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In the present note, the following criterion will be jposed for resolving the question of whether a
certain wave equation physically admits single-valueddouble-valued wave functions: A single
application of the angular impulse operator to a givestesy of regularly- integrable (square-integrable,
resp.) eigen-solutions cannot produce something that igleuws that system for the same value of the
total angular impulse quantum number.e., the new solutions that are thus-obtained medinearly
expressible in terms of the original ones. As a basithit criterion, it will be shown that when itnst
fulfilled, no one-to-one correspondence would exist betvike operator calculus and the matrix calculus
for the angular impulse quantities. The applicationth® scalar wave equation yields the necessity of
single-valued wave functions, while for the Schrddinger fofrthe Dirac equation in polar coordinates,
the criterion will lead to the necessity of doublewesl solutions. Both results are consistent with
experiments. The generalization of the formulationhef ¢riterion for finite rotations will be given, and
the one for the full rotation group of spherical spaitkbs mentioned.

1. Problem statement. Formulation of the criterion.

As the author already emphasized on a previous occé3jaihere is no argument
that is valida priori for saying that the solutions of the wave equation thescribe
physical behavior of a system quantum-theoretically mesessarily be single-valued.
Namely, for the single-valuedness of physical quastiti@t are always bilinear in the
wave function and its complex conjugate, it will suffithat all admissible eigen-
solutions should get multiplied by a fact®f of magnitude 1 when one travels around
certain closed paths, and that the factor should dependamppthe path in question, but
be independent of the eigen-solution that has been chos¢owever, the further
treatment of that question Inc. cit. soon proved to be insufficient, since among the
multi-valued eigen-solutions, in general, there wess alnes that satisfied all of the
regularity requirements. That was also the casehfomulti-valued spherical functions
that were treated iloc. cit. as solutions of the ordinary non-relativistic wave eiguabf
a particle.

() Cf., Handbuch d. Physik, v. XXIV/1"%ed., Berlin 1933, pp. 126.
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In the meantime, the problem that was just spoken eftveated in the literature on
several occasions)( in particular, E. SCHRODINGER made some essent@jness in
regard to it. He first remarked that the equivalenceasit and future (reversibility of
time) for the evolution of physical quantities is trudyovhen the wave functions are one
or two-valued, in particular, and of them, the two-valuadsowill simply change their
sign under the aforementioned orbits. For that reaasnyell as for the sake of
simplicity, in what follows, we will mainly discussnly those two possibilities.
Moreover, starting from his previous formulation of iieac equations of the electron in
arbitrary coordinates’, SCHRODINGER discovered a case in which the solutidns o
the wave equation must necessarily be assumed tabealued if the result is to remain
in agreement with experiments. Indeed, he then neateld a new way of representing
Dirac’s relativistic wave equation for the electronpolar coordinates in ordinary flat
space. That state of affairs allowed a serious doudntige concerning whether one could
find an adequate physical basis for the resolution ofgtiestion of the one- or two-
valuedness of the solutions of a given wave equatiath. at

In contrast to that, in this note, it will be shotrat there should be no room for such
doubt, and (unlike the situation for the symmetry clasgemany-electron problems) a
theoretical criterion for the resolution of the quastin one or the other sense can, in
fact, be given. Admittedly, it does not suffice hwestigate the regularity of the eigen-
solutions alone if one is to do that, but it is essémliat the Hamiltonian operator must
admit a transformation group. We restrict the preseatm@ation to the groups of
ordinary rotations in flat space, and indeed, on the ond, Har the relativistic scalar
wave equation of a particle, and on the other hand htorelativistic wave equation of
the spin electron. As is known, that group givestosthe existence of the three angular
impulse operator$;, P2, P;, which always take an eigen-solution to another eigen-
solution for a centrally-symmetric problem, since theyl when commute with the
Hamiltonian operator. Furthermore, any of the three wjies P« (k = 1, 2, 3) will
commute with the square of the total angular impulse:

P? = P2 + P2 + P&, (1)

which is known to possess the eigenvalug + 1); one should especially investigate
when the half-integer values joare excluded and when the whole-integer values are. To
that end, we start with a system of regular eigen-soilsi;» of the operatof?, for
which one will then have:

() A.S. EDDINGTON,Relativity Theory of Protons and Electroi@ambridge, 1936, pp. 60 and 150,
as well as the older literature that was cited in@n two-valued spherical functions as solutions of the
non-relativistic wave equations, cf., also F. MOGLICEit. Phys.110 (1938), 1. However, eq. (2a) in
that paper contains an essential oversight, in thawi(ebe shown in § 2 of this note) the integrals loé t
calculated matrix elements of the angular impulse compsrmrer the spherical surface will no longer
satisfy the demand that they must commute with the xnafrthe square of the total angular impulse
vector.

On the question of the reversibility of time, cf., ®CHRODINGER, Ann. Phys. (Leipzig) (3P (1938),
49, and for a thorough discussion of multi-valued solutiorisefelativistic wave equation of the electron,
see his article in Commentationes Pontificia Acade®dientiarun? (1938), 321. (Cited as “P. A.” in
what follows.)

() E. SCHRODINGER, Berl. Ber. phys. u. math. Klasse (1982)105.
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PPUim=](+1)Um. (1a)

(As usual, we do not explicitly write out any spin indi¢bat might possibly be present.)
For a given value gf there are always only finitely many regular eigemtsohs, and it

is, moreover, inessential for the application of ¢hieerion whether one does or does not
count eigen-solutions that are possibly no longer reghiar still square-integrable, as
being present in the system considered. However, if weidemall possible (either
integer or half-integer) values pthen in the latter case, the system of eigen-saoisitio
might be chosen such that the functions in the syshambelong to different-values
will fulfill the condition of orthogonality.

We will now pose the following additional physical regment:The application of
the angular impulse operatorcRo a given finite system of regular (or only square-
integrable) eigen-solutions of’Rvith the same value of j shall not produce something
that does not belong to that system.

When that is expressed in a positive way, the new eigetidms P, ujm shall be
linearly-expressible in terms of the old ones:

Py Um= Z’:C::mi um, j- (2)

Obviously, our requirement includes the idea that the nganesolutions should also be
regular (square-integrable, resp.) The fact that onlyn&igetions with equal values pf
appear in the left and right-hand sides of (2) is comaketith the fact that th&y
commute with alP?.

Moreover, if one chooses the eigenfunctians especially such that one of the
angular impulse components — s#¢, — is also brought into diagonal form then the
known selection rules fd?x will be valid, and in general at most two of the teonshe

right-hand side of (2) will be non-zero. (If the enfienctions were normalized then the

ck . would, in fact, represent the matrix element®,0f)

In the following § 2, it will next be shown that theiterion that was given is
sufficient in the case of scalar wave equations, dsasdan spinor ones (e.g., the Dirac
equation), for one to resolve uniquely the alternativevbether a single-valued or a
double-valued wave function is admissible. Furthermammamportant result (8 2) is that
in the case for which the criterion is not fulfilleshme of the new eigenfunctionsuPm
are no longer orthogonal to a family of the origing n with fixed m”and variablg’,
while j # ]’ That will yield the physical necessity of fulfillingio criterion. Otherwise,
the matrix elements d®y that are calculated in the usual way would no longealbe
diagonal inj, which would contradict the commutability of & with P>. One can then
also formulate the result in such a way that if autedon were violated then the usual
connection between matrices and operators for the angupulse components would
break down, which would obviously be physically inadmissible.

Another formulation of our criterion that is equivalda the original one will be
given 8 3, which will be perhaps most intuitive, but les#table for practical
computations. It is based upon the fact that the angufaulse operators are associated
with infinitesimal rotations and that by iterating thamoperation must arise that permits
one to obtain a new eigen-solution of the wave equdition any eigen-solution under a
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finite rotation of the coordinate system. As a result ofdtistrariness in the choice of
the axes of a polar coordinate system, all of thoseneigkitions will be physically
equivalent. However, the version of our criteriomttlarises when one passes from
infinitesimal rotations to the finite ones (in truthjs equivalent to the original version
and contains no stronger demand) will say just that lasrevell, the new eigen-solutions
Vim (X) must be linearly-expressible in terms of the old anes (x) that belong to the
samg.

However, the definition of the operation that produge, (X) from u;, m (X) demands
a somewhat more detailed argument. |Initially, it is veimple for the scalar wave
equation, since that is directly invariant under rotatibthe coordinate axes. One will
then get they, m (X) fromu;, m (X) when one next replaces the old polar angleg with
the new ones?, ¢’ without changing the form of the functionm (x), and then replaces
them with the old one#, ¢, and expresses the three rotation parameters (e.ghrése
Euler angles), which might be briefly denotedadyere, by way of:

U,m (&, #; @) =U,m (7, ¢7). 3

By our criterion, it will be required here that:

U,m (&', §7) = Z Com (8) [, (2,9), (4)

and that can obviously be fulfilled only for singlalued wave functions. By contrast,
the double-valued wave functian, (&, ¢”) obviously cannot be expressed linearly in
terms of they, m (&, ¢) with the samg and constant coefficients, since the, (J, ¢) will
change sign when one orbits around the pdmntO, but they;, m (F, ¢”) will change sign
when one orbits around the poifit= 0, which is different from the latter; i.e., thas no
“addition theorem” for double-valued spherical ftions.

On the same basis, the application of our critetethe usual Dirac wave equation
for the electron will lead inevitably to single-uald solutions. Namely, in order to arrive
at theu; m from thev;, n, here one must perform &transformation of the spin indices
with constant coefficients, in addition to the dith&ion of the?’, ¢ with &, ¢.

However, things are not the same for the form lef Dirac equation in polar
coordinates that was presented by SCHRODINGER. t Egaation is not simply
invariant under a transition from one system ofsat@ another, but in order to again
represent the wave equation in the new coordinatesmust append &itransformation
of the spin indices thadepends upord, ¢. (By the way, that is characteristic of the
general covariant form for the Dirac equation tR@HRODINGER represented.) In that
case, one then obtain a new solutjpp?, ¢, a) from an arbitrary solutioq (5, @) by
way of:

X5, ¢,8)=S(F, ¢ a) Y (d' ¢), (32)

in which theS-matrix acts upon the spin indices (which are ne¢m explicitly here) in
the usual way. Instead of (4), our criterion tkags:
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S(F, ¢ a) Wi,m (7', ¢) = Z Com(8) U; (. 9). (4a)

As will be shown in § 3, in the Schrodinger case, matrixS will depend upong, ¢ in
such a way that it will change its sign for a cthgath on the sphere that goes arotind
=0 and leave#’= 0 outside of it, as well as for a closed path twees around?’ = 0 and
leavesd = 0 outside. In that case, eq; (4a) will be pdgditue only wheruy;, m (J, @) is
double-valued, but will not be possibly true whem, (3, ¢) is single-valued.

Knowing the matriS (3, ¢, a) would then make calculating with the angular itspu
operatorsPy (which emerge fron§ by specializing thea for infinitesimal rotations,
moreover) to a certain extend superfluous. Howewagplying the criterion for
infinitesimal rotations seems to preserve its egfilanatory meaning on different
grounds. First of all, only in the latter versidoes the importance of the criterion for the
self-consistent connection between operator cadcahd matrix calculus come to light.
Furthermore, directly ascertaining t8ematrix without taking recourse to other forms of
the wave equation seems to be truly confusing ifatef transformations of a group,
namely, for more general groups.

As we have mentioned already, here we restricdedues to the case of flat space and
the usual three-dimensional rotation group, siheentain idea in our argument is already
clear in that case. However, that argument caredmly generalized to the wave
equations of spherical space, in which the sixipatar rotation group with the six
operatoraMy, N¢ (k = 1, 2, 3) will enter in place of the three-paréeneaotation group

with the threeP,, the eigenvalues o) (M?Z+N?), in place of those o} R?, and two
k k

quantum numbers, in place wf(*). In the infinitesimal version, our criterion thence
more expresses the idea that thie (), (Nk u) can be expressed linearly in terms of those
of the original regular eigenfunctions (one of whits u) that belong to the same
eigenvalue of:

2 (MZ+N)

as u does. Moreover, it is precisely the eigenfuncion spherical space that
SCHRODINGER ultimately ascertaine) ¢hat stand in contradiction to that criterion.
That criterion also seems to prove its merit in tcertainment of the correct
eigenfunctions for another choice of coordinatespinerical space.

() See SCHRODINGER, P. A, § 4.
é) P.A,§sS.



W. Pauli — The one- or two-valuedness of eigenfunctiomgave mechanics. 6

8 2. The application of the angular impulse operators to thegen-functions.
a) The scalar wave equation
We consider a centrally-symmetric potential and thihkhe factoru (3, ¢) in the

wave function that depends upon polar coordinates as beingt&epaut. As is known,
it will satisfy the wave equation:

1 0( . .ou 1 d%u ..,
PPus- ——|sind— |-————=j(j + 1u, 5
sind 619( 019) sier96¢2 1 ) ©®)

in which we have denoted the eigenvaludoby| (j + 1). It is convenient to consider
the following linear combinations of the angulaipumse components:

=P +ip=df| L 4SO 9 | (6a)
04 sind d¢
P.=p,—ip,=e|-0 40 0 | (6b)
04 singd d0¢
.0
Ps=-i —. 6C
3 29 (6¢)

As usual, we consider the eigen-solutionsPgf whose eigenvalues differ from whole
numbers only by a common constant. For the saldaoty, in what follows, we shall

always understanoh to mean a non-negative number and distinguish detvihe eigen-
solutions:

Uy (8, @) =f.m (cosd) €™, (7a)
U (9, @) =f,m (cOSS) €™. (7b)
In order forfj m to be regular fog? = 0 and = 7z one must necessarily have:
| — minteger and non-negative. (8)
In this case, the known representations of spaleiuactions with:

z= cosd 9)
will yield:

fim (@ = (1™ [d%j(l ) (10)
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m = a + integer, EKa<l, (11a)
asmsj. (11b)

Normalizing those eigen-solutions will not be requiredvibiat follows. In that way, one
will get all regular solutions of the differential equation that follofsm (9):

d A A
- d—Z[(l—z )Fz}ﬁ f=j(+Df. (12)

The casesr = 0 (viz., integej andm) anda = 1/2 (viz., half-integey andm) will have
especial interest in what follows. Far= 1/2, the solutions:

i@ = (1-D™ [d%j(l )] (13)

will be singular. By contrast, the casejandm integer is especially distinguished by
the fact that:

fi, -m (2) = constf; m (2), for j, minteger, (14)

while for m non-integer, from the singularity of at the looas z = + 1, one must
recognize thaf;, -m must be a completely different solution frém.

In order to prove (14) for integeandm, we can infer the following representation of
fi, m from (10) directly by means of a complex intedlslt is also otherwise useful:

fm(@ = (L-22)™? (Jz_l;n)' J’KO 1 —ij_r‘:+P ]’ it (15)

Here, the path of integration is a circle arounel zbro point. Since the integrand still

possesses branch loci for 1 —z andt = — (1 +2) for non-integej (andm), in that case,
it must be expressly added that they should lisidatthe circléy :

[t|<|1-z]and f|<|1+z|onkKg for non-integef, m; (15a)

it is only for integelj, mthat the quantity is that quantity indifferenttbe circleK, . The
expression fofj, -m (2):

fj,—m (Z) - (1_ Zz)mlz (J;:)I J’KO [1_( Z+ ])Z]j dt (16)

t j+m+1

can now be converted by the substitution:
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into:

_ (= gy e (M)t [L=(2+ 97
fin@= (-2t [ S (16)

in which we now have:
[t]|>]1-z], |t]>]1+z]onK;. (16b)

It is only for integelj andm that the circleK; can be continuously deformed to the circle
Ko and the relation (14) will then be true.
We further show that the regular eigenfunction:

UL, (8. 9)= 1, ()"

is not generally orthogonal to the singular [bull sfjuare-integrable, as is easy to see
from (10)] eigenfunction:

NG ERS

o
i1

(2) €2,

-1
2

(Naturally, the same thing will be true fujfl and U s .) On initially has:

1 (ufé)mu+ sinﬁdﬁc@:%j“f f . dz.

apd \Cis) i PR

It follows further from (12) that:

na+n—r0w1n:§

Nl
(o
N

o

df , df .,
-z f_,—=-f, —=
a ® dz

Now, the right-hand side is finite at each of timits z= + 1 andz = — 1 precisely, and
the contributions of those two limits will then leathe same sigh wher- j’is odd, while
they will cancel in any other case. In fact, laif-integerm andj, the functionsijl and

fj,_l will both be even or both odd @only for oddj —j”. Our result is then:

T2
+ H +
il
] |

We now apply the operatoPs andP- to the eigen-solutions and show that:

singddd dp #0 for oddj —j’andj, | "half-integer.  (17)

Nl

P. (f; m €M) = constfj ey € ™7 P_ (f m€™) = constf; 1 € ™P? (18a)

P. (f me ™) = constf; my e ™H? P_ (f me ™) = constfj m € ™7 (18b)
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Moreover f; j+1 must always be set to zero identically in this forlibendary valu¢=m.
In fact, (6) and (15) implies that, e.g.:

P: fim dm? = ¢ mud {_(1_ ZZ) d:;j; - (1_mzzz)1/2 fj,m}
A L LT y_dt
= M- 2y MR 2 - D)z M- (7 Y172 niz-( )8} s
271 YKo e

The integrand can be converted into:
G+rm+)[1-e+t] t 0™ {[1- @+ @2z+1)t7I™),
The second term will vanish when one integrates owecitieleK, and it will yield:
Pefim€™=(G+m+1)(—mfme ™7
Moreover, one finds in a rather simple way that:

fj,m_ mz ¢
dz (@-2)Y2 |

i - (m- d m
—e (m-1)¢ (1_ ZZ) ( 1)/2d_Z[ ijm (1_ Zz) /2]

P_fime™ =e' (™ {(1— z°) d

) d j—m+1 '
— eI (m-1)¢ (1_ ZZ )— (m—l)IZ(_j (1_ ZZ)] ,
dz

—oi(mi)y et

The relations (18b) can be calculated in an entireglogous way. Now, for us, it is
important, in particular, that the singular solutidijr;_l should appear as a result in the

relations:
P_( f, e“”z) = const. f, _

ez R(fjle"m) = const. f, _ ez,
3 ,

Nl
Nl

whereas for integgr m, from (14), one will have:
P_f, 0= constf; ., ™ = constf; 1 €'’ = const.u;, (3, ¢).

For half-integelj, m, the application of the angular impulse operatorsutosystem (7),
(10) of eigenfunctions, which has (17) as a consequencejmfitict, lead to the fact that
the angular impulse matrices that are calculated frmmntegrals in the usual way for

= 1/2 will no longer be diagonal jnas we had in 8 1. From our criterion, those half-
integer spherical functions must then be excluded here.
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b) The wave equation of the spinning electron.

Here, we shall begin with the form of the Dirac equatin polar coordinates that
SCHRODINGER presented as a special case of his geneoaytbf a spinning electron
in a gravitational field. The explanation for the cornimecbetween this representation of
the theory and the usual one shall be postponed toltbwihg §.

We write the Schrédinger equation in the fofin (

1oy

cot WA 4/ 5 09

in which the matricesx, £ satisfy the well-known Dirac commutation relatioasd ¢o
means a scalar potential field (multiplied by hc) that is assumed to be centrally-
symmetric.

One then obtains the angular impulse components fnenusual method when one
extends the corresponding expressions (6) by terms ¢dhanate with the Hamiltonian
operator. Inthat way, one will get:

ndoree, L WL ) me o,
S5 Wsmaw)s %rsnsop Ty T A4=0 (20

P=p +ipy=gt| 100 1S (21a)
04 sing d¢ 2sind
P.=p,—iP,=¢ _0 ,jcosfd 15 (21a)
04 singd 09 2sind
Ps=-i i (21c)
Gl
with the abbreviatios; = — 1 a1 a» (and cyclic permutations). Deviating from the usual

form of the theory, here, the componéithas no additional term, while the matax
appears in the additional termsApandP;, instead of in th&;, as usual.
Another operator that commutes with the Hamiltonianratpe, as well as with the

Py, is defined by:
a 0 . a, 0
Ky=La L /sind+—2— | 22
v=F 3{w/sin79619 sinz96¢jw (22)

The total square of th&, can be expressed in terms of the squat€ lof way of:

() SCHRODINGER, P. A., eq. (5.12) and (8.1) in the liRit. «. Here, we have introduced the new
notationay, a», as, B for the matrices that SCHRODINGER denoteddya, , ia, as, ia, an, — a;. That
is justified by the fact that the Dirac commutatioratieins will also follow for those matrices if theyere
true for the originalay, ..., a, . Furthermore, from time to time, SCHRODINGERrautuced the

abbreviationw=r ,/sing ¢, but that would not be convenient for what follows here.
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P2 = P12 + P22 + P32 = K2 —%. (23)
Therefore, ifi (j + 1) are the eigenvalues Bt thenk = =+ (j +1) will be the eigenvalues
of K. As is well-known, the signed quantum numkegrlays a very decisive role in the

fine structure of the H-atom.
For the further integration, one can make the Anfsaii2.g., the matricesx , £

(0 o (I O
S )

S S SPS

from which, it follows that:

with

0
S = (Uk j with k=12, 3, (24a)
0 o

moreover. Furthermore, i is decomposed into one factor that depends upongrgy
and one that depends upon

Yy=xr)u(d 9), (25)
in which:

Ku=ku, (26)
and with:

0o _ .

—=—iv,

ot
then one will have:

Sy e ta a2 gy <0 @7)
c r r or h

(22) will yield the first two components af(J, ¢):

io, 0 . iog, ou
ku= Z___— (Jsindu)-——, 28
sing 619( ) sind 0¢ (28)

and corresponding equations fat u, in whichk is replaced with k. One will get the
solution of those equations by changing the sigore of the components in the pair;
e.g.,Uuz . One will then ultimately get the solution:

h=F@M)uwu(d @9, p=F@)w(d ¢, ¢yu=iG([)u(d ¢),
Y==1G(r)uz (I, 9). (29)
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(27) implies thaF andG must satisfy:

1d(rG) _mc

1
+¢, |F+=kG- —F=0, 30a
( ¢0j o h (30a)
( +¢OJG+1kF+1d(rF) +MCs=0. (30b)
r rodr h

The last equations agree with the ones that angedkein the textbooks, and will not be
dealt with further here.
If we now set, in analogy to what we did with gealar wave equation (28):

U = fim (cOS ) €M7, U}y = Okm (COS ) €™, (31)

in which we understanklandm to mean negative numbers, then it will follow fr¢28)
thatf andg must satisfy{):

—(y/sind + - kf=0, 32a
—(/sing f ——f +kg=0. 32b

The further solutions then follow immediately frahat:
Upem=Gem€ ", U=~ fom €™, (31)

f—k, m = fk, m» O«m="0km- (33)

The regular solutions of equations (32) were gigiSCHRODINGER?), in which
he employed some previous results of WEYL. If waia set:

Z=cos? (34)
then we must set:
k—m-1 =0 andk> 0 is integer, (35)

and we will get:

() The notation in SCHRODINGER is somewhat differesince we write the quantities that he

denoted byf( g) as:i 4/sing f, \/sing g, resp.
A P.A, 87.
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d k-m-3
fum (@ = (L+2) "7 (1- 27 %7 (d_j W+ 2 (- &7, (36a)
4

Gem @ = (1+2) 2D (1= 2 4™ (dizj T e 4 (36a)

in which we will discuss the casksnteger,m half-integer and half-integer,m integer
separately. According to (33), it suffices to restrcpositivek. (Fork = 0, there are no
regular solutions for=+ 1 andz=-1.)
The solutions:
UG o =fm €™, U =g me™, (312)
and

+

ul*;k,—m = 0Ok, -m ém¢’ u2;k,—m == fkv -m ém¢’ (31&)

which emerge from (36) when one formally replanesith — m, will demand a more
precise discussion.

Analogous to 8 1, we next show that the casek ahteger, m half-integer is
distinguished in particular by the fact that:

f
gkv‘m }: const_{ _i"'m for k integer,m half-integer; (37)
K,—m k,m

e., in that case, the regular solutions (31) can la¢sobtained by formally replacing
with —min (31) and (36a, b). When one introduces a ckglaround the zero point as
the integration path in the compleplane, one can next write:

m-1)!

m+1 my (K-
@ = @+ 2" - g R

jK tk‘ ar Wz - 2§, (38a)

Gom @ = @+ 22D @ gy kmd K 2m Z)I T Y- 2, (38D)

in place of (36). For integdr=> 1, the quantity in the integral is indifferentttee circle
Ko, while in the other cases, one should especidlbenre that the branching ldcs — (1
+ 2) andt = 1 —z lie outside the circle:

[t]<|1+z|and |]|<]|1-z|onKgfork, m-—are notinteger. (39)
In the expressions fdg -, andgk -m :

sy (K+m—

fic -m (2) =(1+ 2)2™ 2 (1- 2) o

2)! j kwl 1+ z+ O (1= = §7, (40a)
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O -m (2) =(0+2)=™? (1- 2)*™ (k+2m Z)I cmr @+ 2 Y7 = . (40a)

we now make the substitution:

t - = 1_22 y
t
which will give:
f« -m (2
m- m+3 —wm—1 K+
= (L4 2) D (1 gy gimd 2m z)j e @z ¥, (41a)
O -m (2
~1(m+d iy —immedy (K+m=1)! _
= - @+ 2y HmD (o gy gimd Zr; ) JKotkit»; @+ z (@ z ', (41a)
in which now:
[t]|>]21+z], |t]|>]1-z]|onK;. (42)

However, since the circlé; can be continuously deformed into the cit€iefor integerk
and integem- 3, the relation (37) is proved for that special case

Things are different in the case kfhalf-integer,m integer. The solutions (36a),
(36b) will then be regular fan > 0 only at the two places= - 1 andz = + 1, while the
solutions (31a) are singular foma< 0. Form = 0, they will still be square-integrable in
z. However, it is noteworthy that fon = 0, we will get two different solutions from (36)
and (37). First:

ull;k,O =fi o0, 2k o =Gk o0, (43a)
and second:
1]

ul”;k,O =0k 0, Uyo =~ fi 0. (43b)

We further show that these two families of solutiaare not orthogonal to each other
whenk — K is odd. Withm > 0 andk half-integer, we even have, more generally:

ZJupkm U, nSing dd dp

T 5=12

ZJupkm U, nSiNG d dp

T p=12

:%I_l(fk;mg&_m—gkmfk_r)dz=¢0 fork — K odd, (45)
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which is a result that is analogous to 8 1, eq. (17). eblar, one can deduce from (36)
that the integral in (45) is even mwhenk is half-integer andk — K is odd, while the
integrand is odd iz for evenk — K, so the integrand will vanish then.

In order to prove (45), we infer from (32a, b) that:

+1

_l'

+1 21\1/2
(k-K) I_l(fk,mgk,—m_gkmfk— o dz = 5‘(1—2 ) (fk,m fk,—m+ Ok m - n)

The application of the operato® and P- that are defined by (21a, b) to the
eigenfunctions will further give the result:

P, { g;i:z:: = const{ ;i:iz((::)): ’ (46a)
P { ;‘;:ZI:: = const{ f';: ZI((:)): , (46D)
P. { _?E:Z:: = const{ _2E:i :::E:j: , (46c)
P { _2E:::::: = const{ _2:::: :::E:jz: : (46¢)

which is analogous to (18) in 8 1. The bright-hand sidd@d) and (46d) must be set to
identically zero for the boundary valoe=k - 3.
In fact, if one recalls (21) and (24a) then one willtrget from (36a, b) that:

i i df mz 1
P.(fime"?) =™V A2 Ln___Z § +1_—
(icm ") =2 gy T2 e g e

—d M1 (g _ 212 {—d;"'m +i(m+d) f = =3(m=9) fkm}
z

k,
1+ z 1-z
=M ey e g DL 0 5 0 1]
L

=™V g
and likewise:

i i dg mz 1
P dnh=gm-D¢ 1 A2 | Zkm_ 7 -1 -
(gk,m ¢) ( ) dz 1- 22 gk,m 2 1—- Z gk,m

i — dg m g m g m
=g 02y S gy Sen ey S
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»d

=dm-1¢ 1+ z)_%(m‘%) 1- Z)—é(m— -
z

[ gn 0+ 270 @ 2]
— e' (m- 1)¢gk, _—y

Furthermore, by means of the integral representation ¢8&)will get:

P. (fk,mé"”’):e'“”””’(l—zz)l’{‘ﬁ%(w—;) Km——;(m——ar‘”‘“z}

1- 2z

i C1msd 13y (K—=m—=3)!1
= M09 (44 A HmD (g D dk=m=3)

2
f[ O e ke 2 e 2
Kot m5

+ (- %) (k- D)1+ z+ tf O1- z 12
+[(M+1) (1-2)—(M-2) 1 +2] (@ +z+t)* (1 —z—1)*?.

The integrand can be converted into:

(k+m+1) 7“1 +z+ )< (L —z-t)<?

—% [t ™2z +1) (1L +z+K)* (1 -z—1) Y.

The second term will vanish when one integrates theecircleK, , and that will give:

Pe (flum €"9) = (k+ m+3) (k=m—3) fig g €' 7,

One will likewise get:

i i dg g g
P, @y =d M+ q 22| _Tkm 1 g1y Fkm_ 1000 1y Jkm
(Gun ™) (t-7) dz (M=) (M) T

; “1(m+3 13y (K—m=1)!
= d M09 (4 A HmD (g D B _ 2)

27
+ ,[ x H{-Q1-2)(k-D)@+ z+ Y °(1- = )

tk—m+

+ (1-Z2)k(1+ z+ (- = P
+[(M-21) (1-2) - M+1) (1 +2] (A +z+D)" (1 —z—1)".

The integrand can be converted into:

(k+m+1) 7™ (1 +z+ ) (L —z-t)

16
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—% [t ™) (2z+1) (L +z+K)< (1 -z-1),

and the integration over the cird¢{g will yield:
P: (Gkm€"%) = (K+m+1) (k-m=1) g ' ™.
The calculation of (46¢) and (46d) proceeds analogously.

It is especially important for the application of amiterion to know that singular
solutions will appear in the caselohalf-integer m integer in the relations:

f €’ f e’
P_J * =const{ “°, p, | ., = const. o,
gk,lé¢ Ok.0 _fk,le _fk,o
f f_ e g’
P { ““=const.s ¥, P. { %o = const.] It y
k,0 Ok-1€ - fk,O - fk,—l €

as a result. Therefore, our criterion demati#sexclusion of the case k half-integer, m
integer. In fact, in that case, one will always get conicadns for the angular impulse
matrices that are calculated from the integrals inutheal way. If one computes, on the
one hand, one of the two solutiorfgo{ gko) or (gko, — fko) In the original system of
solutions then, according to (45), (45a), some of theutzked matrix elements will be
non-diagonal irk, which would contradict the commutation of the operakrsnd P-
with the operatoK that is defined by (22). On the other hand, if one w@neot count
the (non-regular, but still square-integrable) solutilorsm = 0 among the allowable
eigen-solutions®j then, since the solutions for= 0 would then be orthogonal to the all
of the original allowable solutions, from (46), piecesugadoe cut out of the boundary by
the matrix elements oP. and P-, which would interfere with the validity of the
commutation relations that would be necessary foretinaegtrices.

By contrast, in the case kfinteger ¢ 0), m half-integer, as a consequence of (37),

the application of the operatoPs andP- to the original orthogonal systeny . (4, ),

U m(F @), with 3 <m< k-3, would not produce something out of that system, as our

criterion demands, such that this case would then detihnes physically-correct eigen-
solutions.

() Cf. SCHRODINGER, P. A, rem. by the editor at ¢oeclusion.
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§ 3. Connection between Schrddinger’'s form of the Diracg@ation and the usual
form. Behavior of the solutions for finite rotations.

Let W satisfy the usual Dirac equation:

16‘4J
c ot

—|¢0l4J+Zak—+|—,[>’l4J 0, (47)
0%
while ¢ fulfills equation (20) in polar coordinates:
Xy =1 Sin g cosg, Xo =T singsin @, X3 =T COSY, (48)

which we can write as:

loy
c ot

igg+a (6_1// . 1cosd j 1 oy, a(anr_lj imc

04 2sing 21 sing 9¢ o r —,[)’z//
=0. (49)

The transition fron¥ to ¢ will now be mediated by the unitary matRq(, ¢), which is
independent of}, ¢, and is defined in terms of the spin matrices #natdefined by:

Ss=—im as, S=—iam, S=—1ma, (50)

and the identity matrix, which are combined lingatcording to the formuld)

R(S, §) = 62 "2
b, P ne®

9
= COS—sIn—
272

4

.. 9 . g . ¢
I Sin—sins; = +1 Sin — cos— +| cos—sin— ) 51
2 Sl2 2 ZDS'2 2 ZDS'3 (1)

As one seesk commutes with the matrig. On the basis of the known commutation
relations for thes., one will further easily confirm that one will géte matrix that is
inverse toR by switchingi with — i, as well as the sequence of the two exponential
factors:

i sz—

R‘l(ﬂ,¢):e'¢Eé
& 6 . .5 ¢

I . > . g . @
= coS—Sin=1| +i sin—=sins; = —1I SIn — coS~ -1 C0S—SIn— ) 51
2 2 2 Sl2 2 ZDS'2 2 ZDS'3 (1)

One can now show, in fact, that the assignments:

() 1 must thank E. SCHRODINGER for his friendly commation of the way of writingR (5, 6) as a
product of two exponential factors, which is also suitédniehe proof of the following relations (53), (55).
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Y=RY or Y=R'y (52)

will take one from equation (47) to equation (49), or coselgr That is based upon the
relations )

R a1 R= a1 cosdcosg + a» cosd cos¢g — as sin I, (53)
R'@mR=- o sing + a, cosg, (53)
R a3 R= a1 sindcosg + a, sin Isin ¢ + as cosJ, (53)

which follow from (51).
By means of the relations:

iz cos# cosg 190 _ sing 1 0 + sing cos¢ 9 :
0X%, rod or

rsing d¢

0 10 1 0 . ) 0
——=c0S7Ccos¢y ———+ Ccos — | +sindsing —,
5 ? o ¢( j nasing 5

X, rsing d¢
i:—sinﬂEi +cosﬂi,
0%, rod or

it will further follow from (53) that:

S 19 . 1 90 ., 0
al =R'aR-L+R'®R —— L +R*;RZ. 54
kzzl' xR AR et R )rsin796¢ *or (54)

Finally, one will find that the matriX, which is defined by:

Ria, R _1 R‘laza—R =R'XR
09 sind 09

() In order to verify these relations, as well as fililowing ones (55), one can also start with the
special representation (24) of the Dirac matrices ftiomd (24a) that gives th& as simply:

o]
-0

From (51), (51a), one will then get:

with the two-rowed matrices:

I A i ; ;i
cosZ€?’?  sinZ g'?"”? cos2 et — sind &'
_ 2 2 1_ 2 2
T= S Ti=
—sinZ &*? cos’ " sin? ¢ cos’ ¢
2 2 2 2

and the relations (53) reduce to the simpler ones in viRiltds been replaced wiih and theg, have been
replaced with the .
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will be:

R 1, 1 OR-._ ( 1cosd aﬁagj (55)

X=an — R+ —a,— —
09 sing “d¢ 2 sing

One finally arrives at the Schrodinger form (49nfr the original Dirac equation (47)
from (54) and (55), by means of the substitutia2) (5

Although we shall not go into the details heres #ingular impulse operators in
equation (49) that are defined by (21) can alsoobiined from the usual angular
impulse operators:

0= %[Xzaix?,_ Xgaixzj% S, ... (and cyclic permutations) (56)
in equation (47) by recomputing in terms of Benatrix.

We can also now resolve the question that wasusksd in § 1 regarding the
behavior of the solutions of (49) for finite rotats of the polar axis, since that question
reverts to the known behavior of the solutions 4f)(under the matriR. If we then
once more consider a finite rotation of the coaatBnsystem that is characterized by

three parametera which will determine new coordinate$ (polar angles?’, ¢’ resp.)

as functions of the old coordinatas(anglessd, ¢, resp.) and tha. For a spherically-
symmetric potentia@p = ¢o (r) in the usual system (47) of Dirac equations, witleget a
new solutionX (x, a) of the equations in the from an arbitrary solutio® (x) of the
same equations when one first replacesctivith X' while leaving the functional form of
W unaltered and expressing tkiean terms of thex anda, and secondly, performing &h
transformation witlconstantcoefficients that depends upan

X(x,a) =5 ()W (X). (57)
(Here, we do not write out the spin indices expiicias usual.) The matrig’(a) is

known from the theory of spinors, and does not riedee specified in detail here.
We now get the corresponding relation directly:

X5, ¢,8)=S(F, ¢ a) ¢(J', ¢), (58)

which associates any arbitrary solutiggof (49) with a new solutioyy of (49) by way of
the connection (52):

W (x) =R, ¢) w5, §), X=R(Z ) X,
which will give the matrixS (&, ¢, a) as:
S(3, ¢.8) =R(J, ¢) (B(a) R(&, ¢), (59)

in which &', ¢ are to be thought of as functions%fg, anda.



