LECTURE 13

THEORY OF THE LAST MULTIPLIER (CONT.)
APPLICATIONS.

Now consider the most general system of equations (1):

X

n

1)

X X, ’

in which X, Xu, ..., Xn are given functions of x, X1, ..., Xn .
The system is integrated when one knows n first integrals. Suppose that one knows only (n —
1) of them, and let them be:

£, (X X, Xgeeu X)) = Oy,
3 (X X, Xg,e00 X)) =

(”

From those (n — 1) integrals, we can infer (n — 1) of the variables x;, for example X2, X3, ..., Xn,
as functions of the other two, x and x1, and of the «. That amounts to saying that the determinant

A:

of, ©f, of,
of, of, of,
of, of, of,
OX, OX, OX,

is not identically zero.
More generally, if F denotes an arbitrary function of x4, X2, ..., X then we shall let F' represent
what F will become when we replace xz, X3, ..., Xn With their values that we infer from the system

(). Having made that convention, it will be clear that x and x; satisfy the equation:

X/da—X'dx, =0,

in which one leaves the « constant.
When one knows a solution M of the equation:
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X dlogM +XlalogM et Xn_alogM +%+%+~-+6X
ox ox, ox,  OXx 0% X,

)

one will know an integrating factor to the equation (2). That factor is equal to M’/ A" (Y).
In other words:

%(Xl’da—X'dxi) = dF (6 X1, @2, @, ..., am)

The proof differs from the one that was given in the case of two equations only by the
complexity of the calculations.

Suppose for the moment that one knows n first integrals fi = a1, f2 = a2, ..., fn = on. The
equations:
Xi-l- Xlﬂ—i_'“—i_xni :0’
OX oX, OX,,
X% Xla—f”+ Xnafn =0
OX 0%, OX,

A_A A Ay
= = . =Mz,
X X, X, X,
when one sets:
o oo
oX 0X oX,
R= . . :
o, o &
oX 0% oX,
a o a,
and
a= R A= R AR
oa oo, oa,

We shall first show that the quantities A; verify the relation:

ORLOA L O
oX OX OX

(4)

n

(Y A’ cannot be zero for any X, X1, a, ..., an, because otherwise A would be identically zero.
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Indeed, observe that the left-hand side of (4) is a homogeneous linear function of the second
derivatives of f1, fo, ..., fn.
Now that function cannot contain a term in &°f,_/&x?, because the term in question would

come from 0Ai / oxi , and Ai = 0R / Oai contains no derivative of f with respect to the variable x; .
. - o°f
It can no longer include a term in k. because that term would come from the sum

0X; 0X;

oA N . . O,
—+—:Set B = ofc / Oxi , to abbreviate the notation. The term in
ox;,  OX; OX; OX;

L J

oA . . OA o°R :
—— will have the coefficient —.- or — . The two second-order minors of R that are thus
oX, op; Oa, O]

introduced are equal in absolute value, because they are obtained by suppressing the same rows
and columns of R. Moreover, they have opposite signs because one can pass from one to the other
by permuting two columns in R.

The sum of the terms in the left-hand side of (4) is therefore identically zero, and the relation
(4) is then established. If one replaces A, Ag, ..., An with M1 X, M1 Xy, ..., M1 X, in the relation
then one will see that My is an integral of the equation:

that comes from

) ClogM _ ologM . dlogM X X, oX,
OX X, OX OX O oX,

n

=0.

(3)

Having said that, it will be easy to see that M, /A’ is an integrating factor of equation (2).

Since one has:
A=M/X', A=MX/,

it will suffice to prove that 1 / A" is an integrating factor of the equation:
(29 Aldx—A'dx, =0.

To that end, express the variables X, X2, ..., Xn in f1 (X, X1, X2, ..., Xn) as functions of the (n — 1)
variables oz, as, ..., anand of x and x1 . We have:

f1 (X, X, X2, ..., Xn) = f/(X,x,,...,x,) ,
and as a result;

oA _ o A
OX oX = Oa; OX
A O, O
X, OX, 1= Oa; Ox
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of, _ L of of,
X, ) i=2 _0‘.72’
of _ > of, of,
OX, - = O, Tn
Moreover, one knows that:
of, of, of;
o o,
A= : ;
of  of, of |
oX,  OX, OX,
of, of, of,
A= : o :
of, of, of,
ox X, o

If one replaces the ofy / Oxi with the values that are written above then one will see that upon
supposing that xo, X, ..., Xn are expressed as functions of a2, as, ..., an, and X, x1 everywhere, and

! !

. f . . .
the expressions A and A reduce to ﬂA and — @A , respectively, i.e., one will have:
X

%,
Y ORI
0%, 0%,
As a result:
(5) Adx-Adx _ %dx+idxl :
A’ OX X,

If one then gives constant values to a2, as, ..., an then the left-hand side of equation (5) will
be the total differential of the function f/(X,X,,;,,...,«,), which proves that M,/ A" is indeed an

integrating factor of equation (2).
Finally, let M be an arbitrary solution to (3). One soon sees that the ratio M / My or N satisfies
the equation:
X ﬂ{. Xl@_i_'“—}_ Xnﬁ =0 ,
OX 0X, oX,
and as a result:

N=g(f,f, ..., ).
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Hence:
M=Mi @ (f1, fo, ..., fn) .

If one replaces Mz as a function of M in equation (5) then it will become:

%(Xl'dx—X'dxl) =@ (f1, fo, ..., fa) dfs = dF (X, X1, 2, ..., o) .
M’/ A’ is then an integrating factor for equation (2). That is the theorem that we wish to prove.

When one knows an arbitrary solution M of equation (3), it will then suffice to form (n — 1)
distinct first integrals of (1) in order to achieve the integration by quadratures. The function M is
called a last multiplier of the system (1).

In certain cases, one can recognize a last multiplier immediately. That is what happens, in
particular, when the expression:

_oX 00X, oX

0= —+—+-+—— =0
oX  0OX OX,

n

is identically zero: One can then set M = 1, and the final binomial will admit 1/ A" as an integrating
factor.

It is fitting to observe, in that regard, that if one replaces xi, X2, ..., Xn With functions of x that
satisfy the system (1) then that equation will become:

0.

+_
dx X

dLM 1 (oX oX; oX,
J— —_— 44
oX  OX OX

n

Conversely, if a function U (x, X1, ..., Xn) [when one replaces X», X1 in it with an arbitrary system
of in integrals of (1)] verifies the relation:

du _ 1 (ax X, axnj
= — —+ oo
X X

then M = e~V will be a last multiplier of (1).
From that, if the expression:

X\ ox  ox ox

1(ax X, aan
+—L 4t

n

is a function of only x then a last multiplier will be obtained by a quadrature. More generally, if
one has:

LX) e
X | ox  ox, x ) "V

n
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then M = exp[—J.z//(xi)de will be a multiplier.

Finally, we add that if X, X1, ..., Xk do not enter into any functions X then any multiplier M of
(1) that is independent of X, X, ..., Xk will also be a multiplier of the system:

A1 - X 12 _ dx
xk+l X(k+2) X

Indeed, M (Xk+1, Xk+2, ..., Xn) Verifies the equation:

=0.

k+16|ogM iX,, ologM fet X, ologM
aXk-+—l an+2 ax

n

Remark in regard to the case in which one knows only (n — k) first integrals. — In the
foregoing, we assumed that we had formed (n — 1) first integrals. Knowing a last multiplier would
then permit us to find a last integral by quadrature.

We now place ourselves in the case where we know only (n — k) first integrals of equations

2):

1) dx

T X

n

ax _dx
X X

One can infer (n — k) of the variables X, xi, ..., Xn (for example, Xn, Xn-1, ..., Xk+1) as functions
of the (k + 1) other ones X, X, ..., Xk and (n — k) constants « from those (n — k) integrals, say, f, =
an, fn-1) = an-1, ..., fkr1) = a1 . Let (F) denote what a function F (x, xu, ..., Xa) Will become after
that substitution. The variables x, xi, ..., x» satisfy the equations:

1) ax o _ dx dx,

X) (X)X

which must now be integrated. Can knowing a multiplier M of the system (1) serve to integrate the
system (1')? We shall show that it is easy to deduce a multiplier for (1") from a multiplier of (1).

From the foregoing, an arbitrary multiplier M of (1) satisfies (if we preserve the notations on
page 189) the relations:

MX=pA MX1=¢pA1, .., MXn=@An,

in which ¢ denotes an arbitrary function of fy, f2, ..., fn . Conversely, any function M (x, X, ..., Xn)
that satisfies one of those relations, say, the relation:

MX=g(f,f,....,f) A,
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will be a multiplier of (1). Having recalled that, assume that one knows a first integral of (1) (say
fn = an) and infer one of the variables (for example, x») from that integral as a function of the X, Xu,

OX

n

..., Xn-1, and an. Let F' and (G_FJ denote what the functions F (X, X1, ..., Xn) and oF / oxn will

become when one replaces x, with that value. One will then have:

fi (X, X1, ..y Xn-1, Xn) = £/ %0000 X 40 X)),
and as a result;

oA o o, i=1.2....(1-)
ox; OX; Oa, 0X, j=12,...,(n=-1)
ot _ of oy
ox, Oa, OX,
of of . : : :
If one replaces the a—' X in the determinant A with those values then one will soon see that
X .
j n
A reduces to:
off off o
oX,  OX, X4
of,  of) of,
N o | =t
x| . ST ox,
afn'—l afn'—l .. afn'—l
oX,  OX, OX, 4
One can then write the equality as:
' ’ ' ’ ! 6fn
M'X" = (D(fl, f2""’ f(n_l),an)(a—xnla
On the other hand, the multipliers x of the system:
7 LA
X X X

are given by the relation:
uX =y () a,
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in which yis an arbitrary function of f', f,, ..., f/

(1) - . Therefore, the function za (X, X1, ..., Xn-1,

on) that is defined by the equality:
m X =t f,. . oy a

will be a multiplier of (2). Since one has:
M ’

SaEAl
OX,

one will see that knowing a multiplier of (1) will imply that one knows a multiplier of (2).

It is clear that one can reason with the system (2) as one did with the system (1). If one knows
a second first integral of (1), fn-1) = an-1) then that integral will correspond to an integral of (2),
f' .. = an-1) . Upon inferring x(-1) from the latter relation, one will form the system:

(n-1)
©) da _do _ _ 0%
XTTX T X,

!

of of of
The expression z'/| —"2 | isamultiplier of (3). ' and | —"2 | denote what zzand —&=,
X(n-1) (n-1) X 1)

! !

resp., will become when one expresses xn-1 in terms of X, X1, ..., Xn-2, -1, & .
One will arrive at that conclusion by pursuing the argument in the same manner: If one sets:

fa (X, X1, ..., Xn) = ¢on (X, X1, ..., Xn) = an,
fi-1) (X, X1, ..y Xn) = @n-1) (X, X1, ...y Xn) = n-1)
fin-2) (X, X1, ...y Xn) = @-1) (X, X1, ..., Xn) = n-2) ,
foern) (X, X2y oovy Xn) = @) (X, X1, ..oy Xn) = Qkt1)
then the expression:
M
o, 6¢(n—1) _“a(P(ku) ’
Xy OXgy Oy

in which one replaces Xn, Xn-1, ..., Xk+1 as functions of x, Xu, ..., Xk, Q&+1, +2, ..., an, Will be a last
multiplier of the system (1").
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. . . o0p, 0Py 0@y, .
In particular, if one sets k = 1 then one will see that the product <20 Py TP coincides

n 6X(n—1) aX(k+1)
with the determinant A that was introduced above when one expresses X, ..., Xk+1 in terms of x,
coey Xky Ok+2, ...y O
The foregoing makes no assumptions about the values of the constants « and will persist a
fortiori when one gives particular values to those constants (or at least some of them). From that,
let o be a certain value of the constant ax (for example, o = 0). Assume that one knows a first

integral of the system (2) for that value o :
P(n-1) (X, X1, --- Xn—1) = On-1.

0
The expression M /%h

OXy OX

Similarly, if one knows a first integral of the system (3) for an = &, an1= &’ :

is once more a multiplier of the system (3) for an = .

On-2 (X, X2, ..., Xn-2) = a2 ,

and so on, then the expression (4) will again define a multiplier of (1) for an = a°, an-1= @’ ,,

ceey OK+2 = O{E+2.
We shall soon have occasion to utilize that remark.

We shall now apply the theory of the last multiplier to the equations of dynamics. The first
problem that naturally presents itself is the problem of the motion of a free point.

Application to the motion of a free point. — The equations of motion of a free point can be

written:
(l) dt= — = 2L = — = - de': mdz’
X’ y' Z' X Y 7 )

in which X, Y, Z are given functions of x,y, z, X', y', 7', t.

In the general case, one must know six first integrals in order to integrate the system (1).

If X, Y, Z do not depend upon t then it will obviously suffice to know five independent functions
of t, since the sixth one can be obtained by quadrature.

If X, Y, Zdo notdepend upon x', y", z' then it will likewise suffice to know five first integrals
(in which t can appear). The expression 6= a@—i+%—§: oot aaXT" that was considered above will

be identically zero here. M = 1 is then a last multiplier of the system (1), and the sixth integral is
obtained by quadrature.
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Finally, if X, Y, Z depend upon neither x', y’, z' nor t then from a remark that was made
above, M =1 will also be a multiplier of the system:

!

1) dx _dy _dz _ mdx’ _ mdy' _ md
y 7 X Y A

It will then suffice to know four first integrals of (1'), i.e., four integrals of (1) that are
independent of t. The fifth integral of (1") will then be given by quadratures, and t is likewise
obtained by a quadrature.

Hence, when a free point M is subject to a force that depends upon only the position of the
point, it will suffice to know four first integrals of motion (in which time does not figure) in order
for the determination of the motion to be achieved by quadratures.

Suppose, for example, that the force is a central force that is a function of only the distance r
from the point M to the center O of the force. The theorem of moments provides three first
integrals, and the vis viva theorem provides a fourth. Since t does not enter into those integrals, the
motion can be calculated by quadratures.

We verify that by applying the theory of the last multiplier to that particular case. Since the
trajectories are planar, from the theorem of moments, we can take that plane to be the xy-plane.
The equations of motion in that plane are (upon setting m = 1):

(]_) dt=—=-2 = — = 2

(1') —=—==—=—
X y X gJY
r r
We know two integrals of that system:
(a) f=1(X*+y*)-U =«, inwhichU:IF(r)dr,
(b) p=xy' -xy =p.

If one infers x" and y’ from (a) and (b) and substitutes them in the equation:

Xy —=x'y =0
then that equation will admit:
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for an integrating factor.
In order to confirm that, express xx'+yy' in terms of x and y. Upon multiplying (a) by

2(x*+y?) and subtracting the square of (b), one will infer that:

(xX'+yy) =2r°U +a)-p> =R (r).

XX +yy = R(r),

Xy -x'y =f.

r’x' = - Ax+xy/R(r),
r’y’ =+py+y{JR(r).

One will then have:

Hence:

One will then have:

y'dx=x'dy 1 1
- L2

XX'+yy' [R(r) r

pdr N ydx—xdy

rdR(r) X2 +y?

If one sets @= arctan y / x then one will see that the left-hand side of (c) is the total differential
of the function:

(©) [ B (xax+ydy) +(ydx—xdy) JR(r) |

v=p[ g

o1 R(r)

That third integral w = y permits one to calculate y (and as a result x', y") as a function of x.

As for t, it is given by the quadrature:
dx

dt= —.
Moreover, one can write:

dt:% :d_y: xdx + ydy _ rdr

Xy xxX'+yy [R(r)

(= _[r rdr

o JR(r)

We thus verify the conclusions of the theory of the last multiplier in those particular cases.

Therefore:




Lecture 13. — Theory of the last multiplier (cont.). Applications. 12

Application to the motion of material systems.

I. Motion of a point on a surface. — Let M be a material point that moves without friction on
the surface:

(s) o(Xy,2,1)=0.

If X", Y'", Z' are the components of the active force then the equations of motion, in the first
form that Lagrange gave, can be written (upon setting m = 1):

X’+/18—¢ Y'+/16—¢ Z’+Aa—¢)
OX oy 0z

y

(1) dt = % dy _ g dx’ dy’ dz’
X' 7'

!

We know that 1 can be expressed as a function of x, y, z, X', y', z’, t. Upon differentiating
equation (s) twice with respect to t and taking (1) into account, it will become:

2) 8_(0{X,+16_¢}+8_¢) v+ 292 +6—¢{Z’+Aa—¢}+ a_¢+a_¢x,+8_(py,+5_¢z, =0
OX ox | oy oy | oz oz ot ox oy oz

If one replaces A in (1) with its value that is deduced from (2) the equations (1) thus-obtained
will admit the integral:

(XY, 2,)=at+f,

or, what amounts to the same thing, the first two integrals:

(@) x'a—¢+ y’a—¢+z'a—¢+a—¢ = a,
OX oy oz ot
(b) p—t x'a—¢+y'a—(p+z’a—(p+a—¢ =p.
OX oy oz ot
At least one of the derivatives 8—¢, a—(a, op is not identically zero, say, a—q). Infer z' from
ox oy oz 0z

(a) by setting « = 0 and then infer z from (b), which will then reduce to ¢ = S by setting 5= 0.
Finally, substitute those values of zand z' in the equations:

(3) dt:_:d_y: = dy
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We thus define four first-order equations for determining x, y, X", y" as functions of t, i.e., in

order to determine the motion of the point on the surface ¢ = 0. On the other hand, if M (x, y, z,
X', y', z', 1) is a multiplier of the system (1), in which A is defined by (2), then we know from a

%
0z
we have replaced z and z' in it with their values that we infer from the equations:

2
remark that was made above that the expression M /( ) will also be a multiplier of (3) after

p(%Y,2,t)=0,
© 8_(0X,+8_g0y,+8_(pz,+6_(p20_
OX oy oz ot

Having said that, | say that the system (1) admits the quantity:

2 2 2
() (5]
OX oy 0z
as a multiplier when the given force (X',Y',Z") does not depend upon velocity.
The equation of the last multiplier here is:

6_(0%_{_6_@814_8_(0% =0
ox ox' oyoy oz or

d
—(logM
dt(g )+

Now, if one differentiates the relation (8) with respect to x', y', z', in succession, while
observing that X', Y', Z' do not depend upon those variables, then that will give:

2 2 2 2 2 2 2
%(a—(pj+a—(p +(6_¢)j +26(é)x’+a¢y'+a(pz’+a¢ =0,
ox |\ ox oy oz OX OX 0y OX 0z oxot

or rather:

and similarly:

If one observes, as one had verified in the context of the Lagrange equations, that:
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ﬁ(dﬁj - 1(6_(/)}
ox \_ dt dt\ ox
then one will deduce the following equality from the previous relations:

oxox' oyoy ozozr R|oxdt\ox) oydt\oz) oydt\ oz
or rather:

a_¢@+a_¢@+a_¢az+dR/dt _0.
ox ox' oy oy oz o7 R
That relation will be true if one supposes that x, y, z, X', y', z' are arbitrary functions of t that

satisfy equations (1). Consequently, M = R will be a multiplier of (1).
With that, assume that one knows three first integrals of the motion of a point on the surface.
Those integrals can always be put into the form:

‘//1(tl X, Y, X, y') =71
(d) w,(6LX Y, XL Y) =7,
vt XY, X, Y) =7,

One can infer x', y',y, for example, as functions of x and t from that relation and substitute
them in the equation:
x'dt—dx =0.
That equation admits the quantity:
R

2
%)
0z

as an integrating factor, in which A represents the determinant:

oy, Oy, Oy,
oy ox oy
oy, Oy, Oy,
oy ox oy
oy, Oy, Oy,
o ox oy

and one supposes that x’, y', z',y, and z are expressed in terms of x and t, according to (c) and

(d).
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When the surface and the active force do not depend upon time, t will not appear in either ¢ or
2
equation (2), or in R and A4, as a result. The multiplier R/(g—(aj of the system (3) is also a
z

multiplier of the system:

@3)

!

!

dx _ dy dx’ dy
XY 2920 iy, 00

OX oy

into which t will not enter. Consequently, in order to solve the problem by quadratures, it will
suffice to know two first integrals of (3").

We then arrive at the following conclusions: When a point moves without friction on a surface
and is subject to a given force that does not depend upon the velocity of the point:

1. If the surface varies with time then in order for the motion to be determined by quadratures,
it will suffice to know three first integrals of the motion.

2. If neither the surface nor the given force depends upon time then it will suffice to know
two first integrals in which t does not figure.

I1. Motion of an arbitrary system. — Let X be a system of n material points that are subject
to p frictionless constraints. The coordinates (xi, Yi, zi) of those points are restricted to verify the p
equations of constraint:

O Y 2y X Y Zyy e X0 Vi 2, 1) =0,
WXL Yz X Yin Ziv ooy X0 ¥e 2, 1) =0,
(A) XY 2y X0 Y 2y X Y 2, 1) =0,

One can infer p of the 3n quantities xi, yi, zi from those p equations, for example, Xn, Yn, Zn, Z, ;,

... as functions of the 3n — p other ones Xu, y1, 1, Xz, ..., and t. Suppose, for more clarity, that this
solution has been performed and write the equations of constraint in the form:

p=2, =, (X, Y1, 2, %,...,1) =0,
=Y, -y, (X, ¥,2,%,...,t) =0,
(A') ZEXn _Zl(xj_yylyzlyxgln-’t)zo;
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then the functions ¢1, w1, y1, ... depend upon only the (3n — p) variables x1, y1, 71, X, ..., and t.
If Xi, Yi, Zi are the components of the active force that is exerted on the point Mz then the motion
of the system will be determined by the equations:

2

mid )z(i =Xi'+/16—¢+ﬂa—w+‘/6_l+"'=xi'
dt 8Xi aXi aXi
2

" m Yy 292,V Oy ((=12,...n)

dt? o, oy 0y,
2

m, ‘ zi =27/ +/18¢+/18—W+Va—z+"'=zi-
dt 0oz, oz, z;

One knows that one can express the coefficients A, 4, v, ... as functions of X, i, zi, X, Vi, Z/,

and t. It will suffice to differentiate the equations of constraint twice with respect to t. Upon taking
equations (1) into account, one will thus obtain p equations such as the following:

ZL a_¢ Xi’+ﬂa_(p+/ua_l//+. 8(0 Y+;ta(p 6l//+ +a_(p Zi'+/’i,a_¢+/ua_l//+...
(B) i1 M, OX; OX; OX ayi 8}/ 8}/ aZi 0z, oz

+ a—¢+2(a—¢x{+a—¢y{+a—wz{J =0.
ot =\ X o, o, 2

As we have shown, those p relations are soluble for A, x4, v, ..., and if one replaces A, x4, V.
with those values in equations (1) then the system thus-obtained, which is equivalent to the system:

(2) dt:%:%:%:midxi:midyi:midzi,

0 =23 Oy 2y g
at i=1 aXi 6yi i
p-ty' =a,
@ d 0 d )
,_ Oy v .o, 0w, 0w _,|_ .
=— —— X +——Yy +—1z :
v'== ;(axi e J i
w—ty'=p, etc.

If the equations of constraint have been put into the form (A') then the first integral (a) will
contain only z/, the second one will contain only z, , the third one will contain only vy, , etc. One
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then infers z/, zn, y,, ... from equations (a) while setting &' = @ = = ... =0 and then substitute
that in equations (2), in which we suppress the 2p equations that include dz;, dz,, dy,, etc. We
thus form a system of (3) of (6n — 2p) first-order equations between t and the (6n — 2p) variables
09 op oy” . (i.e., M here)
0z, 0z, 0y,

will also be a multiplier of the system (3), on the condition that we replace Z\,In, Y,, ... with

their values that we infer from (a).

It is even clear, moreover, that if the relations (a) are not solved with respect to p of the
variables then one can again deduce a multiplier of (3) from M.

Finally, if the constraints and the given forces are independent of time then equations (3’) will
be obtained by suppressing the first equation (in dt) in the system (3), which does not include t
because t does not appear in either the 4, 4, v, ... orthe X/, Y/, Z/. Any multiplier of (3) that is

X1, X, Y1, Y;, etc. If M is a multiplier of (2) then the expression M / —-

independent of t will then be a multiplier (3").

Having said that, we shall show that we will always know a multiplier of equations (1) when
the given forces do not depend upon velocities.

The equation for the multipliers of the system (1) can then be written:

(4) E|0g|\/| +Z a/’];a_w_i_a_ﬂ;a_(p_i_a_ﬂ:a_(o +Z 8_/{6_(//4_8_66_(//4_8_/{6_!// +...=0.
dt j=1 axj axj ayj aYj azj azj =1 8Xj aXj ayi ayj azi aZJ'

o 8_2: , ... with their values that are deduced from equations (B) in the

i i
latter equation. Now differentiate those equations with respectto x;, y', z| upon setting:

@:i[(z—z:ﬁ%ﬂ?(z—zﬂ

((/)l//)_z Op oy 89061// 6(06‘1// otc.
’ ox, X ayay az oz, ’

to abbreviate. That will give:

dfog) _
ax' (coco) ax' (co,t//) ax' (co,;c) dtLaxj] 0,

or upon observing that E %¢ = i(dﬁj and setting d_¢ =9
dt{ ox; ox. \ d dt
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ou
a,(cocﬂ) o

(5) Similarly :

a,(l//co) o

Consider the determinant:

(pw)+

a !

6 !

(0.0) (ow) (0.%)
w,0) W) v 2)
R=1(x.0) (x,w) (v.2)

!

(go x)+- +28(p =0.
OX.

i

!

0
A )+ 2 )+ +za—‘”:o.

]
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| say that this determinant satisfies equation (4), i.e., that it is a multiplier of (1). In order to
verify that, solve the relation (5). One will find that:

0r __2/0¢ R oy R Oy R

X R1ox; d(p.p) ox; Oy, co) ox; 0(x. )
Similarly:

oA _ 2 8(0 R_ oy R o R

oy R 9, 0(p,0) ay; o(y,p) oy, 6(2540) |

oA __ 2000 R oy R oy R

0z R|dz; dlp.p) oz; oy, (p) 0z 8()”0)

As a result, one will get:

i(aw_mw_mw_w

ax] X, ay} o, az; 0z,

[

Ou oy | Op oy,
OX; O%; - 0¥; 0,

az] 0z,

Ou oy

__2|_¢R s |90 00 09 0p 00 00,
R| 2(p,p) OX; OX; ©oy; oy, 0z; oL,

+ R |V 00 0V 0p v 09
o (v, ) OX; OX; 0y; oy; @z or,

]+
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:_1[ R_dlp.p), R diyy), 2R d((p,w)+__}
RLO(pp) dt  O(yyw) dt o(py) dt
1dR

R dt’

if one observes that (¢, v) = (v, ¢).
One can then put equation (4) into the form:

dt R dt
i.e., that M =R is a multiplier of (1).
If the constraints do not depend upon time, any more than the given forces, then t will not
appear in R, which is also a multiplier of equation (3").
One then has this theorem:

If the given forces that are exerted on a system of n material points are subject to p frictionless
constraints and do not depend upon velocity then in order for the determination of the motion to
be achieved by quadrature, it will suffice to know (6n — 2p — 1) first integrals of the motion.

Moreover, when the constraints and the given forces are independent of time, it will suffice to
consider (6n — 2p — 2) first integrals into which t does not enter.

The proof of that theorem will become much quicker if one applies the theory of the last
multiplier to the canonical equations. That new proof can be extended to the theorem on continuous
systems whose position depends upon a finite number of parameters, in addition, as we shall now
prove.




LECTURE 14

APPLICATION OF THE THEORY OF THE LAST MULTIPLIER
TO THE CANONICAL EQUATIONS.

Consider an arbitrary system of canonical equations:

_dg, _ dp, _dg, _ _  dp,
(1) dt = oK ~— oK T oK T oK '
AL 7+Q1 T~ 7+Qk
op 09, op, oq,

The equations for the last multiplier M relative to that system can be written as:

dLM +8Q1+6Q2 +...+& =0,
dt P op, Py
’K K

- 0.
ag; op;  0p; aq;

since

If the quantity Z(Z—S' is identically zero then M = 1 will be a multiplier of equations (1). That

will be true when the material system X whose motion is determined by equations (1) is frictionless
and the given forces do not depend upon velocity.

If one then knows (2k — 1) distinct first integrals of (1) in this case then the last equation can
be integrated by quadratures.

When neither the constraints nor the given forces depend upon time, moreover, t will not figure
in either K or the Qi . In order to achieve the integration by quadratures, it will suffice to know (2k
— 2) first integrals in which t does not enter.

Let us apply those generalities to the frictionless systems with constraints that are independent
of time and whose position is defined by two parameters. If the given forces that are exerted upon
such a system depend upon neither velocity nor time then if one is to calculate the motion by
quadratures, it will suffice to know two integrals into which t does not enter.

In particular, if the given forces admit a force function U (g1, q2) then it will suffice to know a
second integral that is distinct from that of vis viva and does not include t. An application of the
theory of the last multiplier will then lead to some remarkable conclusions in this case that we shall
now develop.

Write the canonical equations (while ignoring the first one):
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(1!) dql — dpl — dq2 — de
H ToH T aH T oH”
op, o Ip, O,

in which:
H=T-U.
Let:

(2 f(q, 02, p1, p2) = @
be a first integral of (1') that is distinct from the vis viva integral:
(3) H (1, G2, p1, p2) = h..
Infer p1 and p2 as functions of g, g2 from equations (2) and (3):
P1= ¢ (a1, G2, &, h), P2=¢2 (01, G2, &, h) .
If we replace p1 and p2 everywhere with those values then the equation:

oH oH
Cdg, - Sdg, = 0
op, 1%~ 5,

will admit;

as an integrating factor. In other words, one has:

oH oH
A g My
op 2 op,

)

(4) =d-F (g, 02, , ).
| say that the left-hand side of (4) coincides with:

op, op,
—Ldg +—2dqg, .
Py 0, s a,

Indeed, from the theory of functional determinants, one knows that:

21
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On the other hand, if one replaces p1, p2 with ¢1, ¢ in (2) and (3) then those equations will be
verified identically. Upon differentiating (3) with respect to h and «, one will find that:

OH b, | OH o, _
op, oh  op, oh
oH op, , oH b, _

op, o 0p, O

Hence:

0H _ ;o0 oH __ o

o, oa o, = oa’

The equation that remains to be integrated can then be written:

@) Pr g, + P2, =0,
oo oo

and one has assumed that its left-hand side is a total differential dF (q1, g2, «, h).

It is quite easy, moreover, to verify the conclusion to which we just arrived by direct calculation
by showing that (p: dg: + p2 dgz) is an exact total differential.

In order for that to be true, it is necessary and sufficient that one should have:

o _ %%

oq, og,
Calculate dp1 / g2 and dp2 / Aqz using equations (2) and (3). That will give:

oH  oH op,  OH b, _

g, op, 09, p, A,

o , o ap, O 0p, _

0g, 0p, 09, Ip, OG
Therefore, one infers that:
©) (G_Hi_a_HiJ_gaﬁ ~0
oq, op,  Op, 09, oG,
One similarly finds that:
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©) (8H8f aHafjﬂs%:O_

aq, op, Ip, aq, oq,
Furthermore, the function f satisfies the relation:

- oH of oH of oH of oH of _g
0q, op, Op, 09, 44, op, 9P, A,

identically.
If we the add corresponding sides of (5) and (6) then that will give:

5£%_%j _0
&, oo,

In all of the foregoing, we have assumed that ¢ is not identically zero. Under that condition
(which is always realized, as we will soon show), we see that the expression p1 dg: + p2 dgz will
be an exact total differential:

_[ P dql + P, dqz =W (QL 02, ¢, h) .

The integral of equation (4) is given by the equality oW / da = .

Conversely, if a relation f = «, combined with the equation H = h, determines functions pz, p2
of (qi, 92, &, h) such that p: dg: + p2 dgz is an exact differential then the function f will verify
equation (7) and will be a first integral of (1'), in addition.

From that, consider the partial differential equation:

oW oW
8 H|g,0,—,— | =h
(8) (ql % 2, aqzj

f 0,,9 aﬂaﬂ - a
11 zaaqlvaqz

The necessary and sufficient condition for those two equations to admit a common integral W (qz,
02, a, h) for each value of aand h is that f and H should be coupled by equation (7); in other words,
f must be a first integral of (1').

By definition, if one knows a first integral f = « of (1') that is distinct from that of vis viva H =
h, and one can infer ps1, p2 as functions of qt, g2, &, h using those two equations then the expression
p1 dg: + p2 dgz will be an exact differential:

and a second relation:

[ p.da; + p,dg, = W (1, a2, & h),
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and the motion of the system is determined by the equality:

W _ s
oa
which defines g as a function of g: and the three constants h, «, .

As for time t, it will be defined as a function of q: (for example, with the aid of a quadrature)
when one expresses g2 in terms of g1 . However, more symmetrically, it should be pointed out that
t satisfies the two equalities:

_ dg, _ dg,
dt—@—@.
op, op,

On the other hand, one has:
oH dp, oH dp, _

op, oh op, oh

of o, of op, _

op, oh  dp, oh

Hence:
o _ of 1 op, op, _ —of /op,
ch ~OH O oHaf ' oh  OH of oH of
op, op, P, Op, op, 0p, P, Op,
One can then write:
of of
7dq1 _7dQ2
_ op, op, _opy P,
R BN R R
op, 0p, Ip, op,
ie.:
t—t= 8ﬂ
oh

We will see in the next lecture that this theorem is a particular case of a theorem of Jacobi.

Remark. — All of the foregoing argument supposes essentially that we can solve the two
equations f = a, H = h for p1, p2 . We shall now show that this is always true. In the contrary case,

the functional determinant 6= (@i —ﬁij will be identically zero, and there will exist a

op, op, 0p, op,
relation of the form:
®(H,f01,02)=0
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between f and H.

One can infer f from that equation. Otherwise, H would be a simple function of g1, gz, or rather
g2 would be expressible as a function of g: with no arbitrary constants. We then write the relation
thus:

f=w(H, o, 0).

w will define upon at least one of the variables qz, g2, since the integral f = « is distinct from that
of vis viva, by hypothesis.
On the other hand, since y = « is an integral, the function y must verify the equality:

W,y M v oH
oH aq, op,  0q, op,
or
Oy oH Oy oH _
o4, op, 04, op,
or finally:
dy  oH
aq _  dp,
©) T
aa, op,
oH

a and % are homogeneous linear forms in p1, p2 whose determinant is not zero, as one knows.
1 2

The right-hand side of (9) is therefore a function of p1 / p2, say y (p1/ p2, Q1, g2). As for the left-
hand side, it will coincide with y only if it depends upon pz, p2, and as a result, upon H. One then

infers from equation (9) that:
H= F(%,ql,qzj ,

which is an absurd equality, since H has degree two in p1, p2 . We thus arrive at the conclusion that
one can always solve the distinct integrals H = h, f = « for py, p2.
We shall now apply the preceding theorems to some particular examples.

I. Motion of a massive point that moves without friction on a paraboloid with a vertical
axis. — Let us first apply the theory of the last multiplier to the equations of motion in the first form
that Lagrange gave to them.

If the paraboloid is defined by the relation:

2 2
(A) XY _9=0
a p
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then the equations of motion will be:

X'= 22,

(04

14 y

(B) y' = /1—,
B

2"=-1+4¢.

Differentiate the relation (A) twice. Upon taking (B) into account, that will give:

2 2 12 12
/I(X—2+y—2+1}rx—+y -g =0.
a a pf

If one substitutes that value of A in the first two equations (B) and eliminates z and z' using

2 2
(A) then the two equations thus-obtained will admit the expression (X—2+y—2+1j as a last
(04

multiplier. Since z and z' do not figure in 4, the elimination is found to take place because of that
fact in its own right, and one immediately obtains:

X" X 1
12 12 - 2 2 '
Xa + y__ g ¢ (XZ+;;2+1J
a
(B') ,
y Yy 1
12 12 2 2
XY -9 ﬁ()(erszrl}
a a ﬂ

On the other hand, one knows one first integral of those equations, namely, the vis viva integral:
2 2 2 2
2T = x? 1+X—2 +y”? 1+y—2 +ﬂx’y’ =g XY |in.
a B ) ap a p

Now multiply the first equation in (B") by x'/«, the second one by y'/ 3, and add them.

()

Upon integrating, that will give:

(b)
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Let & denote the functional determinant of T and f with respect to the variables x", y'. If we
infer x', y’ from equations (a) and (b) then the expression:

(©)

will be an exact total differential d - F (x, y, h, C). The motion is defined by the equality F = const.
If we let 2 and v denote the two values of the function:

- (a+ﬂ+§+y7j}_r\/(a+ﬂ+§+y7jj —4('87)(2+a72/2+aﬁj

then a laborious calculation will verify that the expression (c) is effectively equal to:

v =dF.

@ [
> du+ > d
(a+u)(B+pu)Qu” +hu+C) (@+v)(B+v)(gv™ +hv+C)

However, we shall arrive at that result more easily in what follows by appealing to different
coordinates.

Thus, here is a case in which Jacobi’s theory will show that the motion can certainly be
calculated by quadratures, although it would be quite difficult to show that directly, at least with
the variables that are employed. Furthermore, one will arrive at the same result by appealing to the
canonical equations. If one substitutes the variables p: and p> that are defined by the equalities:

2
pr = xr@%}yrﬂ

a,B’
IS
= X — ]_ Z
p2 aﬂ+y(+ﬂ2]

for the variables x', y’ and in (a) and (b) then one will effortlessly see that the expression
(% dx+ %dyj coincides with the expression (c).

We similarly propose to study the motion of a point M that moves without friction on an
ellipsoid and is attracted to the center of the ellipsoid in proportion to its distance from it.
If the ellipsoid is defined by the relation:

X2
a2

2 2
y [z _
+5+— =1

Q
(o
(@]
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then the equations of motion can be written:

x":—kx+/112,

a
®) y"=—ky+zblz,
z":—kz+/1i2.

c

In addition to the vis viva integral, one defines a second integral in the following manner: Add

! !

corresponding sides of equations (B) after multiplying them by LZ % 2—2 respectively, and
a C
X Yy z : N
then by —, Rl resp. Upon taking the relations:
a C
X’X yry Z/Z B X"X yﬂy Z”Z X!2 y/2 Z/Z _
A A

into account, one will find that:

and

One will then deduce immediately that:

d X12 y!2 2!2 d XZ y2 ZZ
_dt( + 02 + o —kJ o VIV

aZ
!2+y12+272 - X
a? b* c? a pb* ¢!

X2 y2 Z2 X!2 yI2 Z!Z _
[¥+F+c_4j(?+b_2+c_2_k =C.

We are then certain that the problem can be achieved by quadratures. However, those
quadratures can be carried out comfortably only with the aid of conveniently-chosen coordinates,
which are the elliptic coordinates that we shall introduce later on.

and finally:
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Il. — Two points M and Mz are constrained to slide without friction on two helices:
Xx=Rcos#d y=Rsing z=K@# and x1=Ricos &, yi=Risin6, z1=K & .

The two points repel in proportion to the distance between them. Find the motion of the
system.

We know how to form (see page 106) two first integrals of the motion, namely:

2T = m(R* +K2) 0% +m (R2+K?) 8 = — 2uRR cos(0—0) + uK2(6,—0)’ +K
and
m(R*+K?*) & +m(R*+K?*)@g =C.

Replace &', & with the canonical variables:

p=m(R*+K?* ¢, pr=m(R*+K?*4.
Upon setting:
_ 1 1
- m(R2+K2)+m1(Rf+K2)’

B=mm (R® +K*)(R' +K?) ,

and
U=-2uRRcos(0-6)+u Kz(el—e)z,

we will infer the following values of p and p: from the two integrals:

C C?
= U +2h)——,
ap1 m(R2+K2)+\/a( +2h) 7

__ ¢ &
ap—m—\/a(U+2h) ﬁ

The expression (p d@ + p1 dé) is indeed an exact total differential dW. If one introduces the
variable (6. — ) = ¢ then one will have:

aW:C{ 20 o+ 291 2}+(P\/05(U+2h)—c—2dgo.
m (R?+K?)  m(R*+K?) | o B

The equalities oW / 6C = const., t — to = W / oh , which determine the motion, are:



Lecture 14 — Applying the theory of the last multiplier to canonical equations. 30

0 0, C? do )
(Rf+K2)+m(R2+K2)+E-[ = = const.,
M (”"\/a(U +2h)——
Vi
t-to= | do

C2
® laU+2n)-=
\/06( +2h) 5

here, which are equalities that can also be written:

[M(R*+K?)+m, (RZ+K?)]O =Ct- m (R’ +K?) g + const.,
[M(R*+K?*)+m, (RZ+K?)]6, =Ct+ m(R*+K?)p + const.
The problem depends upon only the single quadrature that gives t. We thus indeed recover the

results that were already obtained on page 106.

I11. A point M is attracted to the origin O and released with zero initial velocity in the
plane xOy. Find the motion of the point when the law of attraction has the form:

F=purx™y" (r:m).

m+1 \,m

X” - /.IX y ’
yn /,le ym+1

The equations of motion are:

here.
Multiply the left-hand side by y’, the right-hand side by x’, and add them. That will give:

d-x'y" = ux"y"[xdy+ydx]
or

X/ yr - ,u Xm+l ym+l +a.

m+1
On the other hand, the area integral will give:

Xy —yx =C.

%:—C+J§’ C+yR
2y X

One infers from this that:

=

when one sets:
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R= C?+4x y[Lxm”ym“+a} .
m+1

From the theory of the last multiplier, the expression:

(ax’ oy’ ox' oy’ _y'dx—x'dy

————— Joy ax-xa) = =

0C da Oa oC
is an exact total differential. One easily verifies that because one will have:

p (' dx—xdy) _ %_d_ug(d_nd_y)
Xy

JR x ¥y R

=d-L Y4 Cau —d LY dF (),
X
u\/C2+4-u(’uu”‘“+aj “
m+1

upon setting u = x y. The motion is determined by the equality:

to which one must append the relations:

dt = dx _ dy _ ydx+xdy _ du

Xr yr X/y+yix {R(u)’

which is equivalent to the single relation:

t= | du_ | const

JR(u)

31

Thus, here is an application of the theory to a case in which the vis viva theorem does not give

an integral.

IV. Two massive points M and M; of masses m and m; , resp., are constrained to slide
without friction, one of them on the vertical Oz and the other on a cylinder of revolution
around Oz. The two points attract each other according to an arbitrary function of the

distance. Motion of the system. —

Let & be the angle that the plane MOz makes with the xOz plane. The position of the system
depends upon three parameters X, &, and z. In order to solve the problem by quadratures, it will
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suffice to know four first integrals in which t does not appear, or rather, five integrals that depend
upon t.
The theorem of moments relative to Oz gives:

0=Ct+ C’',

which is an equality that is equivalent to two integrals. On the other hand, from the theorem about
the motion of the center of gravity, one will have:

mz+mizi=igt’ +at+p.
If one combines those integrals with the vis viva integral:
m z?+m(R*0% +2'?) =29 (mz + my z1) + 2U (z - z1) + const.

then one will see that one knows five integrals in which t appears. The motion is then calculated
with the aid of quadratures.
Consider separately the four equations:

dz, _ dz’ dz/

7 g g
0z 0z,

(A)

dz
7

Those equations are the equations of motion of a system whose vis viva is (mz'> +m, z/*) and is
subjected to forces that admit the force function [g (m z + m1 z1) + U]. In addition to the integral:

(B) mz*+m 2> =2g (Mmz+myz1) + 2U (z - 21) + 2h,
we know an integral of equations (A), namely:

’ "2
©) (mz'+m, z))
m-+m,

=2g(mz+miz1) +a,

which is an integral that is deduced immediately from the foregoing. (It is the vis viva integral
applied to the motion of the projection onto Oz of the center of gravity of the points M, M1.)
On the other hand, if we remark that the canonical variables for equations (A) are p1= mz', p2

= m, z; then the theory that was developed above will show us that the expression:

mz'dz+m, z/ dz, ,
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in which we replace z' and z; with the values that we infer from (R) and (C), must be an exact

total differential dW. Indeed, a very simple calculation will give:
mz'dz+m, z/ dz,

= ;[\/mml(zu +2h—q) (dz—dz)+ 2g(Mz+m, 2) +a (mdz+mldzl)]
m+m,

= ﬁ[\/mnﬁ[ZU(nHZh—a]dn+w/29§+ad§] -

ifonesets(z—z1)=npandmz+miz1=¢.
The motion is then determined by the two equations:

mm,

t— — +const. = + const.,
m+m, ; JZU(n)+2h a
and
d& _ mm, dn.
\/29§+a 2U(n)+2h—«
or rather
2
1 (d—éj =29¢+a.
m+m, \ dt

The last equation is nothing but the integral (C).
One will arrive at the result more quickly by immediately introducing the variables 7 and &
Indeed, the vis viva of the system (M, M) is equal to:

(7" +mm, %)+ mR?9".

m+m

12
Since one has &' = 6, and - 29 ¢, the vis viva theorem will imply the following equality:
m-+m,

mm,
m-+m,

"2 = 2U + const.

The motion is then determined by the three equalities:
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0=Ct+ C’, mfm :%gt2+at+ﬂ,
1
and
m+m o_ dn
mm, JU@)+2h—a

It would be easy to apply the theory of the last multiplier to the examples that were treated in
the previous chapters. However, this handful of exercises here will suffice to show the utility of
that theory: In a great number of cases, it permits one to predict that the problem under study can
be solved at one stroke by quadratures, even though the variables employed do not exhibit that fact
clearly.

It is therefore appropriate to study the variables that give the simplest form to those
quadratures.



LECTURE 15

JACOBI’S THEOREM. - LIOUVILLE’S THEOREM.

In the preceding lecture, we showed that if we know a second integral for a two-parameter
mechanical problem, in addition to the vis viva integral, then the solution to the problem can be
achieved by quadratures. That theorem is only a consequence of a general proposition by Jacobi
that we shall now develop.

Let S be a material system without friction whose constraints can depend upon time and whose
position is defined by the parameters qi, g2, ..., gk . If the given forces that are exerted on the
system admit a force function U (t, qi, gz, ..., gk) then the canonical equations of motion of the
system can be written:

dg; _ oH
dt op.
0 . (i=1,2,...,K),
dp, __oH
dt  oq

with
H=K(, gy ..., 0« P1, ..., p) — U (t, q1, 92, ..., k) .

Replace the pi in H with 6V / 6qgi and consider the partial differential equation:

oV
2 E+H[t,ql,...,qk,

N v j
oq, o

It is a first-order equation that pertains to the function V of the (k + 1) variables t, q1, gz, ..., 0k,
and into which V does not enter explicitly.

Jacobi showed that one can deduce the general integral of the canonical equations (1) from a
complete integral of (2).

A complete integral V of (2) is, by definition, an integral V (t, qi, 92, ..., Ok, a1, ..., o) that
depends upon k arbitrary constants e, ..., ax that permit one to attribute arbitrary values to the (k
+ 1) derivatives of V for arbitrary values to, g’ of t and the g;, resp., subject to only the condition
that they must verify the relation (2).

Here, if the relation (2) is solved for the 6V / oqi then the integral V (t, g1, g2, ..., Ok, a1, ..., Q&)
will be a complete integral if one can select the a1, ..., ax in such a manner as to give arbitrary
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values to the derivatives [ﬂj s e (ﬂ} . (a—vj will then take the value that is assigned to
aqjl_ 0 aqk 0 at 0
it by equation (2).
If one considers the equations:
oV
- = A1 ,
oa,
e S
oV
[ A( ,
oq,
in which Ag, ..., Ak are arbitrary constants, then one can solve that system (3) for the aa, ..., ox.

Analytically, that amounts to saying that the functional determinant of the k functions 6V / oqi of
o, ..., ok is not identically zero. That determinant is nothing but:

oV oV oV
o900, Og0e, 0,00
A= : : :
oV oV oV
aq Oay  0Q, Oax, aq, O,

Hence, a complete integral is an integral that depends upon k arbitrary constants such that A is
non-zero. Having recalled that definition, | say that if one knows a complete integral to (2) then
the canonical system (1) can be integrated from that fact alone.

Indeed, set:
oV oV
e, P S
4 B)
oV oV
a—ﬁw = oq

The system (4-5), thus-formed, in which one considers the « and the Sto be 2k arbitrary constants,
will define the general integral p1 (t), ..., px (t), 91 (t), ..., gk (t) of equations (1).

First of all, the relations (4-5) determine the pi, i as functions of t and 2k distinct arbitrary
constants.

Indeed, on the one hand, equations (4) can be solved for g1, g2, ..., Ok, because the functional
determinant of those equations with respect to the g1, gz, ..., gk is nothing but A. g, g2, ..., gk are
thus obtained as functions of a, ..., o, fi, ..., fk. If, on the other hand, one substitutes those
values of g in (5), then one will obtain p, ..., pk as functions of the same quantities.
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On the other hand, those 2k constants «i, 4 are distinct. In other words, one can select them in
such a way that one gives arbitrary values q’, p’ to gi, pi, resp., att =to . Indeed, if one sets t = to,
gi = g/ in equations (5) then one can select the « in such a fashion that one gives arbitrary values

p’ to the pi . When the « are determined in that way, say ai = « , the values of Swill be obtained
immediately upon settingt=to, gi= g, @i = o in (4).

From that, if one can prove that any system of functions p; (t), gi (t) that verifies the relations
(4-5) also verifies the equations (1), it will be clear that the relations (4-5) define the general
integral of the canonical system.

In order to prove that this is true, calculate the derivatives % % using (4-5). That will

give:
2
ov_, oV dg oV dg, OV dg _,
Oa o0t Oay0q, dt O, 0q, dt Oa, 0, dt
L S
dp, _ 0oV  oVdq 0V dg, OV dg _
dt og 6t oq7 dt  og,0q, dt oq, oq, dt
0 N (oo

One can infer dgi/ dt from (4') and dpi / dt from (5’). One must substitute those values in (1)
and confirm that the relations thus-obtained are verified for any system pi (t), gi (t) that satisfies
the relations (4-5) [if V is a complete integral of (2)]. Instead of doing that, it is legitimate for one
to replace the dqi/ dt, dpi/ dt in (4’) and (5') with their values that are inferred from (1) and see if
the conditions that are calculated in that way are consequences of equations (4-5).

First, make that substitution in (4"). One will find that:

82\/ + 62\/ %4_ azv %4_...4_ 62\/ ﬁ—o
(6) 0oy Ot Doy 04, Op, Oy, 00, 0P, Oa, 0, G,

The equation that we just wrote down must be a consequence of the relations (4-5). By
hypothesis, V will satisfy equation (2) forany t, qu, ..., Ok, a1, ..., k. V will then identically satisfy
the equation that is obtained by differentiating (2) with respect to aa, i.e., the equation:
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oV oH oV oH oV oH oV
+ + et =0.
otoa, a(‘w) aq, Oa, a(‘av j aq, Oa, a[ oV j aq, Oa,
og, aq, a0,

On the other hand, if one replaces the pi in the first equation in (6) with their values that one
infers from (5) then it will coincide with the preceding identity. It will then be indeed a
consequence of the relations (4-5). One will likewise verify the other equations (6).

That shows us that the first group of canonical equations:

dg; _ oH

— = i=1,2,...,kK

dt  op, ( )
. - . dp, . oH dg. .
is verified by the solutions pi (t), gi (t) to (4-5). If we now replace d_tl with — a , and d_tl with

% in equations (5) then that will give:
oH oV o0V oH 0oV oH oV oH
—+ +———+ — -t —=0,
aq, og ot ogp dp, 0,00, Op, a0, 00, Opy
(1) e ———————————————————————

On the other hand, V will satisfy the relation that is obtained by differentiating (2) with respect
to g1, which is a relation that can be written:

o  oH oH oV oH o oH o _

—+—+ —+ 4+t =0

otaq,  oa, a(a\/jaql a[a\/jaqzaql a(av}aqk@ql
oq, aq, oq,

If one takes equations (5) into account then the first equation in (7) will be no different from that
identity. One verifies the other equations in (7) similarly.
The proof is then complete, and one arrives at the following conclusion:

The integration of the system (1) can be achieved when one knows a complete integral of
equation (2), and the equations that resolve the problem of mechanics are:
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v
oa,

:ﬂk-

They determine g1, g2, ..., gk as functions of t and the 2k arbitrary constants ai, /i .

We shall indicate a certain number of cases in which the Jacobi equation can be replaced with
a simpler equation.

Case in which H does not depend upon time. — Suppose that the constraints do not depend
upon time, any more than the force function U. t will not enter into H then.
There will then exist complete integrals of equation (2) that have the form:

V=-ht+W(,0q2, ..., 0k a1, ..., &1, h),
in which h is a constant.
Indeed, replace V with—ht+ W (qy, ..., gk) in equation (2). W must then satisfy the equation:

W oW
2" H| a0 =i — | =N,
(2) (ql %2, aqk]

If W(qi, 92, ..., Ok i, ..., a1, h) is a complete integral of (2) for each value of h then one
. . . W W

can choose the «, ..., ax-1 in such a manner that one can give arbitrary values to 2— g—
G, Oy

for example, for arbitrary h. It will follow from this that the function V = —h t + W is a complete

integral of equation (2). Indeed, if one wishes that Z—V N should take arbitrary values p,

Oy aa,
..o, Pg, resp., for to,q’, ...,q¢ then one can begin by setting h = Ho, where Ho is the value of H

. W .
that one will get when one replaces g;, % with g°, p?, resp., in it. One then chooses a, ..., ax-1

in such a fashion that one will give the values pf, pfkfl) to ow - oW , resp.
aq1 aQ(k—n
In this case, the motion is defined by the equalities:
oV oW oW
— =—t+ — =5, or t=— + 5,
oh oh p oh p
and
ow = [ i=12,...,k=-1).

oa;
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In particular, if k = 2 then we will recover the theorem that was proved in the previous chapter.
Indeed, suppose that one knows a complete integral V = — h t + W (q1, g2, «, h) of equation (2).
The two equations:

ow

w oW _
e

AL\
0q,

1,

can be solved for h and «, so W will satisfy the two equations:

oW oW oW oW
8 H ] v v = h y f y Ty =
8 [ql g, o, 6q2] {ql Q. o, a%] a

In order for equations (8) to be compatible, as we know, it is necessary and sufficient that f =
a should be an integral of the canonical system (1). Therefore, any complete integral W (g, g2, «,
h) of the equation H = h can be regarded as a common integral to the two equations (8), in which
f = ais a certain first integral of (1). On the other hand, if the function W satisfies the two equations
then we have proved that the motion of the system is determined by the equalities:

oW ow
oa S ah &

Those are precisely the equalities to which Jacobi’s theorem will lead.

Knowing a first integral f (qz, 2, p1, p2) = e of (1) will then permit one to determine a complete
integral of the Jacobi equation in this particular case with the aid of a simple quadrature of a total
differential. In the next lecture, we will see what the analogue of that theorem is for equations (8)
when the number of variables k is arbitrary.

Case in which several parameters g do not enter into H. — Suppose that H has the form:
H=H (t, gi+1, Qi+2, ..., Ok, P1, P2, ..., PK) .
One can look for an integral of the Jacobi equation that has the form:
Voaiqu+t a2+ ...+ aigi + W (L, Qi+, ..., k)

The function W must satisfy the equation:

oW

oW oW
E+H(t,qm,...,qk,al,..., —J=0

Oy oy
aqi+l aqk
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If one knows a complete integral (t, Qi+, Qi+2, ..., Ok, @1, @2, ..., Qi, Qi+, ... ) tO the latter

equation when one gives arbitrary values to the constants «, ... ox then the function V= q1 +
... + ai gi + W will be a complete integral of the Jacobi equation, as one will see quite easily. The

motion of the system is determined by the equations:

ow oW
+— =fi, +— =/,
0, 60!1 ﬂl q aai ,BI
ow ' ow
e = fi+1, e oa, D .

i+1
When H is independent of t at the same time as qs, g2, ..., Ok, One Sets:
V=—ht+taqu+ Q2+ ... + & qi + W (Qi+1, ..., Ok) ,

and one seeks a complete integral W of the equation:

oW oW
H(qm,...,qk,al,...,ai,—,...,—j =h.
a i+1 aqk
The equalities that define the motion are then:
oW oW oW
t= —+y, =/ - —, i=f-—,
Ftr JZ} o qi =4 o
ow _ ow
0a; A ooy, ficr.

In particular, if i = k — 1 then W (which is a function of only the variable qx) will be defined by

a quadrature:
oW
H [qk,al,...,ak_l,a] =h.

That case often presents itself in problems with two parameters: t and q: will then be given as
functions of g2 by the equations:

oW oW
t=y+ E(qzith)a 1= - g(qz,a,h).

In this particular case, the canonical equations admit the integral p1 = «, and when that is
combined with the equality H = h, that will determine the function:
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Ipldql+ pquz =aqi+W(q2, o, h)
precisely.

Applications. — We shall now indicate some examples to which those remarks apply. We shall
first study the motion of a material point M under the action of a central force that is a function of
only the distance r = OM from the point M to the center O of the force.

If we refer the point to polar coordinates r and @ in the plane of the trajectory then we will
have:

T=1im[r?+r?9?] = = p2+|o—22 :
2 2m| b r?
_ 1 P,

H——Zm[pf+r—§}—U(r).

The Jacobi equation admits an integral of the formV=—-ht+ « 8+ W (r, , h). W is given by
the quadrature:

w= | J2mriU +h)-a?

dr,
r
while t and Gare given by the equalities:
t= I mr dr +const., 0= _[ adr + const.
J2mriU +h)—a? ry 2mr?(U +h)—a’

Those quadratures coincide with the ones that we obtained before using other methods.
However, it would be appropriate to remark that those two quadratures are found to be performed
by that fact in its own right if we know how to perform the single quadrature that gives W. Jacobi’s
method exhibits that fact quite clearly.

Similarly, let us calculate the motion of a point M on a surface of revolution when the given
force admits a force function U (r), where r denotes the distance from the point M to the axis of
revolution, and @denotes the angle between the two planes zOM and xOz. If z = ¢ (r) is the equation
of the surface then we will have:

2 2 2 2 1 p; p;
T=im[r@Q+¢“)+r° 0“1 = —| ——+-—2%|,
il gy o) = BB

2 2
H= = | P Py,
2m|1+¢" r

The functions W (r, &, h) and t (r), & (r) are determined here by the equalities:
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w= | \/(1+¢'2)[2m:2(u +h-a’]

mry1+¢* dr 6’:.[ a\1+¢” dr

t=
Iszrz(u +h)—a? ry2mrU +h)—a?

It would be appropriate to make the same remark as before on the subject of those two integrals.
Furthermore, that remark can be repeated in all of the analogous cases.

It would be easy to apply Jacobi’s method to all of the examples that were treated before in
which H could be reduced to something that depended upon only gk and the variables pi by a
convenient choice of variables. We shall confine ourselves here to recalling the example that was
treated on page 116.

A massive, homogeneous, solid body of revolution is traversed along its axis by a needle to
which it is subject and one of whose extremities slides without friction on one vertical Oz, while
the other slides on the horizontal plane xOy. Let us study its motion.

The vis viva 2T of the system (see page 117) is equal to:

(A+Md?)sin® Qy"? +{A+M[d?cos’ @+ (1 —d)*sin* 8]}8"* +[Ccos Oy + @],

and the force function U is M g (I — d) cos 6. If one sets:

01 = oT 02 = oT 03 = oT
1= , 2= —, 3=
00’ o¢' oy’
then that will give:
— 2 2 2
H= (P, ~Ccosdp,) + Py +&—Mg(l—d)cose.

2(A+Md?)sin’0 {A+M[d’cos’ @+ (1-d)?sin*E]} 2
One can take the function W to be the function that is defined by:

W=agp+a'y +Wi(0),
with

' 2

(A+Md?)sin* @

and the motion will then be determined by the equalities:
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oW,
oo’

oW, oW,
t= —2% +const., =p-—1, =p-
o p=p 2w 7 B

inwhich a, B, «', B', hare arbitrary constants. One thus recovers the equations on page 118. The

three quadratures that give t, ¢, and  can be performed once one has performed the one that gives
Wi .

Theorems of Liouville and Staeckel.

Now suppose that the vis viva of the system has the form:

T: (Dl(q1)+¢)2(q2;+.“+¢k(qk) [Al(ql)q£2+A2(q2)q£2++A<(qk)q|,<2] ,

and that the forces are derived from the potential:

- vy () +y,(9,) +-+w, (q,) _
@ (0) +9,(0,) ++o.(a,)
One has the expression for H :

- . {p—12+p_22+...+p_f}_%+l//z+---+y/k |
2((P1+(P2+-..+(Pk) A A A O+, ++ @

Conversely, if H has that form then T and U will have the indicated form (see pp. 165).
The partial differential equation in W, namely:

Cpdw) e

® HEL) S SO
;A do Zl

will then admit a complete integral of the form:

W =Wa (q2) + W1 (q2) + ... + Wi (Qk) .

Indeed, it suffices to take Wi (qi) to be the function that is given by the equality:

Wi (ai) = qui\/zA (i +ho +a)
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in which the «; are constants that are constrained by the single condition that:
atat...to=0.

The function W = Zwi will then satisfy equation (2') identically.
If one sets Fi = \/y, +h @ +«, then the motion will be defined by the equalities:

W, _ow,
oo, Oay

=const. [i=1,2,...,(k—1),since ax=— (o1 + ... + ax-1)]

and
t + const. = aﬂ
oh

which are equalities that can be written:

| %dql+ﬂ1:j %dqz"'ﬁz:"':.[\/gqu"_ﬂk’

t{ 2 +const. = I¢1 /% dg, + @, /%dq2+---+(pk /%qu ,
1 2 k

and

45

resp. One thus recovers the same equalities that one would get by starting from Lagrange’s
equations (see pages 120-123). However, on the one hand, those equalities will follow more
directly from Jacobi’s theorem. On the other hand, one sees that the 2k integrals that define the

motion can be performed if one knows how to perform the quadratures that define the Wi .

In another lecture, we will give some new applications of Liouville’s theorem. I will now
indicate a generalization of that theorem. That generalization is due to P. Staeckel, who extended
it to an arbitrary number of parameters. In order to not complicate the notation, we shall adopt the

case of three parameters.
Let A be the determinant:

2 (0) o(q) ¢(d;)
A=y (@) w,(q) ws(dy)|,
ACHIACHIFACH

and let @1, ®,, @3 be the minors of A with respect to the elements of the first row, while ¥4, ...

and Zy, ... are the minors relative to ya, ..., y1, ..., resp.
Suppose that the vis viva 2T of a system and the force function U have the forms:

®) o7 = A[q_+q_+q_j oy @A @) b+ @) é
46 ¢ b A



Lecture 15 — Jacobi’s theorem. Liouville’s theorem. 46

The Jacobi method will permit one to determine the motion by quadratures.
Indeed, we have:
fLd,+f,D,+ f, D,

1
H= ﬂ[plz D, + p22q)2+ p§CD3]—

A
here, and equation (2') for W will be written:
wY)  (owY ow )
N () PTELT) PO T) PR TR
oQ aq, s

Let us see whether there exists a complete integral of the form:

W = W1 (01) + W2 (q2) + W3 (g3) .
If we observe that we have:

Z(D(D =A, Zl//q) =0, Z;(CD =0

1,23 1,23 123
then when we set:
2
oW
— | =2[hi+hp+awyi+a y] =Fi(q),
aq,
ow Y
— | =2[+th@p+taw+a y] =F (1),
aq,
ow Y
% =2[fe+hm+aw+a’ y] =Fs(03),
3

equation (2") will be verified identically: h, , «' denote constants.
The motion is defined by the equalities:

:J‘ y, dg, J‘ y, dg, J‘ w, dd,

JER@) “JFR@) °JFR@)

— j X1 dq1 J' Ao dQ2 j X3 dqs

JR@) °JR@) °JF@)

_ @ dg, », dg, ¢, A,

o J2urost = | JFR(@) gl JF(a,) gl JF.(,)

The preceding theorem includes Liouville’s theorem as a special case, because if T and U have the

form that Liouville’s theorem requires then one will see directly that one can always put it into the
form (A).



LECTURE 16

STUDY OF REAL TRAJECTORIES. EQUATIONS OF THE
TRAJECTORIES WHEN THE FORCES ARE ZERO OR
DERIVED FROM A POTENTIAL.

Number of arbitrary constants that the trajectories depend upon. — Consider a system S
in which neither the constraints nor the forces depend upon time. The motion of that system is
determined by the Lagrange equations:

d(ar) oT dg, .
1 - = i [ PERRES] 1 '1 Dyeees . ] L= " I:1,2,"',k’
1) at (aqi,j _6qi Q; (1 Gzr- -1 O O Oz -0 O ) at Qi ( )

in which:
2T= 3 6/d} A (.- ) (Aij = Aji) .
i

Ifto, 05, ..., a7, 6°, ..., g, are the values of t, gz, ..., O, G , ..., d; for a given value of qu
(say g1 = 0) then those equations will define g, gz, ..., gk as functions of t — to and (2k — 1) arbitrary
constants gy, ..., g7, G°, ..., .. As aresult, g, ..., gk will be functions of g that depend upon
at most 2k — 1 arbitrary constants (2. On the other hand, they depend upon at least (2k — 2)

dg, \ o Oy
given g1. We shall see that in general the number v of constants that the trajectories of the system
depend upon is indeed equal to 2k — 1 and find the conditions under which that number will reduce
to 2k — 2.
Solve equations (1) for the q". If A denotes the discriminant of the quadratic form T, and a;

constants, because (g, ..., gk, and % (orq—zl, 3% (orq—k,] can take arbitrary values for a
1

denotes what A will become when one replaces the elements of the i column with Q1, Qo, ..., Q,
and finally if P; represents quadratic form with respect to the g then one can write:

(2) q' = F’i+_Ai =Pi+ S i=12,...,k.
On the other hand, we have:
" dzqi 12 dq| ”
. = _|__ ,
] dqf 0, da, 0,

(® Inwhat follows, | will say that any system of such functions gz, ds, ..., gk of g: define a trajectories of S.
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so upon replacing g, and g with their values that we infer from (2):

dg; dg; }
PR B A
d’q, j da, } { dg, "

3) , (i=2,3,...,k).
da; o’
. .. dg, d?%q
In what follows, let diy» 9> --- represent the derivatives a, ; >, ..., and let 7 denote
i 0g;
what P; will become when one replaces g, with 1, q; with q,), ..., g, with q,.
Equation (3) will then become:
" ' ﬂl _q’i ﬁ -
(4) q(i) = ﬂi—q(i)jz'l—{—% (|=2,3,...,k).

Those Bare functions of qs, gz, ..., Gk, 0, dy ---» G- There are two cases to be distinguished:
If the right-hand side of equations (4) is independent of g, then the system (4) will form a system
of (k — 1) second-order equations that involve the k variables gz, 2, ..., Jk, and those equations
will define gz, gs, ..., gk as functions of g1 and (2k — 2) arbitrary constants g, ..., g, q('zo),
q('ko). If, on the contrary, g, appears in at least one of equations (4) (say, the equation for i = 2)
then one can take:

92, .-+, Gk Gy s Qigy» -+ Ao

arbitrarily for a given g and choose ¢° in order to give q(”;)’ an arbitrary value, so the functions

g2, 03, ..., gk of g1 will then depend upon (2k — 2) distinct constants.

In order for the right-hand sides of all of equations (4) to be independent of g, , it is necessary
ﬂi — (q|' / QI) ﬂl
{2
with respect to the g/, in such a way that the result to which we will arrive can be stated thus:

and sufficient that the (k — 1) expressions should be homogeneous of degree zero

The number v of distinct constants upon which the trajectories of the system depend is equal
to (2k — 1) or (2k — 2). In order for it to reduce to (2k — 2), it is necessary and sufficient that the (k
—1) expressions (S, g, — £, 0/) should be homogeneous of degree three with respect to the q; .

If one lets ajj denote the minor of A relative to Ajj then one will have:

) ﬂi:i[ailQl+ai2Q2+'“+aikQk]'
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The vwill then be equal to (2k — 2), in particular, whenever the forces Q; are homogeneous of
degree two with respectto q,, q,, ..., 0, .

When the Qi do not depend upon the velocities, the same thing will be true for the 5 . In order
for vto be equal to (2k — 2), it is necessary and sufficient that the expressions g, g, — £, q; should

be identically zero; in other words, that one should have:
BB _ B

(6) L= P2 = B
o Q0 f

It is possible for the Sto not depend upon the g only if one has:

Bi=fp=..=k=0,

and as a result (3):

Qi=Q2=...=Qk=0.

The trajectories of a system for which the Q; are zero thus depend upon (2k — 2) parameters.
We shall give the name of geodesics for the ds? of T to those trajectories upon setting:

ds® = > A dg dg; .

That is the case for a system without friction that is not subject to any given forces. When the
forces Qi, which are functions of only qi, g2, ..., gk, are not all zero, the trajectories will always
depend upon (2k — 1) parameters.

A remarkable case is the one in which the forces depend upon velocities so the trajectories of

the system will coincide with the geodesics of ds®. In order for that to be true, it is necessary and
sufficient that equations (6) should be verified; in other words, that one should have:

A=A, B=A0, ..., f=AG,
and as a result, from (5):

(7) 26 = 14,08, Q+48,Q) (=124,

T
However, on the other hand, let p, = % so one knows that one has:
q

, 1
G = K[ail P+, Py -+ pk]'

(® Equations (5), in which one annuls the £, have no other solution than Q; = Qz = ... = Q« = 0, because their
determinant is a power of A, and as a result, it will not be zero.
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Equations (7) will then be equivalent to the following ones:

oT oT oT
(8) Ql:ﬂ’_,v sz/l_,v [EXT Qk_ﬂ‘_'
oG aq, o,

In order for the trajectories of (1) to be the same when all of the forces (Qi) are zero, it will

therefore be necessary and sufficient that Qz, Qz, ..., Qkshould be proportional to 2;-, : aa;-, ) ees
o
oa;

Examples. — Let us interpret those conditions (8) in certain special cases. First of all, let T be
the vis viva of a free material point, so one has : T = im[x? +y'* + 2], and the conditions (8)

!

express the idea that X, Y, Z are proportional to x', y', z', i.e., the force that is exerted on that
point will have the velocity for the line of action. When a free point is subject to a force that
constantly points in the direction of its velocity (or in the opposite sense), it will describe a line,
no matter what the initial conditions.

Now, if the system is composed of free material points M; then one will have: T =
D im[x?+y;?+z?], and the conditions (8) express the idea that the force (Fi) that is exerted

upon each point M; is directed along the velocity of M; (in the same or opposite sense), and that
one should have —— =
mi Vi ml Vl

Finally, let us treat the case of a point M that moves on a surface S. The conditions (8) then
express the idea that the force that acts upon it is constantly in the normal plane to the surface and
tangent to the trajectory. Indeed, let X (g1, g2), ¥ (01, 92), Z (91, g2) be the Cartesian coordinates of
a point on the surface. The total force that is exerted on M is, as one knows, the resultant of the
normal reaction and the given force (F') [viz., the active force and the force of friction, if it exists].
Let (F1) or (X1, Y1, Z1) be the projection of the given force (F') onto the tangent plane to S. One
has the following relations between Q1, Q2, X1, Y1, Z1:

., K), moreover.

OX oy oz oy
9) Q1= X, —+Y,L+7,=, Q2= X —+Y— z—
‘o, 'oq, g, toq, éq, o,

Conversely, if (F1) denotes a segment that is tangent to S whose projections satisfy equations (9)
then it will denote the component of (F") that is tangent to S. In order for that segment (F1) to be

tangent to the trajectory, it is necessary that one must have:
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Xl —_ Yl
X o, OX oy LW S o Lo
og " aqz L& oa, %t oq, % 8q1 Lo o,

Zl

and as a result, upon calling the common value of those ratios x :

2 2 2
oT
0= iy (z] {ﬂ] [a_J +q(ax o wgﬁa_z] _udr
g, o, o, aq, 09, a0, 09, aq; Ad, m &gy

and similarly, Q2 = ﬁa—T,.
m oa,

Conversely, if Q1 and Q2 have that form then the segment:

ox ., oOx oy oy oz , oz
X = — —~ ’ Y - — y Z = ~ ~
1= H [6(}1 g+ aq, qzj H {8(:‘1 q o, qzj 1= {aql g+ aq, qzj

will be a tangent segment to the trajectory, so to the surface that satisfies equations (9) and, as a
result, it will represent the component of (F’) that is tangent to S. The conditions (8) then express

the fact that (F') is projected onto the tangent plane to S along tangent to the trajectory. That will

be the case, for example, with a point that moves without friction on a surface in a resisting medium
with no other force acting upon it.

We shall now study the systems that are subject to forces that are independent of velocity
exclusively.

Study of the trajectories in the case where the forces do not depend upon velocity. — From
the foregoing, it would be suitable to subdivide this case into two other ones according to whether
all of the forces are zero or not.

. All of the coefficients Qi are zero. — The trajectories (viz., geodesics of ds*) will then depend
upon (2k — 2) constants and are defined [see page 235] by (k — 1) equations of the form:

(4) Oy = 75— 7, (i=2,3,...,K.

Once those equations are integrated, the motion of the system will be given by the equality:

T T V22 A G Gy
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in which q; =dgi /dg:s, g =1, and h represents an arbitrary constant for each geodesic.

Therefore, if one expresses Q2, s, ..., gk as functions of q: and (2k — 2) arbitrary constants c, Cz,
..., Cok—2 then one will have:

t= cj f[a,,c.C,,...,Cp_,]dg, +C',
in which c represents any one of the constants. More generally, let:
@0, 9, O, Opzyr- -+, iy €] = @

be a first integral of equations (4') that depends upon one arbitrary parameter c. One can write:

dt= ¢, 2. A GG () da,

and that equality, when combined with equations (4"), define the same motion as (1). Conversely,
if the equality:

(@) dt = l//[qlaqm---’qk’qu)’---'q('k)vc]x/ ZAj Oy Ay da

in which y is an arbitrary function, is compatible with equations (1), in other words, if one
combines it with equations (4') then it will define a motion on S. y is a first integral of the
geodesics.

: . : : dt
Indeed, consider an arbitrary geodesic. From (1), one will have — = L all along that
ds . /h
geodesic, and as a result, from (a), one must also have: = 1/\/ﬂ = const. Therefore, yis a first
integral of (4').

We will soon give an explicit form to equations (4').

For the moment, | shall insist upon only the fact that the same trajectory can correspond to an
infinitude of distinct motions, and I intend the word “motion” to mean the same positions, but
different velocities. Moreover, those motions are deduced from just one of them by multiplying all
velocities by the same numerical constant.

I1. Not all of the coefficients Qi (qz, g2, ..., Qk) are zero. Equations of the trajectories. — We
know that the trajectories depend upon (2k — 1) parameters. In order to construct the differential
equations that define those trajectories without the intermediary of t, observe that from (4) [see
page 2], we first have:

[/ ! 14 !
iy tqsh 7 —7 _ Qo Tl 4 —7,

:Bi - Q(’i) ﬂl ﬂz - q(lz) ﬂl

(10) (i=3,4,....Kk),

2
in which the common value of those ratios is (;—tJ )
0
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On the other hand, if one differentiates the equality:

!
q,2 — b, —0 B _¥

il " ’ -
oy T =72 X2

with respect to g1 and points out that %-q{z = 2q, ql”;—qt = 2q,, and replaces g, with
1 1

(7, >+ ) = m (v2/ y2) + B then one will have:

27 Veiop =9 Ve

V4! da, 7,
or rather:
a (A + Uy 71— 7] a (B, =G B) " '
(11) dg, . dg, _ 2,105 + iy 7, — 7, ] ’
Q(”z) + q(,Z) T T Br— q('z) B B - q(lz) B

which is an equation of the form:
"2

_3q(2) +ng3 +Ms
|\/|0 _q(rz)

"

Uz =

in which M3z and Ms denote polynomials of degrees three and five, resp., in gy, , 0, ---» G, and

Mo is a function of the ¢ .

Since equations (10) and (11) define the trajectories, it would be easy to give them a more
symmetric form, but that is hardly important in the context of our objective.

Observe that in equations (10) and (11), the expressions 7, ..., 7« depend upon only the vis
viva T. Only the coefficients S vary with the forces Qi . Furthermore, observe that the geodesics
of T are obtained by equating all of the numerators i of the ratios (10) to zero.

A first consequence of those remarks is that the geodesics of T belong to the trajectories no
matter what the forces Qi (qz, 02, ..., k). Indeed, since those geodesics satisfy the equations yi =
0, they will satisfy equations (10). On the other hand, equation (11) can be written:

and since one has y» = 0, dy2 / dg: = O for an arbitrary geodesic, it will also be verified. The
geodesics then define a congruence of trajectories with (2k — 2) parameters.
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Determination of time. — When the system (10), (11) has been integrated, one will know g,
gs, ..., gk as functions of g1 and (2k — 1) arbitrary constants, namely, the initial values of q,, ...,

G¢» (s Gy -~ G Oz for g7 One and only one trajectory will correspond to those initial

values, when taken at random. All along that trajectory, the motion will be defined by any one of
the equalities:

] "+ T, =TT

dt=dg, | % = dg, | S0 0BT

i ﬁl _q(i) ﬂl

One sees that t is calculated by a quadrature and that for a given trajectory, one will have:

t=+1f(qy) + const.,

in which f denotes a well-defined function of g: (which depends upon the trajectory).
Thevalues g, q,, ..., g, ¢°, ..., g.° correspond to one and only one system of values g,

Ops--or O Ggys o> fo)» Oy @nd that system will not change when one changes the signs of all

the g°. It follows from this that if each point of the material system occupies the same position
with equal, but directly opposite, velocities at the instants t; and t, then one can pass from the first
motion to the second one by changing tinto t; +to —t.
Indeed, one has:
t—ti=+f(q) - ()
for the first motion, and:
t-to=—f(q) - f(q)

for the second one, if g is the common value of g; at the two instants t; and t,.

One sees that a given trajectory can be traversed in only two distinct manners. For each position
of the system along that trajectory, the velocities ¢, 0, ..., 9, will be determined, up to sign, by

the equalities:

[ l//i [ ! ! [ ! !
Q=% /— &= q(Z)ql""’ Q = q(k)ql'

In particular, if that trajectory is a geodesic then one will always have g, = oo, or if one prefers,

"

dt / dgs = 0. Conversely, if one takes arbitrary values for g, ..., 0, 03, ..., di). Of thatannul

2 then the trajectory that is defined by those values will be unique, and as a result, it will coincide
with the geodesic that satisfies those initial conditions, since that geodesic is also a trajectory. All
along that trajectory, dt/ dg: will then be zero. One can further say that the congruence of geodesics
is the (2k — 2)-parameter congruence that is obtained by subjecting the (2k — 1) parameters of the
trajectory to the condition that 1 / To = 0. In particular, if there exists a force function then each



Lecture 16 — Study of real trajectories. 55

value h of the constant of the vis viva integral will correspond to (2k — 1) parameters, so the
congruence of geodesics will correspond to the value h = oo.

Remarkable trajectories. — Nevertheless, there can exist exceptional trajectories that we call
remarkable and for which the preceding conclusions break down: They are the trajectories that
give the form 0/0 to the ratios i/ yi; in other words, that they satisfy both of the equalities:

diy + 70— 75 =0 B—0q; B =0 (i=2,3,...K).
Those trajectories are then the geodesics that simultaneously satisfy all of the equations:

i _ B

(12) q('z) = F, e, q(,k) = ﬂ .
1 1

In general, the system (12) and the equations of the geodesics have no common integral: In all
cases, from (12), those common integrals cannot depend upon more than (k — 1) arbitrary constants.

There is an infinitude of possible motions on one of those remarkable trajectories. Indeed, we
can replace the equations of motion with equations (4):

" ' ﬂ q,i _ﬁi i
(4) 0= q(i)+q(i)”1_ﬂi+#gli_% :
G G

combined with one of the Lagrange equations, or if one prefers, with the vis viva equality:
T= _[[Ql +Q, q(,2) ++Q q(,k)]dql .

By hypothesis, the trajectory considered will satisfy the equations i = 0, yi = 0, so it will
satisfy the equations (4). The motion on that trajectory will then be defined by the single equality:

(13) 1072 A Gy A = [[Q+Q, f +++++Q, afy1day,

or rather:
dt — dql gD(ql) ,
\} 2[f(q,)+h]

in which ¢ and f are two functions of g that are determined by the trajectory considered.
Observe that one can always assume that the coefficient ¢ of 1q;* in (13) will be non-zero if
the trajectory corresponds to a real motion of the system. Indeed, one has 2T =
> m; (X2 +y?+2]7),and it is always legitimate to take (g1, 02, ..., gk) to be k of the coordinates
Xi, Yj, Zj that are independent. Under those conditions, 2T will be annulled under a real motion of
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the system only if all of the g’ are zero (*). Since one has ¢ = 2T (/P PP s B AN VY ()
cannot be annulled for a real position of the system and real values of q,), G5, ---» 0, - Observe,

moreover, that any real motion of S will correspond to a real trajectory, but the converse is not
necessarily true. It can happen that qi, g2, ..., gk are real, but certain coordinates x;, yj, zj of the
points M; of S are imaginary.

The motion of the system on a remarkable trajectory is that of a system with complete
constraints. The material points of such a system will traverse only one trajectory, but they can
traverse it in an infinitude of ways.

Suppose, for example, that one is dealing with a free material point that is referred to the
rectangular coordinates X, y, z and is subjected to the force (F) or X, Y, Z. The remarkable
trajectories are the lines D (if they exist) such that all along D, the force has D for its line of action.
Notably, if F is a force that issues from the origin O then the remarkable trajectories will be
composed of all of the lines that pass through O, which is a congruence with (k — 1) = 2 parameters.

Similarly, if M is a point that moves on a surface X then the exceptional trajectories are the
geodesics of X that are tangent at each point to the projection of the force onto the plane tangent
to 2.

Study of real trajectories.

Consider a real trajectory that is not a remarkable trajectory. The motion along that trajectory

is defined by any one of the equalities ;—t = [Zi it will then be real if xi | wiis positive and
0, Vi

imaginary if yi/ v is negative. The real trajectories (C) are then subdivided into two categories:

The trajectories (C") along which the motion is real and the trajectories (C") along which it is

imaginary. However, that raises the question: Can part of the same analytic trajectory belong to

the class (C), while part of it belongs to the class (C") ? In order to answer that question concisely,

it is necessary to discuss certain properties of motion in detail.
Exhibiting some properties of motion:
In what follows, we shall suppose that the parameters gi have been chosen in such a fashion

that any real position of the system S corresponds to real values of gi, and that A, the discriminant
of T, is not annulled for any real position of S. For any system of real values of g; that corresponds

(* In regard to this, we add that if the g; have been chosen in that way then the discriminant A of T will not be
annulled for any real position of the system and for real values of the gi . The expression ij (x;2 + y}z + z}z) will

!

then be annulled for some real values of x', y', z' that are not all zero.
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to real positions of S, the functions Aj;, Qi can have several real determinations (°). However, we
assume that those determinations define just as many continuous functions of the real variables g;
that possess continuous first and second derivatives, except perhaps for certain exceptional values
that we shall call singular values of the values of g; that correspond to singular positions of the
system S.

Now consider a system of real values of the gi, namely, q1 = a1, 02 = @2, ..., Ok = , in the
neighborhood of which the determination that is made for each of the functions Ajj, Qi is regular,
by which | mean that they remain well-defined and continuous, along with their first and second
derivatives. If we solve the Lagrange equations (1) that define the motion of S for the g then we

will get the equations:

dg, _ , dg
2 — =0, - =Pi+ S,
2 it o it B

whose right-hand sides are well-defined and continuous, along with their first derivatives, while
the variables g will remain finite and the g; will remain close to as, az, ..., a . There will then

exist one and only one system of integrals of (2), namely, g1 (t), ..., gk (t), a;(t), ..., q (t), such

that for t = to, the gi will take the values a;, and the g will take the values ¢° that are given in
advance.

Let us make that theorem more precise: One can find a number & such that the functions Qi are
regular for the values of g; that satisfy the equalities:
|gi—ai|<d i=1,2,...,k).

If L is an arbitrary number that we take to be greater than & then the right-hand sides of
equations (2) will remain less than a certain limit M in absolute value, while the inequalities:

lgi—ai|<6&, g/ |<L (i=1,2,...,k

will be verified. From that, let g, g'° be a system of values that satisfies the conditions:
19 S% (i=1,2,..,K).

For any system qi, ..., g, such that one has:

(®) For the given initial conditions of the system S, the vis viva T and the forces are well-defined. However, if the
same system of values of the gi corresponds to several positions of S then the A; and Q; will have several
determinations. For a position of S that is taken at random, there will be no ambiguity about which of those
determinations that one must choose.
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NS
NI%

|Qi_Qi0|S ) |q. o |S
the right-hand sides of (2) will remain less than M in modulus. From the fundamental theorem on
differential equations (°), the system of integrals g (t), q; (t) that takes the values g, q/° fort=
to will be a system of functions of t that is well-defined and continuous, at least in the interval from
to—o/2Mtoto + &/ 2M.

Let us study what happens for initial values '° that are very large in absolute value. Take one
of the parameters g to be an independent variable, which is chosen in such a way that its derivative
(dg/ dt) is not less than any of the other derivatives g'° in absolute value: Let g1 be that parameter.

If we set:

1 dt
S E--=Nh
0, 0,
then equations (2) will become:
L
do dg
@) 1 :
9 g, 29 g+ (8- B
dql (i)’ dql (i) (i)/~1

Let M1 be the maximum modulus of the right-hand sides of equations (2') when one has,

simultaneously:

, 5 .
lgi—ai|<8, n<ls, |q(i)|31+E (i=1,2,....k

(with the condition L1 > &). On the other hand, let the values ¢°, r°, q(’f)’ satisfy the conditions:

0 0
i) rlSz’ |q:|£

There exists one and only one system of integrals of (2') t (qs), r1 (1), ri (91), q;, (q,) that takes
the valuesto, g, r,”, ;) forg:= q,’, and those integrals will be continuous, at least in the interval

from g’ — a1to g + &1, when & denotes the quantity 5/ 2M; .

In particular, if r,° = 0 then that system will have the form:

t=1o, rn=0, =@ (@), d; =),

() See Picard, Traité d’analyse, Tome 1l, Chapter XI, page 308.
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as equations (2') will show immediately (7).
That shows that r1 will never be annulled in the interval q° — &1 to g + &, or at least it will

not be identically zero. t will then vary constantly in the same sense when gz grows from q° — &
to g + & and will pass from the value to — 7 to the value to + 7’ or from the value to + 7’ to the

value to — 7. It follows from this that g (t), g2 (t), ..., g« (t) are functions of t that are continuous,
along with their first derivatives, in the interval from to— 7to to + 7', and that g1 passes from one

of the values g + & to the other when t varies in that interval.

The same argument can be repeated when the independent variable is a different parameter g;.
Equations (2) will correspond to analogous equations: Let M; be the maximum modulus of the
right-hand sides of those equations when one has, at the same time:

dt
lgi—ai| <0, e

i

sng (i=1,2,...,K).

dg;

<L,
dg,

The quantity &1 = 6/ 2M will correspond to the quantity g = 6/ 2 M; . | shall let £ denote the
smallest of the quantities & .

Those propositions allow us to prove an important property of motion. Consider the system of
integrals i (t), q; (t) of equations (2) such that for t=to, gi = q°, g/ = q/°, the values of q° are
not singular values of Aj;, Qi . When one makes t increase when starting from to , several situations
can present themselves: The motion might remain regular for any value of t. (By that, | mean that
it remains finite and continuous, and the system S does not pass through any singular position,
moreover.) One or more of the parameters gi might become infinite or indeterminate when t tends
to a certain value t; . Finally, the system S might tend to a singular position. However, can it happen
that when t tends to t;, the system S will tend to a non-singular position and the velocities g will
become indeterminate or infinite? We shall see that this can never happen. More precisely, assume
that when t tends to t1, the parameters qz, g, ..., Ok tend to the values ai, ao, ..., ax, respectively,
in whose neighborhood the determinations that were taken for the Ajj, Qi remain regular. Under
those conditions, the g/ will tend to finite limits, respectively, and the motion will remain regular

outside of the instant t; .
Indeed, there are two possibilities: Either the g all tend to zero when t tends to t; (which would
prove the theorem) or the modulus of at least one of the q' is greater than a certain limit A for

certain values of t that are as close to t; as one desires. Then consider the number ¢ that was
introduced above and corresponds to the conditions:

31+§ (i=1,2,... k).

@,

(") The trajectory gi = ¢ (qu) is a geodesic.
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(1/ Areplaces L1). By hypothesis, we can find an instant t’ that is sufficiently close to t; that when
t varies from t’ to t1, each variable g; will remain between aj — « and ai + «, where « denotes an
arbitrary number that is less than 6/ 2 and ¢/ 2. Now let to be a value of t that is found between t’
and ty and for which the greatest of the moduli | g/ |, namely, | g, |, exceeds A. One has, fort=to:

. 5 dt .
°_al<Z . — <1 i=1,2, ..., k).
lo; —& | 5 aq, ( )

0

L
2

‘ dg,
1 dql

0

When gz varies from q° — cto g + & t will vary from to— nto t, +7' (or from t, + 7' to to— 7).
| say that t1 is found between to and t, +7". In other words, when t varies from to to t, +7", and as
a result between t’ and t1, q: will vary between ¢ and g + &. However, between t’ and t;, one

has: | g1 —ai | < a< ¢/ 2, so there will be two values of g1 in that interval that cannot differ by &.
Therefore, the instant t; is found between to and t, +7', and since the functions gi (t), g/ (t) are

continuous in that interval, the motion will remain regular at the instant t; and beyond. Q.E.D.
We can then state the following theorem:
Theorem:

When the system S tends to a non-singular position as t tends to ty, its velocities will tend to a
limit, and the motion can be continued regularly beyond t; .

If all of the g are non-zero for t =t1 (say g, = 0) then the ratios g/ g, will have well-defined
values. The same thing will be true when the g/ ’s are all annulled for t = t; . Indeed, one has:

"o (t_tl)2 — (t_tl)2 0 -
= CV e el = E s -0

in that case, in which the & tend to zero with t -t . Furthermore, none of the 3° are zero. In other
words, the unique system of integrals that satisfies the initial conditions gi =ai, g’ =0 (for t = t1)

will be the system i (t) = ai, g/ (t) = 0 (]). Therefore, let B’ = 0. The ratios q_,, = j—g' take the
1 1
Iy
values =~ for t = t; . That shows that as t tends to ti, the system S cannot tend to a (regular)
1

equilibrium position with a vis viva that tends to zero.

(®) The equilibrium conditions of the system S are obviously 4 =0, and the equalities g; = a; define that equilibrium.
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I must add that the integrals g; (t) are even functions of t — t; then. In other words, if one sets t
—t1= = #* then one will have:
g=ai+fB0+c6 +.. i=1,2,...,k).

Indeed, if one changes 7 into — 7 in the integrals gi (z) then one will again get a system of
integrals. When the first system satisfies the initial conditions g, g° for t = t, the second one

will satisfy the conditions g’, —q/°. Since the ¢° are zero here, the initial conditions will remain

the same, and the two systems of integrals will then coincide: qi (7) = i (—7). When t goes beyond
the instant tz, the system S will reverse: At the instant t1 + 7, it will pass through the same position
that it passed through at the instant t1 — 7, but the velocities will have changed sense.

Now suppose that the system S tends to a non-singular position (az, az, ..., a) as t increases
indefinitely. | say that all of the velocities necessarily tend to zero. Indeed, assume that this is not
true and repeat the argument that was made above while keeping the same notation: By hypothesis,
for any value of t that is greater than a certain limit t", one will have: |gi—ai|<a<e/2(i1=1, 2,
..., K). However, on the other hand, there exist values to of t that are greater than t", and are such
that at least one of the parameters, say qz, varies by when t varies fromtoto to + ' . There is then

a contradiction. The ¢/ tend to zerowith 1/t .

Moreover, the position (as, ao, ..., ax) is a position of equilibrium of the system S. Indeed, make
the change of variables t =1/ . One will have:

%: ;:_gzﬂ’ %:_92%,

dt do dt de
and as a result:

in — qil dqi, — _ﬂi +Hi

do &’ de 0>

By hypothesis, when @tends to zero, the qu, ..., gk will tend to ay, ..., ax, and the g, will tend
to zero.
It follows from this that the / (a1, az, ..., a) must be zero because if 3 (as, az, ..., a) = A°
then one will have:
do; _ -B’+4]
do &

o; will tend to zero with 6, and ¢’ will increase indefinitely when & tends to zero. It is then

necessary that 37, f3, ..., B, must be zero.

We know, moreover, that conversely when t increases, the system S cannot tend to a (regular)
equilibrium position with a vis viva that is annulled without t increasing beyond any limit.
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. i . ! dg.

It would be fitting to observe here that the g/ tend to zero without the ratios % = d—g'

1 1

necessarily having a limit. In order to convince ourselves of that, consider the motion in a plane of

a point (x, y) that is subject to the force X = 2y, Y = — 2x. The equations of motion:

"

X" =2y, y' =-2x
admit the family of integrals:

x=e '[acost—Bsint], y=e'[asint+ Bcost],

in which «, fare two arbitrary real constants. When t increases indefinitely, x and y will tend to
dy _ atant+p
dx a-—ptant

In the foregoing, we supposed that t is increasing. However, all of the conclusions will
obviously persist if one makes t decrease, since it is legitimate to change tinto —t .

zero, as well as x', y', but the ratio will not tend to any limit.

Properties of real trajectories. Return to the study of trajectories. — To abbreviate the
language, let us agree to regard qs, 02, ..., gk as the k rectangular coordinates of a point M in the k-
dimensional space Ex . The trajectories gi = ¢i (q1) [i =2, ..., k] will be curves C in that space, and
the differentials dqgz, dgz, ..., dgk will define the direction of the tangent at a point on one such
curve.

Finally, set:

do= \/dqf+dq22+-~-+dqf ,

in which the arc-length o denotes the length of the segment of the curve C that is found between

two points M and M’, and extend the integral _f\/dqf +dg’ +---+dg/ along the curve MM’ (all

of the elements being positive). When a curve (C) is regular (by that, | mean that it admits a
continuous tangent at each point), one can suppose that g1, g, ..., gk are expressed as functions of
arc-length o, which is measured by starting from a fixed point Mo and proceeding positively in one
sense and negatively in the other. Each value of o will then correspond to a well-defined point (qz,
g2, ..., gk) on (C).

We shall consider only the domain in the real space Ex in which the points (qt, 02, ..., Qx)
correspond to real positions of the system, and we shall study the trajectories that belong to that
domain exclusively. (What we say will apply to other real trajectories, moreover.) We say singular
points in the space Ex to mean the points at which the functions Ajj, Qi cease to be regular. Under
the most unfavorable hypothesis, those points will form a (k — 1)-dimensional surface in Ex,
namely, the surface v (qz, 02, ..., gk) = 0. In particular, that surface constitutes the boundary of the
domain Ex when that space is not considered to be enveloped by all of space.
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Finally, we shall say equilibrium points N to mean the points qi, g2, ..., gk that correspond to
an equilibrium position of S, i.e., where A, f, ..., S are annulled. In the most general case, those
points will be isolated points.

True trajectories. Conjugate trajectories. Mixed trajectories. — If one changes t into it in
the equations of motion (1) then those equations will not be altered, except for the fact that the Qi
will all change sign. The trajectories that are defined by the system (1) and the system that is
obtained by changing Qi into — Qi will then coincide.

That new motion will be called the motion that is conjugate to the true motion. That motion is
the motion of the system S when one changes the senses of all the given forces without changing
their directions or magnitudes. If the true motion is imaginary along a real trajectory C” then the

2
conjugate motion along that same trajectory will be real, since [;—tj , Which is negative under
4,

the first motion, will change sign when one changes t into it. We give the name of true trajectories
to the real arcs (C') of the trajectory along which the true motion is real and the name of conjugate
trajectories to the arcs (C") along which the conjugate motion is real. When one changes t into it,
the two classes of trajectories (C) and (C") will permute.

Having said that, give the system S the real initial conditions g, a5, ..., q7,q°, 05, ..., Q.

at the instant to and measure the arc-length o of the trajectory C by starting from the initial point
Mo and proceeding in the sense that makes o begin by increasing with t. owill continue to increase
with t as long as t does not attain a value t; for which the motion ceases to be regular or a value t;
for which do/ dt, and as a result, all of g/, are annulled.

We adopt the first hypothesis to begin with: When t tends to t1, either the point (qz, g2, ..., Qk)
does not tend to any point M at a finite distance in the space Ex (in which case, o would increase
indefinitely) or the point (qz, g2, ..., qk) tends to a singular point N in Ex . From the foregoing, no
other case would be possible.

Under the second hypothesis, in which all of the g are annulled when t tends to t;, o will

increase up to a certain limit o1, then decrease and take on the same value at t1 + « that it had at t;
— a. The point (qs, g2, ..., k) moves backward in its trajectory.

Indeed, the point (az, a2, ..., ak), or M1, which corresponds to the value o1 of o, cannot be an
equilibrium point (otherwise, t1 would be infinite), and the trajectory will be defined by equations
of the form:

gi=ai+hi 0+ Ci6‘2+--- i=12,...,k

in the neighborhood of M, in which 8= (t — t1)?, and none of the bj are zero. That shows us that
(C) can be extended up to the point M1 while always admitting a continuous tangent. Furthermore,
since one has:

‘]('j_‘t’ = (t-t)| b +Bf D 2 | = (- t) B+ )
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(in which & tends to zero with t —t1), o will pass through a maximum oy for t = t; . The point M
will be called a point of regression (point d’arret) of the trajectory (C). The conjugate motion will
be real along the segment M1M of (C), which follows the segment MoMj . Finally, if the trajectory

2
(C) is not a remarkable trajectory then (Z—fj will have a well-defined value ¢ (o) at each point
: - _ 2 , : do) _
of MoM : The equality (o — o1) = (t—t)°(B/2+¢") and its consequence i

2
(o0—0,)(2B+¢&") prove that (Z—Tj will remain a continuous function of o (but with its sign

changed) when one crosses a point of regression while varying M from Mo to M along (C).

We give the name of mixed trajectories to those trajectories I" that possess at least one point of
regression My . They define a family that depends upon k arbitrary constants, for example, the
coordinates ai, a, ..., ak of a point of regression. Indeed, take one of the derivatives g’ (say, q,)

to be the independent variable and study qi, 02, ..., Ok, d;, ..., 0, as functions of q;. If one
considers all of the trajectories then one can give the values ¢/, gz, ..., 4, 05, ..., g, for g°
= 0 arbitrarily. In order to get the mixed trajectories, one sets g;’ =0, ..., g;°= 0. The congruence

of trajectories I" then depends upon k arbitrary constants: An infinitude of trajectories that depend
upon one parameter then passes through a given point (qz, g2, ..., gk). It can nonetheless happen
that those k parameters ai, ao, ..., ax are not distinct: In order for that to happen, it is necessary that
an arbitrary mixed trajectory I" should correspond to an infinitude of values of the constants az, az,
..., ak such that one can take at least one of them arbitrarily.

It will then be necessary that all of the points of a segment of I" must be points of regression,
and a result, that an infinitude of motions will be possible on T'. In other words, the mixed
trajectories must be remarkable trajectories. On the other hand, since at least one mixed trajectory

will pass through an arbitrary point Mo or (¢, ds,...,q¢) (namely, the one that admits Mo as a point

of regression), the congruence I" will depend upon at least (k — 1) distinct constants: We then arrive
at the following conclusion: The congruence of mixed trajectories (I') depends upon k distinct
constants, except in the case where there exists a (k — 1)-parameter congruence of remarkable
trajectories (%), in which case, that congruence will coincide with the congruence (I).

Moreover, a remarkable trajectory () must be regarded as a mixed trajectory, in the sense that
an arbitrary point (as, az, ..., ak) of the trajectory y must be a point of regression for one of the
motions of S along y. Indeed, all of those motions are defined by an equality of the form (see page
242):

(@) T=f(q) +k,

(®) We saw (page 242) that the remarkable trajectories depend upon at most (k — 1) parameters.
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in which h is an arbitrary constant. Let g1 = a; for t = to, and let h = — f (a1) : At the point (a, az,
..., &) of (), the vis viva, and as a result q;, q,, ..., 0, , will be annulled, and the system S will

reverse along () when t passes from to — £to to + & for the motion in question. However, there can
exist motions that always take place in the same sense along (3): In other words, it can happen that
f (q1) + his never annulled for other values of h, as we will soon verify in an example.

Now suppose that as t increases indefinitely, the motion remains regular and the vis viva is not
annulled: There two possible cases: Either the point (qz, gz, ..., gk) does not tend to any point at a
finite distance in the space Ex (in which case, o would increase indefinitely with t) or (qz, 0o, ...,
gx) will tend to a point (az, a2, ..., ak) that will then be an equilibrium point N’. The trajectory
does not necessarily have a tangent at that point and cannot be continued analytically beyond it.

From the foregoing, we can state the following conclusions:

Let MoM be a continuous fragment of the same real trajectory (C) that does not pass through
either a singular point N of Ex or an equilibrium point N’: The curve (C) admits a continuous
tangent along the arc MoM, and the total length of that axis is a certain finite number o.

Furthermore, if (C) is not a mixed trajectory (which is the general case in which the mixed
trajectories depend upon only k constants) then the arc MoM will always be traversed in the same
sense during a finite time, whether the motion is a true or a conjugate one. That will also be true
when the trajectory (C) is mixed if it possesses no point of regression between Mo and M. The
entire arc MM will then belong to either the class (C’) or the class (C").

If (C) is a mixed trajectory (without being a remarkable trajectory) then, in general, it can
possess only one point of regression M1 . When that point M1 belongs to the arc MoM, that arc will
decompose into two parts MoMz: and MM, both of which are traversed twice in opposite senses (in
a finite length of time), one of which will be the true motion, and the other of which will be the
conjugate one. However, it can happen that there exist several points of regression M1, Mo, ...
between Mo and M (19), but there is always just a finite number of them. Indeed, suppose that the

2
function (Z—Tj = ¢ (o) admits an infinitude of zeroes between Mo and M that correspond to

values (increasing, for example) o1, o2, ..., on, ... of 0. on remains less than o’ (viz., the length
of MoM), while tending to o' as n increases indefinitely. The function ¢ (o) is continuous, so it
will be annulled when o = &', and one will have (when the corresponding point M’ is not an
equilibrium point):

¢ (0) = (c—-0')(2B+¢) (B#0),

which shows that ¢ (o) will admit no other zeroes besides o' in the neighborhood of &'. The
hypothesis is therefore absurd. From that, one can always decompose the arc Mo M into a finite
number of segments that either belong to the class (C") or to the class (C") entirely.

(*) It is appropriate to observe that the arc of the trajectory MM, will correspond to a real periodic motion (either
true or conjugate).
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If (C) is a remarkable trajectory then each point of Mo M is a point of regression for a one of
the corresponding motions, but one can always take h in the equality:

(a) T=f(@)+h=F(o)+h

to be sufficiently large that Mo M is traversed in the same sense in its entirety. Furthermore, none
of the motions that take place along C can admit two points of regression between Mo and M.
Indeed, assume that T is annulled at M1 and M2 : From the equality («), F'(c) (which is continuous
between Mo and M) will be annulled between M: and M, and therefore between Mo and M. Let
o' Dbe the first zero of F'(o) that one encounters upon starting from a point « of MoM where
F'(o) is not zero and proceeding towards M (or towards Mo). | say that the point M" or ¢’ of

(C) is an equilibrium point N’. In order to see that, it will suffice to consider the motion along (C)
that is defined by the equality:

T=F(0)- F(0) = (c-0)’F (o) ,

since F1 (o) is annulled at most once between xand M’ (say, at Mz), and the sign of F1 (o) is
constant along a finite arc M;M". Upon supposing that it is positive (which is legitimate, since

otherwise one could change t into it), one will have: