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INTRODUCTION

Consider a system of material points that are corddat each other by some links
and to which one applies external forces that are kephutual equilibrium by the
intermediary of the system that they act upon. Thelusiles of statics indicate the
relationships that must exist between those forcesrder for equilibrium to actually
exist. However, if one would like to study how the emdédrefforts and forces are
distributed between those links, no matter what pressueeexerted on the fixed points
that can exist in the system, then the problem (exoegpsmall number of cases) will be
generally indeterminate as long as one considers thars{istes to be rigid, or in other
words, as having invariable length. Indeed, the effortsateasupported by the links that
connect at a given point must be in equilibrium with éxternal forces that are applied to
that point, so when the number of those links exceedstacting limit, one can imagine
an infinitude of different distributions of efforts thate all suitable to maintain the
equilibrium between the external forces.

However, that indeterminacy ceases at the moment wherconsiders the elasticity
of the body, or more precisely, the elasticity of lihks that couple the various points of
the system to each other.

Elasticity is a general principle of all bodies, bytw# of which, if some external
effort changes the respective positions of the moleanfienatter that comprise the body
slightly then the molecular actions that determines¢hoew positions will tend to revert
to their original positions when the action of the exaéforces ceased)(

Nonetheless, the determination of the efforts thatsapported by the links — which
are efforts that | shall calinternal forces— present great difficulties, and in each
particular case, one will generally appeal to some hygeththat are more or less based
in reality in order to simplify the problem.

Hence, upon taking one of the simplest cases as ampéxanamely, the example of
an elastic prism that is curved by a force that isiegg@t its extremity, one will suppose,
in general, that two consecutive sections of the ptisan are normal to its direction
before the flexure will remain normal to the curvettisaaffected by the prism after
flexure.

That is the geometric condition on the problem. Hawethat hypothesis is not
always very exact, and in practice, one is often odlige correct the results that one
deduces.

In general, the determination of the internal forcesbtained, as one can see, by
considering the geometric conditions that the systamt matisfy before and after the
deformation that is caused by the external forces. céleapon considering a certain
number of elastic cords that are each fixed at onemitty and which have the other
extremity connected to the same point, one appliesca to that point that will cause it
to displace, and that displacement will rise to ‘awe in the lengths of the various
cords.

The geometric condition of existence for the systerthat the cords will again be
connected at the same point after the displacemantréisults from the extension that

() See thad_econs sur la Théorie mathématique de I'élasticité des coligesby G. LAME.
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cord experiences as the effect of the external forcgpon expressing that condition
analytically, one will obtain equations that will prdei the necessary and sufficient
elements for the determination of those tensions wthey are combined with the
equation of equilibrium between thexternal force that is applied to the point of
concurrence and the tensions that are developed in tte cor

We once more examine the case of a planar surfacevafiable form (in other
words, it is rigid) that is supported at some points bypressible elements and loaded
by weights that are distributed in various ways. If ¢akes into account only the
equations of equilibrium between the weights or exteioraks and the pressures that are
exerted at the support points then the equations wilhsefficient to determine those
pressures when the number of support points exceeds(tinregen two, if those points
are situated along the same line). However, the gemneceindition of the system is that
after the compression that the support points experi¢ime@emaining ones will again be
all situated on the same plane after displacemeitebriginal position of that plane.
Upon expressing that condition analytically, one @&kt some new equations that will
suffice to solve the problem completely when they amnlned with the equilibrium
equations. That is the question that Euler treated ichmbaper that was entitled “De
pressione ponderis in planum cui incombit,” Nov. Comméntd. Petrop., v. XVIII. It
was presented and developed very elegantly by BRESSE in higifok Traité de
Mécanique appliquée.

In the case that we just pointed out, the geometn@itions on the system are
established very easily. However, as the system bexanmwe complicated, the
determination of those conditions will become incneglsn difficult and can even
become impossiblm practice.

However, those obstacles will disappear by meanseohéw principle that defines
the goal of this paper and whose statement is this:

When an arbitrary elastic system is in equilibrium under the acti@xtefrnal forces,
the total work developed under the extension and compression of the limkessdt of
the relative displacements of the points of the system, or in otbets, the work
developed by the internal forces, is a MINIMUM.

| shall apply this theorem to just the casesmbll relative displacements of the points
of the system, and one will see, as a result, hd@ads to some new equations that will
be sufficient to determine the tensions in the various lihks couple the points of the
system to each other when the new equations are combitiethese of equilibrium. In
addition, one will recognize that the subsidiary equatare nothing but the same ones
that express the geometric conditions that the systast satisfy before the deformation
and are linked with the effect of external forces.

| presented the statement of that new principle tol'thn Academy of Sciences in
the year 1857. Then, in 1858 (session on 31 May), | madbeitsubject of a
communication to the Institut de France (Académie désn8es). In the proof that |
gave, | appealed to a consideration of the transmissiomodf throughout the body.
Although that proof seemed sufficiently rigorous to meseemed to some geometers to
be too subtle to be accepted without criticism. On therdband, the significance of the
equations that are deduced from that theorem is not pointedearly enough. That is
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why | believe that | must once more address that stubdighwvas interrupted more than
once by a series of events that my position obligedartake part in. Today, | shall
present the new research that has had the resultdfidgeto a proof of the theorem in
guestion that is entirely simple and rigorous and thaan call elementary, and to
establish the significance of the equations that one dedu@® obvious manner, which,
as | have said, express the geometric conditions thasydtem must satisfy after the
deformation that it experiences as the effect ofragidorces.

To abbreviate, | will use the term PRINCIPLE OF EXHCITY to refer to the new
principle or theorem that expresses it. That ternmsesufficiently justified to me,
because it applies to a general property of all bodiedastic systems. It is a property
that provides a general method for determining the distoibutf pressures and tensions.
One can also call it thprinciple of least work. Hence, VENE (Chef de Bataillon du
Geénie), in a writing entitled “Mémoire sur les lois quévent les pressions,” which was
published in 1836, declared that in the year 1818, he statetthé¢hstim of the squares of
the pressures that are produced by weights must be a mininklowever, in order to
prove that proposition, the author appealed to some pbitosal considerations that
undermine the geometric rigor of that proof.

PAGANI, who taught mathematics with distinction ae tbniversity ofLouvain
proved the latter proposition in several papers, and @etkit to the case of weights
suspended at the point of convergence of sevesalogeneous corde/hose other
extremities are held by fixed points (see volume I, eseli of the Mémoires de
'Académie des Sciences de Turin and volume VIII of Mé&moires de 'Académie des
Science de Bruxelles).

MOSSOTTI likewise gave a proof of VENE'’s theorem, als @nnounced it in the
BULLETIN de FERUSSAC in 1828. However, as one will séat theorem and one
that is analogous to PAGANI’s are included in general principle of elasticitgas only
special cases when the support points and cords are hogoogen

Here is the order of ideas that | have followed is frmper: After presenting some
considerations on the stated principle and before givingrdsf, | will treat a series of
problems on the distribution of pressure and tensionshichM shall have occasion to
show the coincidence of the results that one obtabe direct method, which appeals
to the geometric conditions that must be satisfre@ach particular case with the ones
that one deduces from thwinciple of elasticity. | will then give the proof of that
principle and present the general method that one miswfin order to deduce the
subsidiary equations for the determinations of the effortthe elastic links, which are
equations that are nothing but the same ones that expeegedmetric conditions of the
system.

In particular, | shall examine the case of a sydieah is partially rigid and partially
elastic, and | will prove that the stated principle legspto it just as it does to a system
that contains fixed points. That examination has aiapiegportance, because it refers to
the usual hypotheses that one assumes in practice intordenplify the solution of
problems such as the flexure and torsion of prisms, whichygetheses that generally
amount to assuming that everything in the prism under coasigiers rigid in these two
special cases, with the exception of the fibers thatained in two consecutive sections
in which one must determine the tensions.
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The principle of elasticity can even show one howhdwpotheses can be defective
and will provide the means to correct them.

In order to give the question of the distribution of teesion all of the scope that it
deserves in the context of physics, one must take intouat somethermodynamic
phenomena that manifest themselves in the act of oimtige form of elastic bodies or
systems, but | will consider the body at the momehene equilibrium is established
between thénternal forces and the external ones by supposing that the tetngedmnes
not vary. One can then assume that the work tlggveloped can be summarized in the
work that is found to be concentrated in Euent statein the elastic system by the effect
of external forces.

| do not know if | am delusional, but it seems to ke this study will serve to fill a
lacuna that still exists iphysical staticdy presenting a general method that is, due to its
simplicity, suitable for being introduced into the teaghari how to solve problems that
relate to the distribution of pressures and tensions.

| believe that method will also be particularly usefuengineers who have frequently
needed to calculate the efforts that support the vargmmstruction pieces in their
constructions (and above all, in the ones of the prese)tin order to determine the
dimensions and establish their conditions of stability.

|. — Preliminary considerations.

Consider a system of material points that are cdujgeeach other by elastic links
and remain in equilibrium under the action of extefaedes. That equilibrium cannot be
established without some of the systimks being lengthened, while the other ones are
shortened, and consequently, without the positions of@heus points having varied.
The variations of length of the links will developternal forces of tension or
compression that will bring equilibrium to the forchattare applied to them.

From now on, we shall assume that the changes wof tloat the system experiences
are very small and that as a result ithternal forcesare reasonably proportional to the
variations of the distances between the differenintpoi Experiments justify that
viewpoint in the usual applications. Having said that, vedl she following notations in
this paper: The various points will be indicated by thecieslil, 2, 3, .., etc.

X, Y, zare the rectangular coordinates of an arbitrary point.

| is the distance between two points, in general, #fterexternal forces have acted
upon them.l, x denotes the distance between the two poiatslk.

A is the variation of the distantewhich can be positive or negative.

T is the tension in the link between two given points tatespond to a variatioh

£ is a coefficient that depends upon the nature of the &nk, which we call the
coefficient of resistance.

The tension will be expressed by:

T=¢A. (A)

WhenA is negativeT will express a compression.
When the link is a homogeneous prism of sectipif E represents the modulus of
elasticity that corresponds to the matter that therpisscomposed of, then one will have:
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Ew
SRR

and in that case, the tension is expressed by:

T:Ea)ljfl—.

If the producEwvaries from one section of the link to the othentbae will have:

_ 1
pa
v, Ew
In order to lengthen or shorten a link, one musercome a resistance that

corresponds to a work. Hence, for an elementariat@n da that corresponds to an
absolute variation of the lin, the work that is done will be:

Eada.
Consequently, the total work that is done in otdggroduce the total variatiohwill be:
Work =1 ¢ A% (B)

That is the expression for the internal work tisatoncentrated into the link when it is in
equilibrium with external forces, and which willnain in thelatent state as long as that

equilibrium persists. We shall 1€ denote the latent work that corresponds to an
arbitrary linkl.

Upon substituting the value dfthat is deduced from equation (A) into equatioh (B
one will have this new expression:

o=1gT2 ©)
2 &

If one lets the symbdl denote the sum of the quantities that it perteonshen it is
extended over all the system then the total latemk that is developed under the action
of the external forces will be:

S =1Yer= %Z%TZ. (D)

The principle of elasticity whose proof we shallegin due course expresses the idea
that the preceding sum isnainimum When all of the links are homogeneoaseing
constant, equation (D) will become:

Lo-3drT
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which signifies that in this case tlsguareof the tensions will be aninimum which
conforms to what VENE, PAGANI, and MOSSOTTI said ie tase of a distribution of
pressures that are produced by a weight.

When a system is in equilibrium under the action eémmal forces, if one considers
(as one will see later) only the relations that naxsst between those forces in order for
them to be in equilibrium then, except in a number oy vestrictive cases, there will
generally be an infinitude of ways of imagining the disttitin of internal forces that all
satisfy the equilibrium conditions with the externaicfes. However, if the constitution
of the system is given then only one well-defined thstion of the internal forces can
exist. It is the one that corresponds to a minimumateht work. In order to express that
condition, one observes that the variations of ik&idution of the internal forces are the
result of the corresponding variations in the valuesl.ofHence, if one denotes the
variations ofA, T, and® by the lettetdthen one will have:

Y0 =Y eAd =Y [T aT.
In order to express the minimum, one poses the equation
1
D A :ZETéTzo, (E)

which is the expression for the principle of elasficiBy analogy, | call equation (E) the
equation of elasticity.

Before giving the general proof, we shall verify it @veral special cases that will, at
the same time, show one how it must be applied andigiméficance that the subsidiary
equation that one deduces from them must have.

Il. — First problem.

Figure 1.
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Three elastic cord¢$l), (2), (3) (Fig. 1l)are fixed at one of their extremities at the
points A, B, C, respectively, which are located along a straight &nd, those cords
converge at a point D. Determine the tensionsTZ, Ts in the three cords that result
from applying a force P that lies in the plane ABCD to the point D.

SOLUTION. — Leta be the angle between the direction of the fd?and the line

AC. Letd:, ¢, ¢; be the angles that the cords (1), (2), (3) make \aith $ame line.
The equilibrium equations that relate to that point el

Q) { Pcosa =T, co®,+ T, cog,+ T, cas,
Psina =T sing, + T, sing,+ T, sig, ,

or rather, sincd = &1 :

@) { Pcosa =€ A, co®,+€,4, cog,+€£.1, cab,
Psina =& A sing, +&£,A, sing,+ £,A,sigp , .

The quantities to determine — vid, A, A3 — are three in number, while we have
only two equations. In order to find a third equation, abersthe pointD’, which we
assume is the one at which the three cords concurtbédorceP is applied. The point
D’ will be transported toD by the effect of the latter, and the cords will have
consequently changed direction. lketlenote the distance that separates the two points
D"andD before and after the displacement that we suppodeaysavery small. Let

be the angle between the i’ and the lineAC. One will reasonably have:

3) A=kcos@r—-6, Ar=kcos@.—-6, As=kcos @:-20.
The elimination ok and & from these three equations will give:

4) A sin (@1 - 6) + Az sin (P2 — ) + Az sin (@3 —6) =0,

which is an equation that will serve to determine the gadtiansAi, A, A3 when it is
combined with the preceding ones, and as a result, thespoinding tensions.

An analogous process will lead to the solution of tlablem in the case of a larger
number of cords. If the strings are not in the sanamel but form the edges of a
pyramid, then one will have three equilibrium equatiforsthe pointD. If one then lets
(a, B, y) denote the angles that one of the makes cords vatthtbe orthogonal axes and
lets (@, ¢, 6 denote the angles that the li#D’ makes with those axes then one will
have:

A1 =k [Jcos a1 cos@ + coSf COSY + COoS) cos B,
AL T BIC. oy
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Upon eliminatingk, ¢, ¢, @ from the latter equations, while keeping in mind the
relation co$ ¢ + co$ ¢ + cod =1, one will have a number of new relations between
A1, A2, ... that is equal to the number obrds, minus three.That will provide the
complete solution to the problem.

Now apply theprinciple of elasticity:In order to do that, recall equations (1). Since
there are only two equations between the given fBraad the three tensiofls, T2, Ts,
that will amount to saying that there are an infinitiafeways of distributing those
tensions in order to be in equilibrium with the foRRe One must then express the idea
that one can vary the tensions without perturbing theibguih while P keeps the same
value, which is expressed by means of the equations:

5) { 0=JT, cosp, +IT, cop,+IT, cog,
0=0T, sing, +JT, sing,+ 0T, sinp, ,

or rather:

6) { O0=¢,0A, cosp,+£,01, coP ,+£.01, cCo
0=¢ 0/ sing,+¢£,01,sing ,+£.,01,sinp , .

The elasticity equation will be:
(7) AN+ N+ & A303=0.

Those three equations must be true simultaneously. Jdrme to eliminatéwo of
the three variation®l; , o, , 3. The coefficient of the remaining variation must be
zero, so one will then have a third equation for therdet@ation of the various values of
A.

We remark that in equations (6) and (7), the coeffisiaritresistance: , & , &
multiply the variationsdd; , A2, A3, in such a way that the final equation that one will
obtain upon eliminating the latter quantities from equati@sand (7) will not contain
the coefficientss, and consequently, it will give only one geometric relatbetween the
elongationsi.

In order to carry out that elimination by a processg thdicates more clearly the
identity of the two methods, multiply the two equatiof@® by the indeterminate
coefficientsA and B, respectively, add the result to equation (7), and then edhat
terms that multiplye, o1, & 2, & I3 to zero separately; one will have:

A, + Acosp, + B sing, = 0
(8) A, + Acosg, + Bsing,= 0
A, + Acosp, + B sig,= 0

However, if one represenkscos & by —A andk sin @ by —B then equations (3) and
(8) will be identities and will consequently lead to tlsame final equation that was
obtained before:

(4) A1 sin (@L—6) + Az sin (g2 — 6 + Az sin (93— 6) = 0.
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Conversely, one can deduce the elasticity equation (7)édaprations (6) and (3). In
order to do that, multiply the first equation (6) bygos & and the second one kysin 8
and add them together; one will get:

O=g 01 [Kcos pr1— O + & My [kcos @P.— 6 + & s [kcos @s—6) =0,
and by virtue of equations (3), that will reduce to:
AN+ N+ A303=0,

which is the elasticity equation.
One proceeds in an analogous manner for an arbitrarlgeruwh cords.

lll. — Second problem.

Figure 2.

Let the parallelogram ABCD have sides and diagonals that are composed af elast
rods. Some pair-wise-equal forces with opposite directions are appligte tsummits

and in the directions of each diagonal. P corresponds to the diagb@l and Q

corresponds to the diagonzﬁ). Determine the tensions and changes of form that the
elements of the quadrilateral suffer under the action of the foreeslR).

SOLUTION. — Use the following notationsz, Bare the angles that the diagornsC
makes with the side#&\Band AD, @, @ are the angles that the diagorﬁ]) makes with
the sidesAB and BC, |4, |, are the lengths of the sidesB= CD and AD= BC,
respectivelyls, |4 are the lengths of the side€C and BD, respectively, ands, &, &, &
are the coefficients of resistance that correspoihd kg I3, 14, respectively.

Since the forced® and Q are applied simultaneously, and the parallel sides are
homogeneous, so the tensions that correspond to th#lepaides will be pair-wise-
equal.
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Having said that, the equilibrium equations between ekternal forces and the
internal forces will be:

) P=Tcosa+T, coB+T,=¢A, cog+&cA, cas+ed,
Q=Tcosp+T, coFd+T, =4, cop+e A, cad+e A,
@) { T,sina-T,sinB=¢A, sim—g A, siB= 0
T, sing-T,sind=¢A, sip—-c A, sird= 0.

If one observes that:
1 sina=Ilsing and Ilising=I,sin@
then the two equations (2) will reduce to just one, ngmel
3) L Ti-LT=aAhlhb-&aAli=0.

In order to find a fourth equation, examine the displasgmthat take place in the
system. Let:AB CD (Fig. 2) be the original form of the parallelogram aftee forces
P, Q are applied, lIetAA = CC' =k, , BB = DD'= k, be the lengths of the lines of
displacement of the summits, and &t ¢» be the angles that those lines make with the
side AB. One will have the following relations:

A, =k cosy,+k, cow, ,

A, =k cosg+p-¢, )+ k,cosp+8-¢., )
A, =2k, cosy,—a),

A, =2k, cosy,—a).

(4)

Upon observing that one has the relations:

l,sina =1,sing, |, sig =l , sirg ,

l,sina =l,sin@+p), |,sinp=l, sing+6 )

l,=I,cosa+l,co¥5, |,=, cogH , cad
p+0=w—-(a+p),

(5)

w is the ratio of the circumference to the diamet®ne easily eliminatées, ko, ¢4, ¢
from equations (4), and the resultant equation will be:

(6) A3|3+A4|4—2(A1|1+A2|2):0.

Combined with equations (1) and (2), it will give the congtlution of the problem.
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If the parallelogram is rectangular then one willdiav
ls=14, li=l3cosa, Il>=Issinag,
and equation (6) will become:
A3+ Ay —2 A1 cosa+ A, sina) =0;

for the square, one will have:
A3+ =201+ A5) = 0.

In order to apply the principle of elasticity to this lplem, we begin by expressing
the idea that the distribution of tensions can vary evtlie equilibrium with the forces
P,Q is maintained. Hence, one will deduce from equationar{d)(3) that:

& 0N [Gosa +£,0M,[coB+¢£,01,= C
(7) & 0N [Eosp +&,01,coF+&£,04,= O
goll,-g,01,1,=0.

The elasticity equation gives:
(8) 288 A1 M +285 N+ & A3 N3+ & A1 4= 0.
Multiply each of equations (7) b%, B, C, respectively, add them together with equation

(8), and equate the coefficients of the variatiods, o, , I3, 4 to zero separately.
One will have:

Acosa+Bcop+ClL+ 2, = C
(9) Acosf+Bcog-Cl+ 2,= C
A+A,=0, B+4,=0,
and easily deduces that:

As(ly cosa+ 1, cospf) + A4(l1 cosg + 11 cosd) — 2 A1l + A210) = 0.
Upon appealing to the relations (5), which gives:
I3 =1y cosa + |, cosp, l4 =11 cos¢g +1; cosé,
the preceding equation will become:
A3 I3+ Agla—2 (rly + A215) = 0,

which is identical to equation (6), which was obtainedheydirect route.
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Upon multiplying equations (4) bjll1, o2, s, 4, one will deduce:

261,00+ 2£,A,00 ,+£,00 ;v 0N =

2k, cogy, e, 0l + £,00 ,coslr + B} £.01, com
(10) +2k, sing, e, 0l,sin(@ + B)+&£,01,sina }

+2k, sing, {0, +£,01 ,cos@p+8 + & ,00 ,co® }
+2k, sing, e, ,sin (@ +8)+ & ,01,sing }.

Now, upon combining the first two equations (7) with théofeing ones:

& o Bina- & o, BinB=0,
&1 5/]1 [(Bin ¢ - & 5/]2 [(Bin@= 0,

which one deduces from equations (2), it will be eassetothat the coefficient &f and
ko in the left-hand side of equation (10) are zero. Cqunesetly, that equation will reduce
to:

28 Mo + 285 1A + & Nz + & I = 0,

which is the elasticity equation.

One determines the values bdby means of equations (1), (3), and (6), which have
degree one. Upon letting denote the original values bfbefore the force®, Q are
applied, one will have:

in general.

In the case where the parallelogram becomes a sqbhateig composed of
homogeneous rods, one will have:

E =E=8=&, 1 =13, l3=14,

and as a result, one will find that:

These values of tell one about the tensions and changes in formeoétbaments of
the square, including the diagonals.
WhenP =Q, one has:
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A]_:Az:

M| =

A3:A4:

[ I

el
2

If P = 3Q then the tension in the diagohals zero then one will have:

A]_:AZ:EGL,
£ 30/2
/]3:3 DP,
e 3
Ay =0,

IV. — Third problem.

R
A
)

|

)

|

Es

:‘FG

;
R
Figure 3.

13

If one is given a regular octahedron whose edges and diagonals are composed of

elastic rods then determine the tensions that come about under it @fctorces P, Q,
R that are applied pair-wise to each summit and in opposite sense alongeti@ds of

the respective diagonals.
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SOLUTION. — We denote the summits of the octahedron by the nsnib&, 3, 4,
5, 6. The forces will be applied as follow&:to the summits 1, 3D, to 2, 4,R, to 5, 6.
The diagonals that correspond to those summits kem faair-wise. The tensions in the
sides of each square, which are the resultants afilgonal sections of the octahedron,
are obviously equal, so one will have the following ¢hequations for equilibrium:

=Tuo V2 (T * Tus)
:‘5(13) Aan V2w aot € asfl 0o
=Teow 2 (Tug* Tas)
= Eam AotV 2Eual uat € oot 29
R=Teo 2 (Tug* Tos)

25(5,6)/](5,6)+\/—(5(1,5) (1,5)+£(2,5ﬂ (5))-

(1)

One has taken the preceding observation into accotinése equations, and by virtue of
that observation, one will have:

T2 = Tes ™ Tea™ Ty
(2) Tus) = Tas= Tae= Tue
T =T, =T,.=T

(2,5) (5,4) — '(4,6) (2,6)
Upon following the path that was traced out inigdne will then get the following
equations for the geometric conditions that relateach of the squares that result from

the diagonal sections:

1
Avy T Aesy= ﬁ HAuot A et A @at A @
1
(3) /](13)+/](5 G)Z_EQ/](ls)+/](53)+/] (36)+/] JZ
s s \/E s s
1
Ase) T A= ﬁ {A 2t A st A sat A @9

One transforms the preceding equations by regatne values ofi with their
corresponding expressioiid & One will then have three equations, and when #ne
combined with the other three (1), that will suéfito determine the six unknown
tensions, namely, the ones in the three diagomalstee ones in the sides of each of the
diagonal squares.

The principle of elasticity likewise leads one @¢quations (3). The equation of
elasticity in the present case can be written ig fidbrm:
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1 1 1 1
T,,0T + + +
02912
i €23 €ea €@y

1 1
+T,, 0T +
w5 9 lws)
5(13) 5(53) €e6 € (6)

1 1
+T,, 0T +
25925
‘9(25) 5(54) €ue €62

1

(4)

8(1,3) (2,4) (5,6)

One will deduce from equations (1) that:

0=0T, 5+ 20T 0+ 0Ty,
(5) 0=0T, 4+ 20Ty, + 0T ),
O - éT(s,e) +\/72 ( (1,5)+ 5T(2,5))-

+ D_(ls) a3t A E[I_(24)5-|Z24) A D_(s,e)ﬂ(s,s)zo-
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If one multiplies the last three equations by the undebteucoefficientsA, B, C,
respectively, and then sums them, along with equatigrafd) equates the factors of the

independent variations @fto zero then one will have:

i[r(lg)+A:O,

- ,

3)

iD’(2‘4)+ B=0,

€(2,0)

2 m,,+c=0,

- ,

(5.6)

(6)

Tao S S +\/_E(A+ B)=0,
€us €3 ‘9(34) € (ay)
1 1 1

Tus) — L |+ J20a+0)=0,
€us) €63 ‘9(34) € (a1)

T(Z'S)[E t Lttt j+\/§E(B+C):O.
€25 €54 €us o2

Upon substituting the values Af B, C that are deduced from the first three equations
in the last three and replacing the with the expressionsi, one will recover the three

equations (3) that are obtained by the direction geomagibod.
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V. — Fourth problem.

A TO
Pl [ ] 1
P, ¢ 2
.. m
P19 z-1
P, ¢ Z
B L z+1
Figure 4.

Being given an elastic rodh\B (Fig. 4) that is fixed vertically at its two extremities
and loaded with weights;PP,, ..., P.1, P; that are distributed at the various poirs2,
..., z along its length, determine the tensions thatterieach of the elementsi, |(12),
|(2,3), etc.

SOLUTION. — The equilibrium conditions for each elements of tbe are
expressed by the following equations:

TO,l = gO,lA 0,1: I:)1+ Tl,2 Tl,2: 3 1, 1,2: Pj— T 2
(1) Tomt = EmmiA mmi= Pmat Tomymay oo
T -1,z = gz—l, ZA z1, z: PZ+ T z+4z1"

z

The geometric condition of constraint on the syste that the total lengtAB of the
rod should not vary; hence, one must have:

(2) Ao,]_ + A]_,z + ... +Az,z+1 =0.

When that equation is combined with thequations (1), that will suffice to determine
the tensions. The principle of elasticity leadsniediately to the same result. Indeed, the
equation of elasticity, as it applies to the présase is:

3) 101 Nop+ G212 N2+ ... + & n1 Azze1 WAyzer = 0.

However, equations (1) give:
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4) 01 Mo1=E2M12= ... =&m1 N1,
and when one combines this with equation (3), one will dethate
Ao+ A2+ ... + A1 =0,

which is a result that is identical to (2).
Upon combining equations (1) and (2), one will easily obtain:

Toa Dzil% P D§1ﬁ+ P i%—ﬂ# -+
0,1

o1 € o1 € £,

T - R g

(5) o1 € €01 23 € gz,z+l

When the coefficients of resistance and the weight$,, ..., etc., are respectively
equal, the preceding equations will become:

(6)

If the rod is homogeneous and the weights are distdbutgaformly and in a
continuous manner then, upon denoting the weight per urgthldoy p and the total
length of the rod bi, one will have'

(7) T=3pL—px
for the tension that corresponds to a point at a disbafrom the originA; for:

x=21L, one will have T = 0.

N

In the most general case, where the distribution@fhts along an inhomogeneous
rod is done in a continuous, but non-uniform, manner, thetiequaf equilibrium that
corresponds to a poirtwill be:

(8) dT=-pdx
Equation (2) gives |:

() Sees§l.
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L
dx
9) ZéT = [
0
Upon integrating equation (8), one will have:
(10) T=- I p dx + const.
0
Upon substituting that in equation (9), one will get:
dx ¢
(11) constj —I EJ' pdx=0.

Hence, one deduces the value of the constant, which witstitated in equation (10),

will give:
dx q
: L
1 - X+ ]
(12) j p rm
o Ew

VI. — Fifth problem.

me _ | )
e | .-, M
. .- a
A | I - T T \c
----------------------- P Tl il B
T ® a
AU
- by ) |
LT ) (N [
' [ ' [
: vy
e, 1 b P
’ |P3: ! P2
Figure 5.

Given a rigid material plane ABCIFig. 5) that is supported by k vertical elastic
columns and loaded with n weights, P, ..., P, that are distributed in an arbitrary
manner, determine the pressures that bear upon the support columns.

Draw two rectangular axes oy in the plane and a third orthogonal @z Let (o,
[), (a2, %), ... be the coordinates of the points of applicaéigis, ... of the weightdy,
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P2, ..., and let X1, y1), (X, ¥2), ... be the coordinates of the summits of the support
columns. The equilibrium conditions give the followmguations:

YP =XT =>el
1) D Pa=>Tx=) eAx
Y PB=>Ty=> ely,

in which theZ sign denotes the sum of terms of the same type.

We would like to start with a consideration of gpggometric conditions of constraint
on the system in order to obtain the other equatitmt are necessary for the
determination of the pressures. We observe thatndtessary condition is that the
extremities of the columns must be found in theesafane before and after compression.
That being the case, suppose that the plane isnallig horizontal. A represents the
amount by which the length of one of the columnsega and will, at the same time, be
the ordinate of the corresponding point of the elanits new position, whose equation
will be represented by:

(2) A=Ax+By+C.

A, B, C are the constants to be determined. In ordeo tihat, substitute that expression
for A in equations (1) and get:

P =AY ex +BY ey+ O ¢,
(3) YPa=A>eX+B) exyr O € X
Y PB=AY exyt BY e ¥+ O ey

Those three equations serve to determin8, C, and as a result, equation (2) will
give the values ofl, so one can then deduce the valu€es thfat correspond to the various
columns. In order to simplify the determinationAfB, C, one supposes that weights
that are proportional te, &, ... are applied to each of the pointsg, §1), (X2, y2), ... and
that one takes the center of gravity of those wsigt be the coordinate origin, and one

will have:
D ex=0, >ey=0, > exy=0.

Consequently, upon reducing equations (3), onededluce that:

Pa PS P
® S e
and as a result:

(5) a=T=2P0 00 ZPP o, f2P

D ext D ey’ de
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which is an equation that will give the various valueshef pressure by replacing, )
with their corresponding values at the various supporiadu

That is, in essence, the solution that EULER gavesip&per “De pressione ponderis
in planum cui incumbit,” and which was then developed by 88E in hisMécanique
appliquée as | have said before.

The principle of elasticityeads to the same solution immediately. Indeed, orsg mu
first express the idea that, in view of the indeteauynin the problem, if one has only the
three equations (1) to determine the pressures then fressures can vary without
changing the external forces — i.e., the weights;whlatead to the following equations:

(6) DOT=>edA=0, > xOT=) xdA=0, > ydT=)> yed=0.

The principle of elasticity will then yield this furthequation:
(7) Z%Tﬂzzgm&:o.

Multiply the three equations (6) ly, A, B, respectively, and then subtract equation (7),

and then equate the individual coefficients of the oBffie variationsi to zero. One will
have the general equation:

A=Ax+By+C,

which is identical with equation (2), which expresses tle®ngetric condition of
constraint of the system.

my

.g)
43
&
3

[P
[P —

Figure 6.

If the plane reduces to a lidB (Fig. 6) that is loaded with weighB, P», ..., and
supported at the points; , mp, mg, ..., then if one setg = 0,y = 0, formula (5) will

give:

@®) T= £y Pa £y P

B D ext D de

which is an equation that one can use to determine theupeethat acts upon each of the
supports.

It is important to not confuse that case with theecaf an elastic rod that is supported
by some rigid support points that are distributed along r&zdmal line, since in the
present case, one is, on the contrary, dealing witteaHat is supposed to bgid that is
placed uportompressiblesupport points.
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VII. — General proof of the principle in the case of a fee system.

Now that we have proved, in the preceding examplesiddmity of the results to
which one arrives for the determination of the tenslmngither appealing directly to the
geometric considerations of constraint in the systenbyolapplying the principle of
elasticity, we shall now give a direct proof of tpaihciple.

In order to do that, consider the equations of equilibrthat relate to each point of
the system. We denote those points by the indices 3,,M,n, ..., while the distance
between two pointsn, n will be denoted by, , the variation of the length will be
denoted bylmn, X, Yy, Z will be the coordinates of an arbitrary point, afgdy, Z will be
the components of thexternal forces that are applied to them. At each point, those
forces must be in equilibrium with the internal f¢bat yield the tensions in the various
links whose endpoints to which they are applied; onethelh have:

=31, d‘m_ DI E
1m

V=T, Gu—ztsl,m)llymgyfrj,
1m

z,=3T, sz— S e A, Gﬁ

(1)

X,— X
X Z _Z Dm pm | p’
pm
=> Tom M‘anm pmgliy
pm
Z,=>T, G— D Ennd pru

- pm’” pm |
Dm pm

If the number of points in the system is equah ttien the number of the preceding
equations will be 8, which all contain a certain number of tensions teaitespond to the
links that terminate at each respective point.

Indeed, upon summing equations (1), which correspond to thpatentsX, Y, Z,
respectively, one will have:

(2) >.X=0, >Y=0, >Z=0.

Similarly, if one multiplies theX by they and theY by thex and then th& by thez and
the Z by the x and then theY by thez and theZ by they and takes the indicated
differences then one will get:
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(3) D(Yx=Xy) =0, D (Xz-Z39 =0, D (Zy-Y) =0.

One will easily arrive at those results by observirad thin the expression fox, for

%~ % then one will find an analogous teffp, 5%
1,0 1,3
expression foiXz, and so on for the other ones.

As one knows, equations (2) and (3) represent the comslithat the external forces
must satisfy in order to have equilibrium. It is thusvyeithat equations (1) reduce to 3
— 6 equations in the external and internal forces.

If one supposes that each point is connected to alleobther points in the system
then that number dfnks, and consequently that of the corresponding tensioitisbev
equal to:

in the

example, there is a teriiy ,

n(n-1)
—
Hence, when one has:
3n-6 <M ,
2
equations (1) will be insufficient to determine the tensions
If one has:
an— 6 =n(n-1
then one will deduce that:
71
n=—-,
2
namely:
n =4, n" =3,

which correspond to the cases of a tetrahedron and skiegs that are fixed at their
extremities and converge to the same point, resp.hdset cases, the tensions can be
determined immediately by considering just the externadefy for more complicated
figures, one appeals to other considerations. If aheforces and links are in the same
plane, which will be that of the coordinates, then eqgunat(1) will be 2 in number,
three of which will be independent of the tensions, which can berdened completely
by those equations only in the case where one has:

2n—-3 <M.
2
Upon taking:
on_3= n(n-1) |
2
as before, one will find that:
5+1

N ‘
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namely:

which corresponds to the case of a triangle and a line.

If one of the links 4, 4, for example — does not exist then the correspondirgjae
will be zero. Hence, one set$,q = O in the corresponding equations. Some new
equilibrium conditions will generally exist between theteenal forces that are
independent of (2) and (3).

In the general case, equations (1) are insufficienumber to determine the tensions
in the system, which signifies that one can imaginenéinitude of ways to distribute
those tensions, such that they can all satisfy thdilegum conditions with the external
forces.

In order to express that idea, it will suffice totenn equations (1) that the tensions
can vary without that having to be true of the correspmndariations in the components
X, Y, Z. As one is dealing with only extremely small variatiomse can assume that the
directions of the links$ will not vary appreciably, despite the variation in tHemgths,
which will be expressed by:

oA.

Hence, one will deduce from equations (1) that:

—x _
OZZéqu Gx%zzgpqa)pqgﬁixp’

pq

pq

@) 0=Zﬂaﬁ%ﬁ=2%ﬂmﬁ?ﬁ%
pq pq

_ B oh %

O_Zﬂpq | _ngqa_/]pq | !

] 8]

If one letsa, £, ydenote the variations of the coordinates that comatabaler the
action of external forces, in such a way that beftnese forces are applied, those
coordinates will be:

X—a, y-p5 Z- )
they one will have:
(%) lpg — Apq = \/(Xq —a,- Xp+aq)2+(yq_,3q_ yp+,30)2+( Z=V4 Zp+V22,
and since:
(6) Iha =y (% = %,)° + (¥, ¥ +(2~ 37,

upon neglecting the powers af £, y;, that are greater than one, one will have:
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(@ =a) (X =%,) (B B)(Yom ¥) , Vo=V (2~ 2)
| | | ’

pq pq Pq

(7 Apq =

which is the general expression for the various values af Multiply those values by
the corresponding dA, respectively, and sum them. One will get:

pa Pq pq

®) D M= Te, 3 {(aq-ap)(xq—xp)+(ﬁq—ﬁp)(yq— Yo , Wy (2o zg}.

On the other hand, if one adds equations (4) after ryitigp them by the
corresponding values @f, 53, y; respectively, then it is easy to see that onehaile:

© Te. &pq{(aq—ai,)(xq—xp) +(ﬁq-ﬁ|p)(yq- YD), Ve yl,)( zq z,)} o

pq pq Pq

That will reduce equation (8) to:

1
(10) Z‘gquququ:zgg_qu 5qu: 0,
pq

which is theequation of elasticityfrom which one concludes the theorem that weedtat
at the beginning of this paper, namely:

When an elastic system is in equilibrium under the action of extévnads, the
internal work that is done by the change of form that is derived fhem twill be a
minimum.

Equations (1) arerBin number, and that will effectively reduce to 3 6 equations
between the external and internal forces, which pakrmit one to eliminate (8— 6)
different values of thesdd or JI in equation (10). Upon equating the remaining
coefficients of the other variatiorsod to zero, one will get just as many equations in
which the coefficients of resistance have disapgmba@and which will no longer contain
the geometric relations between the valued ahd the constraints on the system. The
number of those equations, when they are combint#deguations (1), will be equal to
that of the unknowns, and consequently, the proldethe determination of the tensions
will solved completely.

In summary, the geometric relations between tbagationsi and the links express
the idea that those links concur at the same pbgitsre and after the deformation of the
system. One can deduce the change in form whekmnas the values of, which the
result of the action of external forces.
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VIIl. — Extension of the principle to the case in whichthe system contains
fixed points or rigid components.

Leta, b, c, ... be the indices of the fixed points in the systefmle P, Q, R, ... are
the components of the pressures that are exerted oe puists, respectively. The
equilibrium equations will be:

x-yr,de%
(1) Yi:""

Z =,

xa:pa+zTam[jﬁ,

Iam

Y::Qa Z];md_’ml_ya,
@ Z, =R+ T,H—>,

X, =R+,

o =Q+,

Z,=R+-,

Upon proceeding as in 8§ VII, one will have the followinguations, which are
independent of the internal tensions, but not the pressardee fixed points:

> X=> R =0
3) dYY-> Q=0
>Z-> R =0

D (Xy=YR->(P y- Q ¥=0,
(4) D (Zx-X2-Y (R x- P 2=0,
Y (Yz=Z29->(Q z- R y=0.

If the system contains only one fixed poathen if one takes that point to be the
coordinate origin, one will have, = 0,y, = 0, z, = 0, and one will have the following
equations for the condition of equilibrium betweba external forces:

(5) D (Xy=Y® =0, D (Zx-X) =0, D (Yz-Zy =0.
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If the system contains two fixed poinssand b then one can take the line that
connects them to be tleaxis. Xa, X ; Ya, Yo Will be zero for those points, and one will
have only the following equation, which is independenhefgressures and the tensions:

(6) > (Xy-Yy =0.

When the number of fixed points is greater thvan and they are not located along a
straight line, one will not have any condition equation equilibrium between the
external forces that is independent of the pressuréseoitxed points.

Recall the considerations of the preceding 8§ VII andre, 5., )4, ... denote the
variations of the fixed points, b, c, ..., resp., that come about under the actions of
external forces. That being the case, one would dilexpress the idea that for the given
external forces, there will be an infinitude of im&k forces that can put them into
equilibrium, so one can write:

0=YoT, E—f@:zqm&imgﬁ;",
0=Y¢, 54@@,
0= ¢, o, "2,

)
O, + Y Eun 3222 20,

5Q, + 3 Euy Mg 1220,
OR, + 4 g F2—2 20,

Upon applying the considerations that led to equationg9g)and (10) in 8§ VII, one
will have the following equations:

8) 3 £, Ao oo+ S 0P+ B.3Q +y SRY=0,

in place of the last of those equations.

If the positions of the fixed points are invariable tlo&e will havea, = 0,5, =0, )4
=0, ..., and the pressures will generally remain indeterminbowever, the same thing
is not true in real bodies, and those points will effety displace under the action of
external forces. In order to refer to them in a manihat conforms to physical reality



Menabrea — Determining pressures and tensions ifasticesystem. 27

more closely, | will call thenstopping pointsin order to distinguish them frofixed
points which correspond to the case of rigid bodies.
In order to know the significance of the terms:

Ay Py + By Qa + 14 Ry,

consider a poina at which various columns or elastic strings can endtanahich the
componentd, , Q. , Ry are applied. Suppose that the extremities of thogseystor
columns that correspond to the pagnvary only in position, while the other extremities
remain fixed; one will have:

©) hoza 3% p ANy 208

)
ia ia ia

and as a result:

a

2
P = A M: ] u D)I(_ )é y_ y DP(_ 2( iZ_ aZ,
2. Za{%% I R A

ia ia ia ia ia

ia “'ia

ia ia

oA dEoTalad i a4 fur ]

ia ia ia ia

which are equations that reduce to the following form:

F)a:aaAa+ﬁaMa+yaNa’
:@B+aM+yO

a—a

(1) R, =y,C,+6.0,+a N,

In general, one will then have:
12) aP+LRR+yR=adA+LBB+ydyC+Molaf+N ollay+0O ol Py.

Having said that, if one le8denote the resultant of the three forBe®, R, and lets
@, 6, wdenote the angles that the resultant form withxilye z axes, resp., then the work
that is done by the displacememt 5, ) along the axes of the stopping points will be
represented by:
13) { 1S(acosp+ [ co¥+y coa ) }
=1(a’A+B*B+y’C+2aBM+ 28y 0),
SO
aP+BX+ydR=S[LS(acosp+ B coF+y cow |.
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Hence, one concludes that equation (8) further exprdssedea that the totality of work
that is developed by the effect of the external forcisereinternally or at the stopping
points, is aninimum In order to determine the pressures at the stoppingspaict the
internal tensions, one follows the process that wasldped before.

We remark that the expression for the square of thdtamtStakes the form:

(14) S=PE+B°F+ y* G+ 2aBE* + 2ayK? + 2By L?.

Upon changing the direction of the coordinate axescanaeduce that expression to
the form:
(15) 82 - a,/2 AIZ +ﬁ/2 Byz + VZ CIZ,

in which a’, B, y’are the new coordinates. If one l&§ Q’, R’ denote the new
components 0% then one will have:

(16) P =A"a’ Q'=B'f, R'=C"y,

If ¢, @, « are the angles between the direction of the reguitad the axes then one
will have:
a7 cosp’= A?a’ cosé@’'= %, cosw = cy :

One concludes from this that equation (15) represents ipsoddl that is referred to its
axes, so the resultant of the elastic reaction toates about from the effect of the
displacement of thstopping poinis directed along the normal to that ellipsoid.

When the displacement takes plane along one of #& Hte elastic reaction will be
consequently directed along that axis. The ellipsoidquestion is called thelasticity
ellipsoid and its axes will be thelasticity axes.

The elastic reaction force is the resultant of theee elastic reactions that are
calculated along each axis and correspond to the pamectif the displacement along
the axes.

In my paper entitled “Etudes sur la théories des vibratiofidémoires de
I'Académie des Sciences de Turin (& (1854)], | showed that a point that is restrained
by elastic links and put into vibration will execute mulgradependent isochronous
vibrations along each of the elasticity axes, and tkBah a&onsequence, the effective
motion is the resultant of those three motion.

If one supposes that the system that is subject tadten of external forces is rigid
and that the onlgtoppingpoints are restrained by elastic links then it wil ddear that
the internal work will be zero for the rigid systeamd that consequently, the term

ngq)lpqd)lpqin equation (8) will be equal to zero. That being the ,cagaation (8)
will reduce to {):

() An analogous equation was given by DORNA for a casectitaésponds to the one that was treated
above in which the elasticity axes of the varistgpping pointhave the same direction, respectively. See
v. XVIII of the Mémoires de I’Académie des Sciencesldan, series Il.
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(18) D (adP+BQ+ydR =0,

where, theindiceshave been omitted, for simplicity. Equations (3) and \)jich are
independent of the tensiofiswhich remain indeterminate, will give:

(19) >6P=0, >5Q=0, Y 6R=0, > (YOP- x Q=0
> (xdR-2P=0, D (D Q Y R=0.

Multiply the latter equations (19) by the indetenate coefficientsA, B, C, D, E, F,
sum them with equation (18), and equate the coeffis of P, X, AR to zerg one will
get:

a+A+Dy-Ez=0,
(20) B+B+Ez-Dx=0,

y+C+Ex-Fy=0.

One substitutes the expressions dois, yin the expressions fd?, Q, R in equation
(11). The latter are then substituted in equati@sand (4). One will then have six
equations for the determination of the coefficieAtsB, C, D, E, F, which, in turn,

will yield a, G, y;, and as a resuR, Q, R.
When the elasticity axes of the various stoppiomis are directed in the same sense,
one takes them to be the directions of the cootelinaes, and the compone®sQ, R
will then have the form:
(22) P=al, Q =K, R=yL.

Upon making the substitution in equations (20), &d (4), one will have the
following equations for the determination of thel@terminate coefficients:

DX+AY 1+DY Iy-ED 12=0,

Y Y+BY K+FY Kz- DY Kx=0,

(22) Y Z+CY L+EY Lx- FY Ly=0,

> (Xy-YR+> { I(A+ Dy- Ex y K B _Fz _Dx}x0,

When one has = K = L from the constitution of the system, one can sipphe
preceding equations by taking the direction ofdberdinate axes in such a way that one
will have:

I x =0, ly =0, lz =0,
(23) { %Ixyzo, %IZX:O, %Iyzzo.

Equations (22) will then reduce to the followingesn
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MX+AY 1=0, YY+BY I=0, > Z+C) I=0,
D (Xy=YR+ DY I(X+ ¥)=0,
D (Zx- X9+ EY. ( X+ 2)=0,
Y (Yz=2zy + FY (§+ 2)=0.

(24)

One deduces from (20), (21), and (24) that:

_|Zx+|y2(x y=Y ¥ 12D (Zx X}¥
- > DI +y?) D 1(x*+2%)
XY 12 (Y= ZYy 1D ( Xy Y
(25) Q= S + S+ S IC+y)
R_IZZ+IXZ(Zx—Xz)_ I (Yz ZYy
- > D H(x?+2%) Dy + 2y

When all of the stopping points are situated anghme plane, which we take to be
the xy-plane, and the external forces are all directedgthez-axis, equations (25) will
reduce to the following ones:

_ _ _IYZ 1xDZX 1y) Zy
(26) P=0, Q=0, R= o + S + STy

(x, y») is the point of application of the forze

The latter expression foR coincides, in essence, with formula (5), which was
obtained as the solution of the fifth problem, § whe should note that all of tlzeare
zero.

Take the case of an elastic prism with a symmegation with one extremity that is
acted upon by two forces, one of which is direqtadallel to the side of the prism and
the other of which is perpendicular to it, in suehmanner that the plane that passes
through those two directions, which will be theplane, divides the prism into two
symmetric parts in the sense of its length. Suepos addition, that a couple whose
plane is perpendicular to the direction of the mritends to produce torsion in it.
According to the method that is generally adopted, considers two consecutive parallel
sections of the prism to be kept normal to the euhat the prism will take under the
effect of the flexure, and that those same sectimmsentirely through the same angle for
all of their points under the effect of the torsiomhat amounts to saying that one
considers the fibers that are contained betweerctwasecutive normal sections as being
the only ones to bring equilibrium to the exterfaices, independently of the others.
One then abstracts from the elasticity of the offgets of the prism and considers them
to constitute a rigid system.

Having said that, that hypothesis will bring ugsk#o the most general case in which
only thestopping pointsare restrained by elastic links, which are therBlthat are found

P
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between two consecutive sections of the prism in questitence, equations (20), (21),
and (22) will contain the solution to the problem thas wased.

If one considers the simplest case, which is the inn@hich the coefficients of
resistance are the same for all directions, thercaneapply equations (25) to it, in which
the z-axis is taken to be parallel to the edge of the prism #e xy-plane is,
consequently, parallel to its normal section. Onel when have the following
expressions for the components of the tension, in witiehproductMm represents the
moment of the couple that is expressed by:

D (Xy-Y3
in equations (24).x’, y’, z’ are the coordinates of the point of application effidrcesY

andZ, upon taking the origin to be on the same sectiondhatconsiders in the prism
and such that equations (23) are verified; one furthesnbét thez are zero:

P:M
DI +y?)’
Y I XM m
27 = - ,
27) Q Y2 +y?)
A _ly(YZ-2y) , IxZX%
> Dy ux?

Those formulas contain the solution of the casesattgatisually treated in practice on the
basis of the established hypothesis.
When the only external force Ys one will have:

(28) P=0, Q= Yz

If, in addition to the forceY, there is another forc2 whose direction one supposes to
pass through the coordinate origin, as it was establiséide, then equations (27) will
give:

(29) P=0, Q=

0.

1Y lz 1YZ

D I Dly

The last expression is generally the one that ondogspn practice to calculate the
tension that a fiber supports. Indeedy’ifs the tension per unit area of the fiber that one
considers then one will have:

R=2
w
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w is the section of the fiber whose length between Wle donsecutive sections of the
prism isl, andE is the modulus of elasticity; hence:

|:E‘|—”.

Upon substituting and reducing the third equation (29), oneyedl|

EY Z EZ
30 R=- + :
(30) Seoy VT m
which coincides with the known formula.
Finally, if the external forces reduce to the singgepleMm then equations (27) will
give:

(31) P= D Ew(xX + YY)

EwMm _ EwMm

| - x, R=0,
Yo TSR - )

upon introducing the previous valuelof Upon denoting the effective tension Byone
will have:

(32) T= P+ = EOMM ree

- D Ew(X+Y)

Let r denote the distance from the point §) to the origin. Lety be the angle
between the radius vectoand the axis of the origin. Substitute the potaordinates for
the rectangular ones. When one takes:

r=f(9),

w=rdr Mg, r=.x+y".

Substitute this into equation (32), and tdKeo be the tension per unit area. One will
have:

one will have:

(33) T':I:ﬂm
w ﬂEr drdg

for the fiber that corresponds t@, which is an expression that coincides with thagalis
formula that one employs in order to determinerdsstance to rupture under torsion.

It is easy to deduce from equations (27) and d¢ilewwing ones the expressions that
give the changes of form that the prism experiencader the effect of torsion and
flexure, but | shall not stop to do that here. witl suffice that | have proved the
generality of the new method that | propose by meeainthe preceding examples that
were analyzed.




