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Investigations into the problem of quantum electrigy

By Gustav Mie
(First communication)

Translated by D. H. Delphenich

Introduction

1. In this treatise, the search for a “wave equatian” électrodynamics will be
undertaken. First of all, some long-known facts wilkéealled in the first two sections.

In my papers on the theory of mattéy, (it was shown that one must generally
distinguish between two different groups of state quastithamely, the group of so-
called “extensive quantities” and the so-called “intemsguantities.” One needs
guantities of one or the other kind in order to compfedieiscribe the state of a physical
system. If the quantities of the one kind are givemmetely — for example, the
intensive quantities — then one can calculate the quantti¢he other kind — viz., the
extensive quantities — from them with the help of the rtdvdunction” ® by certain
partial differentiations?j. For example, if one lets the intensive quantitieddsmted by
the symbolsfi, f2, fs, @ (viz., the potentials) aneh, es, e3, bi, by, b3 (viz., the field

intensities) ther will mean a function that depends explicitly upon onlysthextensive
guantities and is, at the same time, an invariant foerta transformations (i.e., a four-
dimensional scalar). One then calculates the exigsiantities,, v,, vs, o (current and

charge density) anith, 02, 03, b1, b2, b3 (the field excitations) by the following formulas:

o Gl P P
1 U|:__, :_, DI:__l |:_
@ o P op e’ "

Conversely, one can also exhibit a “world function’ltd extensive quantities, which
| would like to denote by(v, p, 0, ) (), from which, one can arrive at partial

() G. Mie, Ann. d. Phys37 (1912), 515.

() Loc. cit, pp. 524.

() In my previous papers [Ann. d. Ph@¥ (1912), pp. 523 and 524], | used the seemingly-impractical
symbolH, in place of®. We must now reserud for theHamiltonian function, so in this paper, | shall
write Y.
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derivatives of the expression by an entirely analogouxgss that represents the
intensive quantities as functions of the extensive dtisst’). The relation?):

W=+ —¢ Oo+ () — (b )

exists between the quantiti®sand'¥.

2. One can distinguish the same two kinds of state quemiit the mechanics of
discrete mass particles. Let the degrees of freedotheofystem be denoted by the
whole numbef.

1. The “extensive quantities” are the “coordinates” g, that determine the
configuration of the mechanical system, andfthelocity components that one ordinarily
denotes by . Thef differential equations:

dq _ |
2 A -q
@ G
exist between these quantities.

2. The intensive quantities are théorcesP; and thef impulsesp; . Likewise,f
differential equations exist between them:

3 —I|.

The intensive quantities can be calculated as functibtised® extensive quantities; the
causality principle is then satisfied by tHed#ferential equations (2) and (3). In order to
obtain the expressions for the intensive quantities, st obtain the so-called
Lagrangian functionL(q;, ¢ ). One calculates from it:

_ oL
oG,

_ oL

4) Pi = 6_q, :

P;

One now calculates thdamiltonian functionF from theLagrangian functionL as
follows:

(%) H(CIi,IOi):—LJfZIOk [0},

() Loc. cit, pp. 523, equation (9).
() Loc. cit, pp. 525, equation (15).



Mie — Investigations into the problem of quantum eleityri 3

in which the g, on the right-hand side are replaced with functionshefq;, pi — i. e.,
G, (g, p)) — that one can obtain from the first group of equati@y). When one notes
equations (4), (5) will yield:

dH(q;, pi) ==Y P g > pOdg+>  pOda+) g dc

=- > PlHq+) qOdp.
One then has:
oH oH
6 - :_PI1 -— = ) ]
(6) 2 o o)

and one can now also write the differential equat({@ysnd (3) as follows:

dq _oH o __ oH

7 : —_—.
@ dt dp dt oq,

These ardHamilton’s differential equations for a mechanical system etidite massive
particles. They aref2ifferential equations for thef Znknowns:p;, g . The numerical

value of the quantityd is invariant in the course of timeit represents the “energy” of
the system.

Hamilton’s differential equations in the physics of the dter

3. In order to arrive at thelamiltonian function for the continuum ether, we next
define:

(8) H@, 0f0)=0+(Dh)-¢0p

in which e and ¢ are expressed as functionsogfp, f,  on the right-hand side that one

obtains:
_ 00

-0 _ oo
op’

0i=-—.
Oe,

With consideration of equations (1), that will give:

dH = - (v [Hf) + p g — (0 THe) + (h THb) + (0 CHe) + (e (o) — p[HY — ¢ o
=— (v Of) + (h CHb) + (e [H0) — ¢ [Hp,
SO.
aH—— ; a_H: ; a_H: ; a—H:
®) T TR S AP

_p.

The fundamental equations of electrodynamics can nomribden as follows:
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ot 0f, ody|lodb,| 0z|ab,
0
(10b) i:—a_H+i a—H .
ot 0, odx(dp
If we set:
_ %, 3, % ST S
ox 09y 0z dy o0z

in the right-hand side then we will have six partiafediéntial equations for the six state
qguantitiesds, 02, 03, f1, f2, f3 . The numerical value ¢ means the spatial density of the

energy of the electromagnetic fiefd.(

X X+dx

Figure 1.

4. In order to calculate thdamiltonian function for the electromagnetic field itself,
we must observe that the state of a continuum canlendescribed by infinitely many
variables. We will first content ourselves withawproximation that involves very many
variables, and it will then be easy to make the passatpetlimit. We think of the space
G that the field inhabits as being divided into very many (viafinitely many)
parallelepipedsix (dy [z = dG, in which, we think of thex-axis as being divided into
many smalkequalpieces of lengthlx, and likewise, thg-axis andz-axis into nothing but
equal piecedly (dz resp.). We can briefly call the coordinate tripke \, 2 of the
midpoint of such a parallelepiped themberof the parallelepiped in question, ad, vy,

2, p(X, Y, 2, (X V¥, 2, b(X, vy, 2 will be the state quantities that belong to this

parallelepiped — i.e., to this “particle.” Here, the choates are therefore not counted
with the state quantities, as in the case of the nmchaf discrete particles, but they

() G. Mie, Ann. d. Phys37 (1912), pp. 524, equation (16).
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enter in place of the numberghat are attached to the state quantijendq: g, pi -
They are now nothing but numbers, which are, however, infinite in number,
corresponding to the number of particles in the continutior the sake of brevity, we
would like to denote the particle, (y, 2) by 0, the particlex+ dx, y, z2) and & — dx, y, 2)
with 1 (-1, resp.), X,y +dy, 2 with2 (- 2, resp.),X vy, z+d2 and &, y,z—d2 by 3

3, resp.) (cf., the accompanying Fig. 1). We can then:write

0 _ ~(-1) 0 _~(=2) 0 _ ~(-3)
:ax Dx +Dy Dy 0 Dz

11 +—= ,
(1) dx dy dz
PN kS o 1
g dy dz '
fo-fe® fo-f
12 bO - X X _ z z ,
(12) Y dz dx
O et i
‘ dx dx

and theHamiltonian function$) of the system will now be defined by:
(13) [ H(@p.1.6)0G=50].f),

wheredG = dx [y [(HzandG means the domain that the field inhabits. Thexidhall
mean the three numbers 1, 2, 3, correspondingetahttee coordinate directionsy, z,
while the index shall run through all of the “particle numbergy, z), so$ is actually a

function of infinitely many variables. H depends upon ontyandf, but not uporp and

b, then$) will be composed of infinitely many summands, eatlwhich always includes
only quantities with a single index= (x, y, 2. However, sincep also appears as an
argument, for exampley? will enter intoH°, as well aH*?, and likewised|, will enter
into H%, as well aH*?, and ?° will enter intoH’, as well asH™*), and one can make
similar statements abodf, ;. f;, sinceby, by, b, also appear as arguments. We would

now like to define the partial differential quotierof$ with respect tm® :

0 0 (+1)
99 _[H | e[ M|t me-| M) 2log
0o, |00, 0p ) dx 0p dx

0 (+1)
AERECINE
0o, 00, ox\ 0p

(14)
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in which 0 and (+1) denote the infinitely-close particleswie coordinates(y, z) and
(x +dx vy, 2), resp. We would now like to seequal to more general values than 0 and
allow i to assume all valueg,(y, z), so one now sees that one can regard equations (10b)
as the following system of total differential equatiomgh infinitely many dependent
variables: _ _ '
(15) df, __ 99 di, __ 99 di, _ a9

dt (0 [@G) " dt c’)(b‘y [@G) dt a(d, [dG)

One likewise gets:

0 0
a—ﬁz{a—Hj mc;{a_HJ = e

a5y | of, ob,) dz
0 (+3)
LD S WML s e
ob, ) dy b, dz

(16)

o9 _|(anY (afan )" (afan))"

on _(oH ][ oo |10 0H ) g

of, of, dy| 0b 0z{ db

One can then also write the differential equati@i@®a) as the following system of total
differential equations with infinitely many depemti®ariables:

17) d@, M0 _on  d@,[G) _oan  d(,0O _aH
dt of! dt of, dt of

We have thus brought the fundamental equationdestredynamics into the form of
Hamilton’s differential equations. The numerical value tbé quantity$ is also

invariant in the course of time here, since ithe total energy of the field. Here, the
infinitude of pairs of quantitiegd, [dG,f ) enter in place of thé pairs of associated

quantities ¢, pi).

The differentiation of a function of a variable-continuum

5. The rules of differentiation that are derived hfenea function that depends upon
a continuum of variables can also be obtained filmrknown methods of the calculus of
variations. LetF be a function that depends upon not only a certaimber of state
guantitiesu, v, w, ..., but also upon their derivatives with respecthe variables, vy, z,
so for example, upon:



Mie — Investigations into the problem of quantum eleityri 7

EN: LI, LI, L
18 = - O—u
(18) ox" oy 0Z

The function of the infinitely-many variables at all spaelements of the domafb is
then:

(19) 3= J'GF(u, v, W, ..., u"™ .. Xy, 2) G,

In order to now define the differential quotientsgofvith respect to the valua, thatu

has at a well-defined poink,(y, 2, we letu vary in avery smalldomain AG that
surrounds the poini(y, 2) in such a way thafu is zero on the boundary of that domain,
together with all derivatives with respectdoy, z. | refer to the following mean value:

=1 sumc
AG NG

as the variatior® of the variable®. We now calculate the corresponding variation of
S

&K = j[ @+Zah.k h'kjme

The well-known process of partial integration thendgel

F h+i+k F

We now let the domaiAG become small enough that one can set the expneissaurly
brackets under the integral sign equal to its nvedime, which is its value at the point (
Yy, 2) that is enveloped by the domdi®. That now yields:

h+i+k 0 0 0 a_F
{ ;;( 1) %7%7%?( j}o AU, [NG.

The desired differential quotient with respectugds now nothing but the quotieidf /

Ao, and when we introduce the notat@@, for the infinitely-small domaidG, and thus
setAG = dGy, we will then have:

6F heisk 0 0 0 ( OF
@0 ey { 2,0 %%Gﬁ[m}o”d&-

It is easy to see that equation (20) is only a geization of formulas (14) and (16).
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In the sequel, we will often have to deal with evesrengeneral forms for functions
of infinitely-many variables. For example, such a fiorccan be envisioned as follows:

Let a sequence of quantitiss, So, ..., Sn be defined by the well-defined integrals:

Slz.[GSl(u, V.., 0L x Y 20dG

(22) SZZIGSZ(U, V..., U ..., %y 20dG

S, =IGSn(u V.., 0L x y 20 dG

The following quantity§ is then a function of infinitely-many quantitiasy, ..., that
belong to the individual spatial elemelt:

(22) Su v, ...) =FGS1, S, ..., Sn),

in which F should mean any function of a finite numbeaf variables. The first partial
derivatives of§ with respect to the individual valuashow prove to be:

(23) a_&zﬁ Sl+£d&+__+£ Sn,
ou 0§ ou 0S, du 0S5, du

in which the expressiorkS / du are all calculated using formula (20).

This is not the place to develop a general matheatatheory of functions of a
variable-continuum. That theory exists alreadyd avas treated thoroughly byito
Volterra, to whose investigation$)(we shall only refer here.

The action function

6. We now once more consider a dom@irthat is extended in such a way that all
physical quantities that are necessary for a cammlescription of a material system that
is contained inG can simply be set equal to zero on its boundarglliromputations.
That condition shall be called the “boundary coodit in what follows, for brevity. Let
the potentialgs, {2, {3, @ be given everywhere in the dom&nduring the time fronty to
t, , and indeed in such a way tiMaxwell’'s equations are fulfilled at all points of the
aforementioned four-dimensional continuum. Thiiscesb = rot §, e = —f — O¢, the

“world function” ®(f, rot f, §, ¢, O¢) will be given everywhere in the four-dimensional
domain. We now denote:

() Vito Volterra, Lecons sur les Fonctions de Lign&aris, 1913, and furthermor@: Lévy, Lecons
d’analyse fonctionelleParis, 1922.
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(24) U= ”CD(f rotf, §, ¢, 0¢) UG [Hit

1

as the “quantity of action” of the system and calauldts variation &J, which
corresponds to an infinitely-small variation of the quagf, ¢ at all points of the four-

dimensional domain considered:

:J%J' {[aﬁ+rot(aij—i(a£jjQ;]c_{aﬁ_div( odb Dw}met
"G of o(rotf) ) ot\ of ¢ 0(0¢)

o35 o

Here, and in what follows, a vector whose threenponents are defined by
differentiating® with respect to the three components of a vectergsf, tot f, etc. —

shall be described as the differential quotien®okith respect to the vector — e.g®d /
0f, 0 / d(vot §), etc.— for the sake of brevity.

Of the three terms thall is composed of, however, the first one will nownigh,
since the factors a¥1, &, ds, op are nothing but the left-hand sides of the firstup of

Maxwell’s equations. Moreover, the second term vaniskes egesult of the boundary
condition, and in the third one, one can carrytbatintegration over time:

(25) w:tfjaq:memt_{jaq’

(B} me} D 0P ms,([dc;l

to 9

We now think of the entire continuum of state dquas {1, {2, f3, ¢ as depending
upon one or more parameters on the four-dimensidoaiain considered, by whose
variation the state quantities will be varied irtlswa way thaMaxwell’s equations will
always remain fulfilled. Letd, d¢, P mean the differentials that correspond to an
infinitely-small variation of these parameters. ®¥art from a system of initial values for
the f1, f2, f3, ¢ (which we would like to denote by the index 0) tapa system of final
values whose symbols might bear no special ind8x.integrating along any path that
leads from the system of initial values to the sgsof final values, one will get from

(25) that:
{ £

jai’mfme

fo f

@@fme} |

(26) tjj Jcbmetdt—tfj D, Ddemm{j :

5" —

7]
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Since the left-hand side of this equation is independetitegpath of integration, the
same thing will also be true for the right-hand sidéwe two bracketed expressions then
depend upon on the initial-value and final-value continuh®f, ¢ in the spac& at the

timest; (t1, resp.). One will then have:

f
,” aﬁwf G| =W, ¢, t2) = W(jo, @, t2),
G g

i
[[ 20 EG| =W, 4.t) - Wi, 4. 1),

L dy,

in which ¥ means a function of the continuum of #hep in the spatial domai® at a

well-defined timet; (t1, resp.), which can include the tirhan addition. If one goes from
the value continuunf, ¢ to an infinitely-close on¢ + &, ¢ + o¢ while keeping time

constant then that will yield:

W _ 30 . W _

i Y

0.

It then follows: The value-continuum gffollows from the function/V in its own right.
In summary, we can write:

t

(27) [ ] © TG Tt = W(f, t) — W, t),
4 G
(28) IWEY _ 0P oy
of; of;
(29) DoV - [ ome
dd ¢4 of dt ot 2
: _ 0 9 . .
Since ¢ = —————, it then follows from (1) that:
ot 0x
‘0- = —aﬁz aﬁ
| Oe;  Of; ’

and one can then also write equation (28) as follows:
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oW(f.t)

(28a) =3 (G.

We will call W the “action function.”

Hamilton’s partial differential equation

7. We can write the four components of the last colurfirthe energy-impulse
matrix () for the physics of the ether as follows:

T,=illb,d, -b,d +f [p)=i EEdiv(fXB)) —i?}(‘ [ aj,

a=1

: [ 3, 0f,
T, =ilb, @, ~b,0,+f [p) =i EEdlv(f IDEDY = @ j
(30) =

T34 = I |:quljy_byljx-i_fxli) :i I:Edlv(fzm)_zslaafza m aja

a=1

T,=P+(bDd)-¢Lp) =¢—div(¢®)—i§; (9,.

If we now form the integral over a spatial domas in which the entire
electromagnetic field is contained as a closed sy#temwe will get:

[T.mG=-i, [ T,0dG=-i,
G G

(31)
[T.@G=-im, [ T,0dG=E
G G

in whichJi, J2, J3 mean the components of the total mechanical imputeE: aneans the
total energy of the field. If we transform to a cooadnsystem(X,y,z, iL(X) in whichJ;

=J, = J3 = 0, then the fourth integral will give the resteegyE, of the field, and from
the principle of relativity, we will now have:

(32) E2- (J2+J2+J)=E}.

If we substitute the expressions (30) into form(@&) then with the use of the “boundary
condition” we will obtain:

() G. Mie, Ann. d. Phys37(1912), pp. 525, eq. (16).



Mie — Investigations into the problem of quantum eleitri 12

Jl:ji‘;’(; 0, [@G, Jzzjia’(a @, dG

- =
a=1 a=1
(33) G G
2, 0f, 2, 0f,
3= @,[8G, E=[|®- D, |(dG
G a=1 a G a=1 at

We substitute the value fog (UG from (28a) here:

(34)

Here, one must note that, from (20) and (23), éxpressions for the partial
differential quotients of a function of a varialdentinuum always have the fact®, so
the three expressions that were foundJigd,, J; are also once more proper functions of
a continuum of variables. We can evaluate theesgion forE with the help of formula
(29), which yields:

(34a) g= I

ot
Equation (32) now gives:

(59) (_j {G = 6x af a} “5=0

This isHamilton’s partial differential equation of ethehgsics which is a first-order
partial differential equation of degree two for thetion function/V in the independent

variablet and the continuum di, f2, fs.

%,_z
/—/%
O —
1M
& fh’
= §
%,_z
/—/%
O
M
(3}
N5
Nk

Schrodinger’s differential equation

8. In order to have as good as solved the problefmding the “wave equation” of
ether physics, we must simply appeal to the preson that Schrodinger gave ¢).
Without going into the deeper meaning, let it obly said thaHamilton’s principle,
which has been the basis for the theory up to maivpe completely overturned by the
decisive step that we shall now take. The preftismulation of the new principle that
will now enter in place offamilton’s shall be the subject of a later examination.

() E. Schrédinger, Ann. d. Phys81 (1926), pp. 133, eq. (35).
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Following theSchrodinger prescription, we replace the symtaly / df, with the
operatoth / 271 [D / dfa , and likewise replac@/V / ot with h / 272 [D / 0t, and then apply

the operator that thus arises on the left-hand sid@x)ft¢ the “probability amplitudef.
The quantityy, just like)V, is a function of timé& and the variable-continuufg, f2, {3 .

We thus get the following “differential equation” f@r(f1, f2, {3):

2 3 30 3 0
30 2oy [ deet [y dedY Mgy =o

This is Schrodinger’s differential equation for electricity.
Equation (36) is a proper partial differential equation wraaable-continuum. From
(20) and (23), the quantityy / df, will then include the factodG, and therefore

j Z %, BJLWMI once more be a proper function of a variable-cantiin that can be
G rl

partlally dlfferentiated with respect fg . Since this differential quotient, in turn, has the
factordG, the entire second term on the left-hand side wslh &le a proper function of a
variable-continuum. If we may then only assume thegt hecessary convergence
conditions are fulfilled then the entire left-handesiof (36) will make reasonable sense.
One might indeed say that (36) represents a homogenetwss, diifferential equation for
that is of order two in the variabiend the continuum di, f», fs.

Electricity and mechanics

9. In the event that one thinks of the blurring of thédfigmes that is represented by
the probability amplitude/ as being restricted to the extent that only the looabif the
corpuscle that excites the field is indistinct (whetihdxe an electron or a light quantum,
which will be regarded as a dipole), but everywhere #isefield of that uncertain
starting point is determined by the lawsMéaxwell’s theory, (36) will go over to the
mechanical “wave equation” of a single corpuscle t&athrodinger treated so
thoroughly. Namely, if the location of the corpusdedenoted by{ 7, ¢) then, as a
result of the restriction that was made, the varigbletinuum off,, f», f3 will depend

upon the paramete&s 7, { in such a way that every individupfuantity that belongs to

a spatial elemerdG with the coordinates(y, z) is a function of the quantitieg & &), (y

— 1), (z —¢) that does not contain timeexplicitly. Thus, it is assumed that the velocity
of the corpuscle is constant. Singecan also be assumed to be a function of the
parameterd, 77, {, one will then have:
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[ JU00 . WEnED
(37) G Tl y ag

On the other hand, one can, as we saw in the reqida for (36), regard the left-hand
side of (37), and thus, the quantitydy / d¢, as well, as a function of the variable-
continuum of thg-quantities and timg so | will suggest that by writing:

of,

G y=1 ax

In the same way, we further obtain:

3, 9f, oY 0 o’y
(38b) iZ -~ afﬁ[ 2 )j ag(ag(fnit)j o7

=1

Thus, in the case of the field of a single corpaigblat moves with constant velocity,
equation (36) will go to the following equation:

(39) LR (aw 0w oy

o> \a&? an? 6(} hZEEowI 0

Yis regarded as a function af, (7, ¢, t) in this. If we substitute the rest mass of an
electron forEp in (39) then we will get the equation for the “pability wave” that
accompanies it; if we sdf; = 0 then we will get the case of light quanta, chhis a
probability wave that advances at the speed of.ligh

The case of an electron that moves in a forcd iah be treated easily. In that case,
we must only pose the “boundary condition” in a sarhat different way from what we
did in the derivation of the expression (33). Heve cannot set the state quantifieg

equal to zero on the boundary of the don@ithat surrounds the electron, together with
its entire field up to distances at which it carcbented as zero, but we must assign it the
value of the “external field” on the boundary. Elema second restriction upon the
fuzziness of the field will be imposed, namely,tttiee externalfield should be sharp: In
addition, as one always ordinarily does in mechgnie establish that two assumptions
are permissible, with no further comment:

1. The domainG that surrounds the corpuscle, together with ieddfiis small
enough that one can regard the potential of thereat field as constant on the entire

boundaryj(é, n, 1), ¢ (¢, 1, { V).

2. The acceleration of the corpuscle is infinitefgall, such that here one can also
regard the individual quantitigof the variable continuum as pure functionsxo£§), (y
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- 1), (z — ¢ in the calculation of the differential quotients gfthat contain timet
explicitly.

If, for the time being, we denote the outer surfacthefdomairc by S then we will
have:

[ div(xD)DG=f (&7, &0 O] (@ OS) =0k (& 7, &9,

G

in which £ means the charge of the corpuscle, gndeans the potential of tlexternal

field. The calculation of the other three expression@@) is performed similarly, in
which, one simply replaces with fy, f,, @, resp. We thus get the following values,

instead of (33):
i

(7]
—

3, . [HG-£0,(£.7.¢.1),

o [UG-£0,(¢.1.¢, 1),

[

N

I
QO —

(40)

(7]
—

Mo 3D 3
%@ %\

~ 0, [MG-£0,(£.17.4, 1),

(&
w
1
Q) —
Q
Il
BN
(o3

of

—:@’aj—fﬂﬁ(fﬂ,i,t)-

MwN

D -

m
1
Q) —

Q
!

One now gets the following wave equation for the cofpuSt

0 2 2P
m
(41) ( j Y- Z [0, | ¢+ E W =0,
ot 15

in which, one replace§ n, {with &, &, &. One gets the form of the wave equation for
a single particle thaSchrdodinger employed from equation (41) by simple calculations
by neglecting the “relativistic corrections.” Ify the case of a complicated atom, one
were to exhibit an equation (41) for each of thepascles from which it is composed in
which the potentialsf, ¢ would now generally include the coordinates of e

remaining corpuscles as parameters then one worne &t a single wave equation for
the complicated atom by a suitable combinationllaifahese equations.

() Confer:W. Gordon, Zeit. Phys40 (1927), 119, eq. (8). In our equation (41), the imaginary usit ha
the opposite sign, which is naturally completely incousatial.
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Outlook. Gravitational field

10. One comes to a new, especially interesting, problemnwine regards the
probability amplitudey as truly a function of the variable-continugms,, {3, and posing

the problem of finding the simplest integral of the paridéfierential equation (36) that
satisfies certain boundary condition. These comitiare thaty should remain finite for
any field configuration with finite values of the field quities, and that it should drop
off to zero very quickly when the individual field quamt# increase to very large values
or the field spreads out to a very broad spatial doma&mn might expect that such
solutions to equation (36) would exist for only certain “eigdues”E, that would lead
to light quantal = 0), electrons, and atomic nuclei. The problem otlbetron and the
problem of the corpuscle thus emerge in an entirely nem.f However, | do not believe
that mathematics has the means on hand for treatirig aau@normously complicated
equation as (36). It will probably be necessary to fiisé the problem a somewhat
clearer form.

Perhaps it might be advisable to also introduce theepda®©f general relativity that
A. Einstein has developed in his theory of gravitation. For thagaealet it be remarked
here that the expression (30) and equation (36) thatldsyman be extended with no
further conditions by adding the gravitational field quagsiti One must then introduce
the ten components of the gravitational potenti#l (*) as intensive quantities and the

“excitation of the gravitational field,” whose forty cponents | denoted bs}w W vl =

1, 2, 3, 4) in my previous paper, as the extensive quant@éshe latter, generally, only
the ones with an upper index of 4 will come under consideraso we would like to set:

¢, =i Ok . We will then get:

3 0 3 v
T, =i0div(f, @) - Z%@ Za“’u w |
a=1
. . 3 afg 3 aa)uv
T,, =ildiv(f, @)—Za—wa > 5y &, |,
(42) a::lafy 0321 )
T,, =i0div(f, @) - Za—zﬁi Zaw“ ”
a= a=1

T,, =P —div(g @) - Z

MV

3 01‘” iaw"”
a=1

for the fourth column of the impulse-energy matrix.
The quantityy is now a function of the continuum ff ., fs, the continuum of the

«4”, and the time, in addition. If one replaces, not just thewith the operatorh / 2i
[ / 0f4 , but at the same time, thg, with the operatork / 277i [D / dJ”, then that will

() The notations used here were used by me in Ann. d. 88¥$922), 1.et seq. where one can also
find more precise definitions.



Mie — Investigations into the problem of quantum eleityri 17

yield the “partial differential equation” foy, extended by the gravitational quantities, all
by itself.
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