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1. — In recent years, the theory of hypercomplex systewig., algebras— has taken
a strong upswing; however, it is only in the most retiems that the significance of that
theory for questions posed commutatively was made cleaday, | would like to report
on the implications that non-commutative things midtgve in the context of
commutative ones, and indeed, | would like to pursue thd¢tail in the context of two
classical problems that go back to Gauss, namely, theipal genus theorem and the
norm theorem that is closed linked with it. The formola of those problems has
changed repeatedly in the course of time. For Gausg,ajppeared as the conclusion to
his theory of quadratic forms. They played an esdanti@ in the characterization of the
relative cyclic and Abelian number fields in termsctdss field theory, and ultimately
they can be expressed as theorem about automorphiginiseasplitting of algebras, and
the latter formulation then gives, at the same timmeyay of adapting the theorems to
arbitrary relative Galois number fields.

With that sketch, which | would like to expand uporetat would, at the same time,
like to explain the application of the non-commutatdeas to commutative oneGne
seeks to arrive at invariant and simple formulations of the known fagarding
guadratic forms or cyclic fields by means of the theory of algebras.;- those
formulations that depend upon only the structural properties of algebras. @echas
verified those invariant formulatior(®nd that will be the case in the examples that were
given above)pne will have then obtained an adaptation of those facts to arbitrary Galois
fields in doing so.

2. — Before going into a detailed exposition, | would sikelto give a general
overview of the various methods and further resultsst i all, it should be remarked
that the main difficulty in obtaining the formulatioarfgeneral Galois fields lies in the
fact that no starting point at all will exist withoutet hypercomplex method. In the
examples cited, the fundamental transition to the monncutative ideas will be obtained
by the simultaneous consideration of fields and groups means of the “reduced
product” and its multiplication constants: the “factgstem” (cf. §3). One will then
obtain a simple normal algebra over the base field aary such algebra can be generated
in essentially that way. Such a reduced product wasdissidered by Dickson')

() Cf., his bookAlgebren und ihre ZahlentheoriZurich, 1927, § 34.
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while the theory of factor systems was developed by Sp&shur, R. Brauef) from a
completely different standpoint, namely, the question albsolutely-reducible
representations. A sufficiently simple and far-reacisingcture that will allow to be able
t(3) address commutative questions can first be achieved biysiba of the two theories
).

At the same time, one also gets new and transpareotspior known facts in that
way: Here, | would like to refer to a hypercomplex probftlee reciprocity theorem for
cyclic fields that will appear soon in Math. Ann. and wasen by H. Hasse' by means
of an invariant formulation of his norm residue symbat tivas based upon the theory of
the reduced product, and further in a hypercomplex foundafiolass field theory in the
small, which rests upon the same basis, which C. Clegvedcently gave, but in which
even newer algebraic theorems on factor systems wesdoged {). However, at the
same time, | must remark, even more restrictivelgt the method of the reduced product
alone, to all appearances, wilbt yield the whole theory of Galois number fields. That
follows from some recent yet-to-be published resultdrtih that are connected with the
Hasse proof above in the sense of the principle thatgiwven, but only yield equalities of
numbers, in place of complete isomorphism theorems.

One already has methods that yield a complete igamsin (in general, an operator
isomorphism) in algebraic form. One deals with thetiooation of some Ansatzen of A.
Speiser §), and indeed, with the conceptualization of the Galad fas a “Galois
module” — i.e., as a module over the base field ttatits the substitutions of the Galois
group as operators. Operator isomorphisms between fistgraup rings (viz., group
algebras) exist in the sense that a one-to-one pomdsnce between the elements exists
in such a way that linear forms over the base fieltl aaitrespond, and the substitutions
of the Galois group in the field will be associatedhwitultiplications in the group ring.
That theorem, which | proposed),(was proved by M. Deuring®)( who used it to
construct a basis for Galois theory whereby the operswaonorphism would realize the
association of groups and fields. Far-reaching structusaréims (likewise by Duering)
run parallel to the formal facts of Artinian L-seriasd yield a structural access to
Artinian leaders Fithrer). These Artin L-series and leadef, (vhich are constructed
from general group characters, represent the first abionebetween number theory and
representation theory, according to Spei€ervhich is a first advance from the Abelian

(® Cf., say, R. Brauer, “Untersuchungen (iber die arithotegis Eigenschaften von Gruppen linearer
Substitutionen,” Math. Zei8 (1928), and the literature that is given there in rem. 2

() | first developed that structure in a lecture in Wirit®29/30, and repeated it in Chap. 2 of H. Hasse,
Theory of cyclic algebrasTrans.134 (1932). A report of M. Duering on hypercomplex numbers and
number-theoretic applications, which is to appear in dbkection Ergebnisse der Mathematikvas
oriented completely within the scope of the lecture.

() H. Hasse, “Die Struktur der R. Brauerschen Algebrassklagruppe iiber einem algebraischen
Zahlkorper (insbesondere Normenrestsymbol und Rezipregésetz),” Math. Anrl07 (1932/33).

() C. Chevalley, “Sur la théorie du symbole de restesiites,”to appearin Jour. f. Math169.

() A. Speiser, “Gruppendeterminante und Kérperdiskriminahdagh. Ann.77 (1916).

() E. Noether, “Normalbasis bei Kérpern ohne hoheneWeigung, Satz 3,” Jour. f. Math67 (1932)
(there is a gap in the proof).

() M. Deuring, “Galoissche Theorie und DarstellungstreedMath. Ann.107 (1932).

() E. Artin, “Uber eine neue Art von L-Reihen,” MatherS. Hamburg3 (1924); “Zur Theorie der L-
Reihen mit allgemeinen Gruppencharaktereibjl. 8 (1931); “Die gruppentheoretische Struktur der
Diskriminanten algebraischer Zahlkérper,” Jour. f. Ma@t (1931).
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fields. It has given a strong impetus to the entire ldpweent; in particular, the theory of
Galois modules has been oriented in that way.

3. — I would now like to pursue in detail the problems of themtreorem and the
principal genus theorem that were placed at the focust, et usdefine the reduced

product: Let K/k be a Galois field of degreg and let® be its group. The reduced
product means a simultaneous embedding ahd® in an algebra\ in such a way that
the automorphisms ok will become inner ones. The symbolg, ..., us might

correspond to tha group elements. One then first assumesAhata module of linear
forms of rankn overK:

1. A=ugK+ .. .+u K(i.e,A consists of all linear formsg a + ...+ us a,with &
arbitrary elements ).

A will become a ring [which is generated by the and more generally, by the K"
(*9] by means of this requirement of being an inner isomorptash thus, an algebra of
rankn® overk. Namely, that requirement is expressed by:

2. uizu=2 (") orzus = us Z for everyzinK.
3. usUr = ustastwithast inK'.
4. asTt a§T= as trarr (associativity law fromus ur] Ugr = Us [Ur UR]).

Ais called the reduced productkfwith & for the factor systeras t. One can prove

that A is a simple normal algebra overand thus, a matrix rinB, of degreer over the
associated division algebra, and tKais a maximal commutative subfield, and therefore
a splitting field. (That is, the extension of the fficeent domaink by a field that is
isomorphic toK will yield a split algebra, viz., a complete matrix ring over the cente
Conversely, for a given division algeba there is always a matrix rirfg, that can be
generated as a reduced product in the manner that was given.

If one goes fromus to vs = us Cs, With cs in K, which will generate the same
automorphism, then the “associated” factor systemanisie.

5' aS,T: aS,T C-; CT/ CS‘I'
Associated factor systems will be combined into a c(@s and one likewise

combines all algebras that are similait@.e., allD, withr = 1, 2, ...) into another class
2. The classegl and (a) are in one-to-one correspondence: The classes with a fixed

(*% K" arises fronK by omitting the zero; this notation will be employadyeneral.
() As usualZ’ means the element that is produced fedny the substitutiors
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splitting field K define an Abelian group under direct product that is @phc to the
term-wise product of the classes of the factor systems. Tiyeelement is the class of

splitting algebras (the system of all transformation quantitgs, / c.,, resp.). One is
then dealing with the group of algebra classes that &udBrcommented on.

4. — | would now like to come to the connection with tt@ncept of normby
specializing to cyclic splitting fieldsand in that way, to the formulation of the
generalizechorm theoremn terms of the principle that was put forth in the bagig. If
Zis cyclic, andSis a generating substitution of its group (the assocaltggbra will then
be called cyclic) then one can let the powerS obrrespond to the powers afso:

1. A=Z+uZ+ .. +u"tz

2. zu=uz.

3. u"=a

4. alies in the base field'.

5. a =alN(c) when one set¢=uc.

Any factor system here consists of a single eleroghat lies in the base field, which
will be denoted byA = (a, Z). The identity class of the factor system is giventhsy
norms on Z so the group of algebra classes will be isomorphic tdettter groupgk / N
(Z). A cyclic algebrad, Z) will split iff ais a norm of an element i This connection
between norm and splitting gives the formulation & thorm theorem,” namely, the
theorem on splitting algebra: If an algebra splits at any place then itspiit per se.In
this, the “place” is defined as it usually is in numberary in such a way that the base
field k is replaced by itg-adic extensiork, wherep is a prime ideal irk (the finite

number of infinite places at whidhand its conjugates are extended to the field of real
numbers, resp.).

In fact, the norm theorem for cyclic fields is incldde that. From what was said
above, for cyclic algebrasy(2), the theorem is equivalent to the statementz i§ ap-

adic norm at any (finite or infinite) point thenwill be the norm of a number B, or
without the transition te-adics:If ais a normal residue (Normenrest) from each prime

ideal p in k (and satisfies certain conditions on its sign) themwill be the norm of a

number in Z. The latter notion is, however, the norm theoreat thproved in class field
theory with the use of known analytic tools, and the pajathe general theorem on
splitting algebras can be obtained from this cyclic spexase by purely algebraic-
arithmetic considerations?j. Hasse pointed to a first important consequeragy
simple normal algebra over an algebraic number field is cyclibe general formulation
came about as a result of the search for a proof®fahg-suspected fact.

(*) R. Brauer, H. Hasse, E. Noether, “Beweis eines Hagzes in der Theorie der Algebren,” Jour. f.
Math. 167 (1932).
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5. — A second consequence of the theorem on splitting ralgéwhich once more can
be established in a purely algebraic-arithmetic wayhéptincipal genus theorer™),
which is at the forefront. Its invariant formulatioests upon the fact that the relations
(2) to (5) that define the reduced product are purely multiie, and will therefore
remain meaningful wheK' is replaced with an Abelian grogpthat satisfies only the
condition that its automorphism group must contain a subgitmatgs isomorphic ta.
The “extension o® by J,” in the sense of group theory, will enter in placelf (If one
takesJ to be the group of all ideals K then the factor system will become a system of
ideals; a classification by classesjinvill induce a classification by classes for the dact

system, and indeed it will generally be a finer clasaifon of ideals that the original one.
The demand that the multiplication of theby (absolute) ideal classes must be unique

says only that the transformation quantitie’sc,/ cg, (viz., the identity class of the

element factor system) must lie in the identity clafsthe ideal factor system. However,
as the specialization to the known cases will showpes, in fact, satisfy a somewhat
less fine classification. | defingn the identity class of factor systems, one will find those
elements arthat generate splitting algebras at all (finite and infinite) branching dace
of K. The extension o® that arises in that way will be denoted ®y; (<) means the

absolute ideal class of One will then have the:

Invariant formulation of the principal genus theorem: If an automorphisn® of
arises from the classification thus-defined by the substituienug (cs) [all of those(cs)

define the principal genus] then the automorphism will be inner, and ibavijenerated
by an ideal clasgb).

The known special cases follow from an equivalent, dmmewhat more explicit,
formulation: If the transformation quantitiegcs)(c,)/(cs,) that are defined by the ideal
classeqcs) belong to the identity ideal class of the factor system then thérbeanan
ideal class(b) such that thecs) will become symboli¢l — 9™ powers:(co) = (b) / (65
for all S in®. The assumption then expresses precisely the automorphoperty; the
fact that it is inner is expressed by saying that (b) ™ us (b) = us (6)* = us (c9).

The specialization to the cyclic case (while obseythe normalization) then yields:
If N ([c]) lies in the identity ideal class of the factor gystthe ¢) will become the
symbolic (+9™ power: ¢) = (6)*S

6. — In order to arrive at the known concepts for cy@ilkdds and quadratic forms
from here, | will first point out that the theoremrfthe complete ideal classes is
expressed, but its content will remain the same when resgicts oneself to the
branching places of prime ideals, as usual.

(**) The proof will appear in Math. Ann.
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However, with that, the principal genus for quadragtds that was defined here will
go to the Gaussian one; the ideal classes then cortespahne quadratic forms, and the
norms to the classes of the numbers will that carepeesented by forms. The fact that
the identity class generates the algebras thatadplite branching places Kfthen means
that those representable numbers will be quadratic residube branching places. The
associated forms then possess the total charactée girincipal form, and thus define
Gauss'’s principal genus. The fact that$i" symbolic power goes to duplication is
known.

For cyclic fields, the concept goes to the follogvimne: The principal genus consists
of all ideal classes whose norms will be norm residateshe (finite and infinite)
branching places. However, that is known to be eqemidb the “norm residue from the
leader,” and thus the usual theorem will come aboutsag@alization of that.

Moreover, one can also introduce a leader that igposed of only the branching
places in the general case of an arbitrary Galolg, feeich that when one normalizes the
factor system for each of those places, the ralyimalude only elements of the identity
class.

The question then arises of the connection with thenian leaders that were
mentioned in the overview (&), which are indeed composed of the same prime ideals,
and therefore the question of the connection with lkery of Galois modules, namely,
the second hypercomplex method. Only the future can @ayfdr these two methods
will reach.




