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It will be shown how one can arrive at a formulation of the quantum mechanics of the magnetic electron by 
the Schrödinger method of eigenfunctions, with no use of double-valued functions, when one, on the basis 
of the Dirac-Jordan general theory of transformations, introduces the components of its proper impulse 
moment in a fixed direction as further independent variables in order to carry out the computations of its 
rotational degrees freedom, along with the position coordinates of any electron.  In contradiction to 

classical mechanics, these variables can assume only the variables +1

2 2

h

π
 and − 1

2 2

h

π
, which is 

completely independent of any sort of external field.  The appearance of the aforementioned new variables 
thus implies a simple splitting of the eigenfunctions into two position functions ψα , ψβ for one electron, 
and more generally, for N electrons they split into 2N functions, which are to be regarded as the “probability 
amplitudes” that in a well-defined stationary state of the system not only do the position coordinates of the 
electrons lie in a given infinitesimal interval, but also that the components of their proper moments in the 

chosen direction should have the given values, which are +1

2 2

h

π
 for ψα  and − 1

2 2

h

π
 for ψβ .  Methods 

will be given for constructing as many simultaneous differential equations for the ψ functions as their 
number suggests (thus, 2 or 2N, resp.) from a given Hamiltonian function.  These equations are completely 
equivalent in their consequences to the matrix equations of Heisenberg and Jordan.  Furthermore, in the 
case of many electrons, the solutions of the differential equations that satisfy the “equivalence rule” of 
Heisenberg and Dirac will be characterized by their symmetry properties under the exchange of the variable 
values for the two electrons. 
 
 
 § 1.  Generalities on the nature of electronic magnetism in the Schrödinger form 
of quantum mechanics.  The hypothesis that was first proposed by Goudsmit and 
Uhlenbeck in order to explain the complex structure of spectra and their anomalous 
Zeeman effect, according to which the electron takes on a proper impulse moment of 

magnitude 
1

2 2

h

π
and a magnetic moment of a magneton, was integrated into quantum 

mechanics by Heisenberg and Jordan 1) with the help of matrix calculations and then 
made quantitatively precise.  While the matrix method is mathematically equivalent to 
the method of eigenfunctions in many-dimensional space that was discovered by 
Schrödinger, one comes up against peculiar formal complications when one attempts to 
also treat the forces and moments that an electron experiences in an external field by the 
method of its proper moment.  By the introduction of a further degree of freedom that 

                                                
 1) Zeit. f. Phys. 37 (1926), 263.  
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corresponds to the orientation of the proper impulse of the electron in space, one actually 
expresses the empirically-established fact that this momentum has two possible quantum 
positions in an external field, so one is next led to eigenfunctions that are many-valued, 
and indeed, two-valued, in the rotational angle in question – e.g., the azimuth of the 
impulse around a spatially fixed axis.  One has often supposed that this formally possible 
representation by means of two-valued eigenfunctions does not do justice to the true 
physical nature of things and has sought the solution to the problem in another direction.  
Thus, Darwin 1) has recently attempted to gather the facts that are summarized under the 
assumption of the electron impulse without the introduction of the top degrees of freedom 
for the electron that would correspond to new dimension in the configuration space, so he 
considered the amplitudes of the de Broglie waves as directed quantities – i.e., he 
considered the Schrödinger eigenfunction as vectorial.  From his attempt to follow this, 
on first glance promising, path to its ultimate consequences, he came to complications 
that were again connected precisely with the number two for the positions of the electron 
in an external field, and which I do not believe one can surmount.  On the other hand, a 
representation of the quantum-mechanical behavior of the magnetic electron using the 
method of eigenfunctions, especially in the case of atoms with many electrons, is very 
desirable for the fact that the variety that is realized in nature alone results for the 
solutions of the quantum-mechanical equations that fulfill the “equivalence rule” for all 
of the possible solutions of the present theory of Heisenberg 2) and Dirac 2) most clearly 
with the help of symmetry properties of the eigenfunctions under the exchange of the 
variable values that belong to two electrons. 
 We would now like to show that by a suitable use of the formulation of quantum 
mechanics, as described by Jordan 3) and Dirac ), which makes use of general canonical 
transformations of the Schrödinger functions ψ, a quantum-mechanical representation of 
the behavior of magnetic electrons by the method of eigenfunctions is, in fact, possible, 
without appealing to many-valued functions.  Namely, one achieves this by adding the 
components of the proper impulse of each electron in a fixed direction (instead of the 
rotational angle that is conjugate to it) as new independent variables, along with the 
position coordinates q of the electron center of mass.  As we will see in what follows in § 
2 in the special case of a single electron, in any quantum state (in the absence of 
degeneracy) the eigenfunction generally splits into two functions ψα(qk) and ψβ(qk), of 
which the square of the absolute value, when multiplied by dq1, …, dqf , yields the 
probability that in this state, not only should the qk lie in the prescribed interval (qk, qk + 
dqk), but also that the components of the proper impulse in the chosen fixed direction 

must assume the values +
1

2 2

h

π
 (− 1

2 2

h

π
, resp.).  It will be further shown how, by a 

suitable choice of linear operators for the components sx, sy, sz of the proper moment in a 
prescribed coordinate axis-cross, differential equations for the eigenfunctions of the 
magnetic electron in an external force field can be constructed that are equivalent to the 
matrix equations of Heisenberg and Jordan.  This will be performed in detail in § 4 for 

                                                
 1) Nature 119 (1927), 282.  
 2) W. Heisenberg, Zeit. f. Phys. 38 (1926), 411; 39 (1926), 499; 41 (1927), 239; P. A. M. Dirac, Proc. 
Roy. Soc. 112 (1926), 661.  
 3) P. Jordan, Zeit. f. Phys. 40 (1927), 809; Gött. Nachr. (1926), pp. 161; P. A. M. Dirac, Proc. Roy. 
Soc. (A) 113 (1927), 621; cf., also F. London, Zeit. f. Phys. 40 (1926), 193.  
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the case of an electron at rest in an external magnetic field and for a hydrogen atom.  It 
will be further investigated how the eigenfunctions ψα , ψβ transform under changes of 
the coordinate axes (§ 3). 
 The differential equations for the eigenfunctions of the magnetic electron that are 
given in the present paper can be regarded as only provisional and approximate, since 
they, like the Heisenberg-Jordan matrix formulation, are not written down in a 
relativistically-invariant way, and for the hydrogen atom they are valid only in the 
approximation in which the dynamical behavior of the proper moment can be considered 
to be a secular perturbation (in the classical theory: averaged over the orbit).  In 
particular, it thus not possible to calculate quantum-mechanically the corrections that are 

proportional to higher powers of α2 Z2 (α = 
22 e

hc

π
= fine structure constant) in the 

amounts of the hydrogen fine-structure splitting, such as the empirically established 
amounts for the Röntgen spectra that are given so well by the Sommerfeld formula.  
These difficulties, which are still obstacles to the solution of this problem to this day, will 
be discussed briefly in § 4. 
 Thus, whether or not the formulation of the quantum mechanics of the magnetic 
electron that is communicated here is still completely unsatisfactory in that regard, on the 
other hand, it affords the advantage that in the case of many electrons (in contrast to the 
Darwin formulation), as will be shown in § 5, it gives rise to no new difficulties at all and 
also allows one, like Heisenberg, to easily formulate necessary symmetry properties of 
the eigenfunction in order for it to fulfill the “equivalence rule.”  In particular, on this 
basis, it already seems to me justified to communicate the method proposed at the present 
point in time, and one can perhaps hope that it will also prove useful in the unsolved 
problem of the calculation of the hydrogen fine structure in higher approximations. 
 
 
 § 2.  Introduction of the components of the proper moment of the electron in a 
fixed direction as independent variables for the eigenfunction.  Definition of the 
operators that correspond to the components of the proper moment.  In classical 
mechanics, the dynamical behavior of the electron moment can be described by the 
following pairs of canonical variables: The amount s of the total proper moment of the 
electron and the rotation angle χ around its axis.  Secondly, one has the component sz of 
this moment in a fixed direction z and the azimuth ϕ of the moment vector around the z-
axis, as measured in the (xz)-plane.  Since the quotient sz / s yields the cosine of the angle 
between this vector and the z-axis, these x and y components are given by: 
 

sx = 2 2
zs s− cos ϕ, sy = 2 2

zs s− sin ϕ . 

 
Since the rotation angle χ is always cyclic, so it does not enter into the Hamiltonian 
function, s remains constant, and can be regarded as a fixed number, such that only (sz , 
ϕ) remains as the actual canonical variable pair that is determined by the dynamical 
behavior of the electron moment. 
 By an application of the original Schrödinger method, one thus has an eigenfunction 
for the presence of a single electron in any quantum state (which is already uniquely 
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characterized by a well-defined energy value E by lifting the degeneracy in external 
fields) that depends on not just the three position coordinates of the electron center of 
mass (which are denoted briefly by qk , or also q), but also on the angle ϕ.  This then 
gives: 

| ψE(q, ϕ) |2 dq1 dq2 dq3 dϕ 
 
as the probability that in the quantum state in question of energy E the position 
coordinates should lie in the intervals qk , qk + dqk , while the angle ϕ should lie in (ϕ, ϕ + 
dϕ).  If the impulse coordinate sz that is conjugate to ϕ appears in any dynamical function 

then it would be replaced with the operator 
2

h

iπ ϕ
∂

∂
, which is applied to the 

eigenfunction ψ, just as the impulse coordinate pk of the translational motion that is 

conjugate to qk will be represented by the operator 
2 k

h

i qπ
∂

∂
.  As is known, the fact that 

the number of allowed quantum orientations for the electron moment is two implies the 
consequence that the function ψE(q, ϕ) thus defined cannot return to its starting value as 
ϕ continually advances from the value 0 to 2π, but must change its sign. 
 Meanwhile, one can avoid the appearance of such two-valuedness, like the explicit 
use of any polar angle whatsoever, in such a way that one introduces the impulse 
component sz as an independent variable in the eigenfunction in place of ϕ.  Thus, an 
especially simplified situation appears in quantum mechanics: In classical mechanics, in 
general, sz will be capable of taking on a continuum of values for a certain energy (e.g., 
when the moment vector precesses around a direction that is different from the z-axis), 
except for the special case in which sz is precisely an integral of the equations of motion.  
In quantum mechanics, however, sz can, by being conjugate to an angle coordinate, 

assume only the characteristic values +
1

2 2

h

π
 and − 1

2 2

h

π
; this shall mean that the 

function ψE(q, ϕ) splits into two functions ψα, E(q, ϕ) and ψβ, E(q, ϕ) that correspond to 

the values sz = +
1

2 2

h

π
 and sz = − 1

2 2

h

π
, resp.  This makes: 

 
| ψα, E(q, ϕ) |2 dq1 dq2 dq3 

 
the probability that in the stationary state considered one simultaneously has that qk lies 

in (qk, qk + dxk) and sz has the value +
1

2 2

h

π
, and: 

 
| ψβ, E(q, ϕ) |2 dq1 dq2 dq3 

 
is the probability that for the same value of qk the impulse component sz assumes the 

value − 1

2 2

h

π
.  Any attempt to measure the magnitude of sz in a certain stationary state 

will always yield only the two values +
1

2 2

h

π
 and − 1

2 2

h

π
, and also when sz does not 
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represent an integral of the equations of motion.  This special case (e.g., a strong 
magnetic field in the z-direction) is, moreover, distinguished by the fact that here, for a 
well-defined energy E, only one of the two functions ψα,E or ψβ,E is ever different from 
zero.  For a well-defined choice of the coordinate system ψα and ψβ are determined 
completely, up to a common phase factor, in any stationary state by the normalization: 
 

∫ (|ψα |2 + |ψβ |
2) dq1 dq2 dq3 = 1.    (1a) 

 
The orthogonality relation: 
 

, , , , 1 2 3( )n m n m dq dq dqα α β βψ ψ ψ ψ∗ ∗+∫  = 0  for n ≠ m  (1b) 

 
must also be valid.  In it, the indices n, m denote two distinct quantum states and the * 
that is affixed (here, as in the sequel) denotes the complex conjugate value 1). 
 In order to be able to later describe the differential equations that the functions ψα , ψβ 
satisfy for a given Hamiltonian function, one can proceed in such a way that one 
expresses them as functions of (pk, qk) and (sz, ϕ), and then replaces pk with the operator 

2 k

h

i qπ
∂

∂
and ϕ with the operator −

2 z

h

i sπ
∂

∂
.  The total operator would then be applied to 

ψ(qk, sz), and ultimately one would pass to the limit in which y is non-zero only for sz = 

+
1

2 2

h

π
 and sz = − 1

2 2

h

π
.  However, such behavior would be confusing and less 

convenient.  The Hamilton function that actually enters in always includes the angular 
impulse components sx, sy, sz as variables and is therefore preferable for this purpose 
without the detour of introducing the operator that is appropriate to the polar angle ϕ. 
 These operators must satisfy the same commutation relations (up to a sign, cf., infra) 
as the matrices in questions, namely: 
 

[s s] = −
2

h

iπ
s; s

2 = 
2

2

h

π
 
 
 

s(s + 1) with s = 1/2, 

 
in which s means a vector matrix with the components sx, sy, sz 

2).  For the sake of 

simplicity, in what follows if we measure s in units of 
1

2 2

h

π
 (i.e., one replaces s with 

1

2 2

h

π
s) and write out the vector equations in components then we obtain: 

                                                
 1) Let it be mentioned at this point that according to the Dirac-Jordan transformation theory, the 
aforementioned function ψ(q, ϕ) is connected with the functions ψα , ψβ according to the formulas: 
 

ψ(q, ϕ) = ψα (q) eiϕ /2 + ψβ (q) e−iϕ /2. 
 
 2) Cf., W. Heisenberg and P. Jordan, loc. cit., eq. (10). – Matrices and operators (or “q-numbers”) will 
always be characterized by boldface in the sequel.  



Pauli – On the quantum mechanics of magnetic electrons                                  6 

2 2 2

2 , ,

3,
x y y x z

x y z

i− = 
+ + = 

⋯s s s s s

s s s
    (2) 

 
in which the … imply the equations emerge from the one written down by cyclic 
permutations of the coordinates 1). 
 This suggests that we make the Ansatz for the operations sx , sy , sz that satisfy the 
relations (2) that they are linear transformations of the ψα and ψβ , and indeed the 
simplest possible Ansatz is the following one: 
 

( ) , ( ) ,

( ) , ( ) ,

( ) , ( ) .

x x

y y

z z

i i
α β β α

α β β α

α α β β

ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

= =
= − = 
= = − 

s s

s s

s s

    (3) 

 
One can also write these relations in the symbolic matrix form: 
 

sx(ψ) = 
0 1

1 0

 
 
 

 ⋅⋅⋅⋅ ψ; sy(ψ) = 
0

0

i

i

− 
 
 

 ⋅⋅⋅⋅ ψ;  sz(ψ) = 
1 0

0 1

 
 − 

 ⋅⋅⋅⋅ ψ .  (3′) 

 
 Relations (2) are thus to be interpreted as saying that when the matrices (3′) are 
substituted in (2), with an application of the usual prescription for matrix multiplication 

                                                
 1) As a result of the special circumstance that the number of allowed quantum positions of s has the 

value two (so it can be treated as a two-rowed matrix), in addition to (2), one has the further sharpened 
relations: 

2 2 2

, ,

1.
x y y x z

x y z

i− = 
+ + = 

⋯s s s s s

s s s
     (2a) 

 
One sees this most simply when one chooses sz to be a diagonal matrix (although the relations are true in 
general).  By contrast, for many-component matrices that fulfill (2) (in which the value 3 is replaced with r2 
– 1, where r is the number of rows of the matrix), sx sy and 2

xs  would not have vanishing matrix elements in 

those positions whose row index differs from the column index by 2 (which then correspond to transitions 
of the quantum number that belongs to sz by two units), so equations (2a) could be valid. 
 On the existence of relations (2a), I would cordially refer to P. Jordan, to whom I would also like to 
express my thanks at this point.  He also brought to my attention the following connection with quaternion 
theory: If one writes a quaternion Q in the form: 
 

Q = k1 A + k2 B + k3 C + D 
 
then the “units” k1, k2, k3 satisfy the relations: 
 

k1 k2 = − k2 k1 = k3 , …, 
2

1
k  = 2

2
k  = 2

3
k  = − 1. 

 
These are equivalent to the relations (2a), when one sets: 
 

sx = ik1 ,  sy = ik2 ,  sz = ik3 . 
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the matrices 1) satisfy these relations.  The corresponding operators therefore satisfy 
equations that emerge from (2) by permuting the order of all multiplications 2).  The 
justification for this prescription will come to us by way of the general connection 
between operator algebra and matrix algebra.  The last of relations (3) is obviously 
physically necessary when ψα and ψβ mean the probability amplitudes for sz (measured in 

units of 
1

2 2

h

π
) to assume the value + 1 or – 1, because the operator sz must then imply 

simply multiplication of the eigenfunction by the numerical value of sz .  The fact that in 
the special choice of sx , sy that is included in the demand that relations (2) follow from 
normalization implies no loss of generality will be made clear in the following 
paragraphs, where the behavior of the functions ψα , ψβ under a shift of the axes for the 
coordinate system that was defined will be examined.  [Cf. below, pp. 13, eq. (3″).] 
 Now, if any Hamiltonian function: 
 

H(pk, qk, sx, sy, sz) = E 
 
is given for a special mechanical system that includes a magnetic electron then the two 
simultaneous differential equations for ψα and ψβ that likewise determine the eigenvalue 
E are given by: 

,

,

, , , , ,
2

, , , , ,
2

k x y z E
k

k x y z E
k

h
H q E

i q

h
H q E

i q

α α

β β

ψ ψ
π

ψ ψ
π

 ∂ =  ∂  


 ∂ =  ∂  

s s s

s s s

   (4) 

 
in which sx , sy , sz replace the operations (3). 
 The matrix components of any function f(p, q, sx , sy , sz), of which, we would first like 
to assume that it either does not include the quantities sx , sy , sz at all or it includes them 
only linearly, are defined by the simultaneous equations: 
 

f(ψmα) = nm n
n

f αψ∑ ,  f(ψmβ) = nm n
n

f βψ∑ ,   (5) 

 

if we understand f to mean the operator , , , ,
2 x y z

h
f q

i qπ
 ∂
 ∂ 

s s s .  In particular, one thus 

has: 
sx(ψmα) = ψmβ = ( )x nm n

n

s αψ∑ ,  sx(ψmβ) = ψmα = ( )x nm n
n

s αψ∑ ,  (6) 

 

                                                
 1) Cf., rem. 1, pp. 11. 
 2) The necessity of distinguishing between operator relations and matrix relations at this point was first 
made evident to me after the fact on the basis of a letter from C. G. Darwin that concerned the comparison 
between the equations that he presented and my own.  (See below, rem. 2, pp. 16)  I would also like to 
express my deepest thanks to Darwin at this point for his encouragement. 
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and corresponding equations for y and z.  The fact that one sums over the first index of 
the matrix on the right-hand sides of (5) and (6) is essential in order for one to get 
agreement between successive application of two operators f and g and the multiplication 
of matrices.  It easily follows from (6), by using the orthogonality relations (1a) and (1b), 
that: 

fnm = 1 2 3[ ( ) ( ) ]m n m n dq dq dqα α β βψ ψ ψ ψ∗ ∗+∫ f f …   (5′) 
 

In particular, one thus has: 
 

( ) [( ) ( ) ] ( ) ,

( ) [( ) ( ) ] ( ) ,

( ) [( ) ( ) ] ( ) .

x nm x m n x m n m n m n

y nm y m n y m n m n m n

z nm z m n z m n m n m n

s dq dq

s dq i dq

s dq dq

α α β β β α α β

α α β β β α α β

α α β β α α β β

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

= + = +

= + = − +

= + = −

∫ ∫

∫ ∫

∫ ∫

s s

s s

s s

 (6′) 

 
If one directs one’s attention to the general eigenfunctions: 
 

ψα = ∑ cn ψnα ,  ψβ = ∑ cn ψnβ , 
 
with the undetermined factors cn then the expressions: 
 

,

( ),

( )

x

y

z

d

d i

d

β α α β

β α α β

α α β β

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ

∗ ∗

∗ ∗

∗ ∗

= +
= − − 
= − 

    (6″) 

 
formally play the role of volume densities for the proper moment of the electron. 
 We now have to demonstrate the proof that the matrices that are calculated from (6′) 
generally satisfy the relations (2) of Heisenberg and Jordan.  If we denote any of the 
indices x, y, z by i and k then we can form: 
 

(si sk)nm = ( ) ( )i nl k lm
l

s s∑ . 

 
If we replace (sk)lm with its value that follows from (6′) then this gives: 
 

(si sk)nm = ( ) ( ) ( ) ( ) .i nl l k m i nl l k m
l l

s s dqα α β βψ ψ ψ ψ∗ ∗    +    
    
∑ ∑∫ s s  

 
One now has (si)nl = ( )i lns ∗ , since (as one easily confirms on the basis of (6′), moreover) 

the matrices si are Hermitian, so according to (6), one has: 
 

( )i nl l
l

s αψ ∗∑  = ( )i ln l
l

s αψ∗ ∗∑  = [si(ψnα)]*, 
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and likewise: 
( )i nl l

l

s βψ ∗∑  = [si(ψnβ)]
*. 

The final result is then: 
 

(si sk)nm = [ ]{ }( ) ( ) ( ) ( )i n k m i n k ms s dqα α β βψ ψ ψ ψ
∗∗

 +  ∫ s s . 

 
On the basis of this relation, one easily confirms all of relations (2) by replacing the 
operators (3) and comparing with (6′), if one regards them as matrix relations.  For 
example, for i = x, k = z, this gives: 
 

(sx sy – sy sx)nm = 2i ( )n m n mβ β α αψ ψ ψ ψ∗ ∗− +∫ = 2i (sz)nm , 

 
according to (6′).  One likewise verifies the remaining relations (2).  With that, the choice 
of operators (3) is likewise justified. 
 Examples of equations of the form (4) will be given in § 4. 
 
 
 § 3.  Behavior of the functions ψα , ψβ under rotations of the coordinate system.  
In the Dirac-Jordan theory, one generally answers the question of how the functions ψ 
transform under a transition from a system of canonical variables (p, q) to a new system 

P, Q.  If S is an operator that takes the operators q (multiplication by q) and p =
2

h

i qπ
∂
∂

 

into the operators P, Q that correspond to the new variables according to: 
 

P = S p S−1,  Q = S q S−1     (7) 
 
then one obtains the eigenfunction ψE(Q) that belongs to Q from the eigenfunction ψE(q) 
that belongs to q simply by an application of the operator S: 
 

ψE(Q) = S[ψE(Q)].     (8) 
The expression: 

| ψE(Q) |2 dQ 
 

then again represents the probability that the variable Q should lie between Q and Q + dQ 
for a certain energy E and an arbitrary value for P 1). 

                                                
 1) The fact that we chose precisely the energy E to be a fixed parameter now represents a special case 
of the transformations that were considered by Dirac and Jordan.  This author also investigated the 
connection between two different representations of the operators S more closely: 

 1. The differential representation, in which S = ,
2
h

x
i xπ

∂ 
 ∂ 

S  is thought of as composed of the 

operators of differentiation with respect to a variable x and multiplication by x. 
 2. The integral representation of S, in which one sets: 
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 In our case, we will not generally calculate with the canonical variables (sz, ϕ) 
themselves, but with the components sx, sy, sz of the proper moment, for which the 
commutation relations do not have the canonical form (2).  We then have to answer the 
question of how, starting with the given eigenfunctions ψα , ψβ , and operators sx , sy , sz 
relative to a certain axis-cross (x, y, z), one can calculate the eigenfunctions αψ ′ , βψ ′ , 

and operators sx′ , sy′ , sz′  relative to a new axis-cross (x′, y′, z′).  The squares of the 
absolute magnitudes of the new αψ ′ , βψ ′  then determine the probability that (for certain 

values of the position coordinates q of the electron) for an arbitrary value of the angle ϕ′ 

around the z′-axis the impulse sz′ (measured in units of 
1

2 2

h

π
) has the value + 1 (−1, 

resp.). 
 Now, for the operator equation (7), it is not essential that the commutation relations 
between p and q, as well as P and Q, have the canonical form.  Moreover, this only 
comes down to the fact that the commutation relations preserve their form under the 
transformation; i.e., they remain correct when one simply writes the new variables in 
place of the old ones.  Now, in our case, it is, in fact, known that relations (2) remain 
unchanged under orthogonal coordinate transformations, such that one also has for the 
primed quantities: 

2 2 2

2 , ,

3.
x y y x z

x y z

i′ ′ ′ ′ ′

′ ′ ′

− = 
+ + = 

⋯s s s s s

s s s
    (2′) 

 
It will then also be permitted for us to set: 
 

sx′ = S sx S
−1, sy′ = S sy S

−1, sz′ = S sz S
−1.   (9) 

 
The most comfortable formal representation of the operations that we will always have to 
apply to the eigenfunction pair (ψα ,ψβ) is the matrix representation that was used already 
in (3′) above.  If the operator S takes the pair (ψα ,ψβ) to (S11ψα + S12ψβ , S21ψα + S22ψβ), 
in which S11, S12, S13, S14 are ordinary numerical coefficients, then we can write S as the 
matrix: 

S = 11 12

21 22

S S

S S

 
 
 

. 

 
In order for the relations (1a) and (1b) to also be true for the new pair (Sψα , Sψβ), S must 
satisfy the well-known orthogonality relation: 
 

∗SS = 1,     (10) 
 

                                                                                                                                            
S[f(q)] = ∫ S(x, q) f(x) dx, 

 
in which S(x, q) is an ordinary function. 
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in which the * means the transition to complex conjugate values and the prime means the 
exchange of rows and columns in the matrix.  When this is written out, one has 1): 
 

11 12 11 21

21 22 12 22

S S S S

S S S S

∗ ∗

∗ ∗

  
  

   
 ≡ 11 11 12 12 11 21 12 22

21 11 22 12 21 21 22 22

S S S S S S S S

S S S S S S S S

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 + +
 + + 

 = 
1 0

0 1

 
 
 

.  (10′) 

 
On the other hand, if follows from the definition of the components of the proper moment 
that the operators that correspond to them must transform precisely like the coordinates, 
so, with the introduction of the Euler angles Θ, Φ, Ψ according to the formulas 2): 
 

(cos cos sin sin cos ) ( sin cos cos sin cos ) sin sin,

(cos sin sin cos cos ) ( sin sin cos cos cos ) cos sin,

sin sin cos sin cos .

x x y z

y x y z

z x y z

′ ′ ′

′ ′ ′

′ ′ ′

= Φ Ψ − Φ Ψ Θ + − Φ Ψ − Φ Ψ Θ + Ψ Θ
= Φ Ψ + Φ Ψ Θ + − Φ Ψ + Φ Ψ Θ − Ψ Θ 
= Φ Θ + Φ Θ + Θ 

s s s s

s s s s

s s s s

 

 
(11) 

 
Our objective will now be to determine the matrix S in such a way that (9) and (11) 
agree.  If we achieve this then our question regarding the transformation of (ψα ,ψβ) under 
rotations of the coordinate system will be answered by the equations: 
 

( , )α βψ ψ′ ′  = S(ψα ,ψβ)      (12) 

or 

11 12

21 22

,

.

S S

S S
α α β

β α β

ψ ψ ψ
ψ ψ ψ

′ = + 
′ = + 

     (12a) 

 
 In order to now bring (9) and (11) into agreement with each other, it is preferable, as 
in the usual theory of tops, to introduce the following notations: 
 

, , ,

, , ,
x y x y z

x y x y z

s is s is s

s is s is s

ξ η ζ
ξ η ζ′ ′ ′ ′ ′

= + = − + = − 
′ ′ ′= + = − + = − 

   (13) 

 

2 2

2 2

cos , sin ,
2 2

sin , cos .
2 2

i i

i i

e i e

i e e

α β

γ δ

Φ−Ψ −Φ+Ψ

Φ−Ψ −Φ−Ψ

Θ Θ= = 


Θ Θ = =


   (14) 

 

                                                
 1) We recall the fact that one obtains the (n, m) element of the product of two matrices by term-wise 
multiplication of the nth row of the first matrix by the mth column of the second matrix. 
 2) For what follows, cf., A. Sommerfeld and F. Klein, Theorie des Kreisels, I, § 2 to 4, in particular, the 
definition of the parameters α, β, γ, δ.  P. Jordan directed my attention to their meaning in the context of 
our problem.  
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The quantities α, β, γ, δ are the Cayley-Klein rotation parameters, between which exist 
the relations: 

δ = α*,  γ = − β*,  αδ − βγ = 1.   (14′) 
 
(11) is then equivalent to 1): 
 

ξ = S−1ξ′ S, η = S−1η′ S,   ζ = S−1ζ′ S .   (9′) 
 

 We now assert that in order to bring (9′) into agreement with (11′), we can simply 

identify the matrix S with the matrix 
α β
γ δ

∗ ∗

∗ ∗

 
 
 

 of conjugate values to the Cayley-Klein 

parameters: 
 

S = 
α β
γ δ

∗ ∗

∗ ∗

 
 
 

  or S11 = α*,   S12 = β*,   S21 = γ*,   S22 = δ*. (15) 

 
This is permissible, since the relation (10) is fulfilled precisely by means of (14′): 
 

α γα β
β δγ δ

∗ ∗

∗ ∗

  
  

  
 = 

δ γ α γ
β α β δ

−  
  −  

 = 
1 0

0 1

 
 
 

. 

 
If we further set ξ′, η′, ζ′ in (9′) and (11′) equal to the matrices that follow from (3′), 
using (13): 

     ξ′ = 
1 0

0 1

 
 
 

 + 
0

0

i
i

i

− 
 
 

 = 
0 2

0 0

 
 
 

, 

 

     η′ = − 
1 0

0 1

 
 
 

 + 
0

0

i
i

i

− 
 
 

 = 
0 0

2 0

 
 
 

, 

and 

     ζ′  = 
1 0

0 1

− 
 
 

, 

 
then we obtain from the agreement of both equations that: 
 

ξ = 
2

2

2 2

2 2

αβ α
β αβ

 −
 − 

, η = 
2

2

2 2

2 2

γδ γ
δ γδ

 −
 − 

, ζ = 
2

2

αδ βγ αγ
βδ αβ βγ

− − 
 − + 

. 

 
With that, the desired proof is achieved. 

                                                
 1) Theorie des Kreisels, equation (9), pp. 21.  
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 We now still have some supplementary remarks to add.  The one concerns the special 
case of a rotation of the coordinate system around the z-axis, such that Θ = 0, β = γ = 0, 
and with Φ + Ψ = 0, one will have α = / 2ie ω , δ = / 2ie ω− .  In this case, one obtains: 
 

sx = 
0

0

i

i

e

e

ω

ω

− 
 
 

, sy = 
0

0

i

i

ie

ie

ω

ω

− −
 
 

, sz = 
1 0

0 1

 
 − 

.  (3″) 

 
These are, at the same time, as one easily verifies, the most general matrices (linear 
transformations of the ψα , ψβ , resp.) that are Hermitian, satisfy the commutation 

relations (2), and for which sz has its normal form 
1 0

0 1

 
 − 

, in addition.  One sees from 

this that the functions (ψα, ψβ) are still not uniquely determined by just the given of the z-
direction (i.e., the arbitrariness of the phase ω), but only when the entire (x, y, z)-axis-
cross is given.  On this basis already, it scarcely seems possible to associate the magnetic 
electron with directed (vectorial) eigenfunctions. 
 The second remark relates to the question of the most general (Hermitian) linear 
transformations of the (ψα, ψβ) that satisfy the relations (2).  It is easy to see that these 
most general sx, sy, sz can always be brought into the normal form (3′) by a transformation 
of the form (9) [in which S fulfills the relation (10)].  Here, we would like to only outline 
the proof.  One first shows that the most general S that satisfies (10) can always be 
expressed in the form (14), (15) by means of angles Θ, Φ, Ψ.  In any event, one can then 
convert sz into a diagonal matrix by means of a transformation (9).  From the relations 
(2), it then already follows that sz has the desired normal form.  One must then only make 
the phase ω in the sx, sy equal to zero by a suitable rotation around the z-axis. 
 In summary, we can say that the independence of all the ultimate results of a special 
choice of axis-cross is guaranteed, despite the distinguishing of a certain coordinate 
system by the choice (3) of the operators sx, sy, sz , as a result of the invariance of the 
quantum-mechanical equations under substitutions of the form (9) and as a result of the 
behavior depicted for the (ψα, ψβ) under rotations of the distinguished axis-cross. 
 
 
 § 4.  Differential equations for the eigenfunctions of a magnetic electron in 
special force fields. 
 
 a)  Electron at rest in a homogeneous magnetic field.  Equations (3), (4) already give 
one the way that the differential equations for the eigenfunction pair (ψα, ψβ) of the 
magnetic electron can be constructed for a given Hamiltonian function H.  We first 
consider the case of the electron at rest in a magnetic field whose field strength might 
possess the components Hx, Hy , Hz .  Since the electron is at rest, the eigenfunctions do 
not depend upon the position coordinates of the electron here.  If e and m0 denote the 
charge and mass of the electron, respectively, and: 
 

µ0 = 
04

eh

m cπ
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is the magnitude of the Bohr magneton then the Hamiltonian function here reads: 
 

H = µ0 (Hx sx + Hy sy + Hz sz), 
 

if we omit the constant translational energy and once more measure sx, … in units of 
1

2 2

h

π
.  If one replaces sx, sy, sz with the operators (3) (while µ0, Hx, Hy, Hz naturally 

remain ordinary numbers) then one obtains the system of equations for (ψα, ψβ): 
 

0

0

[( ) ] ,

[( ) ] .
x y z

x y z

H iH H E

H iH H E
β α α

α β β

µ ψ ψ ψ
µ ψ ψ ψ

− + = 
+ − = 

    (16) 

 
We have deliberately not made the direction of the magnetic field coincide with the z-axis 
[that is distinguished by the choice of operators (3)] from the outset, in order to be able to 
explain the physical meaning of our quantities ψα, ψβ and their transformation properties 
that were derived in the previous paragraphs by an example. 
 The eigenvalue E follows from (16) by means of the determinant condition: 
 

0 0

0 0

( )

( ) ( )
z x y

x y z

H E H iH

H iH H E

µ µ
µ µ

− −
+ − +

 = 0 

or 
− 2 2 2 2 2 2

0 0( ) ( )z x yH E H Hµ µ− − + = 0, 

namely: 

E = 2 2 2
0 x y zH H Hµ± + +  = ± µ0 | H |, 

 
which will be demanded in this case from now on.  It further follows from (16), if one 
denotes the angle between the field direction and the z-axis by Θ and normalizes (ψα, ψβ) 
by way of |ψα |2 + |ψβ |

2 = 1, and for E = + µ0 | H | that: 
 

   |ψα |2 = 
2

2 2

sin

sin (1 cos )

Θ
Θ + − Θ

 = 
2sin

2(1 cos )

Θ
− Θ

= cos2
2

Θ
, 

 

   |ψβ |
2 = 

2(1 cos )

2(1 cos )

− Θ
− Θ

 = sin2

2

Θ
, 

 
and analogously for E = − µ0 | H |, one has: 
 

|ψα |2 = sin2

2

Θ
, |ψβ |

2 = cos2
2

Θ
. 
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This result is also in harmony with the transformation properties (12), (14), (15) of (ψα, 
ψβ).  It can be interpreted physically in, e.g., the following way: The external magnetic 
field originally has a direction that is given by Hx, Hy, Hz, and we let only those electrons 
be present that are directed parallel to the field, but none that are anti-parallel; one then 

suddenly rotates the field in the z-direction.  One will then find that cos2

2

Θ
 is the fraction 

of all electrons with moments that are directed parallel to the z-axis and sin2
2

Θ
 is the 

fraction of all electrons with moments that are directed anti-parallel to the z-axis, and 
conversely, when only electrons that are oriented anti-parallel to the field direction are 
originally present. 
 
 b) A magnetic electron in a Coulomb field (hydrogen atom).  If we would now like 
to go on to the presentation of the equations for the eigenfunction pair ψα, ψβ of the 
magnetic electron in an atomic nucleus then we would consequently like to place 
ourselves at the point of view where the higher relativistic and magnetic corrections are 
neglected and the terms that arise from the theory of relativity and the proper moment of 
the electron can be regarded as perturbing functions.  Analogous to the previous example, 
we likewise assume that a homogeneous, external, magnetic field with the components 
Hx, Hy, Hz is present, in order to address the theory of the anomalous Zeeman effect.  We 
still expressly emphasize that the equations presented here are completely equivalent, 
mathematically and physically, to the matrix equations that were given by Heisenberg 
and Jordan 1).  We also adopt the form of the Hamiltonian function that was given by 
these authors. 
 One first has the Hamiltonian function of the unperturbed atomic nucleus with one 
electron: 

H0 = 
2

2 2 2

0

1
( )

2 x y z

Ze
p p p

m r
+ + −  

 
(px, py, pz = translational impulse, Z = atomic number), or, written as an operator: 
 

H0(ψ) = − 
2 2

2
0

1

2 4

h Ze

m r
ψ ψ

π
∆ − ,           (17) 

 

in which one sets ∆ = 
2 2 2

2 2 2x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, as usual.  One then comes to the terms that 

already appear for an electron with no proper moment as a result of the action of the 
external magnetic field and the relativistic corrections: 
 

H1 = − 2 2 2 4
0 02 2

0 0

1 1 1
2 ( [ ])

2 2

e
E E Ze Z e

m c r r m c
 + + + 
 

H r p , 

 
                                                
 1) Zeit. f. Phys., loc. cit., cf., in particular, equations (2), (3), (4) of that paper.  
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in which E0 means the unperturbed eigenvalue, H means the vector of external magnetic 

field, p means the translational impulse, and r is the radius vector that points from the 

nucleus to the electron. 
 When written as an operator, this gives: 
 

H1(ψ) = − 2 2 2 4
0 02 2

0

1 1 1
2

2
E E Ze Z e

m c r r
 + + 
 

− i µ0 (H [r grad ψ]).  (18) 

 
 The operators H0 and H1 work the same way for ψα and ψβ ; they do not alter the 
index α or β.  Characteristic terms now appear for the proper moment of the electron that 
correspond, firstly, to the interaction terms between the proper moment and the external 
field that were already written out in the previous example, and secondly, to the 
interaction terms that follow from the theory of relativity for a moving electron with a 
proper moment with the Coulomb electrical field.  We adopt the latter, without the new 
basis of Thomas 1) and Frenkel 1); in particular, as far as the factor of ½ is concerned.  
Both terms together give, when likewise written as an operator: 
 

H2(ψ) = 
2 2

2 2 2 3
0

1 1 1

4 4

h Ze

m c r iπ
(kx sx + ky sy + kz sz)(ψ) + µ0(Hx sx + Hy sy + Hz sz)(ψ),  (19) 

 
in which kx, ky, kz are written as an abbreviation for the operators that belong to the 
orbital impulse moment (multiplied by 2πi / h) that are written: 
 

kx = y z
z y

∂ ∂−
∂ ∂

, ky = z x
x z

∂ ∂−
∂ ∂

, kz = x y
y x

∂ ∂−
∂ ∂

. (20) 

 
If we finally replace sx, sy, sz with the operators that are given by (3) then, according to 
the general prescription (4) for ψα(x, y, z) and ψβ(x, y, z), we obtain, in our case, the 
simultaneous differential equations: 
 

2 2

0 1 02 2 2 3
0

2 2

0 1 02 2 2 3
0

1 1
( )( ) [ ( ) ] [( ) ] ,

4 4

1 1
( )( ) [ ( ) ] [( ) ] ,

4 4

x y z x y z

x y z x y z

h Ze
i i H iH H E

m c r

h Ze
i i H iH H E

m c r

α β α β α α

β α β α β β

ψ ψ ψ µ ψ ψ ψ
π

ψ ψ ψ µ ψ ψ ψ
π


+ + − + − − − + = 



+ + − + + + + − =


H H k k k

H H k k k

 
(21) 

 
in which H0, H1, and kx, ky, kz are given by (17), (18), and (20).  In particular, if one sets 
Hx = Hy = 0 in this then these equations go over to the ones that Darwin 2) already 

                                                
 1) L. H. Thomas, Nature 117 (1926), 514; Phil. Mag. 3 (1927), 1; J. Frenkel, Zeit. f. Phys. 37 (1926), 
243. 
 2) C. G. Darwin, loc. cit., equation (3).  
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presented.  In contradiction to Darwin, however, we regard the commutation relations (2) 
[the sharpened relations (2a), resp.] as the ultimate source of these equations, but not the 
idea that amplitudes of the de Broglie waves are directed quantities.  We further remark 
that the equations (21) are invariant under rotations of the coordinate system when the 
function pair (ψα,ψβ) is transformed using the prescription of the previous paragraph.  
We will not need to go into the integration of the differential equations (21), because this 
can be accomplished using the methods of Heisenberg and Jordan without any 
difficulties, and it leads to nothing new beyond the results of those authors.  Let it also be 
briefly mentioned that equations (21) can also be derived from a variational principle, in 
which the quantities dx, dy, dz play a role.  Since this does not yield any new physical 
insight, this will not be pursued further. 
 As was already mentioned in the introduction, the theory that is formulated here is to 
be regarded as only provisional, since one must demand of an ultimate theory that it be 
formulated in a relativistically-invariant way from the outset and that it also allows the 
higher corrections to be calculated.  Now, it presents no complications to extend the 
angular impulse vector s to a skew-symmetric tensor (six-vector) in the four-dimensional 

space-time world with the components sik , and to present commutation relations for it 
that are invariant under Lorentz transformations and which can be regarded as the natural 
generalization of (2) [or also of (2a)].  One then confronts another complication that 
already appears in the aforementioned theories of Thomas and Frenkel, which are based 
in classical electrodynamics.  In these theories, one needs special constraint forces in the 
higher approximations in order to arrive at the fact that the electric dipole moment of the 
electron vanishes in a coordinate system in which it is instantaneously at rest.  Indeed, in 
the successive approximations these constraint forces are proportional to likewise higher 
spatial differential quotients of the field strengths that act on the electron.  It seems that 
these complications remain in quantum mechanics, and to date I have still not arrived at a 
relativistically-invariant formulation of the quantum mechanics of the magnetic electron 
on this basis that can be regarded as sufficiently natural and inevitable.  One will actually 
be led, on the basis of the behavior of the constraint forces that was described, as well as 
on other grounds, to doubt whether such a formulation of the theory is even possible at all 
as long as one retains the idealization of the electron by an infinitely small magnetic 
dipole (while neglecting quadrupole and higher moments), or whether a more precise 
model of the electron is required for such a theory.  Thus, we shall not go further into this 
still-unsolved problem. 
 
 
 § 5.  The case of many electrons.  From our physical starting point of the method of 
eigenfunctions, the case in which many – say, N – electrons with proper moments are 
present in the mechanical system under consideration raises no new complications, when 
compared to the case of a single electron. 
 Here, we must inquire about the probability that in a certain stationary state of the 
system that is characterized by the value E of the total energy, the position coordinates of 
the electrons lie in a certain infinitesimal interval and the components of their proper 
moments in a z-direction that is chosen to be fixed have either the value + 1 or – 1, when 

measured in units of 
1

2 2

h

π
.  We denote the electrons by an index k that runs from 1 to N, 
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the position coordinate of the kth electron will be denoted briefly by qk (for xk, yk, zk), and 
their infinitesimal volume element by dqk (for dxk, dyk, dzk), and furthermore, we shall use 
the index αk or βk depending upon whether the component of the proper moment in the z-
direction for the kth electron is positive or negative.  We then have the state of the system 
being characterized by the 2N functions: 
 
 

1 1( , , )
N Nq qα αψ

⋯

… , 
1 2, 1( , , )

N Nq qβ α αψ
⋯

… , 
1 2 3, , 1( , , )

N Nq qα β α αψ
⋯

… , 
1 2, 1( , , )

N Nq qα α αψ
⋯

… , 

 
1 2 3, , 1( , , )

N Nq qβ β α αψ
⋯

… , …, 
1 2 1, , 1( , , )

N N N Nq qα α β βψ
− −…

… , …, 
1 1( , , )

N Nq qβ βψ
…

… . 

 
One then has, e.g.: 

1 2 3

2

1 1( )
N N Nq q dq dqβ β α αψ

…

… ⋯  

 
for the probability that the first electron sz equals – 1 and q is in (q1, q1 + dq1), for the 
second electron sz equals – 1 and q is in (q2, q2 + dq2), and for the third to Nth electron sz 
equals + 1 and q is in (q3, q3 + dq3) [(qN, qN + dqN), resp.].  The sequence in which the 
suffix αk or βk is written shall be irrelevant, while the variables q, like the index k = 1, …, 
N, shall refer to a certain sequence of electrons.  We can carry over the operators (3) 
directly for the components skx, sky, skz of the proper moments of the kth electron when we 
make the convention that only the indices αk or βk of this kth electron shall change, but 
those of the remaining electrons αk′ or βk′ (for k′ ≠ k) shall remain unchanged.  We then 
have, e.g.: 

1 11( ( , , )) , ( ) ,

( ) , ( ) ,

( ) , ( )

k N k N k k

k k k k

k k k k

kx N kx

ky ky

kz kz

q q

i i

α α β α α β β α

α β β α

α α β β

ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

= =
= − = 
= = − 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

…s s

s s

s s

 (22) 

 

 If, as usual, we associate the impulse coordinates pk with the operator 
2 k

h

i qπ
∂

∂
then 

any function: 

1 1 1 1 1( , , , , , , , , , , , , )N N x y z Nx Ny Nzf p p q q s s s s s s… … …  

 
now corresponds to an operator: 
 

1 1 1 1
1 1

, , , , , , , , , , , ,
2 2 N x y z Nx Ny Nz

h h
f q q

i q i qπ π
 ∂ ∂
 ∂ ∂ 

… … …s s s s s s . 

 
In particular, when the operator of the Hamiltonian function H is applied to the 2N 
functions ψ, …, this yields the 2N simultaneous differential equations: 
 

11 1 1 1
1 1

, , , , , , , , , , , ,
2 2 NN x y z Nx Ny Nz i i

h h
H q q

i q i q
ψ

π π
 ∂ ∂
 ∂ ∂ 

⋯
… … …s s s s s s = 

1 Ni iEψ
⋯

 (23) 
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with ik = αk or βk .  If the indices n or m refer to the various stationary states then one has 
the orthogonality relation: 
 

1 1, , 1
 or 

( )
N N

k k k

n i i m i i N
i

dq dq
α β

ψ ψ ∗

=
∑∫ … …

… = δnm ,  δnm = 
1 for ,

0 for ,

n m

n m

=
 ≠

 (24) 

 
and each function f of the type written down above corresponds to the matrices: 
 

fnm = 
1 1, , 1

 or 

{ ( ) }
N N

k k k

n i i m i i N
i

dq dq
α β

ψ ψ ∗

=

⋅∑∫ … …

…f .  (25) 

 
Here, f means the operator that belongs to f as defined above and a sum over 2N terms is 
found in the integrands of (24), as well as (25). 
 The Hamiltonian functions that occur in reality, like all of the functions f that occur in 
a matrix representation, now have, due to the equality of the electrons, the property that 
their value does not change when the coordinates of two electrons are exchanged with 
each other, and indeed, this is true for qk as well as sk ; H and f can be assumed to be 

symmetric in the N systems of variables (qk, skx, sky, skz).  For Heisenberg and Dirac, this 
had the consequence that the terms subdivided into different groups that were not 
combined with each other, and which were characterized by the symmetry properties of 
the eigenfunctions under permutation of the electrons.  Thus, one must essentially 
observe that the exchange of two electrons – say, the first and second one – implies a 
simultaneous exchange of the coordinate values q1 and q2 and the suffixes a and b that 
belong to the indices 1 and 2 (i.e., the values of 

1z
s and 

2zs ). 

 In particular, there is a symmetric solution.  For any two indices k and j for an 
unchanged q and suffixes for the remaining indices, one has: 
 

sym. sym.

sym. sym.

sym. sym.

( ) ( ),

( ) ( ),

( ) ( ).

k j k j k j j k

k j k j k j j k

k j k j k j j k

q q q q

q q q q

q q q q

ψ α α ψ α α
ψ α β ψ β α
ψ β β ψ β β

=
= 
= 

… …… … … … …… … …

… … … … … … … … … …

… …… … … … … … … …

  (26) 

 
Moreover, there is an anti-symmetric solution, for which any index pair (i.e., electron 
pair) k and j implies a sign change under permutation: 
 

antis. antis.

antis. antis.

antis. antis.

( ) ( ),

( ) ( ),

( ) ( ).

k j k j k j j k

k j k j k j j k

k j k j k j j k

q q q q

q q q q

q q q q

ψ α α ψ α α
ψ α β ψ β α
ψ β β ψ β β

= −
= − 
= − 

… …… … … … … … … …

… …… … … … … … … …

… …… … … … …… … …

  (27) 

 
If follows easily from this that symmetric operators f leave invariant the symmetry 
character of the functions to which they are applied.  Moreover, the non-combination of 
symmetric and anti-symmetric classes follows simply from (25). 
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 It would be interesting to adapt the group-theoretic investigation of Wigner 1) in the 
case of N electrons with no proper moment to ones with a proper moment, and likewise 
establish how the terms that correspond to the different symmetry classes that one obtains 
by neglecting the proper moment are distributed over the symmetry classes of electrons 
with proper moments.  In the case of 2 electrons, there are only symmetric and anti-
symmetric classes, which are thus characterized in this case (N = 2), from (26), (27), by 
the equations: 
 

sym. sym. sym. sym.
1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1

sym. sym. sym. sym.
1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1

( , ) ( , ), ( , ) ( , ),

( , ) ( , ), ( , ) ( , ),

q q q q q q q q

q q q q q q q q

ψ α α ψ α α ψ α β ψ β α
ψ β α ψ β α ψ β β ψ β β

= =
= = 

  (26′) 

 
antis. antis. antis. antis.

1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1
antis. antis. antis. antis.

1 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1

( , ) ( , ), ( , ) ( , ),

( , ) ( , ), ( , ) ( , ).

q q q q q q q q

q q q q q q q q

ψ α α ψ α α ψ α β ψ β α
ψ β α ψ β α ψ β β ψ β β

= − = −
= − = − 

 (27′) 

 
On the contrary, in general there exists no simple relation between the function values 

1 2, 1 2( , )q qα βψ  and 
1 2, 2 1( , )q qα βψ .  They then correspond to two configurations with 

different potential energies.  Namely, in the one case, the electron with a positive sz has 
the position coordinates q1 and the one with a negative sz has the position coordinate q2 .  
In the other case, conversely, the electron with a positive sz is at the spatial point that 
corresponds to q1 and the electron with a negative sz is at the spatial point that 
corresponds to q1 . 
 The skew-symmetric solution is also the one that fulfills the “equivalence rule” in the 
general case of N electrons, and is the only one that occurs in nature 2).  It seems to me to 
be an advantage of the method of eigenfunctions that this solution can be characterized in 
such a simple way, and for that reason precisely, it seems to me that the formal extension 
of this method to electrons with proper moments is not without meaning, even if it cannot 
lead to any new results when compared to the Heisenberg matrix methods.  Moreover, the 
intensities of the inter-combination lines between singlet and triplet terms, for which new 
results of Ornstein and Burger 3) are at hand, can be calculated quantum-mechanically by 
these methods in a lucid way. 
 

___________ 
 

                                                
 1) E. Wigner, Zeit. f. Phys. 40 (1927), 883.  
 2) On this occasion, I would like to emphasize that the exclusive appearance of the skew-symmetric 
solution is required by experiments only for electrons, and indeed by considering their proper moments.  In 
a previous paper (Zeit. f. Phys. 41 (1927), 81), the Fermi statistics were likewise implied only for the 
electron gas by comparing with experiment.  The possibility of other types of statistics with other material 
gases still remains open, which was not, unfortunately, sufficiently stressed in that paper.  Cf., on this, also 
F. Hund, Zeit. f. Phys. 42 (1927), 93. 
 3) L. S. Ornstein and H. C. Burger, Zeit. f. Phys. 40 (1926), 403. 


