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One can show that the well-known difficulties tbat encounters in the theory of the
electron and in the theories of other elementary gestiare due to two types of
singularities:

1. Singularities that are coupled with a point-like ima@e¢he electron and which
exist already in the classical theory.

2. Singularities in the fluctuations that essentialgven their origin in quantum
theories 1).

Numerous attempts have been made to remedy the sitigalaf the first kind.
Abraham and LorentZ) have represented the electron as a small, but,fsyjstem that
possesses an electric charge that is distributed unyfpamdl Lorentz has even proposed
that the hypothesis that all of the mass of the alacts of electromagnetic origin.
Meanwhile, one rapidly perceives that the principleetdtivity demands the existence of
non-electromagnetic forces and energies inside th&@teat least if one supposes that
Maxwell’'s equations are valid in a general fashion. Thossiderations led Poincard (
to his well-known model of the electron in which trepulsive Coulomb forces are
counterbalanced by cohesive forces of an unknown nafittre.Poincaré model provided
a coherent classical image of the electron thasfsadiall of the conditions of the theory
of relativity. Poincaré’s theory is essentially a ki theory. Mie §) was the first to
introduce the idea of a unitary theory of the field imat all electromagnetic phenomena
were described by one field. Inside of the electromust be very different from the
electromagnetic field that one infers from Maxwell equad. Mie’s theory must be

() W. PAULI, “Difficulties of Field Theories and of &id Quantization,'Report of the International
Conference in Cambridg&946, vol. I, Fundamental Particles.

() Cf., for example, H. A. LORENTZ)n the Theory of Electrons

() H. POINCARE, “Sur la dynamique de I'électron,” Rend. R4 (1906), pp. 129.

() G. MIE, “Grundlagen einer Theorie der Materie,” Anhy®. (Leipzig)37 (1912), pp. 511ibid., 39
(1942), pp. 1.
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abandoned, because it contradicts some well-establistysital facts. As a result, Born
(°) once more took up the idea of a unitary theory oftedegnamical phenomena and
succeeded in developing a coherent, nonlinear electrodyalaimory.

Although it is not at all certain (or perhaps even trigt a quantum theory of
electrons and electrodynamical fields can be obtabmea@ simple quantization of the
equations that were considered by Poincaré and Born, ibristimeless not without
interest to investigate the degree to which it is posdiblattribute the properties of a
particle to a small classical system of finite dimens Here, we intend that the term
classical spinning particléo mean a system that is defined by its space-time cabedin
it impulse-energy quadri-vector, and its internal kinat@ment.

From the theory of relativity, a finite-dimensiorgistem has an infinite number of
degrees of freedom, and it seems difficult to descrilbl ausystem by a particle that has
a finite number of degrees of freedom. That amountisntbwing if it is, in general,
possible to define a point of the system whose positaonbe considered to be that of a
representative particle of the system.

In Newtonian mechanics, and for an arbitrary systerh aupoint is provided by the
center of gravity. The motion of the latter is indegentical to that of a particle whose
mass, quantity of motion, and energy are equal to theesmynding quantities of the
system, respectively. One can, moreover, attributent@nnal kinetic moment to the
center of gravity that is equal to the kinetic momerat tthhe system possesses with
respect to its center of gravity. In this paper, welghstuss the following problem: To
what degree can a representative point be defined forb@raay relativistic system? In
the first chapter, we shall consider a free systenh wa external forces, and in the
second one, we shall consider the general case of sicalasystem that is subject to
given external forces.

In a series of articles that appearedAicta Physica PolonigaMathisson §) and
Weyssenhoff{) have developed a classical theory of spinning particlémt theory was
based, on the one hand, upon the principles of relatizitgl, on the other hand, upon
some new hypotheses. The equations of motion of a spipamigle that were obtained
by those authors have some strange consequences. i$f @imen that a particle can be
considered to be the limit of a system that we @malision here then our study will give
us a better comprehension of the meaning and physicaprietation of Mathisson’s
equations.

|. — DEFINITION OF THE CENTER OF GRAVITY OF AFREE S YSTEM
IN THE THEORY OF RELATIVITY.

Consider an arbitrary finite, isolated system in sgdeeilativity; i.e., a system that is
not subject to external forces, but whose constitueat® arbitrary interactions. The
definition of the center of gravity of such a systemswdiscussed in a series of
conferences that took place in Dublin in 1947 and were published @othmunications

() M. BORN, Proc. Roy. Soc. A43(1934), pp. 410.
() M. MATHISSON, Acta Phys. PoB (1937), pp. 163 and 218.
() J. WEYSSENHOFF, Nature (1938), pp. 328; Acta Phys.9qdl947), 1-62.



Mgiller — On the dynamics of systems that have interrglanmomentum. 3

of the Dublin Institute for Advanced Studi We shall give an outline here of the
principal results of that article without entering iatib of the details of the proofs. The
system considered is defined by its impulse-energy tehgor Tk (X), which is a
function of the space-time coordinates:

x ={xV, zt,ict} = {x, ict}.

X, Y, z are the components of the radius veatar an arbitrary Lorentz reference system
S tis the time variable; is the speed of light, aridepresents a quantity whose square is
equal to — 1. (It is convenient to employ the synibmi order to distinguish it from the
that appears in the commutation relations of quantunhamecs.)

For a free system, we have the fundamental equation:

(1) Zlik = 0,

We make the convention of summing over dummy indices, (wizlices that appear
twice) from 1 to 4 for Latin indices, and from 1 to 3 émly Greek indices.
Set:

1 1 I
(2) TTi4: TT4i =0 = {g,—h},
C C

in which g and h are the density of the quantity of motion and #@mergy density,
respectively. For= 4, equation (1) can be written:

dg
3 =k =0
) 0%,

It results from (1) that the four quantities:
(4) P =[ g (x.t)dv= {P,/—H}
c

that are obtained by integration over all of ordinaspace at given instants are
independent of and transform like the components of a quadrioaeander a Lorentz
transformation.

The constants of motioR, H represent the total impulse and total energy ef th
system, respectively.

The invariant quantitil, that is defined by the equation:

() C. M@LLER, “On the definition of the center of grawitf an arbitrary closed system in the theory
of relativity,” Communications of the Dublin Instituter Advanced Studies, Series A, No. 5. Most of the
results that are contained in that article have beairgat independently by M. H. L. Pryce in a paper in
Proc. Roy. Soc. London 295(1948), pp. 62.
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(5) P, P|:—|\/|§C2

is also independent of time and determines the proper rh#dss global system. In the
Lorentz reference syste#}, in which the impuls®® is zero, we will obviously have:

(6) P° ={0, 0, 0,iMo c}.

The velocity ofS’ with respect to a Lorentz reference frafis given by:
c’P
7 Uu=——.
(7) w

In an analogous fashion, it results from (1) and thensgtry of the impulse-energy
tensor that the quantities:

(8) Mik:—Mki:J(Xigk‘ﬁ g) dV

are the components of an antisymmetric tensorishatdependent of time. That four-
dimensional tensor is the tensor of kinetic monwitth respect to the arbitrary origin of
our space-time reference.

In Newtonian mechanics, the coordinates of theeresf gravity of a system whose
mass density i (X, t) are given by the vector:

9 X :ﬁj. H(x,t)xdV,

in which:
M :jydv

is the total mass of the system. The center ofityrés then the center of mass, and its
position is, in a sense, the mean position of theswf the system.

However, from the theory of relativity, any quayntof energy will correspond to a
guantity of inertial mass that is given by Einstewell-known relation. Leh (x, t) be
the energy density of the system, so the correspgmdass density (x, t) will be given
by:

(10) h=uc

In a given Lorentz reference syst&rthe position of the center of mass is determimgd
the equation:

(11) X = %j h(x, t)x dV.

With the aid of (3) and (4), one easily sees tlhat point that is defined by (11) is
animated with a constant velocity:
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X(9)_ P _

(12) dt H

U;

i.e., with the same velocity as the syst&hn which the total quantity of motion is zero.

A deeper study will show us that the point that is defibg (11) depends upon the
Lorentz reference systel® in which the integral of the right-hand side of (11) is
calculated. That amounts to saying that the cenfersass in the two Lorentz reference
systems are two different points, in general. I, fi;can arbitrary physical system, there
is an infinitude of centers of mass that correspondthéovarious Lorentz reference
systemsS. Fokker {) pointed that out already, for the special systeritheomposed of
a certain number of particles with no mutual interarctio

From (12), all of the centers of mass are at reiérreference syste8i that is their
proper reference system. That system plays a spetzalThe center of mass belongs to
the reference systef itself. We call that point whose radius vectoKis X (S) the
center of gravityof the system. In the proper reference sys¥rhat radius vector will
have the constant value:

c? ¢ h°(x°, 19 1
13 X0= | —=Ix%dv® = — [ h°(x°,t%)x°dv°.
(13) e MOJ (x°,1°)

Let X be the space-time coordinates of the center oftgrahus-defined, in an arbitrary
Lorentz reference system. #fis proper time, an&; = X (7) is a linear function of and
the velocity quadri-vector that corresponds todtiestant value then:

(14) =2 - R
dr M,

We now define the quadri-dimensional tensay that represents the internal kinetic
moment with respect to the center of gravity bydheations:

(15) mic= [[06=X) g ~(% = %) gl dh=Mi— (% Pc—X P).
With the aid of (14), we get:
(16) %: = (Ui P«—UcP) =0.

Hence myx = — my is a constant antisymmetric tensor.
Introduce two spatial vectors andn that are defined by:

17) m={m,m, n} 5 m m
m=i{n,n,n}{m m, nj

() A. D. FOKKER,Relativiteitstheoriepp. 170, Nordhoff, Gronnigen, 1929.
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One deduces from (15) that:
(18) m = j(x—X)xgdv

is the vector of kinetic moment with respect to tesmter of gravity, which we call the
internal kinetic momentMoreover, we deduce from (17) and (15) that iftaleex, = X4
(7) then we will have:

(19) n=[(x-X) h(H

c

H

dv —
C

= %Ihxdv—x

Xy =Xy

That means that the time variable=1 ct in the integral must be taken to be equal to the
time X, of the center of gravity.

The first expression far in (19) shows that / c is equal to the moment of the mass
of the system with respect to the center of gravity

If one takes (11) into account then the last esqaoe forn in (19) will give us:

1 cn cn

(20) thx d\k% T EX O
in which X andX (S correspond to two simultaneous positions of theter of gravity
and center of mass, respectively. Therefore, \eelsa the center of gravity is a center
of mass in any Lorentz reference system if and drihye internal kinetic moment tensor
M is equal to zero — i.e., in the case of a systé@howt spin.

In the proper reference frarB@ the center of gravity is, by definition, identita the
center of mass. Consequently, the ventowst be zer&’; i.e.:

(21) n’=0, m’,= 0.
That relation is identical to the invariant relatio
(22) my P« =0,

as one will deduce from (6) and (21) when (22)iten in the reference systesh
By reason of (14), equation (22) must also betenit

(23) mx U = 0,

which, in turn, expresses the condition that th&tereof gravity is the center of mass in
its proper reference system in an invariant form.

If we choose the same orientation for the spabi@s inS andS’ then the Lorentz
reference syste®is defined uniquely b§’ and the vector:

(24) v=U=

cP
H
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which represents the relative velocitySfwith respect t&
From the properties of the transformation of ansgntmetric tensomy , (21) will
give us:

(25) n=_—"Mo

in whichm® is the internal kinetic moment 8.
From (20), (24), and (25), the difference betw#sn simultaneous positions of the
center of gravity and the center of mass in théesyS is given by the spatial vector:

cn _ vxm®°
(26) a(@©@=Xx(©9-X H M
which is independent of time.

Since the passage froBito S is effected by a Lorentz transformation without
rotation of the spatial axes, and sirecés perpendicular to the relative velocity the
distance measured & is given by the spatial vectaf(S), which is equal t@ (9 in
(26); i.e.:

(27) a’(9=a(9=

vxm?®

M,

In the proper reference systef all of the centers of mass that are obtained by
varyingSorv in (27) will have a locus that consists of thelgrthat is perpendicular to
the internal kinetic momemn® and a radius of:

(28) p=

As a result, we call the circle tlventer of mass disor simply thedisc. The center
of that disc is the poinE = C (), which has been called the center of gravityhef t
system. Ifv =vg + v is decomposed into the sum of two vectefs v, which are
perpendicular tan® and parallel to it, respectively, then we will geata’ (9 in (27)
depends upon only the perpendicular comporent Each point of the disc is then a
center of mass in an infinitude of systeBwhat correspond to the various values/pf

that are found in the interval / c®-vZ2 < v < /c®=Vv2. The disc of the centers of

mass is at rest i, and consequently, it will displace in an arbigraystensS like a rigid
body with a constant velocity.

Consider a system that is completely containea sphere of centé® of radiusr in
S i.e., a system in which all of the componentthefimpulse-energy tensor zero outside
of that sphere. Moreover, if we suppose that thergy densityh is positive in any
reference frame then it will be clear that the eemif mass disc must be completely
inside of the sphere. Indeed, if we consider &itrary pointC (S on the disc then that
point will the center of mass in the Lorentz ref@e systeng, and sinceéh is positive, it
must be inside of the system.
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We then get the inequality:
(29) r=

In other words:

A classical system that has a positive energy density, a igiteznal kinetic moment
‘mo‘ , and a given proper mass falways has finite dimensions that are giver(28) in
the center of gravity system.

If the system is smaller then the energy dertsitannot be everywhere positive in every
reference system.

As we pointed out in the introduction, Mathissdh énd Weyssenhoff’Y have
developed a theory of the motion of classical spinningigk@arin which the motion of
such a particle will not be determined uniquely by the ingtaesition and velocity of the
particle. Indeed, the equations of motion have an tnfiei of solutions for given initial
values of those quantities. In the case of a freacfeggrthose solutions will correspond to
circular motion around a center that itself displawéh a constant velocity. By reason
of the resemblance between that motion and Schrddsngiterbewegungpf a Dirac
electron, Mathisson and Weyssenhoff have considered #ihiddon particle to be the
classical image of the Dirac electron.

Since a particle can be considered to be a limiting odshe general system that is
considered here, and since the center of gravity of amy dystem displaces with a
constant velocity, the coordinates of the Mathissorigb@bviously cannot be identified
with the coordinates of the center of gravity as theyewlefined above.

Meanwhile, in an arbitrary physical system, as we theee exist a certain number of
points that properties that are very similar to thofsthe center of gravity, and a deeper
study will show that the Mathisson equations are, ity fhe equations of motion of those
pseudo-centers of gravity. The existence of an infinitudehitions of those equations
indicates simply that there are an infinitude of pseuddecsrf gravity for any system
that possesses an internal kinetic moment. Amdraf #ie centers of mass of the center
of gravity disc, only one of them has the property that a center of mass in its proper
vxm®

2
0

center of mass in a systeédithat displaces with the velocityv~with respect to its proper
reference systerf. Now imagine that the rigid disc that was consideabove is put
into rotation around the center of grav@ywith a constant angular velocity:

reference syster8. Any other pointC (S) whose radius vecta® (S = is a

2
M,c 0

30 W =-—2
(30) imo

o’ is then a vector in the same directiom®&swith the opposite sense, and a length of:

M c?
31 o= -
( ) |m0 |2
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Any fixed pointp on the rotation disc will then be a center of masgsi instantaneous
proper reference system at any instant, becauddpj is the radius vector at the instant
considered then the velocity of that point in theteysS” will be:

2

WO = (0.)0 y ro) — M,C (ro N mo)’

Im° f
or, sincer? is perpendicular ten® andu®:

(32) (0 = M
M ¢

The comparison of (32) and (27) shows tpaks the center of mass in the Lorentz
reference syster® that is animated relative t8° with a velocityu®; i.e., S is the
instantaneous proper reference system at the poirtience, any point of the rotating
disc is a pseudo-center of gravity that is, at emshant, the center of mass in its
instantaneous proper reference system. The nuafltkose pseudo-centers of gravity is
equal to the number of points of the rotating didtie distance® (p) can take all values
that are found between 0 apdwhich is defined by (28):

0
(33) 05r°(p)s-Uﬂ_J.
M.c

The speed ab tends to the speed of lightvhenr® (p) tends to the upper limit indeed:

(34) P == MC ¢
Im°|
when:
P |m® |
M.Cc

We shall now see that the equations of motiorho$é¢ pseudo-centers of gravity are
identical with the Mathisson equations. Let’ be the space-time coordinates of a

pseudo-center of gravity in an arbitrary Lorentfemence system, and lat be the
corresponding proper time.
The quadri-dimensionaj that represents the kinetic moment with respedhéo

point x'? is given by:

(35) Qic= [I(x =X") & =% = %”) g dVv=Mic— (X? Pc= X P).

Upon differentiating (35) with respect to propiend 7, we will get:
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(36) Qik = djzr'k == (Ui P« — W Pi),
in which:
p)
U = dx(
dr

is the velocity quadri-vector of the poimtwhich satisfies the equations:

p)
(37) Uu=-¢c, u= th .
dr

If S(t) is the proper reference systenpdhat corresponds to the instarthenp will
be, by definition, the center of mass $ at that instant. By an argument that is
analogous to the one that we made in the case of titerad gravity, we can conclude
that the mixed spatial-temporal component®gfmust be zero i ; i.e.:

QY =0,
which is an equation that can be written in an invarf@ashion as:
(38) Qi =0,

by analogy with (23). Upon substituting the expression {86XQi in that, one will
have:

(39) Qi Uk — X (P w) + P (XP wy) =0,

and by differentiating that with respectzoand with the aid of (37):
(40) Ml —u (R u) - A" (R Y+ R- &+ ¥ Y=0.
Upon multiplying that equation by, we will obtain:

a

41 Py=
(41) I Rl

(Pi w) =0,
sinceM is antisymmetric, and, ( = 0.

The invariant?; u; is then a constant of motion. In the instantaneousepneference
systemS, we will have:

u’= {0, 0, 0,7 ¢},
and in turn:
(42) Pu=icP’=-E =-M'¢,
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in whichM " is the total mass of the systenfin That mass is then independentof
Upon multiplying (35) by, , we will get, with the aid of (41):

(43) Qik U= M, + Pi()ép) LL) .
Upon taking (42) and (43) into account, equations (40) can ibenvr

Q. u

(44) Pi:M*Ui+Tk:M*Ui+H',
with
Q. u
(45) =
and 7y = 0, due to (38); as a result:
(46) PP=-MXc*=-M?C+n7.

If one multiplies (36) by then one will have, upon tek{37) and (41) into account:
(47) &, U, = 0.

By differentiating equation (44), and recalling that is constant, one will then get
the following equations for the motion of the pseudo-asraégravity:

Q, G, -
2

(48a) M +
C

0.
Furthermore, introduce (44) into (36); one will get:
: 1 : :
(48n) Qy +§(ui QuYy - Gy )=0.

Equations (48) and (4®), when combined with equation (38), are formally identioal
the equations that were given by Mathisson for the motb a spinning particle.
Equations (42) and (44) represent first integrals of equat{dBy One will see
immediately that:

(49) u = U; = const., Qix = mk = const.

is a solution of equations (48).
That solution corresponds to the motion of the cesftgravity. In that casey, = 0,

and from (45), (46), and (44), we will have:

(50) 7=0,M " =Mog, P =M "u=MyU.
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As one will easily see, all of the other solutiong48f) and (38) for the given values
of Mo andm® will correspond to motions of the pointon the rotating disc considered.
For all of those solutions, the quadri-vectpis non-zero, an¥ ~ > My i.e., the quadri-
vectorP; is not proportional tai;, but to a component that is perpendicular tg. Only
the center of gravity both equations (38) and (50) at once.

Il. -DYNAMICS OF SYSTEMS SUBJECT TO EXTERNAL FORCES.

Now consider an arbitrary system that is subject vergexternal forces. We first
treat the case in which the external forces are nefitgt@nal forces. In a well-defined
Lorentz reference system, those forces will theddseribed by a quadri-vector:

(51) fi=1f, L,
C

in whichf represents the force density, apdepresents the energy that is expended per
unit time and volume. Instead of (1), we will now have:

(52) —=fi,

in which Ty is, once more, the impulse-energy tensor of our systehime four-
dimensional spatial domain in whidk # 0 is a tube whose direction is timelike.

We shall now try to determine the world-line of thetee of gravity in our system.
Let L be a curve that has a tangent at each of its pomisevdirection is timelikeL can
then be considered to be the world-line of a moving pbmit we call theepresentative

point If x” are the space-time coordinates of that representptirg, andr is the
corresponding proper time therwill be well-defined if thex” are given as functions of
the parameters:

(53) X" = x"(1).

The velocity quadri-vectaw; = dx / d7 of the representative point verifies the equation:

u -y :_CZ’
(54) { Y

in which the dot indicates differentiation with respiecr.

Consider an arbitrary poimt (7) of L that corresponds to a well-defined valuerpf
and letV (7) be the three-dimensional hyperplane that is perpafatito the tangent @t
i.e., it is orthogonal to the vectar at p. The consecutive hyperplan&s (7) are
determined uniquely whdnis given. Consider a volume elemeiM in the hyperplan®
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(t) that is composed of three independent infinitesithal, & , Ax . That volume
element is represented by the antisymmetric tensor:

dx Jx Ax
(55) dVig = |dx  dx  Ax |,
dx ox Ax

or by the corresponding pseudo-vedbdf that is dual to it, which is defined by:
(56) dV]_ =7 dV234, de =7 dV241, dV3 =7 dV412, dV4 =7 dV123.

The pseudo-vectadV; is orthogonal to the hyperplane(r) and is then proportional to
u(7). Since:
(57) dVi dVi = - (dV)?,

in whichdV is the invariant volume of that element, we will obvigusave:

(58) av, = dTV U, dv = —%(d\/i W),

In a Lorentz reference syste3n(7) whose time axis is parallel tp (7), we have:

(59) { y=(0.00, 7cj
dv”={0,0,0,7 dV"}.

S’(1) is the proper differential of the representative pairthe instant considered.

Now consider two consecutive hyperplan&s) and V (r + d7) and the four-
dimensional domaif that is bounded by those surfaces and a cylindrical susfaee
encloses the tube in whidhx # 0. Consider an infinitesimal elemed® in Q that has a
cylindrical form whose axisll; of lengthdl is perpendicular t&/ (7), and whose cross-
section idV. If L is a straight line then the two hyperplave&) andV (7 + d7) will be
parallel, anddl will simply be equal to the distande dr between the points of
intersectionp (7) andp (7 + d7) with the curveL. If one takes the curvature bfinto
account then one will easily see that one has:

(60) dl=icdr (1+i—§j
in which
(61) E=x-x", §u=0

is a vector that links the poipt(7) to the elemendV in V (7). By virtue of (60) and (58),
the volumedZ of the infinitesimal four-dimensional cylindricalement will be equal to:
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(62) ds =dv di= d\_/i_u(1+g"q<Jdr.

I c?

Upon integrating equation (52) in the dom@inwe will get from (62):

63) j‘ﬂdz:dr p ViU o)
ank dr / C2

Upon applying Gauss’s theorem in four-dimensiomqece, one can transform the left-
hand side of that equation into an integral overdtrface that bound3. SinceTy =0
on the cylindrical surfacg only the hyperplaneg (7) andV (7 + dr) give a contribution
to the integral, and we will obtain for the leftruaside of (63):

dV, dyV,
.[V(r+dr) "‘T .[V(r)T“‘T'

Hence, after dividing byc dt and passing to the limdr - O, equation (63) will
become:

(64) d Eﬂ:j f [1+ﬂj d\/lq.
drvoic i Mo ¢t ) -c
Upon defining two quadri-vectof (7) andF; (7) by:
= Tk dM
(65) PD =],
(7 = U ) (dViy)
(66) Fi@=],,f [1+ el vt
equation (64) can be written:
dP
67 — =F.
(67) ar

In the instantaneous proper reference sys&(w of our representative point, the
expression (65) folP; will reduce to:

o T o e T
(68) P _j%dv ={P", _H},

in which P° and H" are the total impulse and energy in the referesystemsS,
respectively.

In the case of a free system, we hfwe 0 andF; = 0. In that case?; will then be
independent of, as well as the choice of representative cli.véMeanwhile, in general,
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the quadri-vectoP; (7) will depend upon the poim (7) considered, as well as on the
direction of the tangent at that point.

If we take into account the symmetry of the ten$prthen we will deduce the
following relation from (52):

0
— (% T —% Ti) =% fk— % fi .
0x,

Upon integrating that equation ov@rand applying Gauss’s theorem, as we did in order
to establish (67), we will obtain:
(69) d Mik = Dik ,

dr

in whichMj, andDy are defined by the relations:

(70) M (7) = V(T)Xi-lil;c)&-ﬁ (j\/
(7t Dic (1) = J‘vm()g b= % fi)(“%j (dylcq) '

Mik is the four-dimensional tensor in our arbitraryrémz reference system that
represents the total kinetic moment with respethécorigin and corresponds to the value
r of proper time for the representative point. $anhy, the tensor that represents the
kinetic moment with respect to the representatmatyp (7) will be given by:

— — (N - — )
72) Q=] &L [ GANT (DT dY,

Ic / I'c /
which can also be written:
(73) Qi (1) =M (1) — [X" (1) P (1) =X (1) Pi (D)].

Upon taking (69) and (67) into account, if we diffntiate with respect tothen we
will obtain:

dQ. : - i

dTIk =M, ~(UR-yR - P- ¥ P

=Di— (U Pc—uc P) (X" F - X F).
That equation can also be written:

dQ,

(74) ar

with

=dk— U Pc—u P),



Mgiller — On the dynamics of systems that have interrglanmomentum. 16

(75) dik = Dik _()ﬂ(r) Ro— XS) E) = .[ (5. fk _Q(k fi)(l+%jm .

—-C

in which have used equations (71) and (66).
Equations (67) and (74) —i.e.:

(76a) P=F,
(76b) Q, =dk— Ui Pc—u P,

are valid for any curvé; i.e., for any choice of representative point. Weuld now
wish thatL should represent the motion of the center of ¢yaamnd then try to find the
other conditions that define that point.

In the case of a free system, the center of tyravidetermined uniquely by the two
equations (50) and (38); i.e., by:
(77) P =Mou,
(78) Qi U= 0.

The first equation expresses the proportionalitythe impulse-energy vector and the
velocity quadri-vector of the center of gravity, @M is the total proper mass of the
system. The second equation expresses the canditad the center of gravity is the
center of mass in the reference system in whighat rest. In order to define the center
of gravity in the presence of external forcese#ms natural to likewise utilize equations
(77) and (78). As we see, it is nonetheless noegdly possible to demand that
equations (77) and (78) should both be satisfiedabse they are not compatible with the
equations of motio(76), in general.

If we suppose that the relation (77) remains iextiin the general case then we can
write the equations of motion (76):

(79) Maflh Mot =
Q, =d,.

Upon multiplying it byu; , we will deduce from the first of these equatitimes:

. F

(80) M=- 5k,
in which:

F iy
(81) u = - c

I\/IO

If we define a quadri-vecta; by:
(82) aa=QLu§, au=0
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then equation (78) will signify that the vectgris constant and equal to zero. Now, it is
easy to evaluate the derivativeapby means of (79), (80), and (81); one will get:

I:k uk + Qik I:k + dik uk

83 A, = 28; :
(83) A 23+M0C2 MZc®  M,c

In generalg will not be constant then. It is only if:

Q. F
(84) |\I/|L0k +dixw=0
that
(85) a=0

will be a solution to (83). It is only in the special €dbat is defined by (84) then that
our representative will be the center of mass ipntger reference system.

In the general case, will not remain zero, even if it is zero at thetigiinstant. That
signifies that the representative point will becomepbsition of the center of mass in the
instantaneous reference syst8n{7). The space-time coordinates of the center of mass
in S”(7) are given at any instant by:

(86) X (0= x"(r) —a (D,

as one will see immediately upon considering equationi8éje reference fram® (1),

and upon using the definition af andQj. . Sincea; u = 0, the component in S™(7)

have the form =4, 0} anda; a = |a [ is equal to the square of the distance between the
representative point and the center of mas ).

Consider a system that is initially free, in whigh= O for the center of gravity, and

make external forces act during a certain time intenafter that time interval, the
values ofa;, and in turn, those & a, can be non-zero by a certain quantity, at least as
long as the forces that enter into equation (83) do nddfysgpecial conditions. After
that, the system will become free again, so our reptasee point can then be very
different from the center of gravity, although it willsplace with the same constant
velocity. The representative point that is defined by @/ (76) can even be found far
outside the system of the latter is subject to extdonees during a certain time interval.
It might then be reasonable to assume that thearl&fi8) is always valid. In that case,
our representative point will in fact always be a cemtemass in the instantaneous
proper system, which signifies that it will always ieaed inside of the system, at least
if the energy density is everywhere positive.

We then define our representative point by equation (78nbmed with the
equations of motion (76). We deduce from (78) by differangat

(89) O, u, +Q, 0= 0.

Upon multiplying (7®) by ux, we will get, with the aid of (89):
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(90) QU =~ QU = dic U= (P u) —Pi .
If we set:
(91) Pclk=—M "¢

thenM " is an invariant that represents the total mass of yetem in the reference
systemS (7) in which our representative point is at rest at theirtsconsidered. Upon
substituting (91) into (90) and solving that equation with retsgeP;, we will get:

« Q. o d
(92) Pi=M u +%+%.

The impulse-energl; is then the sum of two terms:
(93) Pi:M*Ui+H',

the first of which is proportional ta , while the second one:

Qu d
(94) = % +%

is orthogonal tay ; i.e., by virtue of (78):
mu =0.

Upon substituting (93) into (76), we will get the following etipr@s of motion:

(95a) d (M w)+ 71 =F,
dr
(95b) Q, + Ui 7k — Uy 7T = dik .
In the particular case where:
(96) dk =0,

i.e., the one in which the forces produce no precessidheoVector that represents the
internal kinetic moment, we will haver i, = 0, Q,u = 0, and equations (95) will take
the form:

(969) i (M *Ui) + QU =F,
dr
(96b) Q, + U 7k —U 77 =0,

Those equations have the same form as the ones tteagiven by Mathisson for the
equation of motion of a spinning particle in the case of an external forcédlsad zero

moment with respect to the particleEquation (96) shows thatQ, # 0, but the
precession that is described by that equation is simyprecession that is called
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Thomas precessionlt constitutes a purely kinematical effect and is duéhe fact that
the succession of a large number of infinitesimal Laré&ransformations with no spatial
rotation can possibly product a finite Lorentz transforomatvith a well-defined rotation
of the spatial axes.

For a free system (i.e., fér= 0) we havedy = 0, F; = 0, and equations (95), which
reduce to equations (48), describe the motion of the fadsers of gravity that are
situated on the rotating disc that was mentioned infitse chapter. Equations (95),
combined with equation (78), will then determine the world-liokthe pseudo-centers
of gravity in the presence of external forces. Indase of a free system, the center of
gravity can be distinguished from pseudo-centers by theitemmds = 0. However, that
condition is generally incompatible with the equati@fignotion (95). Equation (2
can be written:

M +MYy +77 =F.
Upon multiplying this byu;, we will deduce that:

M= - S (U )

The preceding equation then gives:

1 .
. Fi_lz+?(l:kuk_ﬂl-<uk)q
u = YE .

Upon substituting this expression into (94) andeetbering thaQy w = 0, we will get:

QF du Q.7
98 — ik k + ik 2k _ ik” "k ]
(98) Mt ¢ M
We then see that it is only in the case where:

Qik I:k
M 2

(99) +dxuw=0

that 77 = 0 will be a solution of (98). As in the cabe = Mo, the condition (99) is
identical with the condition (84) that was founddre.
In the general case in which the forces do nasfgaihe condition (99), the relation

(98) will show that if77 = 0 at a certain instant then the derivativeswill be non-zero,

which also signifies that ther will be non-zero soon after that. Now considefrese
system before and after a certain time intervainduwhich that system is subject to
arbitrary external forces. Before and after, theter of gravity will then be defined in an
unambiguous manner. If our representative poichasen in such a way that= 0 at
the onset, which signifies that it coincides wikle tcenter of gravity, then the action of
the external forces will produce a change in tHaevaf 77 that will be non-zero when the
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system becomes free again. The representative polimot coincide with the center of
gravity much later, but it will be one of the pseudo-eenbf gravity of the rotating disc.
In the center of gravity system, the distance betwbenrepresentative point and the

center of gravity can, in turn, have any value between aed the radiup = |m° |/Mc
that is given by (28) or (33).

The world-lines of the various pseudo-centers of grawtypetely fill up a tube
whose thickness has ordgn® |[/Mc. In the case of a free system, it is possible to

choose one of those world-lines uniquely and to define itetahl center of gravity.
However, as we just saw, any external force, no mhte weak, will generally provoke
a mixture of world-lines of the pseudo-centers of grawityich will make it impossible
to distinguish a particular line as the center of gyaviThat signifies that making an
exact, unambiguous definition of the center of gravity isegally impossible for a
system that is subject to external forces, sincecémger of gravity or its world-line are
defined only with the uncertainty that is given by the tobevorld-lines that was in
guestion above. Those general results are valid fosystgm, and as a result, also in the
limit of a very small system. In our opinion, the Migson equations must not be
considered to be the equations of motion of a spinningcfgrbut rather as equations
that describe the tube of world-lines of the false enof gravity, which is a tube that
will determine the uncertainty in the definition of thenter of gravity of the system in
the presence of external forces.

It is true that for most macroscopic systems, timedsions of the cross-section of

the uncertainty tube that was mentioned above will lpg small, sincelm° |/Moc will

then be very small. However, for a classical sydilesth has a mass that is equal to the
massmy of the electron and a kinetic moment of order a quand@iraction h, the
uncertainty in the definition of the center of gravitil mave order the Compton wave
lengthh / my c. In thenon-relativisticlimiting case (i.e., fot - o) the uncertainty tube
will become infinitely thin, and in that domain the oot of center of gravity will
likewise acquire a precise significance for systems dha subject to arbitrary external
forces.

Up to now, we have considered only external forcesar@not gravitational forces.
We shall see that the situation is different in thse of pure gravitational forces. We
will show that one can then give an unambiguous sigmi¢edo the notion of center of
gravity, at least when the system is sufficiently kma@hat amounts to saying that one
can make the forces of gravitation disappear in a sregibn of space-time by a
convenient space-time coordinate transformation.

Let X be the space-time coordinates in an arbitrary refersgseem in general
relativity, and letgix = gi (X) be the covariant components of the metric tensar tha
describes the external gravitational field. (We must ntake a distinction between the
covariant and contravariant components of tensorsg mist study the effect of that
gravitational field on a physical system that is arbytraut small, and is described by an
impulse-energy tensor whose contravariant comporaets * = T¥. The theorem of
conservation of energy and impulse is expressed invigjdby the relation:
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oT* _ T* 0y|g]
+

100
. % Jlg| 9%

+M, T9=0,

which replaces equation (1) of special relativitg. is the determinant of the metric
tensor, and:

i _ im1( 00y . 09, 09
101 rl - - mk + ml _ ki
(101) =9 2( X X 6x’“j

are the geodesic three-index Christoffel components full rigor, the functiongy in
(100) must also contain the gravitational fieldttlsaproduced by the system itself, but
we shall assume that the field is weak enough toelggected with respect to the external
field.

In four-dimensional space, the domain in whithis non-zero is, for a small system,
a thin tube whose thickness is given by the dinwarssof the system. Lé&tbe the world-
line of the center of gravity, which we shall noetermine. Sinc&X ' are the space-time
coordinates of the center of gravity, arid the corresponding proper time, the world-line
L will be well-defined if theX ' are given as functions af.

(102) X' =X"(1.

0.
Let p (7) be an arbitrary point df. We can introduce a coordinate systa&mthat is

geodesic at the poipt— i.e., a system in which the first derivativestlod metric tensor
are zero at the poimt:

(103) 99| =,
ax'

and in an infinitude of ways. As we see, in tlogtl inertial systemit will be possible to
treat our physical system as a free system witlgrawitational forces, on the condition
that the system should be small enough that wenegtect the tidal effecteffets de
mareg; i.e., on the condition that the curvature ofcgpime should be sufficiently small
in relation to the given dimensions of the systéie can, in turn, define the coordinates
of the center of gravity in that system by procegdn the same manner as in special
relativity for a free system.

Now choose a system of normal Riemann coordinaegarticular, for a geodesic
system. By a convenient linear transformation, ca®, moreover, arrange that the

0.
coordinate lines are orthogonal at the pgintlf the origin of the coordinates' = 0 is

taken atp then the components of the metric tensor in thghterhood ofp will have
the form:

(o]

(104) 0y = Gk +3 Eiijm (p (;(' (;(m :
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o
in which Rju is the Riemann-Christoffel curvature tensor, and:

0 for iz#k,
(105) Gik = 1 for i=k= 1, 2,3
-1 for i=k=4

is the constant metric tensor in a Lorentz refezesystem of special relativity.
With the aid of (104), we will get from a direct calatibn, upon neglecting terms of

order higher than the second;)'(h:

(106) M= 3Ru( P+ R (Dl X
and
1 a 5 o] (o]
(107) - v =-2Ru(p X,
g| 90X

[0}
in which R« is the contracted curvature.
0.
In the coordinate systemx', the fundamental equation (100) can be written:

(108) O 3[R (D+ R ] T2 T R

oxX

o o o 0.
If one divides that equation lyand integrates over all values »f, x*, x* (wherex'

has a small constant value) then the left-hand sitléevequal tod P'/a x*, in which:

o . 24 ) 0 )
(109) p :jTTd xtd x2d %

is the quadri-vector that represents the total energyirapdise in our local inertial
system.
Now suppose that the curvature of space-time is smalbinparison to the spatial

dimensionsa of the system. We can then neglect the right-rsidd of (108) after

m

o . o] o
integrating, due to its terms of the forRi,,, x™. The derivatives oP' with respect to
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o 0 .
x' or with respect ta will, in turn, be small compared to thHe' themselves, and in the
limiting case of a very small system, one can set:

(110) 2 -,

In the same way, we will find that the derivative lod quantityr(ﬁk that is defined by:

(111) mk = Ej (XTH= X T dxd ¥ d ¥
C

[0}
is small with respect to thew themselves under the conditions that were mentioifed.
the system is small enough then we can set:

[0}
d mik

112 = 0.
(112) ar

o . I
The quantitiesP' and m* transform as a vector and a tensor, respectivelyeruany
o . I
linear, orthogonal transformation of the coordinatés m™ is the tensor that represents

o
the internal kinetic moment in the geodesic systém
We now define the center of gravity by the equations:

% K
k U

(113) mcU* =0,

(114) P = MoUi,

in which:

(115) U'= dXx
dr

is the velocity vector of the center of gravity in ti@odesic system.
Equation (113) expresses the idea that the center ofygigtite center of mass in the

local inertial system, while equation (114) establishesptio@ortionality betweert) '

and P'. Since the derivative ®fly =— P; P./ ¢?is zero, equation (110) can be written:

(116) ~— =0,
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0.
which is the equation of motion of the center of gravityhim $ystemx' . If we return to
the original coordinate systexhthen equation (116) will become:

(117) di:—r‘rsufui
dr
or
2 i r S
118) o=, O
dr dr dr

Those equations show that the world-line of the centgrafity is a geodesic — i.e., the
motion of that point is identical to the motion oparticle that falls freely in the given
external gravitational field.

r(ﬁk behaves like a tensor with respect to linear transtions of coordinate§i :
We can now considemny to be an antisymmetric tensor that is attached ¢océmter of
gravity anddefineits componentsny (7) in the systenx by the usual transformation
laws of a tensor that is attached to the p¥int The transformation to the systehwill
make equations (112) take the form:

drm

(119) =-T.U'm*-r un.
dr

We have similar equations for the derivatives of theadant componentsy, . Equation
(113) can then be written in the invariant form:

(120) mx U*=0,

and we see that it is compatible with the equation ofiano(117) and (119). Those
equations show that the vector' and the tensom* propagate by parallel-displacing
along the world-line of the center of gravity. The difen of the internal kinetic moment
will not generally be identical to the original direct then when the center of gravity
traverses a closed circuit. Thgeodesic precessioof the direction of a vector that
represents the kinetic moment conforms to the rukewha given by Fokker').

In the present article, we have considered exclusisfalysical physical systems for
which all quantum effects can be neglected. As we hesg, ghe notion of center of
gravity generally has an unambiguous significance only faesysthat are not subject
to external forces in the case where they are fildew, it is possible to immediately
extend the theory that was developed here to arbitpaaptum systems. The existence
of the quantum of action introduces a supplementary liimitan the definition of the
center of gravity even in the case of a free systetmat Timitation takes the form of a
guantum uncertainty relation that is due to the faat the coordinates of the center of
gravity are represented by operators that do not commuiiditeeach other in that case.

(*% A. D. FOKKER,loc. cit. (), pp. 249.



Mgiller — On the dynamics of systems that have interrglanmomentum. 25

For more details, the reader is requested to referetaitircle in theCommunications of
the Dublin Institute for Advanced Studibst was cited abové)(

I would like to cordially thank J. M. Horowicz for tlessistance that he afforded in
the editing of the French text.




