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8 1. Introduction. — The goal of the present article is to fill in sofaeunas that

remain in the proofs of some theorems that are congevite the hypercomplex number
system that is constructed from i ac matricesy” (1= 1 to 4) with the relations:

Ty +y Yy =0, 0 (1)

(Quw=0foru# v, while it is 1 for = v). The latter is known to be constructed from the
sixteen quantities:

l, y/f, y[/fV], yW"], y5’ (2)

in which y*" and y**" are antisymmetric in all indices and are defined by:
YW= 2Ryl iyyA iyt i v i Ry, (3a)
YW =0 R iyt Ay, (%)

in which one has set:
v =y vyt €

The factors of are included in order to make:
2=+ (=41,

If we also denote the sixteen quantities (2)y8y(here and in what follows, uppercase
Latin indices will run from 1 to 16) then we will albave:

(V2 =+l (4

for each of the sixteen quantitig$.
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The following theorem regarding this hypercomplex numbstesy, which follows
from general algebraic theorend (

Theorem I. — If y* and y* are two four-rowed systems of matrices that both fulfill
the same relationg1) then there will always be a matrix S (with non-vanishing
determinant) such that:

y*'=Sy"st. (5)

An elementary proof of this shall now be given thatsdoet involve the numerical
specialization of thg/#, and is based upon a methodJoSchur (%). In the following
section 8, that will lead to the identity:

16

z y:a ypﬁ = 45p¢75p5 ’ (I)

A=1

which is also interesting independently of the aforamaad theorem.
Namely, if é):

wr=ig'yt ak=iyYyS at=y* (6)

(here and in what follows, lowercase Latin indiced wih from 1 to 3, corresponding to
the spatial coordinates) then if one uses the sixteeritiesp” to construct the scalar:

Qi=-iy'y=y a’y, (79)
the pseudo-scalar:
L=y Y=y aatataty ()
the four-vector:
sc=y Yy @=-isu=¢ Ysc=y a“y), (7)

the skew-symmetric tensor:
Mw==ig "y Mug=¢'ia' a“a’yMo=-iMa==y¢"ia"“a’y), (7d)
and the spatial vector (which is dual to a four-vector):
s =8 = ¢V Sk =-iskg=¢lia a¥ g sy =yliatataly) (%)

then the following quadratic identities will exist betwebem:

() On this subject, cfB. L. van der Waerden, Die gruppentheorie Methode in der Quantenmechanik
Berlin, 1932, esp. pp. 55.

() J. Schur, Berl. Ber. math.-phys. Klasse (1905), pp. 406.

() Cf., the bibliography irHandbuch der Physjk. 24, paper bWV. Pauli, pp. 222, rem?. Further,
seel. deBroglie, L'électron magnétiqueParis, 1934, in particular: pp. 161, eq. (14), pp. 189, di. ob.
220, eq. (24); pp. 221, eq. (28).



Pauli — Mathematical theory of the Dirac matrices. 3

S SES =0 (&)
7 k
ZM[iIV]EZM[?k]_ZMKZOZ Qf—Q;, (&)
(] [ik] k
i -
_Ez M M, =Mz3Mig+ Mai1 Mz + M12 M3o = Q1 Qy, (&)
v
z qzﬂm/] = §i23] _z %?kO] = _(Qf +Q§) (8:])
[Auv] [ik]
2SS =2.%55%9%" 2 %70 (&)
U k

Whereas, up to now, no one had succeeded in dgriviese identities without a
numerical specialization of the matricgs that goal will be achieved in the present note,
where it will be shown (88 and4) thatthe identitieg(8a) to (8e) can be obtained by
starting with the identityl) and applying simple transformations.

8 2. Proof of Theorem |I. — We begin with some elementary theorems about the
system ofy” that are easy to prove and follow directly frora telations (1).

Theorem 1. When one multiplies two quantitig€' and y®, one will obtain a unique
third quantityy®:
yAyP=as yS, (9)

up to a numerical factor that is denotedskhy(which can assume the valueg, + i), and
y© is equal to the identityonly when one hag® = y*, in particular. Furthermore, j*

is fixed and the quantities® run through the entire system thghwill also run through
the entire system.

The latter fact is implied by the fact that fofixed y*, the sixteen quantitieg”y®
will be distinct, since it will follow fromy”y® = y*y® thaty® = y® andl = y®y®’ due to

(4).

Theorem 2. — If the quantitiesy”, and correspondingly, the remaining* are
represented by matrices then the traces of/alwill vanish, except for the identity
matrix|.

For example, one has(— y* Oy* y* + y' y* Oy%) = y*. The fact that Ty" = 0 will
then follow from the commutativity of the trace. likewise follows that Ty? = 0 and Tr
3
y =0.
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Moreover, Try*? = 0 follows directly from the fact that'y® = - y?y*, and Try*y°
= Tr y*3 = 0 will likewise follow fromy*y® = - y°y*.

It will then follow that none of the matricgs’, except for just the identity matrix
itself, can be represented as a multiple of the identatrix, and that two distingt”, y®
cannot be represented by the same matrix. The lastrgtat is true becauge' = y®

would imply thatl = y*y® = g Oy°.

Theorem 3. — The matricey” are linearly independent of each other. That is, if:
Y. C.yh=0,
A

with ordinary number€, , then that must imply the vanishing of @N :

3 C./h=0 - Ca=0. (10)
A

Namely, if one multiplies (10) by a particulgythen it will follow that:
Cs +2 Confaal =0,

in which the identity matrix does not appear under the Taking the trace will yiel®€z
= 0, and thus, the vanishing of &l , sinceCg was chosen arbitrarily.
Theorem 3 will play an essential role in what fol It implies:

Theorem 4. — It is impossible represent the systeny6fby matrices with less than
four rows. Moreover, since there are sixteen linemdependent four-rowed matrices,
any four-rowed matri¥ can be represented by a four-rowed representation ofthe
(whose existence will be assumed to be known herd) thé help of suitably-chosen
ordinary number€a :

F=YC./. (11)

Theorem 5. — One will always have:

viyiyt=sys, (12)

for all y* and the fou/”, and for a givery” that is different from the identity there is
always at least ong” such that:

yiyiyt=-yt o or o st ps (12)
As far as the latter statement is concerned, oriéhaiie, e.g.:

yl Dy[lZ] yl - y[lZ], y4 Dy[123] I:Iy“ - y[123], etc.
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For the sake of simplicity, we would now like to assuthat all of they” are
represented by four-rowed matrices. One will then have:

Theorem 6. — If a four-rowed matrix- commutes with the foup” in the (four-
rowed) representation (and for that reason, witty8)lthen it will be a multiple of the
identity matrix.

If:
Fy*=y*Fforall u then F=cO. (13)

In fact, if we represerft in the form:

F=>C.,/*

A

using Theorem 4, and if we choosg‘that is given arbitrarily, but different fromand
a y* such that*y”® = - y®y*, from Theorem 5, then it will follow immediatelyatC,, =
0, according to (10), and therefdgg = 0O for all fiteen of they, that are different from
the identity.
We can now address the actual proof of Theorem |.oiieg to (4), it will follow

from:

vyP= sy’ (9)
that:

yB = &g yA yC,

and when one takes the reciprocal:

1
yo=—yy,
EAB
that:
vy =es vy (%)

Now, if y’# is a second four-rowed matrix representation ef gfistem then one will
likewise have:

y/A y/B: Enp le, (9)

since (9), as well as &9, will follow from just (1).
We now construct the matrix:

> VEFy® =S (14)

from the matrix¥, which is initially arbitrary, and then use itppoove the relation:

y'is=sy, (15)
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which is valid for allA.
Next, one has, from (9

y/A S:ngB y/C F yB,
B

in which C is associated witlB (for fixed A) in a one-to-one correspondence. On the
latter grounds, one can also write (14) as:

S=2 VFy°
C
by merely changing the summation symbol, and froa), @ne will have:

SyA ZZVCF‘EAB yB:ngB VCFyBa
C B
with which, (15) is proved.

The relation (15) would already be equivalent to theestant of Theorem I if one
could prove that with a suitable choiceRfit could already be arranged tf&% 0 and
Det S# 0, moreover. It would then be easy to see &@uld not vanish identically iB.
Namely, if y[’jg are the matrix elements gf' then that would be equivalent to:

Z o Vor =0,

A

which is impossible, due to the linear independence of/th€rheorem 3) and the fact
that not all of they?, are identically zero.

Here, on the basis of a lemma%shur (%), one can further conclude that if one I8ad
# 0, DetS = 0 then one could construct matrices with less than fows from they”
that would fulfill the relations (1), which is impossblfrom Theorem 3. One can also

prove that independently &hur’s lemma. One switches the roles st and y’# and
defines:

T=> y'Gy*. (14)
A
One will then have:

yiT=Ty" (13)
and when one combines this with (15):

yiTS=Ty"s=Tsy",
Theorem 6 will have the consequence that:

TS=cO. (16)

() Cf.,B.L.van der Waerden, loc. cit, pp. 47.
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One now thinks o6 in (14) as having been chosen such th&t0. If one had that:

TS=0
for all F then one would need to have:

2 To0 Voo Voo =
A
S0:
T,VW=0 ie, Ty*=0 for allA,

due to the linear independence of ukgg[Theorem 3.

That contradicts the assumption, since one will @eythaveT y* =Tz 0 for y* =1.
Hence, for a fixed # 0, one can certainly chooBesuch that one also has:

T S#£0.
However, it will then follow from (16) that:

TS=cO with c#0
and
DetS# 0, SlziT.
C

Theorem | is then proved.
We would now like to apply (14), (15) 6™ = *, in particular.
From Theorem 6, if follows from:

yA S: SyA
that:
S=c0,
S0 one must have:
Z VA Fy® =cO
A

for all F.
However, that is equivalent to:

A A _
zypa Voo = Cﬁaa—pﬁ'
A

In order to determine the.

» We seto= g and sum ovep. From (4), the left-hand
side will then become:

D VY= 2. (V)5 =160,
A p A

and the right-hand side will becorde__, so it will follow that:

po 1
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and
D Voo Vs =40,,0,,, ()

which agrees with the identity (I) that was given above

Here, we have restricted ourselves to four-rowed septations of the/”, for the
sake of simplicity, and proved that they are all eqenal We can also prove that the
representations of the system with more than four ranesall reducible with the same
method.

8 3. Derivation of further identities. — We shall first write (I) in the detailed form:

0,,0,5+ V5 p§+2 () ol “”]+ZW i =40,0,,. (17)

[uv] [Auv]

When we multiply this identity by the arbitrary quantitig; ¢, ¢, and sum over

equal indices, we will already get an identity of theeadype as the identities that were
written down in 81, namely:

QQ+QQ+ZS$1 > My, MﬂV]+Z§ﬂﬂv} Sw =4@W W'Y . (18)

[uv]

The definitions (@) to (7c) are employed in this, and the quantities that are dénote
with a prime will arise from the corresponding unprimedrtities replacingy' and ¢
with ¢" and ¢, resp. We remark that in what follows, neither¢hanection (6) between
W' (', resp.) and the complex conjugate(¢’, resp.), which is crucial for the reality of
the quantitieQ1, Q,, s, etc., nor the Hermiticity of the matricg4’ will be employed.
The identities will remain correct whagl (¢', resp.) are regarded as quantities that are
entirely independent of thg (@, resp.).

By specializingg' = ¢/ and¢ = ¢, (18) will imply that:

- QZ+QZ+ZS =2 M+ 2§ =400 (18

[uv] [Auv]

This identity is a consequence of the identities,(8b), (8d), but it obviously says more
than the latter.

In order to proceed, we multiply the second mayfixin (17) by y° on the left and
right, or more precisely, one first replacgs, o with p, &, resp., multiplies by
V5. Va, and sums ovep, &. Since they” and y** anticommute withy®, but the

go

remaining matrices commute wit’, the terms withy” and y**! will then change
signs, and one will get:
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O RN A WA AW A R (19)
U [uv] V]
which will give:
5p05ﬁ5+ ygﬁ [Z; ﬂv] ﬁﬂ;] pg pg VSJy; ), (20)
uv
z ﬁﬁ z /LUV] /LUV =2 pg pg yspa ), (21)
U [Auv]

when it is combined with (15). When this is multiplied by ¢} ¢, ¢, and summed
overp, p, g, o, that will give:

- Q,0+Q,0,-> M, My, =2[@ YOy’ +(s"y> Y OAu'yel. (22

[uv]

gsy S, +WZV] St B =2[@T VY-V Y OY'V el (23

When one specializes # = ¢, ¢/ = ¢ one will get:

- QX+Q2-> M2, =-2(-Q7+Q)), (22)

[uv]

which already agrees wit{8b), and:

DS+ S, = -2QF+QY), (23)

[Auv]

which coincides with the difference off)8and (&).
We shall now further form the expression:

LY Vo VPV VYY) 00 = 2(V250,5 + 05y Vo)

from (17) [(1), resp.].

In that way, the terms on the left-hand side withand y** will be annulled, and
furthermore, with the introduction of quantiti¢$’ that are dual t¢'“ and are defined
by:

(/23]

y

/114l —

y

[14] 31 —

y
y

[24] o[12] —

y
y

[34]

=y
=y

=y
=y

=y
=y

[23] [24] [31] [34] — [12]

in analogy to the relation betweaﬁl[ w1 andMy,, one will have:

LY+ Py =, @)
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That will then yield that:

5 05 z Vg; !ZTV] 2 (ygaa—pa + Jﬁa y;& ) ! (25)

[uv]

which will give rise to:

1(Q,Q,+Q,Q0)+Y My, M, = 2@ Vi Y + @ Y VP, (26)

[uv]

in a manner that is analogous to what we have dprte now.
By specializing tap' = ¢, ¢ = ¢, this will imply that:

2010+ Y M

[uv]

w =4 Q]_Qz, (26)

[W]

5 2 M My = Q1 Q2, (&)
[uv]

which agrees witli8c).
Finally, we construct:

DY VoV VYV 00 = 2(Vo00s =00 Vo).

Only the terms iny* and y**"! will remain in this case, and in fact, when one
introduces the notation:

_171 — y[234]’ —}72 — y[314]’ _173 — y[124]’ 174 — y[123]’
one will have:

1 e G S L V1 (4 e LR VA
That will then yield:

=D VooVoo ¥1 2 pViow = 5.0 V), 27)

A

—iY°s,8,+1>8,8=210"V"V@'Y + @'V VYl (28)

By specializing tap' = ¢/, ¢ = ¢, the latter identity will give 0 = 0.

We are now still lackingneequation between the identitieg)&nd (&), as well as
the identity (8). The use of the matrix will not suffice to derive that equation from the
relation (1), either.
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§ 4. Introducing the matrix B. The remaining identities. — Elsewhere Y}, the
author proved that Theorem | will imply the existence ehatrixB such that:

y* =B y*B™ or 7B =By, (29)

when y* means the so-called transposed matrix that arises froimy switching the
rows and columns:

Vo=V (30)

The matrices/* satisfy the same relations (1) as e
It is important for us that (29) implies that:

y[/lV] --B y[/lV], y[ﬂ/ll/] --B y[/‘/IV], F: +B y5. (2%)
The signs originate in the facts that (12) (21) and (123)- (321) are odd

permutations, while (1234). (4321) is an even permutation.
As was shown iifoc. cit,, by going over to the transposed matrix:

By“=y“B, B'By*=y“B'B,

it will follow from (29) that:
B=cB,

as it does from Theorem 6 [eq. (13)]. That will be pmsnly when either:
B=B or B =-B.
In the latter case, from (29) and &9

the six matrice®, B y*, B y° would be skew, (39

the ten matriceB y“*, B y"*" would be symmetric, (29
while in the former case, the opposite would be true. édew the last situation is
impossible, since the ten matrid®g'“, B y"*"! are linearly-independent, but there are
only six linearly-independent skew four-rowed matrices (pposed to ten linearly-

independent symmetric four-rowed matrices). Hence, threeiocase applies, and one
concludes [fronHaantjes, cf., loc. cit] that:

B=-B, (32)
in particular.

() W. Pauli, Ann. Phys. (Leipzig)8 (1933), 337; esp. pp. 354.
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The matrix B is physically-meaningful, since it makes a relatividlyeevariant
association of state of positive energy with statiesegative energy possible, and also
plays a role inFermi’s theory of S-decay. However, we shall not go further into that
here.

In our case, the use of the matBxleads to the goal of deriving the remaining
identities, which is based essentially upon the fact Wiaen ¢' = ¢/, ¢ = ¢, a
symmetrization will result in the matrix elementsttlare written down in regard to
andp, as well as taz andg; in addition.

We next construct the expression:

> vo(By*BY),,= 4B, B
A

from (1) [(17), resp.], and when we recall (29) 488a), we will get:

305055+ VosVoa * Z Voa = Ve W = D Vet = 48B,,B,, (33)
[uv] [Auv]
which will yield:
30005 + VosVoo + D VosVoa = 4(3,,0,, + B,,B) (34)

U

when combined with (18). If we now multiply by’ ¢’ ¢, and sum ovep, p, 0, &
thenthe terms in B on the right will be annullesinceB,, =-B,,, and likewiseB,} = -
-1 i '
B,,- We will then get:
—QZ+Q5+> s2=-207
U

or
- s2=Q +Q3, (®)
U

which agrees witl{8a). The identity(8d) will also follow further from the previously-
proved equatiori23) then.

In order to also prove € we multiply the second matrix in (27) on the ley B and
on the right byB™, or more precisely: We first replage, & with p, &, resp., and then
multiply by B_; BE; and sum ovep, . From (29), the first term will then change
sign, while the second one will keep its sign, drad will yield:

IZ oot Vol = 2A(BY) B,y — B (B/9),]. (35)

The matrices that appear on the right-hand sidalas&ew, such that it will follow that:
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>'s,8=0 (8e)

in analogy with the above, and that will coincidehn(i8e).

All of the identities (8) to (8) are then proved with that. The application of the
matrix B to the remaining relations that were derived in the pusvigection will then
give rise to no further identities. The ones thateagiven are the only ones of the kind
that relataelativistically-invariantsums to each other.

(Received on 1 Feb. 1935)




