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Introduction  
 

 1. In this treatise, the search for a “wave equation” for electrodynamics will be 
undertaken.  First of all, some long-known facts will be recalled in the first two sections. 
 In my papers on the theory of matter (1), it was shown that one must generally 
distinguish between two different groups of state quantities, namely, the group of so-
called “extensive quantities” and the so-called “intensive quantities.”  One needs 
quantities of one or the other kind in order to completely describe the state of a physical 
system.  If the quantities of the one kind are given completely – for example, the 
intensive quantities – then one can calculate the quantities of the other kind – viz., the 
extensive quantities – from them with the help of the “world function” Φ by certain 
partial differentiations (2).  For example, if one lets the intensive quantities be denoted by 
the symbols f1, f2, f3, ϕ (viz., the potentials) and e1, e2, e3, b1, b2, b3 (viz., the field 

intensities) then Φ will mean a function that depends explicitly upon only those extensive 
quantities and is, at the same time, an invariant for Lorentz transformations (i.e., a four-
dimensional scalar).  One then calculates the extensive quantities v1, v2, v3, ρ (current and 

charge density) and d1, d2, d3, h1, h2, h3 (the field excitations) by the following formulas: 

 

(1)   vi = −
i

∂Φ
∂f

, ρ = 
ϕ

∂Φ
∂

, di = −
i

∂Φ
∂e

, hi = 
i

∂Φ
∂b

. 

 
 Conversely, one can also exhibit a “world function” of the extensive quantities, which 
I would like to denote by Ψ(v, ρ, d, h) (3), from which, one can arrive at partial 

                                                
 (1) G. Mie, Ann. d. Phys. 37 (1912), 515.  
 (2) Loc. cit., pp. 524.  
 (3) In my previous papers [Ann. d. Phys. 37 (1912), pp. 523 and 524], I used the seemingly-impractical 
symbol H, in place of Φ.  We must now reserve H for the Hamilton ian function, so in this paper, I shall 
write Ψ. 
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derivatives of the expression by an entirely analogous process that represents the 
intensive quantities as functions of the extensive quantities (1).  The relation (2): 
 

Ψ = Φ + (v ⋅⋅⋅⋅ f) – ϕ  ⋅⋅⋅⋅ ρ + (e ⋅⋅⋅⋅ d) – (b ⋅⋅⋅⋅ h) 
 
exists between the quantities Φ and Ψ. 
 
 
 2. One can distinguish the same two kinds of state quantities in the mechanics of 
discrete mass particles.  Let the degrees of freedom of the system be denoted by the 
whole number f. 
 
 1. The “extensive quantities” are the f “coordinates” qi that determine the 
configuration of the mechanical system, and the f velocity components that one ordinarily 
denotes by iqɺ .  The f differential equations: 

 

(2)      idq

dt
= iqɺ  

exist between these quantities. 
 
 2. The intensive quantities are the f forces Pi and the f impulses pi .  Likewise, f 
differential equations exist between them: 
 

(3)      idp

dt
= Pi . 

 
The intensive quantities can be calculated as functions of the 2f extensive quantities; the 
causality principle is then satisfied by the 2f differential equations (2) and (3).  In order to 
obtain the expressions for the intensive quantities, one must obtain the so-called 
Lagrangian function L(qi, iqɺ ).  One calculates from it: 

 

(4)     pi = 
i

L

q

∂
∂ ɺ

,  Pi = 
i

L

q

∂
∂

. 

 
 One now calculates the Hamilton ian function F from the Lagrangian function L as 
follows: 

(5)     H(qi, pi) = − L + 
1

f

k k
k

p q
=

⋅∑ ɺ , 

 

                                                
 (1) Loc. cit., pp. 523, equation (9).  
 (2) Loc. cit., pp. 525, equation (15).  
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in which the kqɺ  on the right-hand side are replaced with functions of the qi, pi − i. e., 

kqɺ (qi, pi) – that one can obtain from the first group of equations (4).  When one notes 

equations (4), (5) will yield: 
 
 dH(qi, pi)  = − i i i i i i i iP dq p dq p dq q dq⋅ − ⋅ + ⋅ + ⋅∑ ∑ ∑ ∑ɺ ɺ ɺ  

  = − i i i iP dq q dp⋅ + ⋅∑ ∑ ɺ . 

One then has: 

(6)   
i

H

q

∂
∂

 = − Pi ,  
i

H

p

∂
∂

 = kqɺ , 

 
and one can now also write the differential equations (2) and (3) as follows: 
 

(7)   idq

dt
= 

i

H

p

∂
∂

,  idp

dt
= − 

i

H

q

∂
∂

. 

 
These are Hamilton ’s differential equations for a mechanical system of discrete massive 
particles.  They are 2f differential equations for the 2f unknowns: pi, qi .  The numerical 
value of the quantity H is invariant in the course of time t; it represents the “energy” of 
the system. 
 
 

Hamilton’s differential equations in the physics of the ether 
 

 3. In order to arrive at the Hamilton ian function for the continuum ether, we next 
define: 
(8)     H (d, ρ, f, d) = Φ + (e ⋅⋅⋅⋅ d) – ϕ ⋅⋅⋅⋅ ρ, 

 
in which e and ϕ are expressed as functions of d, ρ, f, d on the right-hand side that one 

obtains: 

ρ = 
ϕ

∂Φ
∂

,  di = − 
i

∂Φ
∂e

. 

 
With consideration of equations (1), that will give: 
 
 dH = − (v ⋅⋅⋅⋅ df) + ρ ⋅⋅⋅⋅ dϕ − (d ⋅⋅⋅⋅ de) + (h ⋅⋅⋅⋅ db) + (d ⋅⋅⋅⋅ de) + (e ⋅⋅⋅⋅ dd) − ρ ⋅⋅⋅⋅ dϕ  − ϕ ⋅⋅⋅⋅ dρ 

  = − (v ⋅⋅⋅⋅ df) + (h ⋅⋅⋅⋅ db) + (e ⋅⋅⋅⋅ dd) − ϕ ⋅⋅⋅⋅ dρ, 

so: 

(9)    
i

H∂
∂f

= − vi , 
i

H∂
∂b

= hi , 
i

H∂
∂d

= ei , 
H

ρ
∂
∂

= − ρ . 

 
The fundamental equations of electrodynamics can now be written as follows: 
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(10a)    1

t

∂
∂
d

= 
1 3 2

H H H

y z

   ∂ ∂ ∂ ∂ ∂+ −      ∂ ∂ ∂ ∂ ∂   f b b
, 

(10b)    1

t

∂
∂
f

= −
1

H H

x ρ
 ∂ ∂ ∂+  ∂ ∂ ∂ d

. 

If we set: 

ρ = 31 2

x y z

∂∂ ∂+ +
∂ ∂ ∂

dd d
,  b1 = 3 2

y z

∂ ∂
−

∂ ∂
f f

,  etc., 

 
in the right-hand side then we will have six partial differential equations for the six state 
quantities d1, d2, d3, f1, f2, f3 .  The numerical value of H means the spatial density of the 

energy of the electromagnetic field (1). 
 

y 

y + dy 

y − dy 

x − dx x x + dx 

(− 1) 0 

(+ 2) 

(+ 1) 

(− 2) 

 
Figure 1. 

 
 
 4. In order to calculate the Hamilton ian function for the electromagnetic field itself, 
we must observe that the state of a continuum can only be described by infinitely many 
variables.  We will first content ourselves with an approximation that involves very many 
variables, and it will then be easy to make the passage to the limit.  We think of the space 
G that the field inhabits as being divided into very many (viz., infinitely many) 
parallelepipeds dx ⋅⋅⋅⋅ dy ⋅⋅⋅⋅ dz = dG, in which, we think of the x-axis as being divided into 
many small equal pieces of length dx, and likewise, the y-axis and z-axis into nothing but 
equal pieces dy (dz, resp.).  We can briefly call the coordinate triple (x, y, z) of the 
midpoint of such a parallelepiped the number of the parallelepiped in question, and d(x, y, 

z), ρ (x, y, z), f(x, y, z), b(x, y, z) will be the state quantities that belong to this 

parallelepiped – i.e., to this “particle.”  Here, the coordinates are therefore not counted 
with the state quantities, as in the case of the mechanics of discrete particles, but they 

                                                
 (1) G. Mie, Ann. d. Phys. 37 (1912), pp. 524, equation (16).  
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enter in place of the numbers i that are attached to the state quantities q and q: qi, pi .  
They are now nothing but f numbers, which are, however, infinite in number, 
corresponding to the number of particles in the continuum.  For the sake of brevity, we 
would like to denote the particle (x, y, z) by 0, the particle (x + dx, y, z) and (x − dx, y, z) 
with 1 (− 1, resp.), (x, y + dy, z) with 2 (− 2, resp.), (x, y, z + dz) and (x, y, z − dz) by 3 (− 
3, resp.) (cf., the accompanying Fig. 1).  We can then write: 
 

(11)   ρ0 = 
0 ( 2)0 ( 1) 0 ( 3)
y yx x z z

dx dy dz

−− −−− −+ +
d dd d d d

, 

 

(12)   

0 ( 2) 0 ( 3)
0

0 ( 3) 0 ( 1)
0

0 ( 1) 0 ( 3)
0

,

,

,

x x y y
x

x x z z
y

y y z z
z

dy dz

dz dx

dx dx

− −

− −

− −

 − −
= −


 − − = −

 − −

= −


f f f f
b

f f f f
b

f f f f
b

 

 
and the Hamilton ian function H of the system will now be defined by: 

 

(13)   ( , , , )
G

H ρ∫ d f b ⋅⋅⋅⋅ dG = ( , )i i
l lH d f , 

 
where dG = dx ⋅⋅⋅⋅ dy ⋅⋅⋅⋅ dz and G means the domain that the field inhabits.  The index l shall 
mean the three numbers 1, 2, 3, corresponding to the three coordinate directions x, y, z, 
while the index i shall run through all of the “particle numbers” (x, y, z), so H is actually a 

function of infinitely many variables.  If H depends upon only d and f, but not upon ρ and 

b, then H will be composed of infinitely many summands, each of which always includes 

only quantities with a single index i = (x, y, z).  However, since ρ also appears as an 
argument, for example, 0xd  will enter into H0, as well as H(+1), and likewise 0

yd  will enter 

into H0, as well as H(+2), and 0
zd  will enter into H0, as well as H(+3), and one can make 

similar statements about 0
xf , 0

yf , 0
zf , since bx, by, bz also appear as arguments.  We would 

now like to define the partial differential quotients of H with respect to 0
xd : 

 

(14)  

0 0 ( 1)

0

( 1)0

0

1 1
,

,

x x

x x

H H H
dG dG dG

dx dx

H H
dG

x

ρ ρ

ρ

+

+

      ∂ ∂ ∂ ∂
 = ⋅ + ⋅ ⋅ − ⋅ ⋅     ∂ ∂ ∂ ∂     


     ∂ ∂ ∂ ∂  = − ⋅      ∂ ∂ ∂ ∂       

H

d d

H

d d
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in which 0 and (+1) denote the infinitely-close particles with the coordinates (x, y, z) and 
(x + dx, y, z), resp.  We would now like to set i equal to more general values than 0 and 
allow i to assume all values (x, y, z), so one now sees that one can regard equations (10b) 
as the following system of total differential equations with infinitely many dependent 
variables: 

(15)  
i
xd

dt

f
= − 

( )i
x dG

∂
∂ ⋅
H

d
, 

i
yd

dt

f
= − 

( )i
y dG

∂
∂ ⋅
H

d
, 

i
zd

dt

f
= − 

( )i
z dG

∂
∂ ⋅
H

d
. 

 
One likewise gets: 
 

(16) 

0 0

0

0 ( 3)

( 2)

( 2) ( 3)0

0

1

1 1

1
,

x x y

z y

z

x x y y

H H
dG dG

dz

H H
dG dG

dy dz

H
dG

dy

H H H

y z

+

+

+ +

   ∂ ∂ ∂= ⋅ + ⋅ ⋅      ∂ ∂ ∂   

   ∂ ∂− ⋅ ⋅ − ⋅ ⋅      ∂ ∂   

 ∂+ ⋅ ⋅  ∂ 

         ∂ ∂ ∂ ∂ ∂ ∂= + −                ∂ ∂ ∂ ∂ ∂ ∂        

H

f f b

b b

b

H

f f b b
.dG












 
   ⋅

   

 

 
One can then also write the differential equations (10a) as the following system of total 
differential equations with infinitely many dependent variables: 
 

(17)  
( )i

xd dG

dt

⋅d
 = 

i
x

∂
∂
H

f
, 

( )i
yd dG

dt

⋅d
 = 

i
y

∂
∂
H

f
, 

( )i
zd dG

dt

⋅d
 = 

i
z

∂
∂
H

f
. 

 
We have thus brought the fundamental equations of electrodynamics into the form of 
Hamilton ’s differential equations.  The numerical value of the quantity H is also 

invariant in the course of time here, since it is the total energy of the field.  Here, the 
infinitude of pairs of quantities ( , )i i

l ldG⋅d f  enter in place of the f pairs of associated 

quantities (qi, pi). 
 
 

The differentiation of a function of a variable-continuum 
 

 5. The rules of differentiation that are derived here for a function that depends upon 
a continuum of variables can also be obtained from the known methods of the calculus of 
variations.  Let F be a function that depends upon not only a certain number of state 
quantities u, v, w, …, but also upon their derivatives with respect to the variables x, y, z, 
so for example, upon: 
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(18)    uhik = 
h i k

h i k
u

x y z

∂ ∂ ∂⋅ ⋅
∂ ∂ ∂

. 

 
The function of the infinitely-many variables at all space elements of the domain G is 
then: 

(19)   F = 
G

F∫ (u, v, w, …, uhik, …, x, y, z) ⋅⋅⋅⋅ dG. 

 
In order to now define the differential quotients of F with respect to the value u0 that u 

has at a well-defined point (x, y, z), we let u vary in a very small domain ∆G that 
surrounds the point (x, y, z) in such a way that δu is zero on the boundary of that domain, 
together with all derivatives with respect to x, y, z.  I refer to the following mean value: 
 

δu0 = 
1

G
u dG

G
δ

∆
⋅ ⋅

∆ ∫  

 
as the variation δu0 of the variable u0.  We now calculate the corresponding variation of 
F: 

δF = 
, ,

hik
hikG

h i k

F F
u u

u u
δ δ

 ∂ ∂⋅ + ⋅ ∂ ∂ 
∑∫  ⋅⋅⋅⋅ dG. 

 
The well-known process of partial integration then yields: 
 

δF = 
, , 0

( 1)h i k
h i k hikG

h i k

F F

u x y z u
+ +

∆

 ∂ ∂ ∂ ∂ ∂ + − ⋅ ⋅ ⋅  ∂ ∂ ∂ ∂ ∂  
∑∫  ⋅⋅⋅⋅ δu ⋅⋅⋅⋅ dG. 

 
We now let the domain ∆G become small enough that one can set the expression in curly 
brackets under the integral sign equal to its mean value, which is its value at the point (x, 
y, z) that is enveloped by the domain ∆G.  That now yields: 
 

δF = 
, , 0

( 1)h i k
h i k hik

h i k

F F

u x y z u
+ + ∂ ∂ ∂ ∂ ∂ + − ⋅ ⋅ ⋅  ∂ ∂ ∂ ∂ ∂  

∑  ⋅⋅⋅⋅ δu0 ⋅⋅⋅⋅ ∆G. 

 
The desired differential quotient with respect to u0 is now nothing but the quotient δF / 

δu0, and when we introduce the notation dG0 for the infinitely-small domain ∆G, and thus 
set ∆G = dG0 , we will then have: 
 

(20)  
0

F

u

∂
∂

 = 
, , 0

( 1)h i k
h i k hik

h i k

F F

u x y z u
+ + ∂ ∂ ∂ ∂ ∂ + − ⋅ ⋅ ⋅  ∂ ∂ ∂ ∂ ∂  

∑ ⋅⋅⋅⋅  dG0 . 

 
It is easy to see that equation (20) is only a generalization of formulas (14) and (16). 
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 In the sequel, we will often have to deal with even more general forms for functions 
of infinitely-many variables.  For example, such a function can be envisioned as follows: 
Let a sequence of quantities S1, S2, …, Sn be defined by the well-defined integrals: 

 

(21)    

1 1

2 2

( , , , , , , , ) ,

( , , , , , , , ) ,

( , , , , , , , ) .

hik

G

hik

G

hik
n nG

S u v u x y z dG

S u v u x y z dG

S u v u x y z dG

 = ⋅

 = ⋅




= ⋅

∫

∫

∫

… …

… …

⋯

… …

S

S

S

 

 
 The following quantity F is then a function of infinitely-many quantities u, v, …, that 

belong to the individual spatial element dG: 
 
(22)    F(u, v, …) = F(S1, S2, …, Sn), 

 
in which F should mean any function of a finite number n of variables.  The first partial 
derivatives of F with respect to the individual values u now prove to be: 

 

(23)   
u

∂
∂
F

 = 1 2

1 2

F F

u u

∂ ∂∂ ∂⋅ + ⋅
∂ ∂ ∂ ∂

S S

S S
+ … + 

F n

n u

∂∂ ⋅
∂ ∂

S

S
, 

 
in which the expressions ∂S / ∂u are all calculated using formula (20). 

 This is not the place to develop a general mathematical theory of functions of a 
variable-continuum.  That theory exists already, and was treated thoroughly by Vito 
Volterra , to whose investigations (1) we shall only refer here. 
 
 

The action function 
 

 6. We now once more consider a domain G that is extended in such a way that all 
physical quantities that are necessary for a complete description of a material system that 
is contained in G can simply be set equal to zero on its boundary in all computations.  
That condition shall be called the “boundary condition” in what follows, for brevity.  Let 
the potentials f1, f2, f3, ϕ be given everywhere in the domain G during the time from t1 to 

t2 , and indeed in such a way that Maxwell’s equations are fulfilled at all points of the 
aforementioned four-dimensional continuum.  Thus, since b = rot f, e = − ɺf − ∇ϕ, the 

“world function” Φ(f, rot f, ɺf , ϕ, ∇ϕ) will be given everywhere in the four-dimensional 

domain.  We now denote: 
 
                                                
 (1) Vito Volterra , Leçons sur les Fonctions de Lignes, Paris, 1913, and furthermore: P. Lévy, Leçons 
d’analyse fonctionelle, Paris, 1922. 
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(24)   U = 
2

1

t

t G

Φ∫ ∫ (f, rot f, ɺf , ϕ, ∇ϕ) ⋅⋅⋅⋅ dG ⋅⋅⋅⋅ dt 

 
as the “quantity of action” of the system and calculate its variation δU, which 
corresponds to an infinitely-small variation of the quantities f, ϕ at all points of the four-

dimensional domain considered: 
 

δU = 
2

1

rot div
(rot ( )

t

t G

dG dt
t

δ δϕ
ϕ ϕ

         ∂Φ ∂Φ ∂ ∂Φ ∂Φ ∂Φ + − ⋅ + − ⋅ ⋅ ⋅        ∂ ∂ ∂ ∂ ∂ ∂ ∇        
∫ ∫ f

f f) f
 

 

+ 
2 2

1 1

div div
(rot ( )

t t

t G t G

dG dt dG dt
t t

δ δϕ δ
ϕ

       ∂Φ ∂ ∂Φ ∂Φ ∂ ∂Φ⋅ − + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅      ∂ ∂ ∂ ∂ ∇ ∂ ∂       
∫ ∫ ∫ ∫f f

f) f f
. 

 
 Here, and in what follows, a vector whose three components are defined by 
differentiating Φ with respect to the three components of a vector – e.g., f, rot f, etc. – 

shall be described as the differential quotient of Φ with respect to the vector – e.g., ∂Φ / 
∂f, ∂Φ / ∂(rot f), etc. −  for the sake of brevity. 

 Of the three terms that δU is composed of, however, the first one will now vanish, 
since the factors of δf1, δf2, δf3, δϕ are nothing but the left-hand sides of the first group of 

Maxwell’s equations.  Moreover, the second term vanishes as a result of the boundary 
condition, and in the third one, one can carry out the integration over time: 
 

(25)  δU = 
2

1

t

t G

dG dtδΦ ⋅ ⋅∫ ∫  = 
2 1

G Gt t

dG dGδ δ
   ∂Φ ∂Φ⋅ ⋅ − ⋅ ⋅   ∂ ∂   
∫ ∫f f
f f

. 

 
 We now think of the entire continuum of state quantities f1, f2, f3, ϕ as depending 

upon one or more parameters on the four-dimensional domain considered, by whose 
variation the state quantities will be varied in such a way that Maxwell’s equations will 
always remain fulfilled.  Let δf, δϕ, δΦ mean the differentials that correspond to an 

infinitely-small variation of these parameters.  We start from a system of initial values for 
the f1, f2, f3, ϕ (which we would like to denote by the index 0) up to a system of final 

values whose symbols might bear no special index.  By integrating along any path that 
leads from the system of initial values to the system of final values, one will get from 
(25) that: 
 

(26) 
2 2

1 1

0

t t

t G t G

dG dt dG dtδ δΦ ⋅ ⋅ − Φ ⋅ ⋅∫ ∫ ∫ ∫  = 
0 0

2 1
G G

t t

dG dGδ δ
   ∂Φ ∂Φ
   ⋅ ⋅ − ⋅ ⋅

∂ ∂      
∫ ∫ ∫ ∫
f f

f f

f f
f f

. 
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 Since the left-hand side of this equation is independent of the path of integration, the 
same thing will also be true for the right-hand side.  The two bracketed expressions then 
depend upon on the initial-value and final-value continua of the f, ϕ in the space G at the 

times t2 (t1, resp.).  One will then have: 
 

 
0

2
G

t

dGδ
 ∂Φ
 ⋅ ⋅

∂  
∫ ∫
f

f

f
f

 = W(f, ϕ, t2) − W(f0, ϕ, t2), 

 

 
0

1
G

t

dGδ
 ∂Φ
 ⋅ ⋅

∂  
∫ ∫
f

f

f
f

 = W(f, ϕ, t1) − W(f0, ϕ, t1), 

 
in which W means a function of the continuum of the f, ϕ in the spatial domain G at a 

well-defined time t2 (t1, resp.), which can include the time t, in addition.  If one goes from 
the value continuum f, ϕ to an infinitely-close one f + δf, ϕ + δϕ while keeping time t 

constant then that will yield: 
 

i

∂
∂f
W

 = 
i

∂Φ
∂f

 ⋅⋅⋅⋅ dG,  
ϕ

∂
∂
W

= 0. 

 
It then follows: The value-continuum of ϕ follows from the function W in its own right. 

 In summary, we can write: 
 

(27)  
2

1

t

t G

Φ∫ ∫ ⋅⋅⋅⋅ dG ⋅⋅⋅⋅ dt = W(f, t2) – W(f, t1), 

 

(28) 
( , )

i

t∂
∂
f

f

W
 = 

i

∂Φ
∂f

 ⋅⋅⋅⋅ dG, 

 

(29) 
d

dt

W
 = 

G

d

dt t

∂ ∂⋅ +
∂ ∂∫

f

f

W W
 = 

G

Φ∫ ⋅⋅⋅⋅ dG. 

 

 Since ei = − i

it x

ϕ∂ ∂−
∂ ∂
f

, it then follows from (1) that: 

  di = −
i

∂Φ
∂e

= 
i

∂Φ
∂f

, 

 
and one can then also write equation (28) as follows: 
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(28a)    
( , )

i

t∂
∂
f

f

W
 = di ⋅⋅⋅⋅ dG. 

We will call W the “action function.” 

 
 

Hamilton’s partial differential equation  
 

 7. We can write the four components of the last column of the energy-impulse 
matrix (1) for the physics of the ether as follows: 
 

(30)  

3

14
1

3

24
1

3

34
1

44

( ) div( ) ,

( ) div( ) ,

( ) div( ) ,

( ) ) div( )

a
y y z y x x a

a

a
z x x z y z a

a

a
x y y x x z a

a

T i i
x

T i i
z

T i i
z

T

ρ

ρ

ρ

ϕ ρ ϕ

=

=

=

∂ 
= ⋅ ⋅ − ⋅ + ⋅ = ⋅ ⋅ − ⋅ ∂ 

∂ 
= ⋅ ⋅ − ⋅ + ⋅ = ⋅ ⋅ − ⋅ ∂ 

∂ 
= ⋅ ⋅ − ⋅ + ⋅ = ⋅ ⋅ − ⋅ ∂ 

∂
= Φ + ⋅ − ⋅ = Φ − ⋅ −

∑

∑

∑

f
b d b d f f d d

f
b d b d f f d d

f
b d b d f f d d

b d d
3

1

.a
a

a t=













⋅
∂

∑
f
d

 

 
 If we now form the integral over a spatial domain G in which the entire 
electromagnetic field is contained as a closed system then we will get: 
 

(31) 
14 1 24 2

34 3 44

, ,

, ,

G G

G G

T dG i J T dG i J

T dG i J T dG E

 ⋅ = − ⋅ ⋅ = − ⋅



⋅ = − ⋅ ⋅ =


∫ ∫

∫ ∫
 

 
in which J1, J2, J3 mean the components of the total mechanical impulse, and E means the 
total energy of the field.  If we transform to a coordinate system ( , , , )x y z i t⋅  in which J1 
= J2 = J3 = 0, then the fourth integral will give the rest energy E0 of the field, and from 
the principle of relativity, we will now have: 
 
(32)    E2 − 2 2 2

1 2 3( )J J J+ + = 2
0E  . 

 
If we substitute the expressions (30) into formula (31) then with the use of the “boundary 
condition” we will obtain: 
 

                                                
 (1) G. Mie, Ann. d. Phys. 37 (1912), pp. 525, eq. (16). 
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(33) 

3 3

1 2
1 1

3 3

3
1 1

, ,

, .

a a
a a

a aG G

a a
a a

a aG G

J dG J dG
x y

J dG E dG
z t

= =

= =

∂ ∂
= ⋅ ⋅ = ⋅ ⋅ ∂ ∂

 ∂ ∂  = ⋅ ⋅ = Φ − ⋅ ⋅  ∂ ∂ 

∑ ∑∫ ∫

∑ ∑∫ ∫

f f
d d

f f
d d

 

 
 We substitute the value for da ⋅⋅⋅⋅ dG from (28a) here: 

 

(34) 

3 3

1 2
1 1

3 3

3
1 1

, ,

, .

a a

a aa aG G

a a

a aa aG G

J J
x y

J E dG
z t

= =

= =

∂ ∂ ∂ ∂= ⋅ = ⋅ ∂ ∂ ∂ ∂


 ∂ ∂∂ ∂ = ⋅ = Φ ⋅ − ⋅   ∂ ∂ ∂ ∂ 

∑ ∑∫ ∫

∑ ∑∫ ∫

f f

f f

f f

f f

W W

W W

 

 
 Here, one must note that, from (20) and (23), the expressions for the partial 
differential quotients of a function of a variable-continuum always have the factor dG, so 
the three expressions that were found for J1, J2, J3 are also once more proper functions of 
a continuum of variables.  We can evaluate the expression for E with the help of formula 
(29), which yields: 

(34a)     E = 
t

∂
∂
W

. 

Equation (32) now gives: 
 

(35) 

2 2 22 3 3 3
2

0
1 1 1

a a a

a a aa a aG G G

E
t x y z= = =

     ∂ ∂ ∂∂ ∂ ∂ ∂       − ⋅ − ⋅ − ⋅ −      ∂ ∂ ∂ ∂ ∂ ∂ ∂            
∑ ∑ ∑∫ ∫ ∫
f f f

f f f

W W W W
= 0. 

 
 This is Hamilton’s partial differential equation of ether physics, which is a first-order 
partial differential equation of degree two for the action function W in the independent 

variable t and the continuum of f1, f2, f3 . 

 
 

Schrödinger’s differential equation 
 

 8. In order to have as good as solved the problem of finding the “wave equation” of 
ether physics, we must simply appeal to the prescription that Schrödinger gave (1).  
Without going into the deeper meaning, let it only be said that Hamilton ’s principle, 
which has been the basis for the theory up to now, will be completely overturned by the 
decisive step that we shall now take.  The precise formulation of the new principle that 
will now enter in place of Hamilton ’s shall be the subject of a later examination. 

                                                
 (1) E. Schrödinger, Ann. d. Phys. 81 (1926), pp. 133, eq. (35).  
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 Following the Schrödinger prescription, we replace the symbol ∂W / ∂fa with the 

operator h / 2πi ⋅⋅⋅⋅ ∂ / ∂fa , and likewise replace ∂W / ∂t with h / 2πi ⋅⋅⋅⋅ ∂ / ∂t, and then apply 

the operator that thus arises on the left-hand side of (35) to the “probability amplitude” ψ.  
The quantity ψ, just like W, is a function of time t and the variable-continuum f1, f2, f3 .  

We thus get the following “differential equation” for ψ (f1, f2, f3): 
 

(36)   
2 23 3 3

2
02 2

1 1 1

4

G G

E
t x x h

β γ

α β γα β α γ

ψ ψ π ψ
= = =

∂ ∂∂ ∂ ∂− ⋅ ⋅ + ⋅ ⋅
∂ ∂ ∂ ∂ ∂∑ ∑ ∑∫ ∫

f f

f f
= 0. 

 
This is Schrödinger’s differential equation for electricity. 
 Equation (36) is a proper partial differential equation in a variable-continuum.  From 
(20) and (23), the quantity ∂ψ / ∂fγ will then include the factor dG, and therefore 

3

1G x
γ

γ α γ

ψ
=

∂ ∂⋅
∂ ∂∑∫
f

f
will once more be a proper function of a variable-continuum that can be 

partially differentiated with respect to fβ .  Since this differential quotient, in turn, has the 

factor dG, the entire second term on the left-hand side will also be a proper function of a 
variable-continuum.  If we may then only assume that the necessary convergence 
conditions are fulfilled then the entire left-hand side of (36) will make reasonable sense.  
One might indeed say that (36) represents a homogeneous, linear differential equation for 
ψ that is of order two in the variable t and the continuum of f1, f2, f3 . 

 
 

Electricity and mechanics 
 

 9. In the event that one thinks of the blurring of the field lines that is represented by 
the probability amplitude ψ as being restricted to the extent that only the location of the 
corpuscle that excites the field is indistinct (whether it be an electron or a light quantum, 
which will be regarded as a dipole), but everywhere else the field of that uncertain 
starting point is determined by the laws of Maxwell’s theory, (36) will go over to the 
mechanical “wave equation” of a single corpuscle that Schrödinger treated so 
thoroughly.  Namely, if the location of the corpuscle is denoted by (ξ, η, ζ) then, as a 
result of the restriction that was made, the variable-continuum of f1, f2, f3 will depend 

upon the parameters ξ, η, ζ in such a way that every individual f-quantity that belongs to 

a spatial element dG with the coordinates (x, y, z) is a function of the quantities (x – ξ), (y 
– η), (z – ζ) that does not contain time t explicitly.  Thus, it is assumed that the velocity 
of the corpuscle is constant.  Since ψ can also be assumed to be a function of the 
parameters ξ, η, ζ, one will then have: 
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(37)  

3

1

( , ) ( , , , )
,

.......................................................
G

t t

x
γ

γ γ

ψ ψ ξ η ξ
ξ=

∂ ∂ ∂⋅ = − ∂ ∂ ∂



∑∫
f f

f  

 On the other hand, one can, as we saw in the explanation for (36), regard the left-hand 
side of (37), and thus, the quantity − ∂ψ / ∂ξ, as well, as a function of the variable-
continuum of the f-quantities and time t, so I will suggest that by writing: 

 

(38a)    
3

1

( , )

G

t

x
γ

γ γ

ψ
=

∂ ∂⋅
∂ ∂∑∫
f f

f
 = − 

ψ
ξ

∂
∂

(f, t). 

 
In the same way, we further obtain: 
 

(38b)  
3

1

( , )
G

t
x
β

β β

ψ
ξ=

∂  ∂ ∂⋅ − ∂ ∂ ∂ 
∑∫
f

f
f

 = ( , , , )t
ψ ξ η ζ

ξ ξ
 ∂ ∂
 ∂ ∂ 

 = 
2

2

ψ
ξ

∂
∂

. 

 
Thus, in the case of the field of a single corpuscle that moves with constant velocity, 
equation (36) will go to the following equation: 
 

(39)   
2 2 2 2 2

2
02 2 2 2 2

4
E

t h

ψ ψ ψ ψ π ψ
ξ η ζ

 ∂ ∂ ∂ ∂− + + + ⋅ ⋅ ∂ ∂ ∂ ∂ 
 = 0. 

 
 ψ is regarded as a function of (ξ, η, ζ, t) in this.  If we substitute the rest mass of an 
electron for E0 in (39) then we will get the equation for the “probability wave” that 
accompanies it; if we set E0 = 0 then we will get the case of light quanta, which is a 
probability wave that advances at the speed of light. 
 The case of an electron that moves in a force field can be treated easily.  In that case, 
we must only pose the “boundary condition” in a somewhat different way from what we 
did in the derivation of the expression (33).  Here, we cannot set the state quantities f, ϕ 

equal to zero on the boundary of the domain G that surrounds the electron, together with 
its entire field up to distances at which it can be counted as zero, but we must assign it the 
value of the “external field” on the boundary.  Here, a second restriction upon the 
fuzziness of the field will be imposed, namely, that the external field should be sharp: In 
addition, as one always ordinarily does in mechanics, we establish that two assumptions 
are permissible, with no further comment: 
 
 1. The domain G that surrounds the corpuscle, together with its field, is small 
enough that one can regard the potential of the external field as constant on the entire 
boundary: f(ξ, η, ζ, t), ϕ (ξ, η, ζ, t). 

 
 2. The acceleration of the corpuscle is infinitely small, such that here one can also 
regard the individual quantities f of the variable continuum as pure functions of (x – ξ), (y 
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– η), (z – ζ) in the calculation of the differential quotients of ψ that contain time t 
explicitly. 
 
 If, for the time being, we denote the outer surface of the domain G by S then we will 
have: 

G
∫ div (fx ⋅⋅⋅⋅ d) ⋅⋅⋅⋅ dG = fx (ξ, η, ζ, t) ⋅⋅⋅⋅ 

S
∫ (d ⋅⋅⋅⋅ dS) = ε ⋅⋅⋅⋅ fx (ξ, η, ζ, t), 

 
in which ε means the charge of the corpuscle, and fx means the potential of the external 

field.  The calculation of the other three expressions in (30) is performed similarly, in 
which, one simply replaces fx with fy, fz, ϕ, resp.  We thus get the following values, 

instead of (33): 

(40)   

3

1
1

3

2
1

3

3
1

3

1

( , , , ),

( , , , ),

( , , , ),

( , , , ).

x

G

y

G

z

G

G

J dG t
x

J dG t
y

J dG t
z

E t
t

α
α

α

α
α

α

α
α

α

α
α

α

ε ξ η ζ

ε ξ η ζ

ε ξ η ζ

ε ϕ ξ η ζ

=

=

=

=

∂
= ⋅ ⋅ − ⋅ ∂

 ∂
= ⋅ ⋅ − ⋅

∂
 ∂ = ⋅ ⋅ − ⋅
 ∂


∂ 
= Φ − ⋅ − ⋅  ∂ 

∑∫

∑∫

∑∫

∑∫

f
d f

f
d f

f
d f

f
d

 

 
 One now gets the following wave equation for the corpuscle (1): 
 

(41)  
22 23

2
02

1

2 2 4i i
E

t h h hα
α α

π π πε ϕ ψ ε ψ ψ
ξ=

 ∂ ∂ − ⋅ ⋅ − + ⋅ ⋅ + ⋅ ⋅  ∂ ∂   
∑ f  = 0, 

 
in which, one replaces ξ, η, ζ with ξ1, ξ2, ξ3.  One gets the form of the wave equation for 
a single particle that Schrödinger employed from equation (41) by simple calculations 
by neglecting the “relativistic corrections.”  If, in the case of a complicated atom, one 
were to exhibit an equation (41) for each of the corpuscles from which it is composed in 
which the potentials f, ϕ would now generally include the coordinates of all the 

remaining corpuscles as parameters then one would arrive at a single wave equation for 
the complicated atom by a suitable combination of all of these equations. 
 
 
 
 
 
 
                                                
 (1) Confer: W. Gordon, Zeit. Phys. 40 (1927), 119, eq. (8).  In our equation (41), the imaginary unit has 
the opposite sign, which is naturally completely inconsequential.  
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Outlook.  Gravitational field  
 

 10.  One comes to a new, especially interesting, problem when one regards the 
probability amplitude ψ as truly a function of the variable-continuum f1, f2, f3, and posing 

the problem of finding the simplest integral of the partial differential equation (36) that 
satisfies certain boundary condition.  These conditions are that ψ should remain finite for 
any field configuration with finite values of the field quantities, and that it should drop 
off to zero very quickly when the individual field quantities increase to very large values 
or the field spreads out to a very broad spatial domain.  On might expect that such 
solutions to equation (36) would exist for only certain “eigenvalues” E0 that would lead 
to light quanta (E0 = 0), electrons, and atomic nuclei.  The problem of the electron and the 
problem of the corpuscle thus emerge in an entirely new form.  However, I do not believe 
that mathematics has the means on hand for treating such an enormously complicated 
equation as (36).  It will probably be necessary to first give the problem a somewhat 
clearer form. 
 Perhaps it might be advisable to also introduce the concepts of general relativity that 
A. Einstein has developed in his theory of gravitation.  For that reason, let it be remarked 
here that the expression (30) and equation (36) that it yields can be extended with no 
further conditions by adding the gravitational field quantities.  One must then introduce 
the ten components of the gravitational potential ωµν (1) as intensive quantities and the 
“excitation of the gravitational field,” whose forty components I denoted by lµνk  (µ, ν, l = 

1, 2, 3, 4) in my previous paper, as the extensive quantities.  Of the latter, generally, only 
the ones with an upper index of 4 will come under consideration, so we would like to set: 

4
µνk  = i ⋅⋅⋅⋅ κµν .  We will then get: 

 

(42)  

3 3

14
1 1

3 3

24
1 1

3 3

34
1 1

3 3

44
1 1

div( ) ,

div( ) ,

div( )

div( )

x

y

z

T i
x x

T i
y y

T i
z z

T
t t

µν
α

α µν
α α

µν
α

α µν
α α

µν
α

α µν
α α

µν
α

α µν
α α

ω κ

ω κ

ω κ

ωϕ κ

= =

= =

= =

= =

 ∂ ∂= ⋅ ⋅ − ⋅ − ⋅ ∂ ∂ 

∂ ∂= ⋅ ⋅ − ⋅ − ⋅ ∂ ∂ 

∂ ∂= ⋅ ⋅ − ⋅ − ⋅ ∂ ∂ 

∂ ∂= Φ − ⋅ − ⋅ − ⋅
∂ ∂

∑ ∑

∑ ∑

∑ ∑

∑ ∑

f
f d d

f
f d d

f
f d d

f
d d














 

 
for the fourth column of the impulse-energy matrix. 
 The quantity ψ is now a function of the continuum of f1, f2, f3, the continuum of the 

ωµν, and the time t, in addition.  If one replaces, not just the dα with the operators h / 2π i 
⋅⋅⋅⋅ ∂ / ∂fα , but at the same time, the κµν with the operators h / 2π i ⋅⋅⋅⋅ ∂ / ∂ωµν, then that will 

                                                
 (1) The notations used here were used by me in Ann. d. Phys. 69 (1922), 1, et seq., where one can also 
find more precise definitions. 
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yield the “partial differential equation” for ψ, extended by the gravitational quantities, all 
by itself. 
 
 Freiburg i. Br., Physikalisches Institut der Universität, 22 February 1928. 
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