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 § 1. Introduction. – The goal of the present article is to fill in some lacunas that 
remain in the proofs of some theorems that are concerned with the hypercomplex number 
system that is constructed from the Dirac matrices γ µ (µ = 1 to 4) with the relations: 
 

1
2 (γ µ γ ν + γ ν γ µ) = δµν ⋅⋅⋅⋅ I     (1) 

 
(δµν = 0 for µ ≠ ν, while it is 1 for µ = ν).  The latter is known to be constructed from the 
sixteen quantities: 

I, γ µ, γ [µν], γ [λµν], γ 5,     (2) 
 
in which γ [µν] and γ [λµν] are antisymmetric in all indices and are defined by: 
 

γ [µν] = (i γ 2γ 3, i γ 3γ 1, i γ 1γ 2; i γ 1γ 4, i γ 2γ 4, i γ 3γ 4),  (3a) 
 

γ [λµν] = (i γ 2γ 3γ 4, i γ 3γ 1γ 4, i γ 1γ 2γ 4; i γ 1γ 2γ 3),   (3b) 
 
in which one has set: 

γ 5 = γ 1γ 2γ 3γ 4.     (3c) 
  
The factors of i are included in order to make: 
 

(γ [µν])2 = + I, (γ [λµν])2 = + I. 
 
If we also denote the sixteen quantities (2) by γ Α (here and in what follows, uppercase 
Latin indices will run from 1 to 16) then we will also have: 
 

(γ Α)2 = + I       (4) 
 

for each of the sixteen quantities γ Α. 
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 The following theorem regarding this hypercomplex number system, which follows 
from general algebraic theorems (1): 
 
 Theorem I. – If γ µ and γ µ′ are two four-rowed systems of matrices that both fulfill 
the same relations (1) then there will always be a matrix S (with non-vanishing 
determinant) such that: 

γ µ′ = S γ µ S−1.      (5) 
 
 An elementary proof of this shall now be given that does not involve the numerical 
specialization of the γ µ, and is based upon a method of J. Schur (2).  In the following 
section § 2, that will lead to the identity: 
 

16

1

A A

A
ρσ ρσγ γ

=
∑ = 4 ρσ ρσδ δ ,     (I) 

 
which is also interesting independently of the aforementioned theorem. 
 Namely, if (3): 

ψ † = i ψ *γ 4, α k = i γ 4γ k, α 4 = γ 4   (6) 
 
(here and in what follows, lowercase Latin indices will run from 1 to 3, corresponding to 
the spatial coordinates) then if one uses the sixteen quantities γ Α to construct the scalar: 
 

Ω1 = − i ψ †ψ = ψ *α 4 ψ,    (7a) 
the pseudo-scalar: 

Ω2 = ψ † γ 5ψ = ψ *α 1 α 2 α 3 α 4 ψ,    (7b) 
the four-vector: 

sµ = ψ † γ µψ   (s0 = − i s4 = ψ *ψ, sκ = ψ *α κ ψ),  (7c) 
 
the skew-symmetric tensor: 
 

Mµν = − iψ †γ [µν]ψ (M[ik] = ψ † i α i α k α 4ψ, Mk0 = − i Mk4 = − ψ † i α k α 4ψ), (7d) 
 

and the spatial vector (which is dual to a four-vector): 
 

s[λµν] = ŝκ  = ψ †γ [λµν]ψ   (s[ik0] = − i s[ik4] = ψ † i α i α kψ, s[123] = ψ *i α 1 α 2 α 3 ψ)    (7e) 

 
then the following quadratic identities will exist between them: 
 

                                                
 (1) On this subject, cf., B. L. van der Waerden, Die gruppentheorie Methode in der Quantenmechanik, 
Berlin, 1932, esp. pp. 55. 
 (2) J. Schur, Berl. Ber. math.-phys. Klasse (1905), pp. 406. 
 (3) Cf., the bibliography in Handbuch der Physik, v. 24, paper by W. Pauli, pp. 222, rem. 2).  Further, 
see L. de Broglie, L’électron magnétique, Paris, 1934, in particular: pp. 161, eq. (14), pp. 189, eq. (14); pp. 
220, eq. (24); pp. 221, eq. (28). 



Pauli – Mathematical theory of the Dirac matrices. 3 

− 2sµ
µ
∑ ≡ 2 2

0 k
k

s s−∑ = 2 2
1 2Ω + Ω ,    (8a) 

 
2
[ ]

[ ]

M µν
µν
∑ ≡ 2 2

[ ] 0
[ ]

ik k
ik k

M M−∑ ∑ = 2 2
1 2Ω − Ω ,    (8b) 

 

− ˆ
2

i
M Mµν µν

µν
∑ ≡ M23 M10 + M31 M20 + M12 M30 = Ω1 Ω2 ,  (8c) 

 
2
[ ]

[ ]

sλµν
λµν
∑ ≡ 2 2

[123] [ 0]
[ ]

ik
ik

s s−∑  = − 2 2
1 2( )Ω + Ω     (8d) 

 

[ ]ks sλµν∑ ≡ ˆs sµ µ
µ
∑ ≡ 0 0ˆ ˆk k

k

s s s s−∑ = 0,   (8e) 

 
 Whereas, up to now, no one had succeeded in deriving these identities without a 
numerical specialization of the matrices γ µ, that goal will be achieved in the present note, 
where it will be shown (§§ 3 and 4) that the identities (8a) to (8e) can be obtained by 
starting with the identity (I) and applying simple transformations. 
 
 
 § 2. Proof of Theorem I. – We begin with some elementary theorems about the 
system of γ A that are easy to prove and follow directly from the relations (1). 
 
 Theorem 1. When one multiplies two quantities γ A and γ B, one will obtain a unique 
third quantity γ C: 

γ A γ B = εAB γ C,     (9) 
 
up to a numerical factor that is denoted by εAB (which can assume the values ± 1, ± i), and  
γ C is equal to the identity I only when one has γ B = γ A, in particular.  Furthermore, if γ A 
is fixed and the quantities γ B run through the entire system then γ C will also run through 
the entire system. 
 
 The latter fact is implied by the fact that for a fixed γ A, the sixteen quantities γ Aγ B 
will be distinct, since it will follow from γ Aγ B = γ Aγ B′ that γ B = γ B′ and I = γ Bγ B′, due to 
(4). 
 
 Theorem 2. – If the quantities γ µ, and correspondingly, the remaining γ A are 
represented by matrices then the traces of all γ A will vanish, except for the identity 
matrix I. 
 
 For example, one has 1

2 (− γ 2 ⋅⋅⋅⋅ γ 1 γ 2 + γ 1 γ 2 ⋅⋅⋅⋅ γ 2) = γ 1.  The fact that Tr γ 1 = 0 will 

then follow from the commutativity of the trace.  It likewise follows that Tr γ 2 = 0 and Tr 
γ 3 = 0. 
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 Moreover, Tr γ [12] = 0 follows directly from the fact that γ 1γ 2 = − γ 2γ 1, and Tr γ 4γ 5 
=  Tr γ [123] = 0 will likewise follow from γ 4γ 5 = − γ 5γ 4. 
 It will then follow that none of the matrices γ A, except for just the identity matrix I 
itself, can be represented as a multiple of the identity matrix, and that two distinct γ A, γ B 
cannot be represented by the same matrix.  The last statement is true because γ A = γ B 
would imply that I = γ Aγ B = εAB ⋅⋅⋅⋅ γ C. 
 
 Theorem 3. – The matrices γ A are linearly independent of each other.  That is, if: 
 

A
A

A

C γ∑ = 0, 

  
with ordinary numbers CA , then that must imply the vanishing of all CA : 
 

A
A

A

C γ∑ = 0 →  CA = 0.    (10) 

 
Namely, if one multiplies (10) by a particular γB then it will follow that: 
 

CB + C
BA BAC ε γ′Σ = 0, 

 
in which the identity matrix I does not appear under the Σ′.  Taking the trace will yield CB 
= 0, and thus, the vanishing of all CA , since CB was chosen arbitrarily. 
 Theorem 3 will play an essential role in what follows.  It implies: 
 
 Theorem 4. – It is impossible represent the system of γ A by matrices with less than 
four rows.  Moreover, since there are sixteen linearly-independent four-rowed matrices, 
any four-rowed matrix F can be represented by a four-rowed representation of the γ A 
(whose existence will be assumed to be known here) with the help of suitably-chosen 
ordinary numbers CA : 

F = A
AC γ∑ .     (11) 

 
 Theorem 5. – One will always have: 

 γ µ γ Α γ µ = ± γ Α,    (12) 
 

for all γ A and the four γ µ, and for a given γ Α that is different from the identity I, there is 
always at least one γ µ such that: 
 

γ µ γ Α γ µ = − γ Α or γ µ γ Α = − γ Α γ µ.  (12a) 
 
As far as the latter statement is concerned, one will have, e.g.: 
 

γ 1 ⋅⋅⋅⋅ γ [12] γ 1 = − γ [12],  γ 4 ⋅⋅⋅⋅ γ [123] ⋅⋅⋅⋅ γ 4 = − γ [123],  etc. 
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 For the sake of simplicity, we would now like to assume that all of the γ Α are 
represented by four-rowed matrices.  One will then have: 
 
 Theorem 6. – If a four-rowed matrix F commutes with the four γ µ in the (four-
rowed) representation (and for that reason, with all γ Α) then it will be a multiple of the 
identity matrix. 
 
 If: 

F γ µ = γ µ F for all µ  then  F = c ⋅⋅⋅⋅ I.  (13) 
 
 In fact, if we represent F in the form: 
 

F = A
A

A

C γ∑  

 
using Theorem 4, and if we choose a γ Β that is given arbitrarily, but different from I, and 
a γ µ such that γ µγ Β = − γ Βγ µ, from Theorem 5, then it will follow immediately that Cµ = 
0, according to (10), and therefore CΑ = 0 for all fifteen of the γΑ that are different from 
the identity. 
 We can now address the actual proof of Theorem I.  According to (4), it will follow 
from: 

γ Αγ Β = εAB γ C,     (9) 
that: 
 γ Β = εAB γ Α γ C, 
 
and when one takes the reciprocal: 
 

 γ Β = 
1

ABε
γ C γ Α, 

that: 
γ Cγ Α = εAB γ B.     (9a) 

 
Now, if γ ′ Α is a second four-rowed matrix representation of the system then one will 
likewise have: 

γ ′ Α γ ′ Β = εAB γ ′ C,     (9′) 
 
since (9), as well as (9a), will follow from just (1). 
 We now construct the matrix: 
 

16

1

B B

B

Fγ γ
=

′∑  = S     (14) 

 
from the matrix F, which is initially arbitrary, and then use it to prove the relation: 
 

γ ′ Α S = S γ Α,      (15) 
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which is valid for all A. 
 Next, one has, from (9′): 

γ ′ Α S = AB
B

ε∑ γ ′ C F γ Β, 

 
in which C is associated with B (for fixed A) in a one-to-one correspondence.  On the 
latter grounds, one can also write (14) as: 
 

S = C C

C

Fγ γ′∑  

 
by merely changing the summation symbol, and from (9a), one will have: 
 

S γ Α = C B
AB

C

Fγ ε γ′∑ = C B
AB

B

Fε γ γ′∑ , 

with which, (15) is proved. 
 The relation (15) would already be equivalent to the statement of Theorem I if one 
could prove that with a suitable choice of F, it could already be arranged that S ≠ 0 and 
Det S ≠ 0, moreover.  It would then be easy to see that S could not vanish identically in F.  
Namely, if A

ρσγ  are the matrix elements of γ Α then that would be equivalent to: 

 
A A

A
ρσ ρσγ γ′∑  = 0, 

 
which is impossible, due to the linear independence of the γ Α (Theorem 3) and the fact 
that not all of the A

ρ σγ  are identically zero. 

 Here, on the basis of a lemma by Schur (1), one can further conclude that if one had S 
≠ 0, Det S = 0 then one could construct matrices with less than four rows from the γ Α  
that would fulfill the relations (1), which is impossible, from Theorem 3.  One can also 
prove that independently of Schur’s lemma.  One switches the roles of γ Α and γ′ Α and 
defines: 

T = A A

A

Gγ γ ′∑ .    (14′) 

One will then have: 
γ Α T = T γ′ Α,     (15′) 

and when one combines this with (15): 
 

γ Α T S = T γ′ Α S = T S γ Α, 
 
Theorem 6 will have the consequence that: 
 

T S = c ⋅⋅⋅⋅ I.     (16) 
 

                                                
 (1) Cf., B. L. van der Waerden, loc. cit., pp. 47.  
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One now thinks of G in (14′) as having been chosen such that T ≠ 0.  If one had that: 
 

T S = 0 
for all F then one would need to have: 
 

A A

A

Tσρ ρσ ρσγ γ′∑ = 0, 

so: 
ATσρ ρσγ = 0, i.e., T γ A = 0 for all A, 

 
due to the linear independence of the A

ρσγ [Theorem 3]. 

 That contradicts the assumption, since one will certainly have T γ A = T ≠ 0 for γ A = I.  
Hence, for a fixed T ≠ 0, one can certainly choose F such that one also has: 
 

T S ≠ 0. 
 
However, it will then follow from (16) that: 
 

T S = c ⋅⋅⋅⋅ I with c ≠ 0 
and 

Det S ≠ 0, S−1 = 
1

c
T. 

Theorem I is then proved. 
 We would now like to apply (14), (15) to γ′ A = γ A, in particular. 
 From Theorem 6, if follows from: 

γ A S = S γ A 
that: 

S = c ⋅⋅⋅⋅ I, 
so one must have: 

A A

A

Fγ γ∑  = c ⋅⋅⋅⋅ I 

for all F. 
 However, that is equivalent to: 
 

A A

A
ρσ ρσγ γ∑ = cρσ ρσδ . 

 
 In order to determine the cρσ , we set ρ = σ  and sum over ρ.  From (4), the left-hand 

side will then become: 
A A

A
ρρ ρσ

ρ
γ γ∑∑ = 2( )A

A
ρσγ∑ = 16 ρσδ , 

 
and the right-hand side will become 4cρσ , so it will follow that: 
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cρσ = 4 ρσδ  

and 
A A

A
ρσ ρσγ γ∑ =4 ρσ ρσδ δ ,     (I) 

 
which agrees with the identity (I) that was given above. 
 Here, we have restricted ourselves to four-rowed representations of the γ A, for the 
sake of simplicity, and proved that they are all equivalent.  We can also prove that the 
representations of the system with more than four rows are all reducible with the same 
method. 
 
 
 § 3. Derivation of further identities. – We shall first write (I) in the detailed form: 
 

5 5 [ ] [ ] [ ] [ ]

[ ] [ ]

µ µ µν µν λµν λµν
ρσ ρ σ ρσ ρ σ ρσ ρ σ ρσ ρ σ ρσ ρ σ

µ µν λµν
δ δ γ γ γ γ γ γ γ γ+ + + +∑ ∑ ∑  = 4 ρσ ρσδ δ .  (17) 

 
 When we multiply this identity by the arbitrary quantities † †

ρ ρ σ σψ ϕ ψ ϕ  and sum over 

equal indices, we will already get an identity of the same type as the identities that were 
written down in § 1, namely: 
 

− 1 1 2 2 [ ] [ ] [ ] [ ]
[ ] [ ]

s s M M s sµ µ µν µν λµν λµν
µ µν λµν

′ ′ ′ ′ ′Ω Ω + Ω Ω + − +∑ ∑ ∑  = 4 (ϕ †ψ) ⋅⋅⋅⋅ (ψ †ϕ) . (18) 

 
 The definitions (7a) to (7c) are employed in this, and the quantities that are denoted 
with a prime will arise from the corresponding unprimed quantities replacing ψ† and ψ 
with ϕ† and ϕ, resp.  We remark that in what follows, neither the connection (6) between 
ψ† (ϕ†, resp.) and the complex conjugate ψ* (ϕ*, resp.), which is crucial for the reality of 
the quantities Ω1, Ω2, sµ, etc., nor the Hermiticity of the matrices γ µ will be employed.  
The identities will remain correct when ψ† (ϕ†, resp.) are regarded as quantities that are 
entirely independent of the ψ (ϕ, resp.). 
 By specializing ϕ† = ψ† and ϕ = ψ, (18) will imply that: 
 

− 2 2 2 2 2
1 2 [ ] [ ]

[ ] [ ]

s M sµ µν λµν
µ µν λµν

Ω + Ω + − +∑ ∑ ∑ = − 2
14Ω .   (18a) 

 
This identity is a consequence of the identities (8a), (8b), (8d), but it obviously says more 
than the latter. 
 In order to proceed, we multiply the second matrix γ A in (17) by γ 5 on the left and 
right, or more precisely, one first replaces ρ , σ  with ρ , σ , resp., multiplies by 

5
ρ ργ , 5

σ σγ  and sums over ρ , σ .  Since the γ µ and γ [λµν] anticommute with γ 5, but the 

remaining matrices commute with γ 5, the terms with γ µ and γ [λµν] will then change 
signs, and one will get: 
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5 5 [ ] [ ] [ ] [ ]

[ ] [ ]

µ µν µν µν λµν λµν
ρσ ρ σ ρσ ρ σ ρσ ρ σ ρσ ρ σ ρσ ρ σ

µ µν λµν
δ δ γ γ γ γ γ γ γ γ+ − + −∑ ∑ ∑  = 5 54 ρσ ρσγ γ ,  (19) 

 
which will give: 

5 5 [ ] [ ]

[ ]

µν µν
ρσ ρ σ ρσ ρ σ ρσ ρ σ

µν
δ δ γ γ γ γ+ +∑ = 5 52( )ρσ ρσ ρσ ρσδ δ γ γ+ ,  (20) 

 
[ ] [ ]

[ ]

µ µν λµν λµν
ρσ ρ σ ρσ ρ σ

µ λµν
γ γ γ γ+∑ ∑ = 5 52( )ρσ ρσ ρσ ρσδ δ γ γ− ,   (21) 

 
when it is combined with (15).  When this is multiplied by † †

ρ ρ σ σψ ϕ ψ ϕ  and summed 

over ρ, ρ , σ, σ , that will give: 
 

− 1 1 2 2 [ ] [ ]
[ ]

M Mµν µν
µν

′ ′ ′Ω Ω + Ω Ω −∑ = 2 [(ϕ †ψ) ⋅⋅⋅⋅ (ψ †ϕ) + [(ϕ †γ 5 ψ) ⋅⋅⋅⋅ (ψ †γ 5ϕ)], (22) 

 [ ] [ ]
[ ]

s s s sµ µ λµν λµν
µ λµν

′ ′+∑ ∑ = 2 [(ϕ †ψ) ⋅⋅⋅⋅ (ψ †ϕ) − [(ϕ †γ 5 ψ) ⋅⋅⋅⋅ (ψ †γ 5ϕ)]. (23) 

 
When one specializes to ϕ† = ϕ, ψ† = ψ one will get: 
 

− 2 2 2
1 2 [ ]

[ ]

M µν
µν

Ω + Ω −∑ = − 2 2
1 22( )−Ω + Ω ,   (22′) 

 
which already agrees with (8b), and: 
 

2 2
[ ]

[ ]

s sµ λµν
µ λµν

+∑ ∑ = − 2 2
1 22( )Ω + Ω ,   (23′) 

 
which coincides with the difference of (8b) and (8d). 
 We shall now further form the expression: 
 

5 51
2 ( )A A A

A
ρσ ρ σγ γ γ γ γ+∑ = 5 52( )ρσ ρσ ρσ ρσγ δ δ γ+  

from (17) [(I), resp.]. 
 In that way, the terms on the left-hand side with γ µ and γ [λµν] will be annulled, and 
furthermore, with the introduction of quantities [ ]ˆ µνγ  that are dual to γ [µν] and are defined 
by: 
 [23]γ̂  =γ [14], [31]γ̂  = [24]γ , [12]γ̂  = [34]γ , 

 [14]γ̂  = [23]γ , [24]γ̂  = [31]γ , [34]γ̂  = [12]γ , 
 

in analogy to the relation between [ ]M̂ µν  and Mµν , one will have: 

 
5 [ ] [ ] 51

2 ( )µν µνγ γ γ γ+ = − [ ]ˆ µνγ .     (27) 
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That will then yield that: 
 

5 5 [ ]

[ ]

ˆµν µν
ρσ ρ σ ρσ ρ σ ρσ ρσ

µν
δ γ γ δ γ γ+ −∑  = 5 52( )ρσ ρσ ρσ ρσγ δ δ γ+ ,  (25) 

 
which will give rise to: 
 

1 2 2 1 [ ] [ ]
[ ]

ˆ( )i M Mµν µν
µν

′ ′ ′Ω Ω + Ω Ω +∑ = 2 [(ϕ†γ 5ψ)(ϕ†ψ) + (ϕ†ψ)(ϕ†γ 5ψ)],  (26) 

 
in a manner that is analogous to what we have done up to now. 
 By specializing to ϕ† = ψ†, ϕ = ψ, this will imply that: 
 

2i Ω1 Ω2 + [ ] [ ]
[ ]

ˆM Mµν µν
µν
∑  = 4i Ω1 Ω2 ,   (26′) 

 

− [ ] [ ]
[ ]

ˆ
2

i
M Mµν µν

µν
∑ = Ω1 Ω2 ,     (8c) 

which agrees with (8c). 
 Finally, we construct: 
 

5 51
2 ( )A A A

A
ρσ ρ σγ γ γ γ γ−∑ = 5 52( )ρσ ρσ ρσ ρσγ δ δ γ− . 

 
 Only the terms in γ µ and γ [λµν] will remain in this case, and in fact, when one 
introduces the notation: 
 

− 1γ̂  = γ [234], − 2γ̂  = γ [314], − 3γ̂  = γ [124], 4γ̂  = γ [123], 
one will have: 

5 51
2 ( )µ µγ γ γ γ− = − ˆi µγ , 5 51

2
ˆ ˆ( )µ µγ γ γ γ− = + i µγ . 

 
That will then yield: 
 

− ˆ ˆA A A A

A A

i iρσ ρ σ ρσ ρ σγ γ γ γ+∑ ∑ = 5 52( )ρσ ρσ ρσ ρσγ δ δ γ− ,   (27) 

 
− ˆ ˆi s s i s sµ µ µ µ

µ µ

′ ′+∑ ∑ = 2 [(ϕ†γ 5ψ)(ϕ†ψ) + (ϕ†ψ)(ϕ†γ 5ψ)].  (28) 

 
 By specializing to ϕ† = ψ†, ϕ = ψ, the latter identity will give 0 = 0. 
 We are now still lacking one equation between the identities (8a) and (8d), as well as 
the identity (8e).  The use of the matrix γ5 will not suffice to derive that equation from the 
relation (I), either. 
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 § 4. Introducing the matrix B. The remaining identities. – Elsewhere (1), the 
author proved that Theorem I will imply the existence of a matrix B such that: 
 

µγ  = B γ µ B−1  or Bµγ  = B γ µ,   (29) 
 
when µγ  means the so-called transposed matrix that arises from γ µ by switching the 
rows and columns: 

µ
ρσγ = µ

σργ .      (30) 

 
 The matrices µγ  satisfy the same relations (1) as the γ µ. 
 It is important for us that (29) implies that: 
 

[ ]µνγ = − B γ [µν], [ ]λµνγ = − B γ [λµν], 5γ = + B γ 5.  (29a) 
 
 The signs originate in the facts that (12) → (21) and (123) → (321) are odd 
permutations, while (1234) → (4321) is an even permutation. 
 As was shown in loc. cit., by going over to the transposed matrix: 
 

B µγ = Bµγ , 1B B µγ− = 1B Bµγ − , 
 
it will follow from (29) that: 

B = c B, 
 
as it does from Theorem 6 [eq. (13)].  That will be possible only when either: 
 

B = B  or B  = − B. 
 
 In the latter case, from (29) and (29a): 
 

the six matrices B, B γ µ, B γ 5 would be skew,   (31a) 
 

the ten matrices B γ [µν], B γ [λµν] would be symmetric,  (31b) 
 
while in the former case, the opposite would be true.  However, the last situation is 
impossible, since the ten matrices B γ [µν], B γ [λµν]  are linearly-independent, but there are 
only six linearly-independent skew four-rowed matrices (as opposed to ten linearly-
independent symmetric four-rowed matrices).  Hence, the former case applies, and one 
concludes [from Haantjes, cf., loc. cit.] that: 
 

B = − B,     (32) 
in particular. 

                                                
 (1) W. Pauli, Ann. Phys. (Leipzig) 18 (1933), 337; esp. pp. 354.  
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 The matrix B is physically-meaningful, since it makes a relativistically-invariant 
association of state of positive energy with states of negative energy possible, and also 
plays a role in Fermi’s theory of β-decay.  However, we shall not go further into that 
here. 
 In our case, the use of the matrix B leads to the goal of deriving the remaining 
identities, which is based essentially upon the fact that when ϕ† = ψ†, ϕ = ψ, a 
symmetrization will result in the matrix elements that are written down in regard to ρ  

and ρ, as well as to σ  and σ, in addition. 
 We next construct the expression: 
 

1( )A A

A

B Bρσ σ ργ γ −
∑ = 14B Bσσ ρρ

−  

 
from (I) [(17), resp.], and when we recall (29) and (29a), we will get: 
 

5 5 [ ] [ ] [ ] [ ]

[ ] [ ]

µ µ µν µν λµν λµν
ρσ ρ σ ρσ ρ σ ρσ ρ σ ρσ ρ σ ρσ ρ σ

µ µν λµν
δ δ γ γ γ γ γ γ γ γ+ + − −∑ ∑ ∑  = 14B Bσ σ ρ ρ

− ,  (33) 

 
which will yield: 

5 5 µ µ
ρσ ρ σ ρσ ρ σ ρσ ρ σ

µ
δ δ γ γ γ γ+ +∑ = 14( )B Bρ σ ρσ σ σ ρ ρδ δ −+  (34) 

 
when combined with (18).  If we now multiply by † †

ρ ρ σ σψ ψ ψ ψ  and sum over ρ , ρ, σ, σ   

then the terms in B on the right will be annulled, since Bσ σ  = − Bσ σ  and likewise 1Bρ ρ
− = − 

1Bρ ρ
− .  We will then get: 

− 2 2 2
1 2 sµ

µ
Ω + Ω +∑ = − 2

12Ω  

or 
− 2sµ

µ
∑ = 2 2

1 2Ω + Ω ,           (8a) 

 
which agrees with (8a).  The identity (8d) will also follow further from the previously-
proved equation (23) then. 
 In order to also prove (8e), we multiply the second matrix in (27) on the left by B and 
on the right by B−1, or more precisely: We first replace ρ , σ  with ρ , σ , resp., and then 

multiply by 1B Bσ ρσ ρ
−  and sum over ρ , σ .  From (29a), the first term will then change 

sign, while the second one will keep its sign, and that will yield: 
 

ˆ ˆi iµ µ µ µ
ρσ ρ σ ρσ ρ σ

µ µ
γ γ γ γ+∑ ∑  = 5 1 5 12[( ) ( ) ]B B B Bσσ ρ ρ σ σ ρ ργ γ− −− .  (35) 

 
The matrices that appear on the right-hand side are all skew, such that it will follow that: 
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ˆs sµ µ
µ
∑ = 0     (8e) 

 
in analogy with the above, and that will coincide with (8e). 
 All of the identities (8a) to (8e) are then proved with that.  The application of the 
matrix B to the remaining relations that were derived in the previous section will then 
give rise to no further identities.  The ones that were given are the only ones of the kind 
that relate relativistically-invariant sums to each other. 
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