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The equations of electrostatics are presented in pre-metric form, and it is pointed out that if the origin of the
nonlinearity is the constitutive law for the medium then the differential equations themselves remain linear,
while the nonlinearity is confined to an algebraic equation. These equations are solved for a general class of
electric fields that include the common textbook examples, namely, fields that are adapted to a coordinate
vector field. The special forms that they then take for particular electric constitutive laws of quantum origin,
namely, the constitutive laws derived from the Born–Infeld and Heisenberg–Euler Lagrangians, are then
discussed. Finally, the classical problem of modeling the electron is redefined in light of the established facts
of quantum physics.
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1 Introduction

After the discovery of the electron, but before the emergence of quantum theory, there were a series of
attempts made at modeling the electron in terms of classical electromagnetism, notably, the work ofAbraham
[1], Lorentz [2], and Poincaré [3]. The basic properties of the electron that were taken into account were its
charge, rest mass, stability, the spherical symmetry of its static field, and the fact that its static field seemed
to fit the Coulomb law to a high degree of accuracy, at least as far as the existing experiments were able to
distinguish.

The basic approach was to start with the field of the electron as the fundamental object of study, and then
attempt to derive the charge and mass from its various properties. In particular, the charge could be obtained
by integrating the flux density of the field over any closed orientable surface that enclosed the source of the
field and the rest mass would presumably be due to the total self-energy of the field.

It was in the latter construction that the classical electron models ran into difficulties. Either the source
charge distribution for the electron was pointlike or it was spatially extended, and most likely spherical, due
to the symmetry of the field.Although a pointlike electron satisfied the requirement of stability, nevertheless,
it suffered from an infinite self-energy. Whereas an extended charge distribution, such as a spherical ball or
shell of a finite, but small, radius produced a finite self-energy, nonetheless, if Coulomb’s law of electrostatics
was still in effect at those distances, it would be difficult to explain the stability of the charge distribution
under the mutual repulsion of its constituent charge elements. The resulting figure for the classical electron
radius rc was obtained by equating the rest energy of the mass to the total potential energy of the field:

rc =
e2

4πε0mec2 = 2.85 × 10−15 m . (1.1)

∗ E-mail: david delphenich@yahoo.com

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



2 D. H. Delphenich: Steps towards a neoclassical electron model

Eventually, quantum theory took over as the dominant approach to the structure of atomic and sub-
atomic matter, and interest in the classical electron generally waned. It was generally agreed that classical
Maxwellian electrodynamics seemed inapplicable to the structure of atomic nuclei and electrons, except
for some aspects, such as the Coulomb form for the electrostatic field of the nucleus at the distances of the
electron shells. The form that quantum electrodynamics gradually took on was an essentially phenomeno-
logical form that attempted to deduce the nature of elementary matter from results of experiments rather
than postulate a basic set of field equations whose solutions would have properties that would duplicate
those experimental results.

The purpose of the following discussion is to make an attempt at going beyond the Maxwellian theory
by using some of the more established lessons of quantum electrodynamics. Some of these lessons must
include: the wavelike nature of the electron, the existence of its anti-particle and the polarization of the
vacuum, and the fact that the electron has not only mass and charge, but also intrinsic angular momentum
– i.e., spin, – which also implies the existence of a magnetic dipole moment. We shall not address all of
these aspects of the structure of elementary in the present work, but only concentrate on the modifications
to classical electrostatics that follow from vacuum polarization and the existence of anti-matter.

The most reasonable direction for the generalization of Maxwellian theory is in the direction of nonlinear
polarizable electromagnetic media, since the electric field strength at the small distances from the elementary
source charge distributions must be quite large, and the existence of vacuum polarization seems to be a
logical consequence of that fact.

In section 2, we present the equations of electrostatics in pre-metric form and show that the nonlinearity
that is introduced by a constitutive law is purely algebraic in origin, although the differential equations for
the electric field strength remain a system of linear differential equations. Hence, one can still solve them
for a broad class of fields that are usually discussed in physics, namely, ones that are adapted to a coordinate
vector field or 1-form. In section 3, we summarize some of the relevant issues that quantum electrodynamics
and the Dirac theory of the electron introduces. In sections 4 and 5, we then specifically apply the methods
of section 2 to two of the most widely-discussed quantum-corrected electromagnetic field Lagrangians,
namely, the Born–Infeld and Heisenberg–Euler Lagrangians, when they are reduced to their electrostatic
forms. Finally, in section 6, we attempt to redefine the classical problem of modeling the electron into a
“post-quantum, neo-classical” problem, and comment on the limitations of the problem thus defined.

2 Nonlinear electrostatics

The very concept of a static electric field in a three-dimensional space involves a non-relativistic approxi-
mation. In the eyes of relativistic physics, one must necessarily choose an observer, in the form of a timelike
congruence of curves, preferably geodesics, whose flow would then consist of isometries, in order to even
speak of static solutions. However, that will not be as much of an issue in the present discussion, as much
as the assumption that there is nothing time-varying about the nature of the source charge distribution,
even though that seems inconsistent with the fact that the wavefunction of that distribution for an electron
has a non-zero frequency ω0 = mec

2/� = 0.89 × 1021 rad/s associated with its non-zero rest-mass, even
when viewed from the rest space of the distribution. Nevertheless, the actual field of an electron at rest,
external to the source distribution, seems to have no such time-varying nature (unless perhaps that is what
accounts for the well-established zero-point field of the vacuum in quantum electrodynamics). Hence, we
shall essentially be considering only the time-averaged (i.e., r.m.s.) external field in the sequel.

We start with the “pre-metric” form of the Maxwellian electrostatics:

dE = 0, d#D = #ρ, D = ε(E) . (2.1)

These equations represent a three-dimensional reduction of the four-dimensional pre-metric form of the
Maxwell equations (cf., Hehl and Obukhov [4] or Delphenich [5]):

dF = 0, d#h = #J, h = χ(F ) , (2.2)
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that pertain to the electromagnetic field strength 2-form F on a four-dimensional manifold M , the electro-
magnetic excitation bivector field h, the constitutive law χ that couples them, and the electric four-current
vector field J. Although the use of the methodology of pre-metric electromagnetism is not actually essential
in what follows, nevertheless, the fact that we can discuss the topic at hand without the use of a spatial metric
helps to focus our attention on the spatial volume element and the constitutive law as the essential objects
in the eyes of electrostatics. We shall return to the reduction of pre-metric electromagnetism to pre-metric
electrostatics shortly after explaining the terminology in (2.1)

In Eqs. (2.1), E ∈ Λ1(Σ) is the electric field strength one-form, which is defined on a three-dimensional
spatial manifold Σ. We assume that Σ is orientable and given a volume element V ∈ Λ3(Σ), whose form
is a local coordinate chart (U, xi) is:

V = αdx1 ∧ dx2 ∧ dx3 =
1
3!

αεijkdxi ∧ dxj ∧ dxk . (2.3)

Common forms for the positive function α are 1, r, and r2 sin θ, which correspond to Cartesian (x, y, z),
cylindrical (r, θ, z), and spherical (r, θ, φ) coordinates, respectively.

The symbol d refers to the exterior derivative operator, and the symbol # refers to the Poincaré duality
isomorphism #: Λk(Σ) → Λ3−k(Σ), X �→ iXV that associates k-vector fields with 3 − k-forms using the
volume element. For a vector field X, the local form of #X is then:

#X =
1
2

αXiεijkdxj ∧ dxk =
1
2

α(X1dx2 ∧ dx3 + X2dx3 ∧ dx1 + X3dx1 ∧ dx2) . (2.4)

Because the isomorphism # involves the use of V , the 3 − k-form #X is not invariant under all linear
frame changes, but only the ones that preserve V . Such a form is sometimes referred to as a “twisted” form.

The symbol D ∈ Λ1(Σ) denotes the electric displacement (or excitation) vector field, and ε : Λ1(Σ) →
Λ1(Σ) is the electric constitutive law that associates E with D (see, e.g., Landau, Lifschitz, and Pitaevskii [6]
or Post [7]). Hence, the 2-form #D then represents the electric flux density associated with E. By the
aforementioned reasons, the 2-form #D is a “twisted” 2-form.

The scalar function ρ represents the electric charge density, as does the twisted 3-form #ρ = ρV .
However, we shall only be concerned with the case in which the source of the electric field is topological
in character, for which ρ = 0.

It is illuminating to see how this static three-dimensional formalism follows from the usual four-
dimensional pre-metric formulation of electromagnetism. In that formulation, rather than dealing with
a 1-form E and a vector field D that are connected by an electrostatic constitutive law D = ε(E), one deals
with a 2-form F that represents the electromagnetic field strengths, a bivector field h, that represents the
electromagnetic excitations and an electromagnetic constitutive law h= χ(F ) that connects them. Since
one generally has to take the divergence #−1d#h of h, it is also common to work with the twisted 2-form
H = #h, instead of the bivector field h. Here, the # isomorphism is based on a four-dimensional volume
element – i.e., a 4-form, – instead of a 3-form, so the Poincaré duality isomorphism will take bivector fields
to twisted 2-forms.

In order to derive electrostatics from electrodynamics, one must first define a 1+3 splitting of the tangent
bundle T (M) = L(M) ⊕ Σ(M), which usually is associated with a choice of a congruence of curves –
that is, an observer – whose velocity vector field ∂t = ∂/∂t generates the sub-bundle L(M), while the
spatial complement Σ(M) must be chosen arbitrarily, in the absence of a metric. Such a choice is locally
equivalent to a choice of non-zero temporal 1-form dt whose annihilating subspaces are the fibers of Σ(M).
One usually chooses it so that dt(∂t) = 1, moreover.

This 1+3 splitting of T (M) then induces a 3+3 splitting of both Λ2(M) = ΛH
2 (M) ⊕ ΛD

2 (M) and
Λ2(M) = Λ2

E(M) ⊕ Λ2
B(M) into essentially electric and magnetic sub-bundles. Hence, F and h can be

expressed in the form:

F = dt ∧ E − #B, h = ∂t ∧ D + #−1H , (2.5)
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4 D. H. Delphenich: Steps towards a neoclassical electron model

in which it is important to note that the magnetic parts of F and h are actually the three-dimensional Poincaré
duals of spatial vector fields and 2-forms, respectively.

Hence, in the electrostatic approximation B = 0 and H = 0 and we see that what we are left with
is the 2-form dt ∧ E and the bivector field ∂t ∧ D, which means that they can be associated with the
spatial 1-form E and the spatial vector field D. Similarly, one sees that the electromagnetic constitutive
law χ : Λ2(M) → Λ2(M) reduces to an isomorphism of Σ∗(M), viz., the spatial 1-forms, with Σ(M).
What makes this even more interesting is the fact that whereas the electromagnetic constitutive law χ only
implies a Lorentzian metric on T (M) indirectly as a result of the dispersion law that one derives from the
field equations, nevertheless, the electrostatic constitutive law defines essentially a Euclidian spatial metric
directly, by way of this isomorphism ε : Σ∗(M) → Σ(M), at least when ε defines a linear and symmetric
constitutive law. Specifically, one defines the metric on Σ∗(M) by way of:

ε(E, E′) = ε(E)(E′) = εijEiE
′
j . (2.6)

Hence, it is unnecessary to introduce a metric in the case of electrostatics, just as it is in electrodynamics,
since the constitutive law serves the same purpose.

One always assumes that ε is an invertible map from any vector space Λ1
x(Σ) of 1-forms (i.e., covectors)

at a given point x ∈ Σ to the vector space Λ1,x(Σ) of vectors at that same point. When this association is
linear, one can give the association the local form:

Di(x) = εij(x)Ej , (2.7)

and when it is, moreover, isotropic, this becomes:

Di(x) = ε(x)δijEj . (2.8)

Hence, one sees that the Euclidian metric δ = δij∂i ⊗∂j on the cotangent spaces is conformal to the metric
g = εδij∂i ⊗ ∂j that is associated with an isotropic linear constitutive law. That is, the metrics are related
by a relationship of the form g = Ω2δ, where Ω is a smooth function that is called the conformal factor,
and equals

√
ε, in the present case.

As for the 1+3 decomposition of the source current vector field J, it takes the form J = ρ∂t + i, where ρ
is the electric potential function and i is a spatial electric current vector field. Its four-dimensional Poincaré
dual (twisted) 3-form #J is then of the form ρV + #i, where #i is a twisted temporal 3-form. Hence,
it has the form of dt ∧ #i, where # now refers to the three-dimensional spatial Poincaré duality. In the
electrostatic approximation, i = 0 and the source 3-form becomes simply ρV .

Returning to the electrostatic equations, we can absorb the third equation in (2.1) into the second to
obtain the pair of equations:

dE = 0, d#ε(E) = ρV , (2.9)

which then take the local component form:

Ei,j − Ej,i = 0, (αε(Ei)),i = 0 (2.10)

in the absence of sources.
As long one is not assuming any residual electric polarization that would make D �= 0 when E = 0,

which is the case for ferroelectric media, one can model a nonlinear constitutive law locally by:

Di(x) = εij(x, Ej)Ej . (2.11)

For such a nonlinear constitutive law, the local form of ε is a 3×3 matrix whose components are functions
of position and field strength and which is invertible for all possible values of these variables.
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We then re-write (2.10) in the form:

Ei,j − Ej,i = 0, (αεijEj),i = 0 . (2.12)

It is important to understand that Eqs. (2.1) clearly illustrate the fact that the nonlinearity in the field
equations is algebraic in nature, and not differential, since one can, of course, obtain a nonlinear differential
equation by performing the differentiation in d#D. However, since nonlinear differential equations are
generally more complicated to deal with, it is better to treat (2.1) as a set of underdetermined linear
differential equations for the covector field E and the vector field D, together with a set of nonlinear
algebraic equations that relate them.

These equations become even simpler if one considers the class of solutions for which the 1-form E is
adapted to the first coordinate:

E = E1(x1)dx1, E2 = E3 = 0 . (2.13)

(This is essentially the “Gaussian pillbox” construction.) This clearly satisfies the equations dE = 0. This
class of solutions then includes the traditional textbook examples of planar, linear, and point-like source
distributions.

If we further assume that α = α1(x1)α2(x2)α3(x3) and that the matrix εij is diagonal in the chosen
coordinate system then the divergence equation in (2.10) becomes:

d(α1ε
11E1)

dx1 = 0 , (2.14)

which can be integrated to give:

α1ε
11E1 = C , (2.15)

in which C is the integration constant. We then rewrite this equation in the form:

ε11(E1)E1 =
C

α1(x1)
. (2.16)

The problem of finding E as a function of x1 then reduces to the algebraic problem of solving (2.16)
for E1(x1). Although the invertibility of our constitutive law implies that such a solution will always exist,
nevertheless, the actual solution might only be obtainable by numerical methods.

In order to account for the integration constant C, we need to address the fact that we did not include a
contribution from a charge distribution in our original Eqs. (2.1). This is because we shall choose to give
the charge distribution that serves as the source of the field D a topological origin. Suppose that S is a
closed 2-cycle in Σ, that is, a compact orientable surface without boundary. We define the total electric flux
through S to be:

Φ[S] =
∫

S

#D . (2.17)

If S bounds a 3-chain B – i.e., a compact orientable 3-manifold with boundary – then one can apply
Stokes’s theorem to this integral (which is Gauss’s law for the vector field D) and obtain:

Φ[S] =
∫

B

d#D . (2.18)

If we had set d#D = #ρ, where #ρ represents a charge density 3-form then we could claim that:

Φ[S] = Q[B] , (2.19)
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6 D. H. Delphenich: Steps towards a neoclassical electron model

where Q[B] is the total charge contained in B.
However, it is often the case that the field D is not defined at some points in B. For instance, this is

true in the cases of a point charge, infinite line charge, and infinite surface charge. In such cases, the region
of space B is not actually a 3-chain; in particular, it is generally not compact. Hence, one can not apply
Stokes’s theorem.

Therefore, we simply define the charge Q in the region B to be Φ[S], which will still be independent of
the choice of S, as long as S always encloses the same source points, due to the homotopy invariance of
the integral. One then sees that the integration constant C will equal:

C =
Q∫

α2α3dx2 ∧ dx3 , (2.20)

in which the domain of the integral in the denominator depends upon the choice of coordinates.
For instance, in order to obtain the classical vacuum expressions for the electrostatic field of a planar,

linear, or pointlike source, resp., one chooses Cartesian, cylindrical, and spherical coordinates, resp., and
lets ε11(E1) be the constant ε0(= 8.98 × 10−12C2/N-m2). One then obtains:

C =
σ

2ε0
,

λ

2πε0
,

q

4πε0
, (2.21)

respectively, where σ is the surface charge density, λ is the linear charge density, and q is the charge of the
point, resp. Note that actually we have not performed the integration over the entire two-dimensional region
in the first two cases, since it is not compact, but first “retracted” it to two points in the case of a plane source
(a circle in the case of a line source, resp.) and then integrated over the resulting 0-cycle (1-cycle, resp.).

With these integration constants, we then obtain the conventional expressions:

Ex(x) =
σ

2ε0
, Er(r) =

λ

2πε0r
, Er(r) =

q

4πε0r2 , resp. , (2.22)

for the cases in question. Notice that in all three cases, one has:

(α1ε0E1),1 = 0 , (2.23)

even though the electric flux through the corresponding surfaces – viz., x = const. or r = const. – is
Q �= 0, which underscores the topological nature of the source charge.

If one wishes to give nonlinear electrostatics a Lagrangian form (cf., Plebanski [8] for the Lagrangian form
of nonlinear electrodynamics) then one assumes that E = dφ and defines a field Lagrangian L = L(xi, E).
The associated field equations for E that one obtains by varying φ then become:

E = dφ, d#D = 0, D =
∂L
∂E

. (2.24)

If we are dealing with the linear case then:

L =
1
2

ε(E, E) =
1
2

εijEiEj , (2.25)

and the last equation in (2.24) takes the component form:

Di = εijEj . (2.26)

One must be careful about generalizing this situation to a nonlinear Lagrangian since if we replace ε
in (2.25) with a field-dependent bilinear functional ε̃(E), we still get the field equations (2.24), but (2.26)
becomes:

Di =
(
ε̃ij + 1

2
∂ε̃jk

∂Ei
Ek

)
Ej = εij(E)Ej . (2.27)
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Hence, it would not be correct to identify the bilinear functional ε̃ with the electric permittivity, which is
more properly associated with:

εij(E) = ε̃ij +
1
2

∂ε̃jk

∂Ei
Ek . (2.28)

However, Lagrangians of the form:

L =
1
2

ε(E, E) =
1
2

ε̃ij(E)EiEj . (2.29)

will figure prominently in what follows, so we use them with this caveat.

3 Quantum considerations

At this point in time, most physicists would agree that when dealing with Nature at the atomic to subatomic
scale the results of quantum physics are more definitive than those of classical electromagnetism. Hence, we
shall summarize some of the salient facts regarding the nature of the electron as it is described by quantum
mechanics and quantum electrodynamics.

One of the most fundamental aspects of the Dirac theory of the electron was the notion that any particle
that was represented by a Dirac spinor – i.e., any fermion – would be paired with an anti-particle that had the
same mass and spin, but an opposite charge. Moreover, the interaction of any particle with its anti-particle
might produce a photon in place of the particle/anti-particle pair; conversely, any sufficiently high energy
photon could split into a particle/anti-particle pair in the presence of an external electric or magnetic field
of high enough strength. In the transition region between having too little energy to result in pair production
and having more than enough, one would expect to find vacuum polarization, which one might model by
making ε0 and µ0 depend upon E and B, or at least their magnitudes, unless one also intends that the
symmetry of the vacuum as an electromagnetic medium is broken by the formation of particle/anti-particle
pairs, which is conceivable. Most of the best-established consequences of quantum electrodynamics are
traceable to precisely the existence of such a vacuum polarization process.

For instance, one can make quantum electrodynamical corrections to the Coulomb potential that are
based on vacuum polarization, since presumably as one approaches an elementary charge distribution the
electric field strength of that distribution approaches the critical value for electron-positron pair production.
However, the applicability of quantum electrodynamics then becomes limited by the possibility that at a high
enough field strength one might produce pion/anti-pion pairs, which are strongly interacting particles and
therefore no longer best treated by quantum electrodynamics, but quantum chromodynamics. The one-loop
corrected version of the Coulomb potential takes the form (cf., Berestetskii, et al. [9], or Greiner, et al. [10]):

φ(r) =
Q

4πε0r

[
1 +

2α

3π

(
ln

λc

r
− C − 5

6

)]
(3.1)

when r << λc and:

φ(r) =
Q

4πε0r

[
1 +

α

4
√

π

e−2r/λc√
r/λc

]
(3.2)

when r 	 λc. Here, the symbol α represents the fine structure constant 1/137 for electromagnetism, which
serves as the electromagnetic coupling constant, and the distance λc is the Compton wavelength for the
electron.

In particular, one notes that in both cases the quantum correction adds to the Coulomb potential, so φ(r)
still diverges as r goes to zero. One also notes that the two asymptotic expressions do not agree formally
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8 D. H. Delphenich: Steps towards a neoclassical electron model

at r = λc, although numerically it is the difference between the bracketed term taking the value 1.0054 for
the small-r expression versus 0.998 for the large-r expression.

One of the more celebrated consequences of vacuum polarization is the explanation for the anomalous
magnetic moment of the electron, a fact that was established experimentally by the Lamb shift of the atomic
spectrum. According to relativistic wave mechanics alone – viz., the Dirac equation – the electron should
have a magnetic moment that is given by the Bohr magneton: µB = e�/2mec = 3.09 × 10−32 J/T,
including the relativistic contribution of the factor 1

2 , which arises as a result of Thomas precession. Due
to the effect of vacuum polarization on the electron form factors, this figure gets corrected to:

µ = µB

(
1 +

α

2π
− 0.328

α2

π2

)
= µB(1 + 0.00116 − 0.00000177) , (3.3)

when one includes all diagrams to quadratic order. However, one can see that the successive terms in the
sum are each separated by about three orders of magnitude.

4 Born–Infeld electrostatics

In 1934, Born and Infeld [11] (see also Born [12]) attempted to remedy the problem of the infinite self-
energy of a pointlike electron by assuming that as a result of vacuum polarization it was not physically
possible for the electric field strength to exceed a maximum value Ec. The customary way of obtaining
this value is to compute the Coulomb field strength at a distance from the pointlike electron that equals the
classical electron radius rc, which is the radius that makes the self-energy of the field equal to the rest mass.
One then obtains:

Ec =
e

4πε0r2
c

= 1.78 × 1020V/m . (4.1)

Of course, if one is assuming a pointlike electron then it would seem somewhat irrelevant to use a radius
that is associated with an extended one, but the use of this value seems to have a long tradition.

The Born–Infeld theory starts with the field Lagrangian1:

LBE = α


1 −

√
1 − F

E2
c

− G2

E4
c


 . (4.2)

This time, the symbol α refers to the function that appears in the volume element (2.3), whose form
depends upon the choice of coordinate system. The symbols F and G refer to the Lorentz-invariant scalars
that one obtains from the electromagnetic field strength 2-form F :

F = χ(F, F ) =
1
2

Fµν
µν , G = V (F, F ) =

1
2

FµνFµν . (4.3)

In the second expression, we are letting ∗Fµν 1
2 εµνκλFκλ denote the components of the bivector field

#F that is Poincaré dual to the 2-form F . We are also generalizing the electrostatic constitutive law to an
electromagnetic constitutive law, i.e., a one-to-one correspondence χ : L2(M) → L2(M), F �→ χ(F ) = H
between 2-forms and bivector fields.

In order for this field Lagrangian to produce field equations that reduce to Maxwell’s equations in the
limit of small field strengths, one must assume that the 2-form F is exact; that is:

F = dA (4.4)

1 We suppress the explicit mention of the leading constant scalar multiplier in the Lagrangian, since it is only necessary in order
to give the Lagrangian the units of an energy density, but does not appear in the field equations.
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for some potential 1-form A. The other field equation is then obtained by varying the field A, although we
shall pass on to the static electric case.

When we restrict ourselves to the static electric case, in which F = dt ∧ E, we find that the invariants
take the form:

F = DiEi = εijEiEj , G = 0 . (4.5)

The condition (4.4) becomes E = dφ, as above, and if we vary the remaining Lagrangian, which we
abbreviate to:

LBE = α

√
1 − ε(E, E)

E2
c

, (4.6)

with respect to φ then the field equation becomes:

0 = d#
(

∂LBE

∂E

)
, (4.7)

which then takes the form:

0 = d

[
α

(
1 − ε(E, E)

E2
c

)−1/2

#D

]
. (4.8)

We can give this the same form as our nonlinear electrostatic equation (the second equation in (2.5)) if
we introduce the rescaled electric permittivity matrix:

εij =
(

1 − ε(E, E)
E2

c

)−1/2

εij . (4.9)

One notes that the form of this equation suggests that electric permittivity behaves as the field strength
approaches its limiting values in the same way that mass behaves as its speed approaches the speed of light.
However, this is not a mysterious coincidence, but a predictable consequence of the geometrical form of
the Lagrangian that Born and Infeld originally chose before they settled on the form given here.

Equation (4.8) then takes the local component form:

(αεijEj),i = 0 . (4.10)

If we duplicate the solution of this equation that we gave in the previous section in the case of spherical
coordinates and an isotropic electric permittivity matrix of the form ε0δ

ij then we arrive at the algebraic
equation:

Er(r)√
1 − E2

r

E2
c

=
e

4πε0r2 ≡ ECoul(r) , (4.11)

which can be solved to give:

Er(r) =
(

1 +
E2

Coul(r)
E2

c

)−1/2

ECoul(r) , (4.12)

which can also be written in the form:

Er(r) =
(

1 +
E2

c

E2
Coul(r)

)−1/2

Ec . (4.13)

In the form (4.12), one can see how the Born–Infeld field strength Er(r) converges to the Coulomb field
for small field strengths. In the form (4.13), one can see how Er(r) approaches the limiting value of Ec as r

goes to 0. For the record, when r equals the classical electron radius Er(r) has the value Ec/
√

2, although
rc seems to play no role in this model beyond that of defining the value of Ec.
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5 Heisenberg–Euler electrostatics

One of the early attempts to deduce phenomenological physical consequences from the Dirac theory of
the electron was made by Heisenberg and Euler [13] in 1936. What they accomplished was to derive what
would now be called a one-loop effective Lagrangian for a quantized (i.e., operator-valued) spinor field,
namely, the field of an electron/positron pair, that is coupled to a constant – or at least slowly time-varying
– electromagnetic field that is regarded as an external field F , and therefore unquantized. In effect, one then
integrates out the higher-energy modes that the electron/positron pair contributes and obtains a correction to
the Lagrangian for the external field. The correction δL, up to first order in the coupling constant α, which
takes the form e2/4πε0�c in SI units, to the Lagrangian L of the external electromagnetic field that was due
to the polarization of the vacuum as its field strength approached the critical value Ec they obtained was:

δL =
α

2π

∫ ∞

0
dη

e−η

η3




(
E2

c − η2

3
F

)
− iη2G

cos
(

η
Ec

√F − iG
)

+ c.c.

cos
(

η
Ec

√F − iG
)

− c.c.


 . (5.1)

In this equation, F and G are the two Lorentz invariants that one can form from F that we mentioned
in Sect. 3. We have also restricted the electromagnetic constitutive law of the vacuum to the classical static,
homogeneous, isotropic case. In particular, this means that the classical electromagnetic field Lagrangian
is:

L =
1
2

F . (5.2)

When the field strengths are less than Ec the Lagrangian (5.1) can be expanded in a power series, which
is, to sixth order:

δL = ξ

{
1
2

(F2 + 7G2) +
1

7E2
c

(13G2F + 2F3)
}

, (5.3)

into which we have introduced the abbreviation ξ = α/180πE2
c = 10−38 m2/V2.

Since our immediate concern is the static electric field, which makes F = ε0E
2 and G = 0, we can

represent the total sixth-order one-loop corrected electric field Lagrangian as:

L + δL =
1
2

ε0

[
1 +

α

360π
ε0Ê

2 +
α

630π
ε2
0Ê

4
]
E2 . (5.4)

into which we have introduced the notation Ê = E/Ec for the rescaled electric field strength 1-form, or its
magnitude.

If we introduce the further notation:

ε̃(E) = ε0

[
1 +

α

360π
ε0Ê

2 +
α

630π
ε2
0Ê

4
]

, (5.5)

then we see that this field Lagrangian takes the elementary nonlinear electrostatic form (2.27). Once again,
we recall that ε̃(E) is not the electric permittivity, but:

ε(E) =
∂(L + δL)

∂E
= ε0

[
1 +

α

180π
ε0Ê

2 +
α

210π
ε2
0Ê

4
]

= ε0 + δε0(Ê) . (5.6)

We then deduce that the electric polarization vector field P = D − 4πε0E associated with E has the
components:

P i =
∂(δL)
∂Ei

=
α

180π
ε2
0Ê

2
[
1 +

6
7

ε0Ê
2
]

Ei , (5.7)
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which makes the electric susceptibility χ = ε − 4πε0 of the Heisenberg–Euler vacuum take the form:

χ(E) =
α

180π
ε2
0Ê

2
[
1 +

6
7

ε0Ê
2
]

. (5.8)

It is important to point out if one derives the magnetization vector field M from the general Lagrangian
(5.3) then one obtains:

M i = − ∂(δL)
∂Mi

= γ(E, B)Ei + ζ(E, B)Bi , (5.9)

in which:

γ(E, B) = − α

90π
Ê · B̂

{
14 +

52
7

(
ε0Ê

2 − 1
µ0

B̂2
)}

, (5.10a)

ζ(E, B) =
α

45πµ0

[
ε0Ê

2 − 1
µ0

B̂2 +
26
7

(Ê · B̂)2 +
3
7

(
ε0Ê

2 − 1
µ0

B̂2
)2

]
. (5.10b)

Although M naturally vanishes in the absence of a magnetic field, one does still have a non-vanishing
magnetic susceptibility of:

ζ(E) =
αε0Ê

2

45πµ0

[
1 +

3
7

ε0Ê
2
]

. (5.11)

This is consistent with the established fact of quantum physics that even a static electron has a non-
vanishing magnetic dipole moment, which is, of course, explained by its non-vanishing spin in traditional
quantum physics.

We can once again set up the problem of finding static electric fields that are adapted to some coordinate
vector field as in the previous sections, and our nonlinear algebraic equation for E now takes the form:

ε(E)E = ε0

[
1 +

α

180π
ε0Ê

2 +
α

210π
ε2
0Ê

4
]
E =

C

α1(x1)
. (5.12)

which can be put into the form:

α

210π
ε2
0Ê

4E +
α

180π
ε0Ê

2E + E − C

ε0α1(x1)
= 0 . (5.13)

Since this equation is quintic in E, the only hope for finding explicit solutions would have to be numerical
or perturbative. One could also restrict the approximate form (5.4) of the Heisenberg–Euler Lagrangian to
fourth order and then obtain a cubic equation in place of (5.12), which could be solved explicitly, at least
in principle, although we shall not do so here.

6 Discussion

Let us first summarize the character of the various solutions to the spherically-symmetric electrostatic
equations that were obtained by various choices of constitutive law. All of the constitutive laws that we
discussed above are isotropic, and therefore take the form εij = ε(r, E)δij for an appropriate frame, where
E refers to the magnitude of the field strength. As a result, in all cases, except possibly the Heisenberg–
Euler case, the resulting electric field E(r) took the form of f(r, E)ECoul(r) for some appropriate function
f(r, E). Only the Born–Infeld solution seems to be finite at r = 0, although the analytical character of the
Heisenberg–Euler solution must be obtained indirectly by further study.
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The simplest constitutive law is ε(r, E) = ε0, which is then homogeneous, isotropic, and linear. It gives
the usual Coulomb solution, which is undefined at r = 0, since it becomes infinite as r approaches 0.

The 1-loop quantum correction to the Coulomb law replaces ε0 with a more general ε(r), which then
makes the constitutive linear and isotropic, but inhomogeneous. It does not, however, make the resulting
E(r) finite at r = 0.

The Born–Infeld constitutive takes the form ε(E), so it is homogeneous and isotropic, but nonlinear. It
was specifically intended to make the E(r) field converge to a finite limiting value at r = 0.

The Heisenberg–Euler constitutive law is similar to the Born–Infeld law, at least when one expands
Born–Infeld in a power series, so it is also homogeneous and isotropic, but nonlinear. However, since the
field E(r) can be derived only by numerical or perturbative means, the question of how it behaves as r
approaches zero requires deeper analytical study.

Prior to the onset of quantum field theory the most fundamental problems in any field theory were
boundary-value problems, in the static case, as well as initial-value problems, in the dynamic case. The
nature of the classical electron model was that the field of an electron at rest should be the unique solution to
a spherical boundary-value problem in the field equations of electrostatics that vanished at infinity, although
there was some dispute over how to define the field at the source. Because this dispute could not be resolved
within the context of linear Maxwellian electrostatics, and the experiments regarding the nature of atomic
structure suggested that quite of bit more of Maxwell’s theory broke down at the atomic level, interest in
finding such a classical model eventually waned.

Nonetheless, there is some value in defining a difficult problem, even while knowing that its solution
might not be forthcoming, if only to stimulate and focus discussion of the matter that is being addressed.
Hence, we shall define the “neo-classical” electron problem to be the problem of modeling an electron –
or, more generally, any charged “irreducible” particle – as a field that is a solution to a boundary-value
problem in nonlinear electrostatics that agrees with the currently-accepted facts regarding the particle. One
then identifies different levels of detail regarding the problem: the macroscopic level, the atomic level, and
the subatomic level.

The classical electron of Abraham, Lorentz, and Poincaré was essentially valid at the macroscopic level
and broke down at the atomic level. The basic properties of the electron that it attempted to account for
were its charge, rest mass, stability, the spherical symmetry of its static field, and its asymptotic agreement
with the Coulomb law at scales larger than atomic.

In order to proceed into the atomic level, one must keep in mind the lessons of quantum theory, which
expand this list to: the wavelike nature of the electron, the existence of its anti-particle and the polarization
of the vacuum, and the fact that the electron has not only mass and charge, but also intrinsic angular
momentum – i.e., spin, – which also implies the existence of a magnetic dipole moment. Furthermore, one
must account for the fact that this magnetic moment itself takes on an “anomalous” contribution from vacuum
polarization. Admittedly, the Born–Infeld and Heisenberg–Euler models did not address the wavelike nature
of the electron or its spin, at least directly, so that seems to be the most immediate direction of extension
for the model.

In order to proceed to the subatomic level, one must address not only the contributions of quantum
electrodynamics, but also those of quantum chromodynamics, since one will be forced to deal with the
fact that the charge distributions of protons and atomic nuclei are extended, but stable to varying degrees.
Although this seems to complicate matters beyond reason, perhaps by the time one has successfully achieved
the extension of the classical electron to a neo-classical electron that is valid at the atomic level the nature
of the next extension will seem more straightforward.
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[5] D. H. Delphenich, Ann. Phys. (Leipzig) 14, 347 (2005), and hep-th/0311256.
[6] L. D. Landau, E. M. Lifschitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon,

Oxford, 1984).
[7] E. J. Post, Formal Structure of Electromagnetics (Dover, NY, 1997).
[8] J. Plebanski, Lectures on Nonlinear Electrodynamics (NORDITA Lectures, Copenhagen, 1970).
[9] V. B. Berestetskii, E. M. Lifschitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Elsevier,Amsterdam,

1984).
[10] W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985).
[11] M. Born and L. Infeld, Proc. Roy. Soc. (London) A 144, 425 (1934).
[12] M. Born, Ann. Inst. Henri Poincaré 7, 155 (1937).
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