., linear partial differential 
equations that each have 2n independent variables.  From the foregoing, the search for a 
solution to the i th one of these systems depends upon finding an integral to 2n – i first-
order ordinary differential equations.  However, that i th system, which can first be 
exhibited once one has found a solution to each of the foregoing ones, will itself possess i 
– 1 known solutions, as a result of the way that it came about.  None of those solutions is 
the one that one actually needs (since it must be independent of them), but each of them 
will provide us with an integral of those 2n – i ordinary differential equations when we 
set it (as expressed in the new variables α) equal to a constant.  One then knows i – 1 
integrals of those equations from the outset and can reduce the 2n – i differential 
equations to: 

2n – i – (i – 1) = 2n – 2i + 1 
 
by means of them.  The search for a useful solution of the ith Jacobi system then requires 
only that one know an integral of: 

2n – 2i + 1 
 
first-order ordinary differential equations.  As a result, for the complete solution of the 
Pfaff problem, it is sufficient to know an integral for each system of: 
 

2n – 1, 2n – 3, 2n – 5, …, 1 
 
first-order ordinary differential equations. 
 
 

                                                
 (*) Cf., namely, Crelle’s J. 61, pp. 153 and 65, pp. 266.  
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§ 7. – A different proof of the theorem in § 3. 
 

 Under the assumption that the identities: 
 

(40)     ( ) ( )h i
i k h kA a A a− = 0 

 
are valid, as Clebsch showed (*), the m – 1 linear partial differential equations: 
 

(41)    Ah (f) = 
n

h

mh

f f
a

x xλ
λ λ=

∂ ∂+
∂ ∂∑  = 0 

 
possess n – m + 1 mutually-independent solutions, which might be denoted by: 
 

fm ,  fm+1 , …, fn . 
 
 Due to the fact that when one sets: 
 

f = ϕ (x1 , x2 , …, xm−1 , fm , fm+1 , …, fn), 
one will have: 

Ah (f) = ( )
n

h k
k mh k

A f
x x

ϕ ϕ
=

∂ ∂+
∂ ∂∑ = 

hx

ϕ∂
∂

, 

 
one will see that these solutions must be mutually-independent with respect to  xm , xm+1 , 
…, xn . 
 If one then sets: 
 
(42)   fm = cm , fm+1 = cm+1 , …, fn = cn 
 
then one must be able to determine xm , xm+1 , …, xn as functions of the variables x1 , x2 , 
…, xm−1 and the quantities cm , cm+1 , …, cn from those equations. 
 If one considers the latter to be arbitrary constants then the values of xm , …, xn that 
follow from (42) will satisfy the n – m + 1 equations: 
 

1

1

n m
hk

h
m h

f
dx a dx

x λ λ
λ λ

−

= =

∂  − ∂  
∑ ∑ = 0 

 
that are obtained by completely differentiating equations (42) with the use of the 
identities Ah (fk) = 0.  However, since the determinant of those equations: 
 

1

1

m m n

m m n

f f f

x x x
+

+

∂ ∂ ∂±
∂ ∂ ∂∑ ⋯  

 

                                                
 (*) Crelle’s J., 65, pp. 260.  
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is itself non-zero, so that value cannot vanish identically under substitution either, it will 
then follow that it must satisfy the n – m + 1 linear total differential equations: 
 

(43)     dxλ = 
1

1

m
h

h
h

a dxλ

−

=
∑ . 

 
If the identities (40) exist then there will always be n – m + 1 functions of x1, x2, …, xm−1 
and n – m + 1 arbitrary constants cm , cm+1 , …, cn that are mutually-independent relative 
to the latter that will satisfy equations (43) identically when they are set equal to xm , xm+1 , 
…, xn . 
 If we denote those solutions to the system (43) by: 
 
(44)    fλ = ϕλ (x1 , x2 , …, xm−1 , cm , …, cn) 
 
and understand 0

1x , 0
2x , …, 0

nx  to mean undetermined constants then the n – m + 1 

equations: 
  0xλ  = ϕλ (

0
1x , 0

2x , …, 0
nx , cm , …, cn) 

 
must always be soluble for cm , …, cn .  By substituting those values, the solutions (44) 
will assume the form: 
 
(45)    x λ = ψλ (x1 , x2 , …, xm−1 , 

0
1x , 0

2x , …, 0
nx ), 

 
where the functions ψλ must reduce to 0xλ  for: 

 
x1 = 0

1x , x2 = 0
2x , …, xm−1 = 0

1mx − , 

 
as a result of the way that they came about. 
 If one now introduces the new variables α1, α2, …, αm−1 for the x1, x2, …, xm−1, resp., 
by way of the m – 1 equations: 
 
(46)   xh = 0 0

1 1( )hx α α+ −  fh (α1, α2, …, αm−1) , 

 
which might make: 
 
(47)  ψλ (x1 , x2 , …, xm−1 , 

0
1x , 0

2x , …, 0
nx ) = Ψλ (α1, α2, …, αm−1,

0
1α , 0

1x , 0
2x , …, 0

nx ), 

 
then one will obtain the solutions: 
 
(48)   xλ = Ψλ (α1, α2, …, αm−1,

0
1α , 0

1x , 0
2x , …, 0

nx ) 

 
as in (45) to the system of linear total differential equations in xm , …, xn and α1, α2, …, 
αm−1 : 
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(49)     dxλ = 
1

1

m
h

h
h

b dλ α
−

=
∑ , 

 
to which the system (43) goes under the substitutions (46). 
 Therefore, equations (48) then also satisfy the n – m + 1 ordinary differential 
equations: 

(50)     
1

xλ

α
∂
∂

= 1bλ , 

 
in particular.  However, if one has chosen the constants 0

1α  in such a way that none of 

the m – 1 functions fh becomes infinite or undetermined for α1 = 0
1α  then each xh = 0

hx  

for α1 = 0
1α  from (46), and therefore each Ψλ = 0xλ  from (47). 

 As a result of equations (48), they will be those solutions of the ordinary differential 
equations (50) that reduce to the values of the dependent variables xλ that belong to the 
initial value 0

1α  of α1 for α1 = 0
1α . 

 Conversely, it must then be always possible to determine the integration constants in 
a system of complete solutions to the n – m + 1 ordinary differential equations (50) in 
such a way that those solutions will assume the values 0

mx , 0
1mx − , …, 0

nx , which remain 

arbitrary for α1 = 0
1α , and the solutions that are thus obtained must likewise fulfill the 

total differential equations (49) when one regards the initial values in them as 
independent of α1, α2, …, αm−1, so once one has back-substituted the values for α1, α2, 
…, αm−1 that they obtain from the substitutions (46) in those equations, the total 
differential equations (43) must also be satisfied.  
 
 
 Leipzig, February 1872. 
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