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 In the present note, the following criterion will be proposed for resolving the question of whether a 
certain wave equation physically admits single-valued or double-valued wave functions:  A single 
application of the angular impulse operator to a given system of regularly- integrable (square-integrable, 
resp.) eigen-solutions cannot produce something that is outside of that system for the same value of the 
total angular impulse quantum number j; i.e., the new solutions that are thus-obtained must be linearly 
expressible in terms of the original ones.  As a basis for that criterion, it will be shown that when it is not 
fulfilled, no one-to-one correspondence would exist between the operator calculus and the matrix calculus 
for the angular impulse quantities.  The application to the scalar wave equation yields the necessity of 
single-valued wave functions, while for the Schrödinger form of the Dirac equation in polar coordinates, 
the criterion will lead to the necessity of double-valued solutions.  Both results are consistent with 
experiments.  The generalization of the formulation of the criterion for finite rotations will be given, and 
the one for the full rotation group of spherical space will be mentioned. 
 
 

1. Problem statement.  Formulation of the criterion. 
 

 As the author already emphasized on a previous occasion (1), there is no argument 
that is valid a priori for saying that the solutions of the wave equation that describe 
physical behavior of a system quantum-theoretically must necessarily be single-valued.  
Namely, for the single-valuedness of physical quantities that are always bilinear in the 
wave function and its complex conjugate, it will suffice that all admissible eigen-
solutions should get multiplied by a factor eiα of magnitude 1 when one travels around 
certain closed paths, and that the factor should depend upon only the path in question, but 
be independent of the eigen-solution that has been chosen.  However, the further 
treatment of that question in loc. cit. soon proved to be insufficient, since among the 
multi-valued eigen-solutions, in general, there were also ones that satisfied all of the 
regularity requirements.  That was also the case for the multi-valued spherical functions 
that were treated in loc. cit. as solutions of the ordinary non-relativistic wave equation of 
a particle. 

                                                
 (1) Cf., Handbuch d. Physik, v. XXIV/1, 2nd ed., Berlin 1933, pp. 126.  
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 In the meantime, the problem that was just spoken of was treated in the literature on 
several occasions (1); in particular, E. SCHRÖDINGER made some essential progress in 
regard to it.  He first remarked that the equivalence of past and future (reversibility of 
time) for the evolution of physical quantities is true only when the wave functions are one 
or two-valued, in particular, and of them, the two-valued ones will simply change their 
sign under the aforementioned orbits.  For that reason, as well as for the sake of 
simplicity, in what follows, we will mainly discuss only those two possibilities.  
Moreover, starting from his previous formulation of the Dirac equations of the electron in 
arbitrary coordinates (2), SCHRÖDINGER discovered a case in which the solutions of 
the wave equation must necessarily be assumed to be two-valued if the result is to remain 
in agreement with experiments.  Indeed, he then next treated a new way of representing 
Dirac’s relativistic wave equation for the electron in polar coordinates in ordinary flat 
space.  That state of affairs allowed a serious doubt to arise concerning whether one could 
find an adequate physical basis for the resolution of the question of the one- or two-
valuedness of the solutions of a given wave equation at all. 
 In contrast to that, in this note, it will be shown that there should be no room for such 
doubt, and (unlike the situation for the symmetry classes of many-electron problems) a 
theoretical criterion for the resolution of the question in one or the other sense can, in 
fact, be given.  Admittedly, it does not suffice to investigate the regularity of the eigen-
solutions alone if one is to do that, but it is essential that the Hamiltonian operator must 
admit a transformation group.  We restrict the present examination to the groups of 
ordinary rotations in flat space, and indeed, on the one hand, for the relativistic scalar 
wave equation of a particle, and on the other hand, for the relativistic wave equation of 
the spin electron.  As is known, that group gives rise to the existence of the three angular 
impulse operators P1, P2, P3, which always take an eigen-solution to another eigen-
solution for a centrally-symmetric problem, since they will then commute with the 
Hamiltonian operator.  Furthermore, any of the three quantities Pk (k = 1, 2, 3) will 
commute with the square of the total angular impulse: 
 

P2 = P1
2 + P2

2 + P3
2,     (1) 

 
which is known to possess the eigenvalue j (j + 1); one should especially investigate 
when the half-integer values of j are excluded and when the whole-integer values are.  To 
that end, we start with a system of regular eigen-solutions uj,m of the operator P2, for 
which one will then have: 

                                                
 (1) A. S. EDDINGTON, Relativity Theory of Protons and Electrons, Cambridge, 1936, pp. 60 and 150, 
as well as the older literature that was cited in it.  On two-valued spherical functions as solutions of the 
non-relativistic wave equations, cf., also F. MÖGLICH, Zeit. Phys. 110 (1938), 1.  However, eq. (2a) in 
that paper contains an essential oversight, in that (as will be shown in § 2 of this note) the integrals of the 
calculated matrix elements of the angular impulse components over the spherical surface will no longer 
satisfy the demand that they must commute with the matrix of the square of the total angular impulse 
vector. 
 On the question of the reversibility of time, cf., E. SCHRÖDINGER, Ann. Phys. (Leipzig) (5) 32 (1938), 
49, and for a thorough discussion of multi-valued solutions of the relativistic wave equation of the electron, 
see his article in Commentationes Pontificia Academia Scientiarum 2 (1938), 321.  (Cited as “P. A.” in 
what follows.) 
 (2) E. SCHRÖDINGER, Berl. Ber. phys. u. math. Klasse (1932), pp. 105.  



W. Pauli – The one- or two-valuedness of eigenfunctions in wave mechanics. 3 

P2 uj, m = j (j + 1) uj, m .    (1a) 
 
(As usual, we do not explicitly write out any spin indices that might possibly be present.)  
For a given value of j, there are always only finitely many regular eigen-solutions, and it 
is, moreover, inessential for the application of the criterion whether one does or does not 
count eigen-solutions that are possibly no longer regular, but still square-integrable, as 
being present in the system considered.  However, if we consider all possible (either 
integer or half-integer) values of j then in the latter case, the system of eigen-solutions 
might be chosen such that the functions in the system that belong to different j-values 
will fulfill the condition of orthogonality. 
 We will now pose the following additional physical requirement: The application of 
the angular impulse operator Pk to a given finite system of regular (or only square-
integrable) eigen-solutions of P2 with the same value of j shall not produce something 
that does not belong to that system. 
 When that is expressed in a positive way, the new eigenfunctions Pk uj,m shall be 
linearly-expressible in terms of the old ones: 
 

Pk uj,m = ,
k
m m m j

m

c u′ ′
′
∑ .     (2) 

 
Obviously, our requirement includes the idea that the new eigen-solutions should also be 
regular (square-integrable, resp.)  The fact that only eigenfunctions with equal values of j 
appear in the left and right-hand sides of (2) is connected with the fact that the Pk 
commute with all P2. 
 Moreover, if one chooses the eigenfunctions uj,m especially such that one of the 
angular impulse components – say, P3 – is also brought into diagonal form then the 
known selection rules for Pk will be valid, and in general at most two of the terms on the 
right-hand side of (2) will be non-zero.  (If the eigenfunctions were normalized then the 

k
m mc ′  would, in fact, represent the matrix elements of Pk .) 

 In the following § 2, it will next be shown that the criterion that was given is 
sufficient in the case of scalar wave equations, as well as in spinor ones (e.g., the Dirac 
equation), for one to resolve uniquely the alternative of whether a single-valued or a 
double-valued  wave function is admissible.  Furthermore, an important result (§ 2) is that 
in the case for which the criterion is not fulfilled, some of the new eigenfunctions Pk uj, m 
are no longer orthogonal to a family of the original uj′, m′ with fixed m′ and variable j′, 
while j ≠ j′.  That will yield the physical necessity of fulfilling our criterion.  Otherwise, 
the matrix elements of Pk that are calculated in the usual way would no longer be all 
diagonal in j, which would contradict the commutability of all Pk with P2.  One can then 
also formulate the result in such a way that if our criterion were violated then the usual 
connection between matrices and operators for the angular impulse components would 
break down, which would obviously be physically inadmissible. 
 Another formulation of our criterion that is equivalent to the original one will be 
given § 3, which will be perhaps most intuitive, but less suitable for practical 
computations.  It is based upon the fact that the angular impulse operators are associated 
with infinitesimal rotations and that by iterating them an operation must arise that permits 
one to obtain a new eigen-solution of the wave equation from any eigen-solution under a 
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finite rotation of the coordinate system.  As a result of the arbitrariness in the choice of 
the axes of a polar coordinate system, all of those eigen-solutions will be physically 
equivalent.  However, the version of our criterion that arises when one passes from 
infinitesimal rotations to the finite ones (in truth, it is equivalent to the original version 
and contains no stronger demand) will say just that here, as well, the new eigen-solutions 
vj,m (x) must be linearly-expressible in terms of the old ones uj, m (x) that belong to the 
same j. 
 However, the definition of the operation that produces vj, m (x) from uj, m (x) demands 
a somewhat more detailed argument.  Initially, it is very simple for the scalar wave 
equation, since that is directly invariant under rotation of the coordinate axes.  One will 
then get the vj, m (x) from uj, m (x) when one next replaces the old polar angles ϑ, ϕ with 
the new ones ϑ′, ϕ′ without changing the form of the function uj, m (x), and then replaces 
them with the old ones ϑ, ϕ, and expresses the three rotation parameters (e.g., the three 
Euler angles), which might be briefly denoted by a here, by way of: 
 

uj, m (ϑ, ϕ; a) = uj, m (ϑ′, ϕ′ ).     (3) 
 
 By our criterion, it will be required here that: 
 

uj, m (ϑ′, ϕ′ ) = ,( ) ( , )mm j m
m

C a u ϑ ϕ′
′

⋅∑ ,   (4) 

 
and that can obviously be fulfilled only for single-valued wave functions u.  By contrast, 
the double-valued wave function uj, m (ϑ′, ϕ′ ) obviously cannot be expressed linearly in 
terms of the uj, m (ϑ, ϕ) with the same j and constant coefficients, since the uj, m (ϑ, ϕ) will 
change sign when one orbits around the point ϑ = 0, but the uj, m (ϑ′, ϕ′ ) will change sign 
when one orbits around the point ϑ′ = 0, which is different from the latter; i.e., there is no 
“addition theorem” for double-valued spherical functions. 
 On the same basis, the application of our criterion to the usual Dirac wave equation 
for the electron will lead inevitably to single-valued solutions.  Namely, in order to arrive 
at the uj, m from the vj, m , here one must perform an S-transformation of the spin indices 
with constant coefficients, in addition to the substitution of the ϑ′, ϕ′  with ϑ, ϕ. 
 However, things are not the same for the form of the Dirac equation in polar 
coordinates that was presented by SCHRÖDINGER.  That equation is not simply 
invariant under a transition from one system of axes to another, but in order to again 
represent the wave equation in the new coordinates, one must append an S-transformation 
of the spin indices that depends upon ϑ, ϕ.  (By the way, that is characteristic of the 
general covariant form for the Dirac equation that SCHRÖDINGER represented.)  In that 
case, one then obtain a new solution χ (ϑ, ϕ, a) from an arbitrary solution ψ (ϑ, ϕ) by 
way of: 

χ (ϑ, ϕ, a) = S (ϑ, ϕ, a) ⋅⋅⋅⋅ ψ (ϑ′, ϕ′),    (3a) 
 
in which the S-matrix acts upon the spin indices (which are not given explicitly here) in 
the usual way.  Instead of (4), our criterion then says: 
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S (ϑ, ϕ, a) ⋅⋅⋅⋅ uj, m (ϑ′, ϕ′) = ,( ) ( , )m m j m
m

C a u ϑ ϕ′
′
∑ .   (4a) 

 
As will be shown in § 3, in the Schrödinger case, the matrix S will depend upon ϑ, ϕ in 
such a way that it will change its sign for a closed path on the sphere that goes around ϑ 
= 0 and leaves ϑ′ = 0 outside of it, as well as for a closed path that goes around ϑ′ = 0 and 
leaves ϑ = 0 outside.  In that case, eq; (4a) will be possibly true only when uj, m (ϑ, ϕ) is 
double-valued, but will not be possibly true when uj, m (ϑ, ϕ) is single-valued. 
 Knowing the matrix S (ϑ, ϕ, a) would then make calculating with the angular impulse 
operators Pk (which emerge from S by specializing the a for infinitesimal rotations, 
moreover) to a certain extend superfluous.  However, applying the criterion for 
infinitesimal rotations seems to preserve its self-explanatory meaning on different 
grounds.  First of all, only in the latter version does the importance of the criterion for the 
self-consistent connection between operator calculus and matrix calculus come to light.  
Furthermore, directly ascertaining the S-matrix without taking recourse to other forms of 
the wave equation seems to be truly confusing for finite transformations of a group, 
namely, for more general groups. 
 As we have mentioned already, here we restrict ourselves to the case of flat space and 
the usual three-dimensional rotation group, since the main idea in our argument is already 
clear in that case.  However, that argument can be easily generalized to the wave 
equations of spherical space, in which the six-parameter rotation group with the six 
operators Mk, Nk (k = 1, 2, 3) will enter in place of the three-parameter rotation group 
with the three Pk, the eigenvalues of 2 2( )k k

k

M N+∑ , in place of those of 2
k

k

P∑ , and two 

quantum numbers, in place of m (1).  In the infinitesimal version, our criterion then once 
more expresses the idea that the (Mk u), (Nk u) can be expressed linearly in terms of those 
of the original regular eigenfunctions (one of which is u) that belong to the same 
eigenvalue of: 

2 2( )k k
k

M N+∑  

 
as u does.  Moreover, it is precisely the eigenfunctions in spherical space that 
SCHRÖDINGER ultimately ascertained (2) that stand in contradiction to that criterion.  
That criterion also seems to prove its merit in the ascertainment of the correct 
eigenfunctions for another choice of coordinates in spherical space. 
 
 
 
 
 
 
 
 
 
                                                
 (1) See SCHRÖDINGER, P. A., § 4. 
 (2) P. A., § 8.  
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§ 2.  The application of the angular impulse operators to the eigen-functions. 
 

a) The scalar wave equation. 
 

 We consider a centrally-symmetric potential and think of the factor u (ϑ, ϕ) in the 
wave function that depends upon polar coordinates as being separated out.  As is known, 
it will satisfy the wave equation: 
 

P2 u ≡ − 
2

2 2

1 1
sin

sin sin

u uϑ
ϑ ϑ ϑ ϑ ϕ

∂ ∂ ∂  − ∂ ∂ ∂ 
= j (j + 1) u,   (5) 

 
in which we have denoted the eigenvalue of P2 by j (j + 1).  It is convenient to consider 
the following linear combinations of the angular impulse components: 
 

P+ = P1 + i P2 = eiϕ 
cos

sin
i

ϑ
ϑ ϑ ϕ

 ∂ ∂+ ∂ ∂ 
,   (6a) 

 

P− = P1 − i P2 = e−iϕ 
cos

sin
i

ϑ
ϑ ϑ ϕ

 ∂ ∂− + ∂ ∂ 
,   (6b) 

 

P3 = − i 
ϕ
∂

∂
.       (6c) 

 
As usual, we consider the eigen-solutions of P3, whose eigenvalues differ from whole 
numbers only by a common constant.  For the sake of clarity, in what follows, we shall 
always understand m to mean a non-negative number and distinguish between the eigen-
solutions: 

,j mu+ (ϑ, ϕ) = fj, m (cos ϑ) eimϕ,     (7a) 

 

,j mu− (ϑ, ϕ) = fj, m (cos ϑ) e−imϕ.    (7b) 

 
In order for fj, m to be regular for ϑ = 0 and ϑ = π, one must necessarily have: 
 

j – m integer and non-negative.    (8) 
 
 In this case, the known representations of spherical functions with: 
 

z = cos ϑ       (9) 
will yield: 

fj, m (z) = (1 – z2)−m/2 
j m

d

dz

−
 
 
 

(1 – z2) j,   (10) 
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m = α + integer, 0 ≤ α ≤ 1,    (11a) 
 

α ≤ m ≤ j.      (11b) 
 
Normalizing those eigen-solutions will not be required for what follows.  In that way, one 
will get all regular solutions of the differential equation that follows from (9): 
 

− 
2

2
2(1 )

1

d df m
z f

dz dz z
 − +  − 

= j (j + 1) f.   (12) 

 
The cases α = 0 (viz., integer j and m) and α = 1/2 (viz., half-integer j and m) will have 
especial interest in what follows.  For α = 1/2, the solutions: 
 

fj, −m (z) = (1 – z2)m/2 
j m

d

dz

+
 
 
 

(1 – z2) j    (13) 

 
will be singular.  By contrast, the case of j and m integer is especially distinguished by 
the fact that: 

fj, −m (z) = const. fj, m (z), for j, m integer,  (14) 
 
while for m non-integer, from the singularity of at the locations z = ± 1, one must 
recognize that fj, −m must be a completely different solution from fj, m . 
 In order to prove (14) for integer j and m, we can infer the following representation of 
fj, m from (10) directly by means of a complex integral that is also otherwise useful: 
 

fj, m (z) = 
0

2
2 /2

1

( )! [1 ( ) ]
(1 )

2

j
m

j mK

j m z t
z dt

i tπ
−

− +

− − +− ∫ .   (15) 

 
Here, the path of integration is a circle around the zero point.  Since the integrand still 
possesses branch loci for t = 1 – z and t = − (1 + z) for non-integer j (and m), in that case, 
it must be expressly added that they should lie outside the circle K0 : 
 

| t | < | 1 – z | and | t | < | 1 + z | on K0 for non-integer j, m;  (15a) 
 
it is only for integer j, m that the quantity is that quantity indifferent to the circle K0 .  The 
expression for fj, −m (z): 

fj, −m (z) = 
0

2
2 /2

1

( )! [1 ( ) ]
(1 )

2

j
m

j mK

j m z t
z dt

i tπ + +

+ − +− ∫   (16) 

 
can now be converted by the substitution: 
 

t → − 
21 z

t

−
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into: 

fj, −m (z) = 
0

2
2 /2 2

1

( )! [1 ( ) ]
(1 )

2

j
m im

j mK

j m z t
z e dt

i t
π

π
− −

− +

+ − +− ∫ ,  (16) 

 
in which we now have: 

| t | > | 1 – z |, | t | > | 1 + z | on K1 .    (16b) 
 
It is only for integer j and m that the circle K1 can be continuously deformed to the circle 
K0 and the relation (14) will then be true. 
 We further show that the regular eigenfunction: 
 

1
2,j

u+ (ϑ, ϕ) = 1
2

/ 2
,

( ) i
j

f z eϕ  

 
is not generally orthogonal to the singular [but still square-integrable, as is easy to see 
from (10)] eigenfunction: 

1
2,j

u+
′ − (ϑ, ϕ) = 1

2

/ 2
,

( ) i
j

f z eϕ
′ − . 

 
(Naturally, the same thing will be true for 1

2,j
u−  and 1

2,j
u−

′ − .)  On initially has: 

 

( )1 1
2 2

, ,

1
sin

4 j j
u u d dϑ ϑ ϕ

π
∗

+ +
′ −∫  = 1 1

2 2

1

, ,1

1

2 j j
f f dz

+

′ −−∫ . 

 
It follows further from (12) that: 
 

[j (j + 1) – j′ (j′ + 1)] = 
1 1
2 2

1 1
2 2

1

, ,2
, ,

1

1
(1 )

2
j j

j j

df df
z f f

dz dz

+

′ −
′ −

−

 
− −  

 
. 

 
Now, the right-hand side is finite at each of the limits z = + 1 and z = − 1 precisely, and 
the contributions of those two limits will then have the same sign when j – j′ is odd, while 
they will cancel in any other case.   In fact, for half-integer m and j, the functions 1

2,j
f  and 

1
2,j

f ′ −  will both be even or both odd in z only for odd j – j′.  Our result is then: 

 

( )1 1
2 2, ,

sin
j j

u u d dϑ ϑ ϕ
∗

± ±
′ −∫  ≠ 0  for odd j – j′ and j, j′ half-integer. (17) 

 
 We now apply the operators P+ and P− to the eigen-solutions and show that: 
 
P+ (fj, m eimϕ) = const. fj, m+1 e

i (m+1) ϕ ,  P− (fj, m eimϕ) = const. fj, m−1 e
i (m−1) ϕ ,    (18a) 

 
P+ (fj, m e−imϕ) = const. fj, m−1 e

−i (m−1) ϕ , P− (fj, m e−imϕ) = const. fj, m+1 e
−i (m+1) ϕ .   (18b) 
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Moreover, fj, j+1 must always be set to zero identically in this for the boundary value j = m.  
In fact, (6) and (15) implies that, e.g.: 
 

 P+ fj, m eimϕ = ei (m+1) ϕ ,2
,2 1/2(1 )

(1 )
j m

j m

df mz
z f

dz z

 
− − − − 

 

 

= 
0

( 1) 2 ( 1) / 2 2 2 1 2
1

( )!
(1 ) {2 (1 )( )[1 ( ) ] 2 [1 ( ) ] }

2
i m m j j

j mK

j m dt
e z j z z t z t mz z t

i t
ϕ

π
+ − + −

− +

−− − + − + − − +∫ . 

 
The integrand can be converted into: 
 

(j + m + 1) [1 – (z + t)2] j t − (j−m) – {[1 – (z + t)2] j (2z + t) t− (j−m)}. 
 
The second term will vanish when one integrates over the circle K0 and it will yield: 
 

P+ fj, m eimϕ = (j + m + 1) (j – m) fj, m+1 e i (m+1)ϕ. 
 

Moreover, one finds in a rather simple way that: 
 

 P− fj, m eimϕ = e i (m−1)ϕ ,2
,2 1/ 2

(1 )
(1 )

j m
j m

df mz
z f

dz z

 
− − − 

, 

  = e i (m−1)ϕ 2 ( 1) / 2 2 / 2
,(1 ) (1 )m m

j m

d
z f z

dz
− −  − −  , 

  = e i (m−1)ϕ 
1

2 ( 1) / 2 2(1 ) (1 )
j m

m jd
z z

dz

− +
− −  − − 

 
, 

  = e i (m−1)ϕ fj, m−1 . 
 
The relations (18b) can be calculated in an entirely analogous way.  Now, for us, it is 
important, in particular, that the singular solution 1

2,j
f −  should appear as a result in the 

relations: 

( )1
2

/ 2
,

i
j

P f eϕ
−  = const. 1

2

/ 2
,

i
j

f e ϕ−
− , ( )1

2

/ 2
,

i
j

P f e ϕ−
+  = const. 1

2

/ 2
,

i
j

f e ϕ+
− , 

 
whereas for integer j, m, from (14), one will have: 
 

P− fj, 0 = const. f j, −1 e
−iϕ = const. f j, 1 e

−iϕ = const. ,1ju− (ϑ, ϕ). 

 
For half-integer j, m, the application of the angular impulse operators to our system (7), 
(10) of eigenfunctions, which has (17) as a consequence, will, in fact, lead to the fact that 
the angular impulse matrices that are calculated from the integrals in the usual way for m 
= 1/2  will no longer be diagonal in j, as we had in § 1.  From our criterion, those half-
integer spherical functions must then be excluded here. 
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b) The wave equation of the spinning electron. 
 
 Here, we shall begin with the form of the Dirac equation in polar coordinates that 
SCHRÖDINGER presented as a special case of his general theory of a spinning electron 
in a gravitational field.  The explanation for the connection between this representation of 
the theory and the usual one shall be postponed to the following §. 
 We write the Schrödinger equation in the form (1): 
 

0 1 2 3

1 1 1 1 1 ( )
( sin )

sinsin

r mc
i i

c t r r r r h

ψ ψ ψϕ ψ α ϑψ α α βψ
ϑ ϑ ϕϑ

∂ ∂ ∂ ∂− + + + +
∂ ∂ ∂ ∂

= 0,    (20) 

 
in which the matrices αk, β satisfy the well-known Dirac commutation relations, and ϕ0 
means a scalar potential field (multiplied by e / hc) that is assumed to be centrally-
symmetric. 
 One then obtains the angular impulse components from the usual method when one 
extends the corresponding expressions (6) by terms that commute with the Hamiltonian 
operator.  In that way, one will get: 
 

P+ = P1 + i P2 = eiϕ 3cos 1

sin 2 sin

si ϑ
ϑ ϑ ϕ ϑ

 ∂ ∂+ + ∂ ∂ 
,   (21a) 

 

P− = P1 − i P2 = e−iϕ 3cos 1

sin 2 sin

si ϑ
ϑ ϑ ϕ ϑ

 ∂ ∂− + + ∂ ∂ 
,   (21a) 

 

P3 = − i 
ϕ
∂

∂
,      (21c) 

 
with the abbreviation s3 = − i α1 α2 (and cyclic permutations).  Deviating from the usual 
form of the theory, here, the component P3 has no additional term, while the matrix s3 
appears in the additional terms in P1 and P2, instead of in the P3, as usual. 
 Another operator that commutes with the Hamiltonian operator, as well as with the 
Pk, is defined by: 

K ψ = β α3 1 2sin
sinsin

α αϑ
ϑ ϑ ϕϑ

 ∂ ∂+  ∂ ∂ 
ψ.  (22) 

 
The total square of the Pk can be expressed in terms of the square of K by way of: 
 

                                                
 (1) SCHRÖDINGER, P. A., eq. (5.12) and (8.1) in the limit R → ∞.  Here, we have introduced the new 
notation α1, α2, α3, β for the matrices that SCHRÖDINGER denoted by iα4 α2 , iα4 α3 , iα4 α1 , − α4 .  That 
is justified by the fact that the Dirac commutation relations will also follow for those matrices if they were 
true for the original α1, …, α4 .  Furthermore, from time to time, SCHRÖDINGER introduced the 
abbreviation ω = r sinϑ ψ, but that would not be convenient for what follows here. 
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P2 ≡ P1
2 + P2

2 + P3
2 = K2 − 1

4 .     (23) 

 
Therefore, if j (j + 1) are the eigenvalues of P2 then k = ± (j + 1

2 ) will be the eigenvalues 

of K.  As is well-known, the signed quantum number k plays a very decisive role in the 
fine structure of the H-atom. 
 For the further integration, one can make the Ansatz for, e.g., the matrices αk , β: 
 

αk = 
0

0
k

k

σ
σ
 
 
 

,  β = 
0

0

I

I

 
 − 

,    (24) 

with 

σ1 = 
0 1

1 0

 
 
 

,  σ2 = 
0

0

i

i

− 
 
 

,  σ3 = 
1 0

0 1

 
 − 

, 

 
from which, it follows that: 
 

sk = 
0

0
k

k

σ
σ

 
 
 

 with k = 1, 2, 3,   (24a) 

 
moreover.  Furthermore, if ψ is decomposed into one factor that depends upon only ϑ, ϕ 
and one that depends upon r: 

ψ = χ (r) u (ϑ, ϕ),     (25) 
in which: 

K u = k u,      (26) 
and with: 

 
t

∂
∂

= − i v, 

then one will have: 

− 0 3 3

1 1 ( )v r mc
i k i

c r r r h

χϕ χ α β χ α βχ∂ + + + +  ∂ 
 = 0.  (27) 

 
(22) will yield the first two components of u (ϑ, ϕ): 
 

k u = 2 1( sin )
sinsin

i i u
u

σ σϑ
ϑ ϑ ϕϑ
∂ ∂−

∂ ∂
,   (28) 

 
and corresponding equations for u3, u4 in which k is replaced with – k.  One will get the 
solution of those equations by changing the sign of one of the components in the pair; 
e.g., u2 .  One will then ultimately get the solution: 
 

ψ1 = F (r) u1 (ϑ, ϕ), ψ2 = F (r) u2 (ϑ, ϕ), ψ3 = i G (r) u1 (ϑ, ϕ), 
ψ4 = − i G (r) u2 (ϑ, ϕ).    (29) 
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(27) implies that F and G must satisfy: 
 

0

1 1 ( )v d rG mc
F kG F

c r r dr h
ϕ + + − − 

 
= 0,   (30a) 

 

0

1 1 ( )v d rF mc
G kF G

c r r dr h
ϕ + + + + 

 
= 0.   (30b) 

 
The last equations agree with the ones that are derived in the textbooks, and will not be 
dealt with further here. 
 If we now set, in analogy to what we did with the scalar wave equation (28): 
 

1; ,k mu+ = fk,m (cos ϑ) eimϕ,   2; ,k mu+ = gk,m (cos ϑ) eimϕ,  (31) 

 
in which we understand k and m to mean negative numbers, then it will follow from (28) 
that f and g must satisfy (1): 
 

1
( sin )

sinsin

d m
g g kf

d
ϑ

ϑ ϑϑ
+ − = 0,   (32a) 

 
1

( sin )
sinsin

d m
f f kg

d
ϑ

ϑ ϑϑ
− + = 0.   (32b) 

 
The further solutions then follow immediately from that: 
 

1; ,k mu− = gk, m e−imϕ, 2; ,k mu− = − fk, m e−imϕ,   (31) 

 
f−k, m = fk, m , g−k, m = − gk, m .    (33) 

 
 The regular solutions of equations (32) were given by SCHRÖDINGER (2), in which 
he employed some previous results of WEYL.  If we again set: 
 

z = cos ϑ      (34) 
then we must set: 

k – m − 1
2  ≥ 0 and k > 0 is integer,   (35) 

and we will get: 
 

                                                
 (1) The notation in SCHRÖDINGER is somewhat different, since we write the quantities that he 
denoted by (f, g) as: i sinϑ  f, sinϑ g, resp. 
 (2) P. A., § 7.  
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fk, m (z) = 

1
2

1 1 1 1
2 2 2 2
( ) ( ) 1(1 ) (1 ) (1 ) (1 )

k m
m m k kd

z z z z
dz

− −
− + − − − + − + − 

 
,  (36a) 

 

gk, m (z) = 

1
2

1 1 1 1
2 2 2 2
( ) ( ) 1(1 ) (1 ) (1 ) (1 )

k m
m m k kd

z z z z
dz

− −
− − − + − + − + − 

 
,  (36a) 

 
in which we will discuss the cases k integer, m half-integer and k half-integer, m integer 
separately.  According to (33), it suffices to restrict to positive k. (For k = 0, there are no 
regular solutions for z = + 1 and z = − 1.) 
 The solutions: 

( )
1; ,k mu −

−  = fk, −m e−imϕ, ( )
2; ,k mu −

−  = gk, −m e−imϕ,   (31a−) 

and 

1; ,k mu+
−  = gk, −m eimϕ, 2; ,k mu+

−  = − fk, −m eimϕ,   (31a+) 

 
which emerge from (36) when one formally replaces m with − m, will demand a more 
precise discussion. 
 Analogous to § 1, we next show that the case of k integer, m half-integer is 
distinguished in particular by the fact that: 
 

,

,

k m

k m

f

g
−

−





= const. ,

,

k m

k m

g

f


 −

 for k integer, m half-integer;  (37) 

 
i.e., in that case, the regular solutions (31) can also be obtained by formally replacing m 
with – m in (31) and (36a, b).  When one introduces a circle K0 around the zero point as 
the integration path in the complex t-plane, one can next write: 
 

fk, m (z) = 
1 1 1 1
2 2 2 2

1
20

1
( ) ( ) 12( )!

(1 ) (1 ) (1 ) (1 )
2

m m k k

k mK

k m dt
z z z t z t

i tπ
− + − − −

− +

− −+ − + + − −∫ , (38a) 

 

gk, m (z) = 
1 1 1 1
2 2 2 2

1
20

1
( ) ( ) 12( )!

(1 ) (1 ) (1 ) (1 )
2

m m k k

k mK

k m dt
z z z t z t

i tπ
− − − + −

+ +

− −+ − + + − −∫ , (38b) 

 
in place of (36).  For integer k ≥ 1, the quantity in the integral is indifferent to the circle 
K0, while in the other cases, one should especially observe that the branching loci t = − (1 
+ z) and t = 1 – z lie outside the circle: 
 

| t | < | 1 + z | and | t | < | 1 – z | on K0 for k, m – are not integer.  (39) 
 
In the expressions for fk, −m and gk, −m : 
 

fk, −m (z) =
1 1 1 1
2 2 2 2

1
20

1
( ) ( ) 12( )!

(1 ) (1 ) (1 ) (1 )
2

m m k k

k mK

k m dt
z z z t z t

i tπ
− + −

+ +

+ −+ − + + − −∫ , (40a) 
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gk, −m (z) =
1 1 1 1
2 2 2 2

1
20

1
( ) ( ) 12( )!

(1 ) (1 ) (1 ) (1 )
2

m m k k

k mK

k m dt
z z z t z t

i tπ
+ − −

+ +

+ −+ − + + − −∫ , (40a) 

 
we now make the substitution: 

t → − 
21 z

t

−
, 

which will give: 
 
 fk, −m (z)  

= 
1 1 1 1 1
2 2 2 2 2

1
20

1
( ) ( ) ( ) 12( )!

(1 ) (1 ) (1 ) (1 )
2

m m i m k k

k mK

k m dt
z z e z t z t

i t

π

π
− − − + − − −

− +

+ −+ − + + − −∫ , (41a) 

 
 gk, −m (z)  

= − 
1 1 1 1 1
2 2 2 2 2

1
20

1
( ) ( ) ( ) 12( )!

(1 ) (1 ) (1 ) (1 )
2

m m i m k k

k mK

k m dt
z z e z t z t

i t

π

π
− + − − − − −

− +

+ −+ − + + − −∫ , (41a) 

 
in which now: 

| t | > | 1 + z |, | t | > | 1 – z | on K1 .    (42) 
 
However, since the circle K1 can be continuously deformed into the circle K0 for integer k 
and integer m − 1

2 , the relation (37) is proved for that special case. 

 
 Things are different in the case of k half-integer, m integer.  The solutions (36a), 
(36b) will then be regular for m > 0 only at the two places z = − 1 and z = + 1, while the 
solutions (31a) are singular for – m ≤ 0.  For m = 0, they will still be square-integrable in 
z.  However, it is noteworthy that for m = 0, we will get two different solutions from (36) 
and (37).  First: 

I
1; ,0ku  = fk, 0 ,  I

2; ,0ku  = gk, 0 ,   (43a) 

and second: 
II
1; ,0ku  = gk, 0 ,  II

2; ,0ku  = − fk, 0 .   (43b) 

 
We further show that these two families of solutions are not orthogonal to each other 
when k – k′ is odd.  With m ≥ 0 and k half-integer, we even have, more generally: 
 

 ; , ; ,
1,2

1
sin

4 k m k mu u d dρ ρ
ρ

ϑ ϑ ϕ
π

+∗ +
′ −

=
∑ ∫  

 = − ; , ; ,
1,2

1
sin

4 k m k mu u d dρ ρ
ρ

ϑ ϑ ϕ
π

−∗ −
′ −

=
∑ ∫  

 = 
1

1
; , ; ,2 1

( )k m k m k m k mf g g f dz
+

′ ′− −−
−∫ = ≠ 0 for k – k′ odd,   (45) 
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which is a result that is analogous to § 1, eq. (17).  Moreover, one can deduce from (36) 
that the integral in (45) is even in z when k is half-integer and k – k′ is odd, while the 
integrand is odd in z for even k – k′, so the integrand will vanish then. 
 In order to prove (45), we infer from (32a, b) that: 
 

(k – k′) 
1

, , , ,1
( )k m k m k m k mf g g f dz

+

′ ′− −−
−∫  = 

12 1/21
, , , ,2 1

(1 ) ( )k m k m k m k mz f f g g
+

′ ′− − −
− + . 

 
 The application of the operators P+ and P− that are defined by (21a, b) to the 
eigenfunctions will further give the result: 
 

P+ 
,

,

im
k m

im
k m

f e

g e

ϕ

ϕ





= const. 
( 1)

, 1
( 1)

, 1

i m
k m

i m
k m

f e

g e

ϕ

ϕ

+
+

+
+





,   (46a) 

 

P− 
,

,

im
k m

im
k m

f e

g e

ϕ

ϕ





= const. 
( 1)

, 1
( 1)

, 1

i m
k m

i m
k m

f e

g e

ϕ

ϕ

−
−

−
−





,   (46b) 

 

P+ 
,

,

im
k m

im
k m

g e

f e

ϕ

ϕ

−

−


 −

= const. 
( 1)

, 1
( 1)

, 1

i m
k m

i m
k m

g e

f e

ϕ

ϕ

− −
−

− −
−


 −

,  (46c) 

 

P− 
,

,

im
k m

im
k m

g e

f e

ϕ

ϕ

−

−


 −

= const. 
( 1)

, 1
( 1)

, 1

i m
k m

i m
k m

g e

f e

ϕ

ϕ

− +
+

− +
+


 −

,  (46c) 

 
which is analogous to (18) in § 1.  The bright-hand side of (46a) and (46d) must be set to 
identically zero for the boundary value m = k − 1

2 . 

 In fact, if one recalls (21) and (24a) then one will next get from (36a, b) that: 
 

  P− (fk, m eim ϕ) = ei (m – 1) ϕ (1 – z2)1/2 , 1
, ,22 2

1

1 1
k m

k m k m

df mz
f f

dz z z

 
− + − − 

 

 = ei (m – 1) ϕ (1 – z2)1/2 , , ,1 1 1 1
2 2 2 2( ) ( )

1 1
k m k m k mdf f f

m m
dz z z

 
+ + − − + − 

 

 = ei (m – 1) ϕ 
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2( ) ( ) ( ) ( )

,(1 ) (1 ) (1 ) (1 )m m m m
k m

d
z z f z z

dz
− − − − + − + + + −

 
 

 = ei (m – 1) ϕ fk, m−1 , 
and likewise: 
 

  P− (gk, m eim ϕ) = ei (m – 1) ϕ (1 – z2)1/2 , 1
, ,22 2

1

1 1
k m

k m k m

dg mz
g g

dz z z

 
− − − − 

 

 = ei (m – 1) ϕ (1 – z2)1/2 , , ,1 1 1 1
2 2 2 2( ) ( )

1 1
k m k m k mdg g g

m m
dz z z

 
+ − − + + − 
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 = ei (m – 1) ϕ 
31 1 1 1 1 1 1

2 2 2 2 2 2 2 2( ) ( ) ( ) ( )
,(1 ) (1 ) (1 ) (1 )m m m m

k m

d
z z g z z

dz
− − − − − + + − + −

 
 

 = ei (m – 1) ϕ gk, m−1 . 
 
Furthermore, by means of the integral representation (38), one will get: 
 

  P+ (fk, m eim ϕ) = ei (m + 1) ϕ (1 – z2)1/2 , , ,1 1 1 1
2 2 2 2( ) ( )

1 1
k m k m k mdf f f

m m
dz z z

 
− + + − − − − 

 

 

 = ei (m + 1) ϕ 
3 31 1

2 2 2 2

1
( ) ( ) 2( )!

(1 ) (1 )
2

m m k m
z z

iπ
− + − + − −+ − ⋅  

 + 1
20

2 1 1{ (1 ) (1 ) (1 )k k

k mK

dt
z k z t z t

t
− −

− +
− − + + − −∫  

 + 2 2(1 )( 1)(1 ) (1 )k kz k z t z t −− − + + ⋅ − −  

 + [(m + 1
2 ) (1 – z) – (m − 1

2 ) (1 + z)] (1 + z + t)k (1 – z – t)k−1}. 
 
The integrand can be converted into: 
 

(k + m + 1
2 ) 

1
2( )k mt− − − (1 + z + t)k (1 – z – t)k−1 

–
d

dt
[

1
2( )k mt− − − (2z + t) (1 + z + k)k (1 – z – t)k−1]. 

 
The second term will vanish when one integrates over the circle K0 , and that will give: 
 

P+ (fk, m eim ϕ) = (k + m + 1
2 ) (k – m − 1

2 ) fk, m+1 e i (m + 1) ϕ. 

 
One will likewise get: 
 

  P+ (gk, m eim ϕ)  = ei (m + 1) ϕ (1 – z2)1/2 , , ,1 1 1 1
2 2 2 2( ) ( )

1 1
k m k m k mdg g g

m m
dz z z

 
− + − − + − − 

 

 

 = ei (m + 1) ϕ 
3 31 1

2 2 2 2

1
( ) ( ) 2( )!

(1 ) (1 )
2

m m k m
z z

iπ
− + − + − −+ − ⋅  

 + 1
2

2 2 1{ (1 )( 1)(1 ) (1 )k k

k m

dt
z k z t z t

t
− −

− +
− − − + + − −∫  

 + 2 1 1(1 ) (1 ) (1 )k kz k z t z t− −− + + − −  

 + [(m − 1
2 ) (1 – z) – (m + 1

2 ) (1 + z)] (1 + z + t)k−1 (1 – z – t)k}. 
 
The integrand can be converted into: 
 

(k + m + 1
2 ) 

1
2( )k mt− − − (1 + z + t)k−1 (1 – z – t)k 
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–
d

dt
[

1
2( )k mt− − − (2z + t) (1 + z + k)k−1 (1 – z – t)k], 

 
and the integration over the circle K0 will yield: 
 

P+ (gk, m eim ϕ) = (k + m + 1
2 ) (k − m − 1

2 ) gk, m+1 e
 i (m+1) ϕ. 

 
The calculation of (46c) and (46d) proceeds analogously. 
 It is especially important for the application of our criterion to know that singular 
solutions will appear in the case of k half-integer, m integer in the relations: 
 

P− 
,1

,1

i
k

i
k

f e

g e

ϕ

ϕ





= const. ,0

,0

k

k

f

g





,  P+ 
,1

,1

i
k

i
k

g e

f e

ϕ

ϕ

−

−


 −

= const. ,0

,0

k

k

g

f


 −

, 

 

P− 
,0

,0

k

k

f

g





= const. , 1

, 1

i
k

i
k

f e

g e

ϕ

ϕ

−
−

−
−





,  P+ 
,0

,0

k

k

g

f


−

= const. , 1

, 1

i
k

i
k

g e

f e

ϕ

ϕ
−

−


 −

 

 
as a result.  Therefore, our criterion demands the exclusion of the case k half-integer, m 
integer.  In fact, in that case, one will always get contradictions for the angular impulse 
matrices that are calculated from the integrals in the usual way.  If one computes, on the 
one hand, one of the two solutions (fk,0, gk,0) or (gk,0, − fk,0) in the original system of 
solutions then, according to (45), (45a), some of the calculated matrix elements will be 
non-diagonal in k, which would contradict the commutation of the operators P+ and P− 
with the operator K that is defined by (22).  On the other hand, if one were to not count 
the (non-regular, but still square-integrable) solutions for m = 0 among the allowable 
eigen-solutions (1) then, since the solutions for m = 0 would then be orthogonal to the all 
of the original allowable solutions, from (46), pieces would be cut out of the boundary by 
the matrix elements of P+ and P− , which would interfere with the validity of the 
commutation relations that would be necessary for those matrices. 
 By contrast, in the case of k integer (≠ 0), m half-integer, as a consequence of (37), 
the application of the operators P+ and P−  to the original orthogonal system ,k mu+ (ϑ, ϕ), 

,k mu− (ϑ, ϕ), with 1
2  ≤ m ≤ k − 1

2 , would not produce something out of that system, as our 

criterion demands, such that this case would then deliver the physically-correct eigen-
solutions. 
 
 

 
 
 
 

                                                
 (1) Cf. SCHRÖDINGER, P. A., rem. by the editor at the conclusion. 
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§ 3.  Connection between Schrödinger’s form of the Dirac equation and the usual 
form.  Behavior of the solutions for finite rotations. 

 
 Let Ψ satisfy the usual Dirac equation: 
 

3

0
1

1
k

k k

mc
i i

c t x h
ϕ α β

=

∂Ψ ∂Ψ− Ψ + + Ψ
∂ ∂∑ = 0,   (47) 

 
while ψ fulfills equation (20) in polar coordinates: 
 

x1 = r sin ϑ cos ϕ, x2 = r sin ϑ sin ϕ, x3 = r cos ϑ,  (48) 
 
which we can write as: 
 

0 1 2 3

1 1 1 cos 1 1

2 sin sin

imc
i

c t r r r r h

ψ ψ ϑ ψ ψϕ ψ α ψ α α ψ βψ
ϑ ϑ ϑ ϕ

∂ ∂ ∂ ∂   − + + + + + +   ∂ ∂ ∂ ∂   
 

= 0.      (49) 
 
The transition from Ψ to ψ will now be mediated by the unitary matrix R (ϑ, ϕ), which is 
independent of ϑ, ϕ, and is defined in terms of the spin matrices that are defined by: 
 

s1 = − i α2 α3 ,  s2 = − i α3 α1 ,  s3 = − i α1 α2 ,   (50) 
 
and the identity matrix, which are combined linearly according to the formula (1): 
 

 R (ϑ, ϕ) = 
2 22 2

i s i s
e e

ϑ ϕ

⋅   

= cos
2

ϑ
sin

2

ϕ
I – i sin

2

ϑ
sin s1

2

ϕ
 + i sin 

2

ϑ
cos

2

ϕ ⋅⋅⋅⋅ s2 + i cos 
2

ϑ
sin

2

ϕ ⋅⋅⋅⋅ s3 . (51) 

 
As one sees, R commutes with the matrix β.  On the basis of the known commutation 
relations for the sk , one will further easily confirm that one will get the matrix that is 
inverse to R by switching i with – i, as well as the sequence of the two exponential 
factors: 
 

 R−1 (ϑ, ϕ) = 
2 22 2

i s i s
e e

ϕ ϑ− −
⋅   

= cos
2

ϑ
sin

2

ϕ
I + i sin

2

ϑ
sin s1

2

ϕ
 − i sin 

2

ϑ
cos

2

ϕ ⋅⋅⋅⋅ s2 − i cos 
2

ϑ
sin

2

ϕ ⋅⋅⋅⋅ s3 . (51) 

 
One can now show, in fact, that the assignments: 
 

                                                
 (1) I must thank E. SCHRÖDINGER for his friendly communication of the way of writing R (ϑ, θ) as a 
product of two exponential factors, which is also suitable for the proof of the following relations (53), (55). 
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ψ = RΨ or Ψ = R−1 ψ    (52) 
 

will take one from equation (47) to equation (49), or conversely.   That is based upon the 
relations (1) 

R−1 α1 R = α1 cos ϑ cos ϕ + α2 cos ϑ cos ϕ − α3 sin ϑ,  (531) 
R−1 α2 R = − α1 sin ϕ + α2 cos ϕ,      (532) 
R−1 α3 R = α1 sin ϑ cos ϕ + α2 sin ϑ sin ϕ + α3 cos ϑ,  (533) 

 
which follow from (51). 
 By means of the relations: 
 

 
1x

∂
∂

= cos ϑ cos ϕ 
1

r ϑ
∂

∂
– sin ϕ 

1

sinr ϑ ϕ
 ∂
 ∂ 

 + sin ϑ cos ϕ 
r

∂
∂

, 

 

 
2x

∂
∂

= cos ϑ cos ϕ 
1

r ϑ
∂

∂
+ cos ϕ 

1

sinr ϑ ϕ
 ∂
 ∂ 

 + sin ϑ sin ϕ 
r

∂
∂

, 

 

 
3x

∂
∂

= − sin ϑ 
1

r ϑ
∂

∂
 + cos ϑ 

r

∂
∂

, 

 
it will further follow from (53) that: 
 

3

1
k

k kx
α

=

∂
∂∑ = (R−1 α1 R) 

1

r ϑ
∂

∂
+ (R−1 α2 R) 

1

sinr ϑ ϕ
∂

∂
+ R−1 α3 R

r

∂
∂

. (54) 

 
Finally, one will find that the matrix X, which is defined by: 
 

R−1 α1 
R

ϑ
∂
∂

+ 1
2

1

sin

R
R α

ϑ ϕ
− ∂

 ∂ 
= R−1 X R, 

                                                
 (1) In order to verify these relations, as well as the following ones (55), one can also start with the 
special representation (24) of the Dirac matrices, and from (24a) that gives the sk as simply: 

0

0
k

k

σ
σ

 
  
 

. 

From (51), (51a), one will then get: 

R = 
0

0

T

T

 
 
 

, 

with the two-rowed matrices: 

T = 

/ 2 / 2

/ 2 / 2

2 2

2 2

cos sin

sin cos

i i

i i

e e

e e

ϕ ϕ

ϕ ϕ

ϑ ϑ

ϑ ϑ

−

−−

 
 
 
 

, T−1 = 

/ 2 / 2

/ 2 / 2

2 2

2 2

cos sin

sin cos

i i

i i

e e

e e

ϕ ϕ

ϕ ϕ

ϑ ϑ

ϑ ϑ

− −− 
 
 
 

, 

and the relations (53) reduce to the simpler ones in which R has been replaced with T, and the αk have been 
replaced with the sk . 
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will be: 

X = α1 
R

ϑ
∂
∂

 R−1 + 1
2

1

sin

R
Rα

ϑ ϕ
−∂

∂
= − 1 3

1 cos

2 sin

ϑ α α
ϑ

 + 
 

.  (55) 

 
One finally arrives at the Schrödinger form (49) from the original Dirac equation (47) 
from (54) and (55), by means of the substitution (52). 
 Although we shall not go into the details here, the angular impulse operators in 
equation (49) that are defined by (21) can also be obtained from the usual angular 
impulse operators: 
 

0
1P = 1

2 3 12
3 2

1
x x s

i x x

 ∂ ∂− + ∂ ∂ 
, … (and cyclic permutations)  (56) 

 
in equation (47) by recomputing in terms of the R-matrix. 
 We can also now resolve the question that was discussed in § 1 regarding the 
behavior of the solutions of (49) for finite rotations of the polar axis, since that question 
reverts to the known behavior of the solutions of (47) under the matrix R.  If we then 
once more consider a finite rotation of the coordinate system that is characterized by 
three parameters a, which will determine new coordinates kx′  (polar angles ϑ′, ϕ′, resp.) 

as functions of the old coordinates xk (angles ϑ, ϕ, resp.) and the a.  For a spherically-
symmetric potential ϕ0 = ϕ0 (r) in the usual system (47) of Dirac equations, one will get a 
new solution X (x, a) of the equations in the xk from an arbitrary solution Ψ (x) of the 
same equations when one first replaces the x with x′ while leaving the functional form of 
Ψ unaltered and expressing the x′ in terms of the x and a, and secondly, performing an S-
transformation with constant coefficients that depends upon a: 
 

X (x, a) = S0 (a) Ψ (x′).    (57) 
 
(Here, we do not write out the spin indices explicitly, as usual.)  The matrix S0(a) is 
known from the theory of spinors, and does not need to be specified in detail here. 
 We now get the corresponding relation directly: 
 

χ (ϑ, ϕ, a) = S (ϑ, ϕ, a) ψ (ϑ′, ϕ′),    (58) 
 
which associates any arbitrary solution ψ of (49) with a new solution χ of (49) by way of 
the connection (52): 
 

Ψ (x′) = R−1(ϑ′, ϕ′) ψ (ϑ′, ϕ′), χ = R (ϑ, ϕ) X, 
 
which will give the matrix S (ϑ, ϕ, a) as: 
 

S (ϑ, ϕ, a) = R (ϑ, ϕ) ⋅⋅⋅⋅ S0(a) ⋅⋅⋅⋅ R−1(ϑ′, ϕ′),   (59) 
 
in which ϑ′, ϕ′ are to be thought of as functions of ϑ, ϕ, and a. 


