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Translated by D. H. Delphenich

It will be shown how one can arrive at a formulatasrihe quantum mechanics of the magnetic electron by
the Schroédinger method of eigenfunctions, with no use of detdlled functions, when one, on the basis
of the Dirac-Jordan general theory of transformatiamspduces the components of its proper impulse
moment in a fixed direction as further independent variahlesder to carry out the computations of its
rotational degrees freedom, along with the position dinates of any electron. In contradiction to

classical mechanics, these variables can assume tlalyariables %2_2'[ and —EL which is

22r
completely independent of any sort of external fielde @ppearance of the aforementioned new variables

thus implies a simple splitting of the eigenfunctions iwo position functionsy, , 5 for one electron,

and more generally, fod electrons they split into"Zunctions, which are to be regarded as the “protgbili

amplitudes” that in a well-defined stationary statehef $ystem not only do the position coordinates of the
electrons lie in a given infinitesimal interval, also that the components of their proper moments in the

chosen direction should have the given values, which érem- for ¢, and—%z_r;T for (3. Methods

will be given for constructing as many simultaneous difiéial equations for the functions as their
number suggests (thus, 2 dt esp.) from a given Hamiltonian function. These eguatare completely
equivalent in their consequences to the matrix equatibhteisenberg and Jordan. Furthermore, in the
case of many electrons, the solutions of the diffeabeguations that satisfy the “equivalence rule” of
Heisenberg and Dirac will be characterized by their sgtmyrproperties under the exchange of the variable
values for the two electrons.

8 1. Generalities on the nature of electronic magnetisin the Schrodinger form
of quantum mechanics. The hypothesis that was first proposed by Goudsmit and
Uhlenbeck in order to explain the complex structure of tspeand their anomalous
Zeeman effect, according to which the electron takea @noper impulse moment of

. 1h . . .
magnltudeEZ— and a magnetic moment of a magneton, was integratedgudntum
T

mechanics by Heisenberg and Jordamvith the help of matrix calculations and then
made quantitatively precise. While the matrix methoch&hematically equivalent to
the method of eigenfunctions in many-dimensional spacé wWes discovered by
Schrddinger, one comes up against peculiar formal coatjpliits when one attempts to
also treat the forces and moments that an eleckperiences in an external field by the
method of its proper moment. By the introduction otighier degree of freedom that

Yy Zeit. f. Phys37(1926), 263.
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corresponds to the orientation of the proper impuldbetlectron in space, one actually
expresses the empirically-established fact that ths@mbum has two possible quantum
positions in an external field, so one is next led temfignctions that are many-valued,
and indeed, two-valued, in the rotational angle in questiang., the azimuth of the
impulse around a spatially fixed axis. One has often sugpbsag this formally possible
representation by means of two-valued eigenfunctions doesingustice to the true
physical nature of things and has sought the solution tprttdem in another direction.
Thus, Darwin®) has recently attempted to gather the facts thaswarenarized under the
assumption of the electron impulse without the introdaabf the top degrees of freedom
for the electron that would correspond to new dimensidhe configuration space, so he
considered the amplitudes of the de Broglie waves astedequantities — i.e., he
considered the Schrddinger eigenfunction as vectoRabm his attempt to follow this,
on first glance promising, path to its ultimate consegegnbe came to complications
that were again connected precisely with the numbeifdwihe positions of the electron
in an external field, and which | do not believe one sammount. On the other hand, a
representation of the quantum-mechanical behavior of tlgnetia electron using the
method of eigenfunctions, especially in the case of atwitls many electrons, is very
desirable for the fact that the variety that is realizn nature alone results for the
solutions of the quantum-mechanical equations that ftitfdl “equivalence rule” for all
of the possible solutions of the present theory of éttierg®) and Dirac?) most clearly
with the help of symmetry properties of the eigenfunctionder the exchange of the
variable values that belong to two electrons.

We would now like to show that by a suitable use offtrenulation of quantum
mechanics, as described by Jordaand Dirac ), which makes use of general canonical
transformations of the Schrodinger functigfisa quantum-mechanical representation of
the behavior of magnetic electrons by the method ohéigetions is, in fact, possible,
without appealing to many-valued functions. Namely, adeieves this by adding the
components of the proper impulse of each electronfirea direction (instead of the
rotational angle that is conjugate to it) as new independarables, along with the
position coordinateq of the electron center of mass. As we will see/lat follows in §

2 in the special case of a single electron, in any quardtate (in the absence of
degeneracy) the eigenfunction generally splits into fuvections ¢,(ax) and ¢(qx), of
which the square of the absolute value, when multiptigddq;, ..., dgs , yields the
probability that in this state, not only should theie in the prescribed intervady, o« +
day), but also that the components of the proper impulsitaanchosen fixed direction

must assume the valuesl+i (—EL, resp.). It will be further shown how, by a
22 227

suitable choice of linear operators for the compongnts, s, of the proper moment in a
prescribed coordinate axis-cross, differential equationsthe eigenfunctions of the
magnetic electron in an external force field can destructed that are equivalent to the
matrix equations of Heisenberg and Jordan. This will beopeed in detalil in § 4 for

) Nature119(1927), 282.

%) W. Heisenberg, Zeit. f. Phy88 (1926), 41139 (1926), 49941 (1927), 239; P. A. M. Dirac, Proc.
Roy. Soc112(1926), 661.

% P. Jordan, Zeit. f. Phyd0 (1927), 809; Gott. Nachr. (1926), pp. 161; P. A. M. Dirac, PRmy.
Soc. (A)113(1927), 621, cf., also F. London, Zeit. f. P48.(1926), 193.
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the case of an electron at rest in an external niegimeld and for a hydrogen atom. It
will be further investigated how the eigenfunctiagg, ¢ transform under changes of
the coordinate axes (8§ 3).

The differential equations for the eigenfunctions lté tagnetic electron that are
given in the present paper can be regarded as only provisiodaapproximate, since
they, like the Heisenberg-Jordan matrix formulationg aot written down in a
relativistically-invariant way, and for the hydrogen atoheyt are valid only in the
approximation in which the dynamical behavior of the prop@ment can be considered
to be a secular perturbation (in the classical theaxgraged over the orbit). In

particular, it thus not possible to calculate quantumhkaeically the corrections that are
2

proportional to higher powers af* 7% (a = 2re

= fine structure constant) in the

amounts of the hydrogen fine-structure splitting¢chs as the empirically established
amounts for the Rontgen spectra that are given alb by the Sommerfeld formula.

These difficulties, which are still obstacles te #olution of this problem to this day, will
be discussed briefly in § 4.

Thus, whether or not the formulation of the quamtmechanics of the magnetic
electron that is communicated here is still congdjetinsatisfactory in that regard, on the
other hand, it affords the advantage that in tise cd many electrons (in contrast to the
Darwin formulation), as will be shown in § 5, itvgs rise to no new difficulties at all and
also allows one, like Heisenberg, to easily forneilaecessary symmetry properties of
the eigenfunction in order for it to fulfill the ¢aivalence rule.” In particular, on this
basis, it already seems to me justified to comnatrithe method proposed at the present
point in time, and one can perhaps hope that i aldlo prove useful in the unsolved
problem of the calculation of the hydrogen finaisture in higher approximations.

8 2. Introduction of the components of the proper moment athe electron in a
fixed direction as independent variables for the eigenfustion. Definition of the
operators that correspond to the components of the proper moemt. In classical
mechanics, the dynamical behavior of the electramant can be described by the
following pairs of canonical variables: The amosrdf the total proper moment of the
electron and the rotation angjearound its axis. Secondly, one has the compaserit
this moment in a fixed directionand the azimutlp of the moment vector around the
axis, as measured in the)-plane. Since the quotiest/ s yields the cosine of the angle
between this vector and tkexis, thesex andy components are given by:

=4S-S cosp, s =S -S'sing.

Since the rotation anglg is always cyclic, so it does not enter into themtnian
function, s remains constant, and can be regarded as a fiater, such that onlys{,
@) remains as the actual canonical variable pait Ehaletermined by the dynamical
behavior of the electron moment.

By an application of the original Schrdodinger neethone thus has an eigenfunction
for the presence of a single electron in any quanstate (which is already uniquely
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characterized by a well-defined energy vakieby lifting the degeneracy in external
fields) that depends on not just the three positiondinates of the electron center of
mass (which are denoted briefly by, or alsoqg), but also on the anglg. This then
gives:

| @(a, #) [ don da dgs dep

as the probability that in the quantum state in questibrenergy E the position
coordinates should lie in the intervals, gk + dgx, while the anglep should lie in ¢, ¢ +
dg). If the impulse coordinatg that is conjugate t@¢ appears in any dynamical function

then it would be replaced with the operat%lh%%, which is applied to the
7

eigenfunctiony, just as the impulse coordinapg of the translational motion that is

conjugate tagk will be represented by the operatg?—_ai. As is known, the fact that
70 0Q,

the number of allowed quantum orientations for @lextron moment is two implies the
consequence that the functiga(q, ¢) thus defined cannot return to its starting vadse
@ continually advances from the value 0 tg But must change its sign.

Meanwhile, one can avoid the appearance of suchvaledness, like the explicit
use of any polar angle whatsoever, in such a way ¢me introduces the impulse
components, as an independent variable in the eigenfunctioplate ofg. Thus, an
especially simplified situation appears in quantmechanics: In classical mechanics, in
general,s;, will be capable of taking on a continuum of valdessa certain energy (e.g.,
when the moment vector precesses around a diretttains different from the-axis),
except for the special case in whghs precisely an integral of the equations of nmatio
In quantum mechanics, howevey, can, by being conjugate to an angle coordinate,

assume only the characteristic vaIueéLHhh and —EL; this shall mean that the
22T 22T
function ¢&(q, @) splits into two functionsy, e(q, @) and ¢ (0, @) that correspond to

1h 1h )
the values, = +=— ands, =—=—, resp. This makes:
= 22T > 22T P

| W, e(a, #) [ dos dap dos

the probability that in the stationary state coestdl one simultaneously has tkaties

in (Ok, Ok + dx¢) ands; has the value %2_21 and:

| 45,6, ¢) [ doy dop das

is the probability that for the same valuefthe impulse componergt assumes the
1h : . . .
value—Ez—n . Any attempt to measure the magnitudes,ah a certain stationary state

will always vyield only the two valuesiL+L and —EL, and also whers, does not
22 221
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represent an integral of the equations of motiofhis special case (e.g., a strong
magnetic field in the z-direction) is, moreover, distinguished by the fact that here, for a
well-defined energy E, only one of the two functions ¢/, or e is ever different from
zero. For a well-defined choice of the coordinate systgimand ¢ are determined
completely, up to a common phase factor, in any statjostate by the normalization:

[ (1 B+ 15 P) iy dlgp s = 1. (1a)

The orthogonality relation:
(@, e *W5.05,) dada,da, = O forn#m (1b)

must also be valid. In it, the indicasm denote two distinct quantum states and the *
that is affixed (here, as in the sequel) denotestimplex conjugate valde

In order to be able to later describe the difféedequations that the functions,, ¢z
satisfy for a given Hamiltonian function, one caroqeed in such a way that one
expresses them as functions pf, (k) and &, ¢), and then replacex with the operator

h o and ¢ with the operatori_i. The total operator would then be applied to

271 0q, 27 0s,
Uk S2), and ultimately one would pass to the limit inig¥hy is non-zero only fos, =

+%2—CT ands, = —EL. However, such behavior would be confusing arsk le

22
convenient. The Hamilton function that actuallyteza in always includes the angular
impulse componentsx, sy, sz as variables and is therefore preferable for phigose
without the detour of introducing the operator tisappropriate to the polar angte
These operators must satisfy the same commutegiations (up to a sign, cinfra)
as the matrices in questions, namely:

2
[s 5] = —L_s; s°= (Lj s(s+1) with s=1/2,
27 2ir

in which s means a vector matrix with the componegiss, s, %). For the sake of

simplicity, in what follows if we measure in units of%z—r;T (i.e., one replaces with

1h : : , :
2o s) and write out the vector equations in compon#rga we obtain:

Y Let it be mentioned at this point that according to Bieac-Jordan transformation theory, the
aforementioned functiog(q, ¢) is connected with the functiong,, ¢ according to the formulas:

Ua, P) = Ya(Q) €77 + yp(a) €'

% Cf., W. Heisenberg and P. Jordbg, cit., eq. (10). — Matrices and operators (@ntmbers”) will
always be characterized by boldface in the sequel.
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SSy 7SS = 2isz"" 1
2 2 2 (2)
S ts, +s, =3,

in which the ... imply the equations emerge from the onétemr down by cyclic

permutations of the coordinat8s

This suggests that we make the Ansatz for the operaiors , s, that satisfy the
relations (2) that they are linear transformationstref ¢, and ¢ , and indeed the
simplest possible Ansatz is the following one:

SWa)= Ws sWs)= W,
S,(W.) =g, S,Wp)= W, 3)
Sz(l//a): Y, Sz(lﬂﬂ):—lﬂﬂ-

One can also write these relations in the symbuoétrix form:

Yo seo-’

5((‘/’):(1 0

'jwf, sz(m:(

10
0 jﬂ/l- 3)

0-1

Relations (2) are thus to be interpreted as satfiay when the matrices '§3are
substituted in (2), with an application of the Ugu@scription for matrix multiplication

) As a result of the special circumstance that the euroballowed quantum positions sfhas the

value two (so it can be treated as a two-rowed matnxaddition to (2), one has the further sharpened
relations:

sty—sy%( :isz,...’ (Za)
s ts;+s =1.

One sees this most simply when one chossts be a diagonal matrix (although the relations areitrue
general). By contrast, for many-component matricasfulfill (2) (in which the value 3 is replaced with

— 1, where is the number of rows of the matris),s, and s> would not have vanishing matrix elements in
those positions whose row index differs from the colunaex by 2 (which then correspond to transitions
of the quantum number that belongstby two units), so equations (2a) could be valid.

On the existence of relations (2a), | would cordiadfer to P. Jordan, to whom | would also like to
express my thanks at this point. He also brought to my iattettte following connection with quaternion
theory: If one writes a quaterni@hin the form:

szlA+sz+k3C+D
then the “units’ky, k;, ks satisfy the relations:

klkzz—kzklzkg, veey
==k =1

These are equivalent to the relations (2a), whersetse

s =iky , %,zikz, s, =iks.
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the matrices') satisfy these relations.The corresponding operators therefore satisfy
equations that emerge from (2) by permuting the order of all multiplications ?). The
justification for this prescription will come to us by way the general connection
between operator algebra and matrix algebra. Theokastlations (3) is obviously
physically necessary whef, and ¢z mean the probability amplitudes fgr(measured in

units of%z—r;T) to assume the value + 1 or — 1, because the opejatarst then imply

simply multiplication of the eigenfunction by the nuioal value ofs, . The fact that in
the special choice o, s, that is included in the demand that relations (2) folloonf
normalization implies no loss of generality will beade clear in the following
paragraphs, where the behavior of the functigns ¢ under a shift of the axes for the
coordinate system that was defined will be examined. g€lbw, pp. 13, eq. (3]

Now, if any Hamiltonian function:

H(Pw O S0 Sy S) =E

is given for a special mechanical system that includeagnetic electron then the two
simultaneous differential equations @y and ¢ that likewise determine the eigenvalue
E are given by:

h o
(Zm aqk ’qk’SS(’Sy’Szjl/lE,a a!? (4)

h o
H [Tma’qk’sk’sy’szwaﬁ =Ry,,

in whichs,, s, s; replace the operations (3).

The matrix components of any functif{p, g, s, S;, S), of which, we would first like
to assume that it either does not include the quansties , s, at all or it includes them
only linearly, are defined by the simultaneous equations:

f(l/’ma) = z fnméyna ’ f(wmﬁ) = z fnméynﬁ ’ (5)

if we understand to mean the operatofr (%ai,q,sx,sy,szj. In particular, one thus
70 0q

has:

S Yma) = g ZZ(SS()nmwna ; SA¢mp) = Yma ZZ(SS()nmwna , (6)

Y Cf., rem. 1, pp. 11.

%) The necessity of distinguishing between operator relsmd matrix relations at this point was first
made evident to me after the fact on the basis efterlfrom C. G. Darwin that concerned the comparison
between the equations that he presented and my own.bé&se rem. 2, pp. 16) | would also like to
express my deepest thanks to Darwin at this point for hmueagement.
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and corresponding equations fpandz. The fact that one sums over the first index of
the matrix on the right-hand sides of (5) and (6) isemtal in order for one to get
agreement between successive application of two opefaady and the multiplication

of matrices. It easily follows from (6), by using théhmgonality relations (1a) and (1b),
that:

fom = [[F W) Wi + f (@) @15] dydar, 0l .. (8)
In particular, one thus has:
(S)mn = [[(SWme) Wrtr +(SWmp) W5 A0 = [( Wl + Wrndlrn) A

(8 = [[(S¥ma) W + (S Wms) Wi A0 = [ttty +Wratl) A6 (6)
() = [ [(S8ma) Wi + (S 8Wmp) Wip) A= (Wl ~Wrnitll) At

If one directs one’s attention to the general eiigiections:

Yo =2 Cn tha, l/';FZCnl/w,

with the undetermined factocs then the expressions:

d =Yy +W s
dy == Wl ~Wallp), (6)
dz = (l//aws _l/’ﬂl/’;m;)

formally play the role of volume densities for fh@per moment of the electron.

We now have to demonstrate the proof that theicestthat are calculated from'\6
generally satisfy the relations (2) of Heisenbeng dordan. If we denote any of the
indicesx, y, zbyi andk then we can form:

(S S)nm = Z(S)nl (S -
If we replace %)im with its value that follows from (Bthen this gives:
(S S9nm = f{Z(S )mlﬂﬂ S W) +|:Z($)nl¢ll?fj} %(lﬂmﬂ)} da.

One now hass)n =(s),,, since (as one easily confirms on the basis 9f (GBoreover)
the matrices are Hermitian, so according to (6), one has:

DS = D) =[s(thal’,
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and likewise:

2. (S)atis = [s(¢nal”

The final result is then:

(5 30m = {50 8. @) +[3@,) ] 5@ .

On the basis of this relation, one easily confiratisof relations (2) by replacing the
operators (3) and comparing with')6if one regards them as matrix relations. For
example, foi =x, k =z, this gives:

(S< S/_S/S()nm =2 J(_wr?ﬂwmﬂ +¢/nma¢lma) =2 (Sz)nm,

according to (§. One likewise verifies the remaining relatio@¥. (With that, the choice
of operators (3) is likewise justified.
Examples of equations of the form (4) will be give § 4.

§ 3. Behavior of the functionsy,, ¢ under rotations of the coordinate system.
In the Dirac-Jordan theory, one generally answieesquestion of how the functiong
transform under a transition from a system of caravariables§, ) to a new system

P, Q. If Sis an operator that takes the operatp(sultiplication byqg) andp :%aiq
into the operatorB, Q that correspond to the new variables according to:
P=Sps?, Q=SqgS* (7)

then one obtains the eigenfunctigg(Q) that belongs t@ from the eigenfunctiog(q)
that belongs tg simply by an application of the operatr

#e(Q) = S[¢e(Q)]- (8)
| ¢e(Q) [ dQ

then again represents the probability that theatdeQ should lie betwee® andQ + dQ
for a certain energl and an arbitrary value fét?).

The expression:

) The fact that we chose precisely the endtdy be a fixed parameter now represents a special case
of the transformations that were considered by Dirat #ordan. This author also investigated the
connection between two different representationk@bperator$ more closely:

1. The differential representation, in whih = S(zlaixj is thought of as composed of the

70 0X
operators of differentiation with respect to a variatded multiplication by.
2. The integral representation®)fin which one sets:
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In our case, we will not generally calculate with ttenonical variabless{ ¢)
themselves, but with the componemsis s, s, of the proper moment, for which the
commutation relations do not have the canonical f&@m e then have to answer the
question ofhow, starting with the given eigenfunctions ¢, , ¢, and operators s, s, , &
relative to a certain axis-cross (%, y, 2), one can calculate the eigenfunctions ¢, , ¢,

and operators s¢ , Sy, Sy relative to a new axis-cross (X, y', Z). The squares of the
absolute magnitudes of the negy, , ¢/, then determine the probability that (for certain

values of the position coordinatg®f the electron) for an arbitrary value of the angle
around theZ-axis the impulses, (measured in units O%Z—CT) has the value + 1-,

resp.).

Now, for the operator equation (7), it is not esseihiat the commutation relations
betweenp and g, as well asP and Q, have the canonical form. Moreover, this only
comes down to the fact that the commutation relatjpreserve their form under the
transformation; i.e., they remain correct when omapgi writes the new variables in
place of the old ones. Now, in our case, it is,aat,fknown that relations (2) remain
unchanged under orthogonal coordinate transformatgut) that one also has for the
primed quantities:

S¢S, —S,S =2iS,, }
(2)
s; ts, +s; =3.
It will then also be permitted for us to set:
sc=SsS' s =S5S% $=SsS™ (9)

The most comfortable formal representation of the atpers that we will always have to
apply to the eigenfunction paig, ) is the matrix representation that was used already

in (3') above. If the operat@® takes the pairfa, s to (Su1a + Si2p, S1lla + S24p),
in which §1, Si2, Si3, Si4 are ordinary numerical coefficients, then we caiten® as the

matrix:
S:[alaj.
SZl S22

In order for the relations (1a) and (1b) to also be fou¢he new pair$y,, S¢s), S must
satisfy the well-known orthogonality relation:

SsP=1, (10)

SIf(a)] = I S(x, g) f(x) dx,

in which §(x, g) is an ordinary function.
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in which the * means the transition to complex conjugalees and the prime means the
exchange of rows and columns in the matrix. When shigritten out, one ha3:

(sn slj(sl sslj _ (alsfﬁ S.Si, S,8%+S §J _ (1 0}_
SZl S22 SLDZ 822 S2181D1+ SZZS?Z SZ§D21+ S 2§D2 O 1
On the other hand, if follows from the definition bétcomponents of the proper moment

that the operators that correspond to them must trangfozaisely like the coordinates,
so, with the introduction of the Euler ang@s®, W according to the formulds:

(10)

S, =(cos® cos¥ - si si¥ cd® s)+ —( sth chs- obs 4in €os, ) Win G,
s, =(cos® sin¥ + sird co¥ cd® s)+ —( st s+ ods ¢Bs €os,) ‘Los OsEp,
S, =sin® sin@s, + cospb si®s, + coBs,

(11)
Our objective will now be to determine the mat8xn such a way that (9) and (11)

agree. If we achieve this then our question regardingahseformation of ¢, under
rotations of the coordinate system will be answered &etjuations:

Wotty) = S t) (12)
or
[/I; = glwa +Sl#’,8’
W, =S, + szzwﬁ} (122)

In order to now bring (9) and (11) into agreement wittheather, it is preferable, as
in the usual theory of tops, to introduce the followingations:

&=s +is, n=-s+is, {=-s,, 13
§'=s, +is,, ' =-s, +is,, {' =-5,, (13)

) [o-v oW
azcosEe 2 ,ﬁzisinze 2

(- —o-y (14)

y:isinge 2 ,0= cos(iei 2
2 2

) We recall the fact that one obtains therf) element of the product of two matrices by term-wise
multiplication of then™ row of the first matrix by thei" column of the second matrix.

%) For what follows, cf., A. Sommerfeld and F. Kleiheoriedes Kreisels, |, § 2 to 4, in particular, the
definition of the parameters, 5, y; 0. P. Jordan directed my attention to their meaning irctiméext of
our problem.
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The quantitiesa, £, y; J are the Cayley-Klein rotation parameters, between hvliast
the relations:
o=a, y=-0, ad-py=1. (14)
(11) is then equivalent o:
£=s7¢'s, n=s'n’'s, (=S'{’S. 9)

We now assert thah order to bring (9') into agreement with (11), we can smply

O |
identify the matrix S with the matrix [T’D ’?Dj of conjugate values to the Cayley-Klein
parameters:
a,D | . .
S:[VD Igmj or Su=d, S2=f, Su=y, »=4. (15)

This is permissible, since the relation (10) is fudfillprecisely by means of ()4

V4 AR P R

If we further seté’, 7, {’in (9) and (11) equal to the matrices that follow from')3

using (13):
= (1 oj . i(o —ij _ (0 2)
01 i 0 00
,7,:_(1 oj . i(o —ij :(0 oj
01 i 0 20)°
and

. (10
=33

then we obtain from the agreement of both equations tha

= -2af 2a? _(-20 2y” = (—aé—ﬁy 2ay j
282 208) " | <20% 25 285 aB+py)

With that, the desired proof is achieved.

) Theorie desKreisdls, equation (9), pp. 21.
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We now still have some supplementary remarks to add.oiiéa&€oncerns the special
case of a rotation of the coordinate system around-#xés, such tha® = 0,8=y=0,
and with® + W = 0, one will haver = €2, = €2, In this case, one obtains:

B e—ia) _ O _ie—ia) _ 1 0 :
S‘_[e‘“ oj’ Sy_[ie‘“’ 0 j SZ_(O—J' (%)

These are, at the same time, as one easily vertiiesmost general matrices (linear
transformations of they, , (s, resp.) that are Hermitian, satisfy the commutation

relations (2), and for whick, has its normal forrr{1 Oj, in addition. One sees from
this that the functions (¢, ) are still not uniquely determined by just the given of the z-
direction (i.e., the arbitrariness of the phase «), but only when the entire (X, y, 2)-axis-
crossisgiven. On this basis already, it scarcely seems possiblsstucate the magnetic
electron with directed (vectorial) eigenfunctions.

The second remark relates to the question of the gestral (Hermitian) linear
transformations of they,, ¢p that satisfy the relations (2). It is easy to Se# these
most generas,, S, S; can always be brought into the normal forr) (8 a transformation
of the form (9) [in whiclt fulfills the relation (10)]. Here, we would like tmly outline
the proof. One first shows that the most gen&ahat satisfies (10) can always be
expressed in the form (14), (15) by means of angle®, W. In any event, one can then
converts; into a diagonal matrix by means of a transformation (©jom the relations
(2), it then already follows that has the desired normal form. One must then only make
the phasevin thes,, s, equal to zero by a suitable rotation aroundzthgis.

In summary, we can say that the independence of allltineate results of a special
choice of axis-cross is guaranteed, despite the dissihapg of a certain coordinate
system by the choice (3) of the operatsgss,, s,, as a result of the invariance of the
guantum-mechanical equations under substitutions of tine ®) and as a result of the
behavior depicted for thel, ¢ under rotations of the distinguished axis-cross.

8 4. Differential equations for the eigenfunctions of a magtie electron in
special force fields.

a) Electron at rest in a homogeneous magnetic field. Equations (3), (4) already give
one the way that the differential equations for thgeefunction pair ¢, ¢y of the
magnetic electron can be constructed for a given Haman functionH. We first
consider the case of the electron at rest in a nimgfield whose field strength might
possess the componeidg Hy, H, . Since the electron is at rest, the eigenfunctions do
not depend upon the position coordinates of the electron hié e andmy denote the
charge and mass of the electron, respectively, and:

Ho= 4rm,c
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is the magnitude of the Bohr magneton then the Hanigtofunction here reads:

H :/«IO(HXS(‘l'HySy‘l'HZSz),

if we omit the constant translational energy and omcge measurs,, ... in units of

%2_21 If one replaces,, s, s, with the operators (3) (whilgo, Hy, Hy, H; naturally

remain ordinary numbers) then one obtains the systesquations for i, ¢p):

Hol(H, —iH )+ Hgp,] = Eé”} (16)

ﬂO[(Hx +iHy)¢’a - szﬂ] = Wﬂ'

We have deliberately not made the direction of thermegg field coincide with the-axis
[that is distinguished by the choice of operators (3)hftbe outset, in order to be able to
explain the physical meaning of our quantitys ¢z and their transformation properties
that were derived in the previous paragraphs by an example.

The eigenvalu& follows from (16) by means of the determinant condition

UH,-E  (H, —-iH )
ﬂO(Hx+iHy) _/'IO(HZ+E)

or
~(gH7 = E*) = pg(H+H ) =0,

E= g [HI+HI+H] =+ 6 [H|,

which will be demanded in this case from now on. It frtfollows from (16), if one
denotes the angle between the field direction and-theés by© and normalizes@,, {5
by way of [  + ¢ P = 1, and folE = + 4 | H | that:

namely:

5 SRC) _ sife@ C)
o | = — = = cog—,
Sif@+(1-co®§ 2(1-coP) 2
Wl = (1- cosO § :sir?g
P17 2= co®d) 2’

and analogously fd€ = - /4 | H |, one has:

2 = g 9 2: 9
IwaI—SIr?Z, s | co§2.



Pauli — On the quantum mechanics of magnetic electrons 15

This result is also in harmony with the transformatiwaperties (12), (14), (15) of/,

Yp). It can be interpreted physically in, e.g., the follog way: The external magnetic
field originally has a direction that is given bly, Hy, H;, and we let only those electrons
be present that are directed parallel to the field, baerthat are anti-parallel; one then

suddenly rotates the field in tzedirection. One will then find that c%% is the fraction

of all electrons with moments that are directed palral thez-axis and siﬁ% is the

fraction of all electrons with moments that are clieel anti-parallel to the-axis, and
conversely, when only electrons that are orientedpamtllel to the field direction are
originally present.

b) A magnetic electron in a Coulomb field (hydrogen atom). If we would now like
to go on to the presentation of the equations foreigenfunction pair,, (s of the
magnetic electron in an atomic nucleus then we wouldseguently like to place
ourselves at the point of view where the higher relattvesnd magnetic corrections are
neglected and the terms that arise from the thebrglativity and the proper moment of
the electron can be regarded as perturbing functions. @madao the previous example,
we likewise assume that a homogeneous, external, nadiedd with the components
Hx, Hy, H is present, in order to address the theory of the alous Zeeman effect. We
still expressly emphasize that the equations preserdesl dre completely equivalent,
mathematically and physically, to the matrix equatidrs were given by Heisenberg
and Jordart). We also adopt the form of the Hamiltonian funatibat was given by
these authors.

One first has the Hamiltonian function of the unpdxdr atomic nucleus with one

electron:
2

1 Ze
Ho=—(p{+p;+p,)——
2m, r

(P Py, Pz = translational impulse, = atomic number), or, written as an operator:

2

1 h? Ze
H =- AY - , 17
0> 0% 09°?
in which one setd\ = + as usual. One then comes to the terms that

—t—+—,
x> oay® 0z’
already appear for an electron with no proper momera essult of the action of the
external magnetic field and the relativistic correasio

Hy = - Z(EOZ +2EOZe2—1+ZZe4—£j+
2my r r

e
2mc ($lepl),

) Zeit. f. Phys.]oc. cit., cf., in particular, equations (2), (3), (4) of that paper
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in which E; means the unperturbed eigenvalgemeans the vector of external magnetic
field, p means the translational impulse, ant the radius vector that points from the

nucleus to the electron.
When written as an operator, this gives:

Hu(g) =- ZFTJ[;CZ (EOZ + 2EOZe2?1+ Zze“r—%j =i o (9 [r grad ). (18)

The operator$i, andH; work the same way fog, and ¢5; they do not alter the
index a or 5. Characteristic terms now appear for the prop@ment of the electron that
correspond, firstly, to the interaction terms betwé¢he proper moment and the external
field that were already written out in the previoagample, and secondly, to the
interaction terms that follow from the theory ofatévity for a moving electron with a
proper moment with the Coulomb electrical field.e\&dopt the latter, without the new
basis of Thomas) and Frenkel); in particular, as far as the factor of % is cemed.
Both terms together give, when likewise writteraaoperator:

2
Hag) = ih—z—ezé—l(kx S +ky S + ke $)(8) + Lb(Hy S+ Hy S, + H: )(), (19)

in which ky, ky, k, are written as an abbreviation for the operatbet belong to the
orbital impulse moment (multiplied by®/ h) that are written:

o _0 o _d o 0
k= Yy——2—, ky= Z——X—0,  ky= X——Yy—. 20
Yoz~ ay YU %x oz ay Y ox (20)

If we finally replaces,, s;, s, with the operators that are given by (3) thenpsadiog to
the general prescription (4) fap.(X, y, 2 and ¢4X, y, z), we obtain, in our case, the
simultaneous differential equations:

1hn ze® 1
Y 28 L ik, ) ik~ O, -H )+ H ) =,

1h ze* 1
44]72 il 3[(k +K )W, +iKW@l + uf(H +iH)yw, -Hyw ] =Ey,

(Ho+H)W, )+
(Ho+H)W,) +~

(21)

in whichHy, H1, andky, ky, k, are given by (17), (18), and (20). In particulbone sets
Hx = Hy = 0 in this then these equations go over to thesahat Darwir?) already

Y L. H. Thomas, Natur&17 (1926), 514; Phil. Mag3 (1927), 1: J. Frenkel, Zeit. f. Phy&7 (1926),
243.
3 C. G. Darwin]oc. cit., equation (3).
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presented. In contradiction to Darwin, however, wenetfz2e commutation relations (2)
[the sharpened relations (2a), resp.] as the ultinmiecs of these equations, but not the
idea that amplitudes of the de Broglie waves are direqptiadtities. We further remark
that the equations (21) are invariant under rotations efttiordinate system when the
function pair (/s ¢p) is transformed using the prescription of the previousigraph.
We will not need to go into the integration of thefetiéntial equations (21), because this
can be accomplished using the methods of Heisenberg andnJuait@out any
difficulties, and it leads to nothing new beyond the ltssaf those authors. Let it also be
briefly mentioned that equations (21) can also be derngad & variational principle, in
which the quantitiesly, dy, d, play a role. Since this does not yield any new physical
insight, this will not be pursued further.

As was already mentioned in the introduction, the théwat is formulated here is to
be regarded as only provisional, since one must demand ulfimate theory that it be
formulated in a relativistically-invariant way from tloeitset and that it also allows the
higher corrections to be calculated. Now, it presextscomplications to extend the
angular impulse vectarto a skew-symmetric tensor (six-vector) in the foumehsional

space-time world with the componersis, and to present commutation relations for it
that are invariant under Lorentz transformations anahvban be regarded as the natural
generalization of (2) [or also of (2a)]. One then comnifs another complication that
already appears in the aforementioned theories of &ka@and Frenkel, which are based
in classical electrodynamics. In these theories,r@sels special constraint forces in the
higher approximations in order to arrive at the fact thatelectric dipole moment of the
electron vanishes in a coordinate system in which it tamaneously at rest. Indeed, in
the successive approximations these constraint forcgg@pertional to likewise higher
spatial differential quotients of the field strengthatthct on the electron. It seems that
these complications remain in quantum mechanics, andéd dave still not arrived at a
relativistically-invariant formulation of the quantum rhaaics of the magnetic electron
on this basis that can be regarded as sufficiently nandainevitable. One will actually
be led, on the basis of the behavior of the constfames that was described, as well as
on other grounds, to doubt whether such a formulatidheotheory is even possible at all
as long as one retains the idealization of the @achy an infinitely small magnetic
dipole (while neglecting quadrupole and higher moments), athveh a more precise
model of the electron is required for such a theoryus] we shall not go further into this
still-unsolved problem.

8 5. The case of many electrons=rom our physical starting point of the method of
eigenfunctions, the case in which many — 4y electrons with proper moments are
present in the mechanical system under consideratsesrao new complications, when
compared to the case of a single electron.

Here, we must inquire about the probability that inegain stationary state of the
system that is characterized by the vadtuef the total energy, the position coordinates of
the electrons lie in a certain infinitesimal intenaald the components of their proper
moments in &-direction that is chosen to be fixed have eithervalue + 1 or — 1, when

measured in units O%Z—CT We denote the electrons by an inétekat runs from 1 td\,
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the position coordinate of thé" electron will be denoted briefly oy (for X, Y« z), and
their infinitesimal volume element kg (for dx, dy, dz), and furthermore, we shall use
the indexax or S depending upon whether the component of the proper momemzn
direction for thek™ electron is positive or negative. We then have the ©f the system
being characterized by th& finctions:

wal-uaN (qli .. 1qN ) ’ wﬂl,azu-aN (qli‘ .. 1qN )’ [/’gl,/;z,%.u% (qli e 1qN ) ’ walyazu-aN (qli‘ .. 1qN ) '
W oowan GO oo Yoo p CreenO) s oo W (G Gy).

One then has, e.g.:
2
‘wﬂlﬂz%.“aN (qqu )‘ dqlqu

for the probability that the first electrapequals — 1 and; is in @i, g1 + dqy), for the
second electrog, equals — 1 and is in (@, o + dop), and for the third to\™ electrons,
equals + 1 andj is in (s, gs + dgs) [(On, v + dan), resp.]. The sequence in which the
suffix ai or 4 is written shall be irrelevant, while the variabigdike the index =1, ...,

N, shall refer to a certain sequence of electrons. c#fecarry over the operators (3)
directly for the componentsy, Sy, S of the proper moments of th& electron when we
make the convention that only the indiegsor 5 of this k" electron shall change, but
those of the remaining electroog or S (for k”# k) shall remain unchanged. We then
have, e.g.:

SaWaap, Qoo O =W g S« W g )=
SqW o )= 4 SgW 5. )= 4 (22)
sq(w...gk...) :w...gk...l sq(wﬂk) = _l//...@...

. . . : h o
If, as usual, we associate the impulse coordinate@gath the operatorz—_a—then
70 0Q,

any function:
FOPL - PNy O St Sty Spp »- S Sy Sz

now corresponds to an operator:

(o ~h o s
277] aq1112m aq110ﬂ1""qN ’Slx 1Sly’ 1z v ’SNx 'S\ly SNz :

In particular, when the operator of the Hamiltoniamction H is applied to the
functionsy, ..., this yields the "®simultaneous differential equations:

(ha h 9

277] aq1’ 277| aql Oﬂ qN Slx S1y S]z ’SNx 'SNy SNijll in E[/Ill in ( )
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with iy = ak or . If the indicesn or mrefer to the various stationary states then one has
the orthogonality relation:

1 forn=m,

Z (‘/’n,il.“inrE,ilmiN)dql---qu = Om, Om = { (24)

i =ay or By 0 fornzm,
and each functiohof the type written down above corresponds to the oeatri

fn= [ 3 (W, 1) Wiy} 0.0 (25)

i =ay or By

Here,f means the operator that belongs &5 defined above and a sum ov&té&ms is
found in the integrands of (24), as well as (25).

The Hamiltonian functions that occur in realityglikll of the function$ that occur in
a matrix representation, now have, due to the equdlitigeoelectrons, the property that
their value does not change when the coordinates oftasirons are exchanged with
each other, and indeed, this is true dpras well assx ; H andf can be assumed to be

symmetric in theN systems of variables|{ s« Sy, S). For Heisenberg and Dirac, this
had the consequence that the terms subdivided into diffep@ups that were not
combined with each other, and which were characterizetieogymmetry properties of
the eigenfunctions under permutation of the electroiius, one must essentially
observe that the exchange of two electrons — sayfirdteand second one — implies a
simultaneous exchange of the coordinate vatyesnd g, and the suffixes andb that

belong to the indices 1 and 2 (i.e., the values,@nds, ).

In particular, there is a symmetric solution. For @awyp indicesk andj for an
unchanged) and suffixes for the remaining indices, one has:

" aa;.. . (..q...q,..)=¢Y . aa...(..q...0,...),
. apB .. (0. ) =YY Ba; . (...q; ..., ), (26)
BB (0 ) =L BB (.G .G )

Moreover, there is an anti-symmetric solution, ¥anich any index pair (i.e., electron
pair) k andj implies a sign change under permutation:

Y a8 G Oy ) E a8 (GG,
wa”‘fs'...ak,[z’j...(...qk...qj...):—wa”‘fs'...ﬁkaj...(...qj...qk...), (27)
Y By O O ) =YL BB (0 ).

If follows easily from this that symmetric operatdr leave invariant the symmetry
character of the functions to which they are agblidoreover, the non-combination of
symmetric and anti-symmetric classes follows sinigyn (25).
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It would be interesting to adapt the group-theoretic inyason of Wigner') in the
case ofN electrons with no proper moment to ones with a propament, and likewise
establish how the terms that correspond to the diffesynimetry classes that one obtains
by neglecting the proper moment are distributed over yheretry classes of electrons
with proper moments. In the case of 2 electronsetlaee only symmetric and anti-
symmetric classes, which are thus characterized ircétse N = 2), from (26), (27), by
the equations:

Y, (0, d,) =@ o @ (d,9), ¢ T B 0,0 )=¢ B (4,4 )} (26)

W Ba,(0,9,) =W " Ba (4,0), ¢ Y BLLA,9)=¢ B L {d,9),

Y, (0, 0,) = ¢ a0 (d,0), ¢ T B {d,9)=¢ "B (.9 )} (27)
wamis.ﬁlaz(ql, qz) - _l// antis'gp 2(q 21q])1 ¢/ antis'gﬁ 2(q Iq 2): _l// antiﬁﬁ iq Zq )

On the contrary, in general there exists no simplatiosl between the function values
Y, 5(@,0,) and ¢, ;(d,,d,). They then correspond to two configurations with

different potential energies. Namely, in the one ctseglectron with a positive has
the position coordinates and the one with a negatigghas the position coordinate .

In the other case, conversely, the electron wiphositive s; is at the spatial point that
corresponds tog; and the electron with a negatiw is at the spatial point that
corresponds tq; .

The skew-symmetric solution is also the one thatllgithe “equivalence rule” in the
general case df electrons, and is the only one that occurs in n&uré seems to me to
be an advantage of the method of eigenfunctions treastiition can be characterized in
such a simple way, and for that reason preciselgeins to me that the formal extension
of this method to electrons with proper moments ismtitout meaning, even if it cannot
lead to any new results when compared to the Heisenbérix mathods. Moreover, the
intensities of the inter-combination lines betweemleinand triplet terms, for which new
results of Ornstein and Burg®rare at hand, can be calculated quantum-mechanically by
these methods in a lucid way.

) E. Wigner, Zeit. f. Phy10(1927), 883.

%) On this occasion, | would like to emphasize that theuska appearance of the skew-symmetric
solution is required by experiments only for electrond, iadeed by considering their proper moments. In
a previous paper (Zeit. f. Phydl (1927), 81), the Fermi statistics were likewise implied dolythe
electron gas by comparing with experiment. The possilafibther types of statistics with other material
gases still remains open, which was not, unfortunaseifficiently stressed in that paper. Cf., on this, also
F. Hund, Zeit. f. Phys42 (1927), 93.

% L. S. Ornstein and H. C. Burger, Zeit. f. Ph48.(1926), 403.



