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1. Generalities. One can divide all stress states of elastic boutigs two main
groups: The ones that are caused by actual external madsce or volume forces), and
the ones that exist without external loads. Theras® have their origin in either the
history of the body or in current physical influences ingpally, temperature influences.
Correspondingly, we distinguish the two main group®ad ktresses and proper stresses
— or self-stresses — and inside the latter group, waenglissh “manufacturing stresses”
and “heat or temperature stresses.”

While the load stresses have already found numerouprebansive, systematic
representations in the literatufe up to now, there exists no overview of the widely
diverse examinations into the realm of proper stressas is oriented towards the
theoretical viewpoint. The current state of developgnadrthese investigations does not
offer a unified picture. Moreover, it seems that mames the individual investigations
were carried out with no knowledge of the other oneswlese closely related to them,
and a clarification of the connection between theowar investigations has hardly been
sought, at present.

For a long time, only simple special cases of manulfeng stresses and temperature
stresses in elastic structures were considered in #ratlite of structural statics. The
manufacturing stresses that come about as a resulteohatly statically-indeterminate
trusses have their origins mostly in the imprecise lesrgtiy of the individual rods. By
means of so-called statically-indeterminate externaicires, manufacturing stresses
can also come about through the impressing of non-unifeduactions of the stock
(Lagersenkungen), and these cases have been examined imasyatready. Of a
completely different sort are any cases of manufaxjistresses that are known and have
been examined empirically in the different branchesmnetal and glass technology.
Geology and geophysics have also been concerned Witultlispecial problems of self-
stresses. Likewise, heat stresses have been cousiderarious places in the technical
literature.

) The foregoing report is an essentially extended vexsfiomy same-titled citation in the Handbuch der
Physikalischen und Technischen Mechanik, edited by Prof-Dkuerbach and Prof. Dr. W. Hort. Printed
by Joh. Ambr. Barth, Leipzig.

3 Cf, e.g. the article of Miller-Timpe, Tedone, Teddimpe in the Enzyklopadie der
Mathrematischen Wissenschaften 4/4; the citation effterin the Handbuch der Physik; the citation of
Korn in Handbuch der Physikalischen und Technischen Mechadik3(Bp. 1).
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In the theoretical literature of elasticity, hettesses had been considered since the
earliest beginnings of that discipline, since otherwiseauld still not be possible to
present general physical Ansatze for the thermoelgsbblem that are completely
flawless®. On the other hand, manufacturing stresses wetteifiitoduced into the
scientific representation of advanced elasticity themyylLove *), and we particularly
emphasize A Fopp). Foppl was indeed the first one to clearly recognieestlitability
of summarizing the heat stresses and additional progsses from a unified viewpoint
and to extend the sense of the word “proper strességmondingly; he was also the first
to expressly emphasize the necessary restrictiotiBeonniqueness theorem of elasticity
theory in the context of manufacturing stresses. diiespecial types of pressure stresses
were already treated theoretically in general by Wetegaaind Volterra and a somewhat
more general type was introduced into elasticity theorySbynigliana. The Volterra
pressure stresses (the so-called distortion stresgeshowever, be regarded as only an
adequate general representation of the aforementionedestgmes of manufacturing
stresses that were treated in the literature of stralcstatics.

The organizing principle of the present report is toceed from the theoretically
simplest types to the most general ones. In 2, theeWaldistortions will be treated. In
3, some examples will be discussed, along with the ptigsibf the experimental
verification of the theory. In 4, the Weingarten andn&giana distortions will be
discussed. No. 5 will be directed towards the most gengoa of manufacturing
stresses, with the single restriction to small ldispments. In 6, the manufacturing
stresses for large displacements will be treated,raiidl the heat stresses. Finally, in 8
we seek to show that the connection between the pressundethe load stresses will be
produced by means of the concept of higher load singusaritie

2. Volterra digtortions. Starting from a hydrodynamical analogy, and on the
grounds of a fundamental preliminary examination of Weinga&jteand later by Klein-
Wieghart”), Volterra®) examined the following question: Can there exist, irekastic
body that is free of surface and volume forces, te sthdistortion that is continuous,
along with its first and second derivatives, and having singlieed dilatations&, &,

&) and shearsyy, Kz, K2? The answer to this question is that this is possible fonl
multiply connected elastic bodies.

In order to prove this, and likewise to establish theuadf the aforementioned state
of distortion, Volterra represented the componentthefdisplacements, v, w with the
help of line integrals of the distortion quantitigs etc., )y, etc. Investigation of this line

% Cf., on this, A. Korn, loc. cit.

*) Love, Mathematical Theory of Elasticity"*2ed., Cambridge 1906. Amongst the proper stresses,
Love also counted the ones that arose from volume fansesell as those that did not originate outside of
the body, but from the different parts of that sansybo

®) Vorlesungen iiber Technische Mechanik, Bd. 5, pp. 293.

®) Weingarten, Atti della reale academia dei Lincei, deonti Classe di scienze fisiche matematiche e
naturali (in the following, cited as “Lincei”) (5) 1,01901.

" F. Klein and K. Wieghardt, Uber Spannungsflachen unipreke Diagramme, Archiv d. Mathematik
u. Physik 8, pp. 1, 1904.

8 Volterra, Annales de I'Ecole normale supériure (3)4B0, 1907. This comprehensive treatise is an
extended summary of earlier papers by Volterra. See L{Bgel4, pp. 127, 193, 351, 431, 641;,19p.
329; Nuov. Cim. (5) 10, pp. 361.
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integral showed that it is independent of the path efgration when and only when the
Saint-Venant compatibility conditions are satisfied #me body is simply connected. By
comparison, for multiply connected bodies, althouglv, w satisfy the compatibility
conditions they are not generally independent of thh; gance, they are polydromic
functions of position.

Cesard) gave a simplified representation of these integmrahédas, and on the same
grounds he generalized the Volterra statement of thegrobd non-Euclidian spaces.
Giuganino % again picked up the problem of representing the displattefiedd as
characteristic quantities of the distortion field antved it in a completely different way.
He started with the fact that the three compongnts o, @, of the rotation of the
displacement field can also be polydromic when the distocomponents, ..., Ky, ...
are single-valued. The multi-valuedness of the displace fieldu, v, w enters into the
multi-valuedness of the rotor field in an essential w&juganino showed that v, w
can be constructed from the three componengsafd three harmonic functios Q, R
that can be determined from the form of the body in mpdetely similar way to the
construction of the displacement field of a rigid bdym the six screw components.

From the fundamental theorem of Volterra-Cesaro @bore can infer that an elastic
body of simply connected form, when it is free ofdsamust be found in the natural
state in the event that the distortions are regwhile in a multiply connected body, a
load-free state of stress is also possible for regiséwrtions.

Volterra has further shown that the polydromic dispfaent field thus defined may,
in any case, be represented by a discontinuity thataarl in nature when expressed in
spatial coordinates. The displacement field may aésphysically produced in such a
way that the body will be converted into a simply come@wmne by a corresponding
number of cuts, the cuts being subject to arbitrary scretions between them, and then
the multiple connectivity will again be produced by fillimgthe intermediate space with
foreign material and removing the superfluous material aelding together again.
Volterra called these manipulations “distortions” ane stresses that resulted from them
“distortion stresses.” The manufacturing stressesatso be easily interpreted as the
stresses. Namely, if we think of the body as haviremlproduced by a simply connected
body whose connecting surfaces agree with each othes@secalthough its position
exhibits indeterminacy, then the desired situation camrbesd at only through pressures
that produce a state of stress that is identical with Yolterra distortion stresses.
(Otherwise, the body would not generally exhibit the raberistic discontinuity
properties that appear for Volterra for this way of tinggproper stresses.)

Volterra showed that for these pressures there exiseciprocity relation that is
analogous to Maxwell's theorem. Namely, if we consits® arbitrary cuts through the
multiply connected body and impose the two screw msetibat bring these cuts together
then the body can be assigned distortions with sixpom@nts. Now, if one thinks of the
resulting dynamics that arises from stresses inwloecut surfaces in question as being
likewise decomposed into components and denotes the mubtaatgsponding screw
(stress, resp.) dynamical components by the same owtéken one can assert that the

%) Cesaro, Sulle formole del Volterra fondamentaldanteloria delle distortioni elastiche. Atti della R.
Academia della scienze fis. e mat. di Napoli (3) 12, 19063 pp.

19 Giuganino, Alcune formole analoghe a quelle del VoltereHia teoria delle distortioni elastiche.
Lincei (5), 2Q.
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screw componentthat is appropriate to the cross-sectipgives rise to a stress dynamic
componenS at the cross-sectigfithat is just as large as the stress dynamic compé&hen
that the screw componestappropriate to the cross-secti@rgives rise to at the cross-
sectiona.

Colonetti™) has likewise found another general reciprocity taeoon the basis of
work considerations that exists between load strem®sstand self-stress states: The
product sum of the six components of the dynamic of thesesectional stresses that
results from a group of external loads with the comadmg components of a given
distortion screw is equal and opposite to the work dorextsrnal forces along a path of
displacement that is caused by this distortion. \erigpecial cases of this noteworthy
theorem are already known in structural statf}s Colonetti’s contribution is only the
general formulation and flawless proof of it.

Another important result of the energetic structuraticgaof distortions is the
extension of Castigliano’s theorem on the minimunkagone in deformation due to the
distortions, which was likewise carried out by Coloingjt

To the Castigliano work expression, one must add gethar work quantity that
Colonetti symbolically referred to as the “deformatiovork of the impressed
distortions”; we will learn about the character lmsttheorem more closely with the help
of a specialization.

Starting from the Volterra reciprocity theorem oneymderive the connection
between the stress field and the displacement figldht distortions directly. Volterra
and Colonett!) have solved this question for arbitrary plane distogtithat relate to a
plane-symmetric body. If one considers such distastithen it is obvious that the
distortion can be characterized by a pure rotation. adseciated stress state in each
cross-section can be characterized by its resultinge$o In this way, one can associate
each point of a doubly-connected plane system with a uiiiggieand reciprocally. An
n-fold connected body establishes- 1 such reciprocal associations. The study of these
reciprocities now yields the remarkable result that day reciprocity there are two
mutually perpendicular directions that are distinguished tihgy fact that a pure
displacement in the one direction belongs to a for¢be other, and conversely.

ll)

3. Special cases of Volterra distortions. The simplest special case of a Volterra
distortion was given by Volterra himsé)f namely, he solved the distortion problem for
an annulus between two concentric circular cylindergl @ounded by planes
perpendicular to them. He considered the six elemgniatortions when he chose the
reference axis system to be through the center diddg. He carried out the solution in
two parts: The first part consisted in the search tmhsa system of stresses that is
regular everywhere and in the radial cut surface thategsponds to the elementary
distortions that the discontinuity in the displacetseproduces while leaving the outer
surface of the cylinder stress-free. As a second seeftweim ascertained the forces on the
base surface of the cylinder that this system yielded,oardaid the first stress field
with a second one that delivered equal and opposite forcebeobase surface. The

ll)

Colonetti, Su di una reciprocita fra deformazioligtortioni, Lincei 24 (1915).
12
)

Cf., e.g., Ritter, Anwendungen der graphischen Statileil3 Ztirich 1900.
13 Colonetti, Sul problema delle coazioni elasticheriffo Atti 54 (1918-19), pp. 864.
%) Colonetti, Sulle distortioni dei sistemi elasticapi pit volte connessi, Lincei 241915.
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solution to the first is obtained in closed form wikie usual functional notation, while

the solution to the second part for single elementisyortions was obtained only

approximately. The exact part of this problem is indepemdenl indeed was solved by
Timpe *®) before the appearance of the general theory of¥falt All of the results were

verified by Volterra using caoutchouc models, which aldowabne to test the stress
field. To that end, Rolla, and later Corbino and Teaba'®) constructed transparent
models from gelatine and fish glue (Fischleim), and bgmeeof them, expressed the six
elementary Volterra pressures as stresses. The exmminéthe cylinder by means of

polarized light using the process of W. Kdnig yields darkslittet can also be computed
theoretically. The experiments have admirably confititie theory.

The difficult special case of regions between two coalf ellipses and bounded by
planes was solved by Timpe with the help of trigonometmnid hyperbolic functioris).

A very general case of Volterra distortions was &edty Almansi®). He considered
multiply connected cylindrical bodies with completelybitrary cross-sections and
reduced the solution of the problem in full generalityi® determination of biharmonic
stress-functions (for any elementary distortion 3wa tariablest, y (coordinates in the
cross-section). The solution is analogous to theéneat of plane deformation problems
with the help of Airy stress functions, although theljem to be solved here does not
reduce to plane distortions. The investigations of Aimemese applied by E. Fredd) to
a cylindrical body with an eccentric circular crosstem. He reduced the eccentric
circle to a centered one with the help of a suitadflection in the unit circle.

The same things that Almansi derived for a cylindricalybagre carried out by
Laura®®) for a body of revolution. This intrinsically thremensional problem was
likewise reduced by the author to a system of simultandfiesential equations in only
two r, z (coordinates in the meridian plane). If one now cutsa piece of the body of
revolution with the help of two meridian pieces thiis theory allows one to deduce the
stress state of this curve rod for arbitrary forces modnents acting on the end cross-
section; The Laura theory then leads to a generalizatiche Saint-Venant theory of
rods to circularly curved rods constructed with arbitrengss-sections and center angle
(Zentriwinkel).

Volterra further communicated an important special ¢asging case) of his theory,
namely, the pressures that are defined in frame struatanssructed from thin rods with
stiff corner links (Eckanschliissen). He called thisesysa cyclic structure of flexible

% Timpe, Probleme der Spannungverteilung in ebenen Systasiméach geldst mit Hilfe der Airyschen

Funktion, Diss. Gottingen 1905.

%) 0. M. Corbino, Le tensioni in un corpo elasticotalioni di Volterra e la conseguente doppia
rifrazione accidentale. Lincei (5) 18, 437, 1909. — G. Cb3cahi, I. fenomeni di doppia rifrazione
accidentale prodotti dalle tensioni create in un cotpstieo dalle distortioni di Volterra. Lincei (5) 18,
444, 1909. — Cf., also Volterra, 3 Vorlesungen uber neueresdroitte der mathematischen Physik.
German by C. Lamia, Leipzig and Berlin 1914, pp. 142, et, sdwere a brief synopsis of the Volterra
theory of distortions is given.

") Timpe, Die Airysche Funktion fir den Ellipsenring, Mathatische Zeitschrift 17, pp. 189, 1923.

1% Almansi, Sopra una classe particolare di deformaziospostamenti polidromi dei solidi cilindrica.
Lincei (5) 161, pp. 26. — Almansi, Sulla deformazione a sposhti polidromi de solidi cilindrici.
Lombardo Instituto rendi conti (2) 40, pp. 937.

%) Freda, Sulle distortioni di un cilindrico elastico dugite connesso. Lincei (5) 25p. 582 and 679,
1916.

20y Laura, Sopra le deformazione per distortioni elasticevoluzione. Nuov. Cim. (6) 7, 1914.
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elements. They represent a theoretical generalizaiiothe frameworks treated in
structural statics, for which pressure stresses aresiocedly treated. Volterra’s solution
is carried out in the form of a system of linear equestigust like the aforementioned
special problems in structural statics. However, @xgaordinarily remarkable that the
way of representing distortions that was given by Vdt@xhibits a close analogy with
the Kirchhoff equations for the distribution of elec#licurrents in a system of wires that
define a network. Any equation of Kirchhoff's systemegfuations corresponds to six
equations in the Volterra system of equations. The alatturrent strength in a cross-
section corresponds to the resulting flux (Dyname) refsses in a cross-section of a rod
(the six components of this flux, resp.) and the paikati a junction of the Kirchhoff
network corresponds to the screw flux at a Volterra&tjon (the six components of it,
resp.), and finally the electromotive force correspotmishe characteristics of the
distortion; the reciprocal value of the Ohmian resistanorresponds to the elastic
constants of the rod.

The ideal truss (network) may be regarded as a courtéoptire Volterra network.
For this simple case the pressure stresses, et a¢,treated by Zschetsch8, and for
this case he had verified the legitimacy of the invditiybof the stresses independently of
Volterra. For this case, the aforementioned genkeairem of the minimum deformation
work takes on a particularly simple form: It must beded®ined from the statically
indeterminate quantities under the condition that the worhktgya

Z{:ZFHSAI}

is a minimum. In this, the second term is the “wddne by the imprinted distortions”

3 Colonetti applied this connection to the study afeasbly stresses in the struts of
biplanes™). He verified the exceptionally great meaning of tHesteesses and showed

the ways in which one could make good use of it in esonigystems.

Klein and Pfeiffer®) have examined the self-stresses in ideal trusses fhem
standpoint of geometry with the help of the Maxwellipolyhedron and deduced
interesting topological links.

At this point, we may clarify why ideal trusses withcaaontable rods behave the
same way in relation to self-stresses as multiply-eoted bodies. Namely, whereas
trusses with stiff corners may be informally represgére special (limiting, resp.) cases
of multiply-connected bodies, it is not at all geomoatly intuitive why a statically
determinate ideal truss or configuration of plates (Scheibek) should behave like a
simply-connected one and a statically indeterminate like2a multiply-connected one.
A simple geometrical-kinematical consideration clegrshis question:

We think of our truss or configuration of plates, with tielp of supporting members
in the soil (Erdscheibe), as being united into a singleigoration of plates; we can thus

2y 7schetsche, Handbuch der Baustatik, Bd. 1, Diisseldorf pp1290.

3 Colonetti, Aplicazione a Problemi tecnici di un nudgorema sulle coazioni elastiche. Atti di Torino
54, pp. 69, 1918/19.

2% Colonetti, Sforzi di montaggio nell armature del @i un biplane. 54, pp. 426, 1918/19.

) F. Klein, Selbstspannungen elastischer Diagramme.hevtatische Annalen 67, pp. 433, 1909. —
Pfeiffer, Zeitschrift fur Mathematik und Physik 58, 1909.
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restrict our considerations to free (unsupported) bodiés.refer to a “cut” as a material
separation along a planar piece of a surface whose bhgubelngs completely to the
outer surface of the body. A simply-connected body e divided into two separate
pieces by such a cut while this is not the case fotiptgsconnected ones. Kinematically
speaking: If we think of our body as rigid then if it is plgaconnected the edges of the
cut have six degrees of freedom with respect to each,ottele if it is multiply-
connected they have none. If one now employs the samgderations to an ideal truss
or configuration of plates then one sees that insthéically-indeterminate case a cut
(except for the missing part) contributes no relativgrele of freedom, while in the
statically-determinate case one degree of motion extstss the cut.

In a remarkably fruitful way, Zimmermarif) added certain fictitious pressures, long
before the general theory of Volterra, by means otiwhihe treatment of the elastically
(gebetteten) rods served as a lemma for the procds#ing rods of finite length go to
rods of infinite length.

4. Weingarten and Somigliana distortions. The question that Weingart8nposed,
which defined the starting point for all of distortioretiny, was somewhat more general
than the one that Volterra examined so thoroughly. &gmWeingarten asked: Under
which conditions in an elastic body that is free ofdbaan there exist a system of
stresses and distortions( ..., )4y, ...) that it is continuous everywhere; continuoug firs
and second derivatives of the distortion quantitiesevtleus not required. The answer to
this question is the following: In a simply-connected baich a system of distortions
can come about only when the displacement field,, w possesses a discontinuity
surfaceS with the following property: The discontinuity must bach that it is either
everywhere perpendicular ®or such that it takeS into an infinitely close surfacg’
that is developable frol® where the boundaries 8fandS’ define a common asymptotic
line for both surfaces. If the body is multiply-contexl then the conditions posed for
this type of discontinuity surface obviously correspondh® Volterra type that was
discussed in 2. The detailed examination of Weingartéonrtdems was carried out by
Somigliana®®), who also gave an example of a Weingarten distortiiwt did not
correspond to a Volterra type.

However, in his examination of 1914 Somigliana took anostep further: He
subjected the discontinuity lay&S to no other restriction than that the discontingitie
should be very small (infinitely small). Then, as $glimna showed, the stress quantities
oy, etc., and the distortion quantitigs, etc., will nonetheless remain regular in the entir
body, except that on the discontinuity layer thetadi®on field experiences a jump
variation. Ifus, vs, Ws mean the discontinuities in the displacement fadlé point ofS
relative to an axis intersection whosandy axes lie in the tangent planeSowhile thez
axis is perpendicular to it, then the jumps in thedssxortion components,, ..., Ky, ...
relative to the same axis intersection are express following form:

%) Zimmermann, Die Berechnung des Eisenbahnoberbauesn B&38, - As a result of the elastic

(Bettung), it behaved in the case of a simply-connacgdimilarly to the case of a doubly-connected one.
%% Somigliana, Mathematiker-Congress von Rom, Bd. IBemigliana, Sulla teoria delle distortioni
elastichi | and Il. Lincei (5) 231, pp. 463, 1914 and 241, pp. B555.
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From these formulas, from which it first drops oudtths appears nowhere, one may
easily read off the properties communicated above ugatvs , ws must satisfy if the
Somigliana distortion is to likewise be a Weingamee?’).

This examination of the discontinuities, which isoat®teworthy from the geometric
standpoint, was extended by Madf) to the derivatives of , etc., and he likewise
succeeded in freeing himself from the natural coordinatesyso the result could relate
to an arbitrary fixed, y, z axis intersection.

Somigliana®®) succeeded in carrying out the determination of the stresdiatortion
states of a body subjected to a completely arbitratpdion in the following way: The
desired displacement field v, w will be composed of two parts. The first partV, W
shall vanish at infinity, and be regular everywhere excap® favhere it shall exhibit the
prescribed discontinuities. The thus uniquely defined dispient stateJ, V, W will
then, on the grounds of the biharmonic generalization wnpal theory, include double
layers. Obviously, the remaining pait, vi , wi must then satisfy the condition that it is
again regular everywhere b8tand on the outer surface of the body the surfaces&tse
associated withJ, V, W are annihilated; this second partial solution then demtreds
solution of a second boundary-value problem in elastibépry.

It is worth mentioning the hydrodynamic analogy that diema gave for his
distortions: In a closed spaBewith rigid walls one finds a stationary double sourceawi
a direction that is perpendicular to a fixed surf&cene seeks the resulting stationary
vortex-free motion; naturally, the analogy is only aghpgualitative one.

5. General type of manufacturing stresses. While the self-stresses that were
treated in 2, 3, and 4 will lead back locally to indeterciesthat are restricted to certain
cut surfaces, or at least to such indeterminacies #rabe thought to exist, the proper
stresses to be treated here are of a more generathabrare not superficially, but
spatially, distributed throughout the entire body, oa jpart of it. By the casting process
that was already mentioned in 1, the indeterminacy coabesit as a result of, for
example, the non-uniform cooling of the individual gattat formerly went over into the
elastic solid state and the rest of them hinder thegehah shape that is linked with
setting. Moreover, proper stresses appear in almosthalt technological manufacturing
processes; e.g., in forging. In concrete buildings, ghisnomenon corresponds to
shrinkage under non-uniform setting (abbinden). The follpwireatment can also give
rise to completely similar self-stresses, and lilksaanso can the piecewise plasticizing of

2y With this consequence, Somigliana has corrected akmigtathe purely geometric examination of
Weingarten.

%) Maggi, Calcolo delle discontinuita delle derivate di oedguperiore dello spostamento d’equilibrio
elastico. Lincei (5) 30 pp. 71, 1921.

29 Somigliana, loc. cit., Treatise L.
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the body that comes about from over-stretching ithinlatter case, one mostly calls the
proper stresses “residual stresses.”

Reissner®) showed, in the context of a fundamental general @ation of the self-
stress problem, that the distortion stress field dan e regarded as generated by
continuously-distributed indeterminacies. Namely, tistrithution of indeterminacies —
or, as Reissner expressed it, the distribution of prsipess sources — is, for a completely
determined state of self-stress, infinitely multi-valuethe distortions thus distinguish,
among all other self-stress states, that the fired bf manifold of possible systems of
proper stress sources that one should concentrateiswiated surfaces. Reissner, et al,
have also given simple instructions for how one caabdish a continuous distribution of
proper stress sources of an especially simple type drgiven self-stress state.

Mathematically speaking, the difference between thengéiself-stress state and the
pressures treated above also lies in the fact thateatehe Saint-Venant compatibility
conditions between the deformation quantiges ..., )y, ... are satisfied everywhere in
the body with the exception of a surface, these tiomdi are invalid for the general state
g)lf self-stress in the entire boeyor a spatially extended part of it — that are treated her

Foppl3?), in his classical presentation of this set of cirstances, showed that the
theorem of the minimum deformation work under the at&n of the state of
deformation also remains valid for the proper stres&s.comparison, the theorem of
the minimum deformation work under variation of the sretate does lose its validity.
Colonetti *) has, however, also defined the extra term of “deftionawork of the
impressed deformations” for the presently most genasg,cwhich, when added to the
deformation expression, secures the minimum propertyedatter.

Foppl has showed that in elasticity theory, outsidd@®equilibrium condition for the
internal stresses and the equations:

Zi(gx+ € +ayxy+ayxzzo
m

0x -2 dy 0z
Zi(£+ € +6yxy+6yyzzo
oyl ’ m-2) 9x 0z

22 e,0-8 )3 iy
0z * m-2) o0x ay

which follow immediately from the elasticity law,n@ outside of the boundary
conditions, there are no other independent equationthe solution of the boundary-
value problem to add, such that the problem is tamdened, and cannot be solved at all
without special physical assumptions on the marnufaxg process of the self-stress
state, when absolutely nothing else can usuallgxpected from the definition of the
stress state.

30 Reissner, Eigenspannungen und Eigenspannungsquellen, Thisifeitsis volume, pp. 1.

31 Colonetti, Su certi di coazione elastic ache nonrtipao da azioni esterne. Lincei (5),26p. 43,
1917.

3 Foppl, loc. cit.

3 Colonetti, Per una teoria generale delle coaziarstiehe. Torino atti 56, pp. 188, 1921.
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Nonetheless, they allow one to show certain geneoplgoties of the deformation and
stress fields. Colonettf) used the Betti reciprocity theorem to derive such ptigser
Since a system of deformations is the one to bestigated, as a second system of
deformations he first chose a homogeneous deformattenproved for it that the total
volume of the body due to proper stresses is precaselgrge as it is in the natural state.
Foppl has already presumably expressed this theorem dospibcial case of casting
stresses in a ball. He further chose a Volterraodish as a second system of
deformations and came to the following result: The ltiegu force and moment that
general proper stresses carry over into the cut caomeuted when the displacements
of the points of the cut surface that come about franctliting and associated relaxation
can be determined experimentally, and when, on the bHmat, the stress state that the
Volterra distortion gives rise is known).

If, as it happened above, in the absence of knowled¢feeofnanufacturing process
for the elastic body in question, in general only thdimytof it can give satisfying
information about its state of self-stré9sthen the basic knowledge of the indeterminacy
would be of great significance for the manufacturing pseceThe foundations of this
knowledge are scattered throughout the technologicadtitex, and we also find isolated
conclusive investigations of proper stresses in techgabpapers.

We find generalities on the physical conditions undeckviproper stresses exist (on
the way to reduce them, resp.), in, e.g., Martens anut Nkiterialkund€’). An incisive
investigation of casting stress issues from the physa=alyell as the mathematical,
standpoint, has been given by Steitfér The case that was already treated briefly by
Foppl of casting stresses in a ball, as well as #sting stresses in cylindrical bodies,
were examined by Honegg®) in close connection with questions of temperature stress,
and he advanced numerical and graphic evaluations of hisxappte theory.

In another papel’), Honegger examined the self-stress state that esisigesult of
the piecewise application of a rapid rotation to eéfesticity boundary, and has verified
the practical applicability of such a temporary oveiistiin increasing the use strength
(Gebrauchfestigkeit). Also technically important are $b#-stresses that arise in steel
plates during welding (so-called Schrumpf stres&gs)

In conclusion, we come back to the general posing ofjtiestion, which shall lead
us into the questions of the next section. August F&Pphas shown that when one

3 Colonetti, Una proprieta caracteristica delle coaizielastiche nei solidi elasticamente omogenei.

Lincei (5) 2%, pp. 155, 1918; Sul problema delle coazioni elastiche.eLii®} 2%, pp. 267, 331, 1918.

%) One finds further general theorems (consideratioresp.y in Masing “Zur Theorie der
Warmespannungen” Zeitschr. fir Technische Physik 3, pp. 167 192¢high, by “heat stresses” he
means stresses that come about during the deformat@mnessilt of heat treatment and not temperature
stresses), and M. v. Laue “Uber die Eigenspannungen ipastalien Glasplatten und ihre Anderung beim
Zerschneiden,” Zeitschr. fir Technische Physik 11. pp. 38®§0.

%) In the excluded case (“elastically indeterminate strest), a loading experiment can give
information about the self stresses.

" Martens and Hein, Materialkunde. Bd. lla Berlin 1912,

3 R. v. Steiger, Uber Gussspannungen. Dissertation. ZL®it8.

39 C. Honegger, Uber Eigenspannungen. Festschrift. ProA.[8todola on his 70birthday.

% Honegger, Ausgleich der Beanspruchungen einer rasatramtien Radscheibe durch passenden
Vorspannungszustand, B. B. C. — Mitteilungen, November 1919.

*1y Lottmann, Schrumpfspannungen bei Lichtbogenschweissurid. V- Zeitschrift 1930, pp. 1340.

2 Foppl, loc. cit. Cf., also A. and L. Féppl, Zwang Wréng, Bd. II, 2 ed.
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considers only self-stresses with small (infinitelyadindisplacements, the load stresses
under likewise infinitely small displacements will gealey be simply superposed, or
conversely: the stress and displacement field ofxéermal load for small displacements
is generally independent of the self-stresses that gatverfhe latter can thus never be
established through a load experiment — this is also trilee inase where the system can
be controlled theoretically. L. Prandf) has, however, shown that there are exceptional
structures for which Foppl's theorem is invalid and has shihw conditions that such a
structure must obey as a result of the deformation wdtkandtl calls such structures
“elastically indeterminate” since their stress statat thesults from load cannot be
calculated without any knowledge of the manufacturingthef body. The simplest
example of such structures is the so-called “exceptiouss,” like, say, the rod-triangle
(Stab-dreieck) of vanishing height. Prandtl has showntlieathin planar plate likewise
belongs to the elastically indeterminate structures. hdg thought up a truss-like
substitute structure for the thin, planar right-angée(Rechteckplatte) that allows one
to understand the essentials of the characteristic esnapproperties of the plate.

6. Sef-stresses under large displacements. In all of the investigations up to now,
we have always assumed small displacements andskavethat under these restrictions
— except for the exceptional structures (elastically gweiate systems) — the law of
superposition always remains valid. If one does withoat dbnsideration of small
displacements then law of superposition generally fadsnpletely, such that the
differential equations of the problem are no longer linaad the difficulties in their
examination are enlarged considerably.

A general theory of such self-stresses has not seeght up to now. One suspects
that all of the previously considered types of self-seesfor small displacements
correspond to analogous self-stresses for large dispéaxtem For example, one can
come to new types of self-stresses for the Voltendh Somigliana distortions when one
simply assumes that the dislocations are large. ldfge dislocations in the tangential
direction of a thin, planar circular ring disc (Kmeigscheibe) there arises a thin,
truncated conical shell that is marked with self-sti®sseAlso, for continuously-
distributed dislocations self-stresses can come alhatitare similar to the ones linked
with instability phenomena: For example, in foundry wohle tappearance of kinks
(Ausknicken) in thin rods that connect massive componerksds/n through casting
stressed?). It would certainly be worthwhile to pursue a generabtly of self-stresses
with large displacements.

A narrowly bounded special case of a distortion thana&logous to the Volterra case
with larger displacements was recently solved by Sakpi%). He considered the self-
stress state of an infinitely slender, planar, thiip sif plate shaped into a M6bius band,
and applied the theory of one-dimensional elastic naatf®) to this problem. The
theory led to eight nonlinear differential equations ight unknowns. The solution

3 L. Prandtl, Elastisch bestimmte und elastisch stilmente Systeme. Beitrdge zur technischen
Mechanik und technischen Physik, pp. 52, 1924.

* See R. v. Steiger, loc. cit., pp. 7.

) Sadowsky, Jahresberichte der Deutschen Mathematikeiritging 39, pp. 49, et seq., 1930.

% Hamel, Handbuch der Physik, Bd. 5, Die Axiome der Mechapix 18 et seq.; Hamel,
Sitzungsberichte der Berliner Mathematischen Ges. 25, 1925-26.
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comes about by combining the theory with the experimdmmcertain characteristic
unknowns are ascertained by observation (experimentirg mndel, resp.). The main
result of the investigation of Sadowsky is that thebM& surface can not only be
represented by an analytic function, but by a planar-agbted triangular surface and
another analytic surface that is first of all contns and has a continuous first
derivative, but has a discontinuity connected withciinevature.

Whereas all of the self-stress states considered npw are connected with certain
inelastic operations (manufacturing processes, residuaysess temporary overstrains,
retightening by metalworkers, etc.), if one ignores lafigée displacements then there is
also another distinguished group of self-stresses thhbevijenerated by purely elastic
operations, hence, by temporarily subjecting the body tered loads that are nowhere
plastic. Displacements and stresses are everywbetguous single-valued functions of
position; the compatibility conditions are satisfied ewdrgre. This essential remark
goes back to Armanri). Such self-stresses arise any time a thin, fle>diplen shell
with ellipsoidal curvature ratios say, for instance, a domed or ringlike shell that is
everted in such a way that the inner and outer surfacesdwitched roles. The eversion
is produced by external loads that can, however, be rateoved so that the body does
not revert to its original shape.

Almansi*®) has occupied himself with the Armanni self-stresses discussion with
Somigliana. He is of the opinion that connectivity piaena due to the creation of such
self-stresses are of no importance whatsoever. Thisthgtically-posed assertion is, on
closer examination, much more compelling. For the plaaae, one immediately sees
that the assertion is not correct. For the sakecaile, if we think of a flexible rod that
is clamped at only one end then it obviously has only alated stable equilibrium
position: the unstressed one. By comparison, if itewarchored at both ends with two
links such that it, along with the ground beneath it, esgnted a doubly-connected
structure then it would have, in addition to the unsedsequilibrium position, at least
one other equilibrium shape that is marked with sedfsses, and indeed, with ones of
precisely the same nature as in the case of spatial
self-stresses that was examined by Armanni; 4 a 2
correspondingly, self-stresses of this sort must ~ @z 1 %0
also be referred as being of the Armanni type.

In this way, we can best delve into the nature b ho
of such stress states by means of a further
simplification of the example in question that
admits the solution in its simplest and clearest
form. We thus replace the two-linked arc with a
right-angled two-link frame and think of its rods
and members as being rigid, but the corners are J
linked in such a way that any change in angle iy 1
opposed by a reaction that is proportional to .
(torsional spring links); the elasticity of the entire

y
)

Armanni, Sulle deformazioni finite dei solidi elasisbtropi. Nuovo Cimento (6) 10, pp. 427, 1915.
Almansi, La teoria delle distortioni e le deformanzifinite dei solidi elastici. Lincei 25pp. 1919,
1916. Cf., also Almansi: L'ordinaria teoria dell’elastie#a teoria delle deformazioni finite (5),226p. 3,
1917.
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framework is thus concentrated into the two cornést the elastic compliance (change
of angle per unit moment) of the one spring linkeband the other be .

With the help of temporary external forces, we caw tring the structure from the
positionb to the positionc, in which the outer loop of the frame is pulled towards th
inside. We seek the criterion for this position to heequilibrium position, and in the
affirmative case we ask what sort of self-stress #ndowed with. By the use of the
auxiliary angle the equilibrium condition is obviously:

M&eg=m+35
M&=m-3,
thus, one has:
21T
EtE,
&6

d=m—=
£ TE,

Horizontal shear: H:ﬂm:o nﬁ :
(&, +&,) E,+E,

M=

from which all remaining internal force magnitudekow with nothing further.

On the basis of this and other simple examplesh a5 the case examined by
Armanni of a spherical dome, it can be tentativadgerted that the necessary condition
for the existence of Armanni self-stresses is that body shall represent a statically
indeterminate, but elastically determinate struetur

Armanni then examined a peculiar case of selstthat is indeed convertible to the
aforementioned cases of eversion, yet proves tespecially remarkable: Namely, he
considered a full spherical shell of uniform, smiddickness, cut through it along a
meridian (semi-circle), pulled the interior to tbatside, and, with the help of a small
pressure, brought the resulting open shell intoitalsle form, and again converted it into
a closed spherical shell; he also obtained theisalin closed form for this case.

Heretofore, self-stresses for large displacemsegsn to be technical, but not useful,
so possibilities for technical applications miglsoepresent themselves.

7. Heat stresses. The stresses that are caused by actual temperdifferences,
which are then called heat stresses or temperattegsses, define a particular group of
self-stresses whose connection with other typesetdifstress states has still not be
clarified from a mathematical standpoff}. In certain simple special cases the question
of heat stresses and that of manufacturing stremseprecisely identical: e.g., for an
ideal truss, a length discrepandl causes precisely the same stress state in a rod as
heating the rod in such a way that it would leadhe® unchecked extension of the rod
through a change in length. On the other hand, it is, however, not diffidoltgive self-
stress states that can in no way be thought te &osn a temperature field. It then is
possible that one would like to allow “temperatanegularities” in the temperature field
of simple and higher order, in the manner of therses, double sources, etc. of

9 Although the paper of Reissner cited above alsca@mmimportant suggestions in this direction.
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hydrodynamics, the poles, dipoles, etc., of electnostatas well as the “load
singularities”>%) of elasticity theory; in these cases, howeveg, ithmediately evident
basic equations of thermo-elasticity lose their vblidand must be generalized
accordingly.

In the most general known formulation of the themstastokinetic boundary-value
problem, as it would be presented on the basis of tiywark of Duhamel, Neumann,
and Voigt®?), is the following one:

A+ )28+ pau+ g2+ p(X -1 =0
ox [0)4
oe or .

(A4 K)o+ O+ QL+ (Y=Y = 0
oy oy

A+ 1) % + o+ o5+ p(z- =0
0z 0z

or de
AT -y —+qt°—=0,
g T 5t

wheret is the difference between the absolute temperainnethe normal temperatufe
pIs the density) is the specific heat of a unit volunias the constant of internal heat
conductivity, andl andu are the Lamé constants. As boundary values,dhgaonents
of the displacement are prescribed on the outéacirandr satisfies the conditioho 7/
v = -1 [r - 1] there, wherel is the coefficient of external heat conductivitydaro
means the difference between the outer surfaceempe and®; v is the surface
normal. In addition, the initial values farv, w, u, v, W, andr are given at (= time) =
0.

If the examination of this boundary-value problas restricted to merely the
equilibrium problem- hence, the fluctuation terms will drop away — tliea problem
will, in principle, lead back to the solution ofasto-static boundary-value problem and
the heat conduction equation. By contrast, theelacation terms bring a special
difficulty into this problem that was examined bydenblatt®®). He succeeded in
solving the general problem by means of an examimabdf the eigenvalues and
eigenfunctions of an integral equation with asymmoddernel.

The formulation above of the boundary-value proisles not physically flawless,
insofar as it does not take into account the teatpes dependence of the material
constants. It is further considerably restricted the fact that it is valid only for
temperature fluctuationsthat are everywhere differentiable and small ficdly small)
of the same order of magnitude asv, w. This restriction has the result that the
temperature fluctuations behave just like volunreds whose potential ¢ 7, plus outer
surface forces of magnitudgz. The elasto-thermal problem may the be treatetien
static case by determining the temperature digidblas an elasto-static problem with

% See, these reports, pp. 70.

1 Voigt, Kompendium der theoretischer Physik. Leipzig 1895.

*%) Rosenblatt, Uber das allgemeine thermo-elastischlelém, Rendiconti di Palermo 29, a paper that
would also remove the formulation of the Voigt Ansaltove.
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volume forces’®). For the elasto-thermal problem, when regarded asctest by the
Ansatz above, the compatibility condition, when extenttethe case of volume forces,
has validity.

For cylindrical bodies of arbitrary cross-sectionhnatgiven temperature distribution,
and indeed, under the assumption of constant heat fencéh the temperatureis a
harmonic function ok andy), Muschelivili®*) succeeded in determining heat stresses,
on the one hand, by converting the problem into a logaigtpotential problem, and, on
the other hand, a Volterra distortion. His resultgenvealid for arbitrary connected
cylindrical bodies of infinite length. Briefly, his nésis the following:

u=BPXY Ly v=BXY oy,
20+ ) 2(A + u)
where S is a material constant, while@ andQ are the real (imaginary, resp.) part of the
complex integral of any complex function whose reait is the harmonic function
However, u;, w1 represent the displacement field of a Volterratodion whose
characteristics can be determined by the conditiabu andv must be single-valued,
continuous functions. For simply-connected regidhs additional terms;, vi drop out
since in this casd’, Q are single-valued functions. The solution obtdimeay be
extended to a cylindrical body of finite length lvihothing further, and one obviously
needs to solve a Saint-Venant rod problem, sodhgien above must be augmented.

From this solution, with nothing further, one thae solution for hollow cylindrical
tube (chimney), which was already treated by F8D)pl Honeggef®) has communicated
good approximate solutions for the solid cylind&iestergaard®) examined the stress
distribution in a flat, elastic plate that covetw thalf-plane, under certain arbitrary
assumptions about the temperature distributionprodlem that is meaningful for the
dimensioning of iron reinforced pavement (Eisenbstiassendecken).

While these special solutions assume, from thesebuta completely determined,
temporally unchanging and thus, a more or less arbitrary temperatuteilaision — in
an elastic body, the Swedish researchers, in péaticBerwald and Hellstréri), posed
the problem for certain special cases that areemdly important technically (in
particular, plates and drums [Tonnengewdlbe]) aatvesthe corresponding elasto-
thermal problem for actual natural phenomena imgsigally flawless way. Starting
with the actual temperature variations in the apghese and the oceans, which they knew
about from their work with the national meteorotsdi institute in Sweden, they
established the actual temperature distributioh ¢im@ should expect in the body from
the heat condition equation, and then based theozippate examination of heat stresses

*3%) Encyklopadie der Mathematischen Wissenschaften. Arti€lTedone: Allgemeine Theoreme der

Mathemischen Elastizitatslehre. Bd. 4/4. pp. 68.

>% Muschelivsili, Bulletin de I'Université de Tiflis 3, 1923

%) Foppl, Vorlesungen (iber technische Mechanik, Bd. V, pp. 2dége

*%) Westergaard, Om bereguing af plader paa elastik undegdgsaerlig henblik paa spérsmaalet om
spandinger i Betonveje. Ingenieuren 32, 513, 1923. For ahgrerature stress issues in plates, see, e.g.,
Nadai, Elastische Platten, pp. 264 et seq., Berlin 1925.

*) F. R. Berwald and B. Hellstrém, Om temperaturvasizsr och temperaturspanningar i betong
konstruktioner, Stockholm 1921.
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that was carried out on it, with the help of the wagkiaions. The results are developed
in such a way that they can easily be applied to arbhiddes and iron-reinforced dams
(Eisenbeton-Talsperren). The comparison with the testhye stresses arrived at on the
basis of the usual assumptions of constant temperatwessnot inconsiderable
differences such that it would be worthwhile to make mfost important results of the
Berwald-Hellstrom work accessible to structural engineeciraes.

Another work that likewise produces the temperature phenanthat are to be
physically expected corresponding to temperature streses examination of Griinberg
*8) of the temperature stresses in a ball that is suddenlight into a hot medium. The
examination is likewise supported by the basic equations ffiaall stemperature
differences and based the further assumptions on tla transition number
(Warmeubergangszahl) being infinitely large, such thathen first moment the outer
surface takes on the new outside temperature. Undeagbisnption, the stresses are
independent of the diameter and the heat conduction nunilter.tangential stress has
its maximum value in the initial moment, and indeed, lmduter surface of the body;
the greatest radial stress has the opposite sign and aecdbhescenter of the ball in the
moment at which the temperature evolution has its mdlegooint at this place. The
examination is carried out with regard to a physical wagasing the problem that has
great significance. Namely, Joffé has shown the grdlatence that the outer surface
condition of crystals exerts on the resistivity. uShin order to obtain information about
the strength (Festigkeit) when outer surface influences&luded, Joffé brought in the
temperature stresses and thus stimulated the theoretiemhination of temperature
stresses. The Griunberg solution related to only theofgiotcase, such that it offered no
reliable foundation for the evaluation of the Joffé stigmtion of rock salt.

8. Connection between the self-stresses with the higher stresses produced by
load singularitiesand volume forces. Starting with the unit loads, Michell and Lov®
introduced certain higher load singularities under the namé&ypical deformation
kernels.”

Neményi®®) has treated the load singularity question from a cetalyl general
standpoint and showed that with the help of the infludiete® concept any internal force
magnitude (stress magnitude) can be associated with a dullsiogularity that is
defined as the limiting form of an equilibrium system gfeenal forces that acts on a
narrowly bounded part of the body.

If we subject a simply-connected rod-like body to sudbaa singularity then it is
obvious that except for the purely local stress conditimnother internal forces can arise
in the body. On the other hand, if the rod-like bodynisltiply-connected then there
would be a stress state produced in it that is — excepth@®mpoint of application —
identical with the Volterra pressure stresses. Téw reciprocity theoremi®) that is
indicated for notion of load extended by load singularity tarxcludes, like the Maxwell

*%) Griinberg, Uber die in einer isotropen Kugel durch unigléimige Erwarmung erregten
Spannungzustande, Zeitschr. f. Physik 35, pp. 548, 1925.

% Love-Timpe, Lehrbuch der Elastizitat, pp. 220 and 247. LeiaiBerlin 1907.

) Neményi, Eine neue Singularititenmethode fiir die Elt#titheorie. Zeitschr. f. angewandte

Mathematik und Mechanik, 9, pp. 488, 1929.
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theorem, with the reciprocity of displacements, mstthe Volterra theorem concludes
with the reciprocity of pressures as special casds of i

Moreover, the reciprocity property above is also exébifor the bending of plates
and the higher singularities defined for discs. Naturdtg analogy with Volterra
distortions applies here. By contrast, it is, howeeasy to see that all stress fields can
be thought of as being created by Somigliana distorbgritie insertion of a line (in the
most general case, a surface, resp.) with such loadaiitgs.

From the discussion, it thus emerges that when otemn@sx the notion of load with
the help of the higher load singularities all distortgiress states can be thought of as
being created by load stress states.

Meanwhile, Reissnef®), in his cited paper, has, independently of the author,
suggested another connection between proper stresse®ahdtiesses, which first
relates to the case of continuously distributed dadloas (proper stress sources), from
which our theorem above might follow by passing to a liniilhe Reissner theorem states
that if a self-stress field; r arises from a proper stress source fie)dy theno; rcan be
written in the formo=%c-*g, r=°r - "1, where the stress system with the pre-index 0
is the system that is formally associated with tharce field by means of Hooke’s law,
and the one denoted with the pre-index +, however, catcaloelated as a load stress
field that results from the volume force distribution:

_Em| 1 00 0%, 10%,  13%,
m+ll m—1dx 0X 20y 20z

X =

(etc., with cyclic permutation of y, 2) for unloaded outer surfaces.



