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On some types of nonlinear wave equations and thesolutions
By Gérard PETIAU

Translated by D. H. Delphenich

| propose to present some results here that | hataneld in the study of certain
types of nonlinear wave equations that are introduced e weechanics.

Some of these equations have been encountered befatiahlyn by SCHIFF,
IVANENKO, FINKELSTEIN, and HEISENBERG. My starting pa is very different
from those authors, and | think that my method can cam@led clarify some of their
results.

| shall begin with some considerations on the hypothesg¢scém guide one in the
search for nonlinear wave equations that are capable r&rgeing the usual wave
mechanics.

1. The types of solutions of the Klein-Gordon equation.

| shall begin by examining the solutions of the Klein-@or equation:

(1) Dw(xiyizit)-l-/qu'}:o, ﬂoz%

that represent corpuscles without spin in ordinary wagehanics.

According to the problem being studied, one can conslifferent types of wave$
that are solutions of that equation.

They are the solutions that one calls:

- plane waves

- invariant waves

- spherical waves

— proper field waves
— guided waves.

1. Theplane wavesolutions are obtained by starting with equation (1) and sumypo
that the functions¥ (x, y, z, t) depend upon only one variabfe which is a linear
combination ok, y, z, t that takes the form:



Petiau — On some types of nonlinear wave equations andthgiions. 2

@ r= %[Wt —(px)],
SO.
(3) WXxyzt)=W(@).

The parameterd/, p are linked by the relation:

2

w
Toprme.
The function¥ (7) is determined by differentialequation:

d?¥(7)

oW =0,

(4)

The general solution is then a linear combinatibtwo types of solutions, namely, even
and odd ones:
(5) W.=Acos7, Ws=A'sinT.

The different values of the functiom (7) can be considered to be deduced from the
solution in the proper system:
Y=w(

(sor=2m/hm, ¢t= 1 ct) by a Lorentz transformation.

We can already note that the solutions (5) arestihations of (1xhat depend upon
just one variable that is periodic, uniform, andsHaite amplitude.

2. The solutions that are call@gvariant are obtained by starting with (1) while
considering function®¥ (x, y, z t) that depend upox v, z t only by the intermediary of
a single auxiliary variablghat isa relativistic invariant.

One generally takes:

One easily sees that:

_4d°,3d
du* udu
Equation (1) is then written:
d> 3d
{W*G?u*”é}“(”): 0

This is once more differential equation whose general solution is expressed ansef
Bessel functions:
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A A
W (U) = U'Jl(:uo U) +U Nl(,uo U)

B B
= U Hl(l)(:uo U) +U H1(2)(,u0 U) .

These functions might possibly possess only one crpicadt: namely, the poini = 0
that corresponds to the light cone.

3. For the introduction of spherical waves and guided wavesshall suppose that
there exists a privileged frank® that is attached to the corpuscle, and in that frame th
wave functions¥ (x, y, z t) are expressed in the form of a product of a function-of
namely,W; (t) — and a function of the spatial variab¥es(x, y, 2) or W, (r, 6, @):

PWXY,Zz)=W, Q) WYXy, =1 () W2 (r, 6 @)
so one will then have:
dZWl

LIJZF_ quAqJZ‘*‘,USLP ll'IJ o= 0.

If one introduces two coupling constants A, such that:

d?y,

dt?

+ A W1 (t) =0,

AY; (X,y,2) + A2 W2 (X Y, 2 =0.

We suppose that; and A, are real. A1 will > 0, in order to avoid the possibility that
the solutiong¥; (t) are not of vanishing type; those solutions will be abergd in a more
general study that | shall not enter into here.] lgenc

W, (t) = C,éV* + G, 6V = Clcos[ A, t+C, sin/ A, t.

There are two cases to consider for the functiBns
Indeed, one ha, = A; — 1, so:

a. A1 >/,102, A>> 0.

AV, + W, =0
will admit the general solution:

Y (1, 6, 9) :%[AJH;(@ 0 +BN, (/7 D Y(6.9).
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b. A1<,U§, A> < 0.
AW2—|)IZ|W2:0

will admit a solution that is bounded whens o« :
A n
V(.89 = K (A NY"(6.9).

(The solution inl ,, will diverge wherr - «.) If we confine ourselves to the casd of

0 then:
Wy (r, 6, 9) =W2 (1),
so one will have the cases:

sinyg A r cos/ A, r
a. W, (r)=A 2 +B 2
r r

b. W, (r) = ATe‘J“_zIr .

The solutions that are called “spherical” are aigdiby starting from these expressions

and setting:
2 2
:W :KZ, A2:£:|K|2,

M= 72

2

A1 = Ao =My - Here A;> ,Ug

l-IJsph =Y, (t) Y, (I')

= (C,cosKct+ G, siant{ el K Ir + A cosk flj
r r

_ wSin(Kctx [K |r), ~, cosKctx K t
=C/ . +GC, . :

These waves are the spherical waves of ordinargwaachanics (in the cake 0).
In addition, one considers the particular case tme calls theroper field of the
particle. Those waves correspond to the case in which:

A =0 SO WXy zt)=Wa(r) =W (n),

A=0  impliesthat fi2| = 42,

W)= %e‘”‘”.



Petiau — On some types of nonlinear wave equations andthgiions. 5

When one fixes the value of the const@gt, that solution will be considered to be the

field W that is created by a sour€® that is localized at the poimt= 0 in the proper
system of the source.

One passes from these general spherical wave soltwidheguided-wavesolutions
by considering the solutiona)(and p) to be complete and performing a general Lorentz
transformation on the frani® .

Let:

ct = coshyct —sinhyZz, X=X,

z=sinhyct — coshyZ, y=Y,

r? - x?+y?+ cosh y[z - tanhyct]?,

JAt — [coshyct - sinhyZ].
Setting\/7l =/h:
K1 = 14 coshy, |K1 | = sinhy, tanhy=vy,

JAt - Kiet - Ky |2,

r2 . X12+y2+ (Z _Vlt/)ZzpyZ,

siny/ At cos/ At
WYXy, z t):[CiCOS«UHHC;’Sin/)l_lt{A' I \r/_z + A r z:l

-YNX,y,z1t)

in 1 o —
=[C,cos(K,ct- |[K, [Z 1} C sin(Kct- K , |z % Asm\,/o?p + BCOS\IO/’ 2P :l

Similarly, the field solution®: W (r) = C,e*"/r will give the particular guided
solution:

C, exp(—,uo\/ X%+ y?+ cosHy ¢— tanlrct Z))
\/x'2+ y?+cosity (Z - tanhyct j

WYX,y zZ1t)=

which corresponds to the Yukawa field with a sounceniform, rectilinear motion.

Whereas the solutions of the invariant wave type solutions of (1) withfixed
critical points the guided waves are solutions wihloving critical pointqi.e., ones that
depend upon integration constants).
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2. The plane waves associated with Jacobi’s elliptic functions

In order to extend wave mechanics, we must generailzr ¢he set of those type of
solutions (which will be equivalent to a linear schemamvbne confines oneself to the
regular solutions) or just some of them that we ard@dezbnsider by physical reasons to
be attached more directly to the representation ofematt

If we consider the solutions pfane-wavetype then we have seen that they can be
considered to be the result of applying transformatioms the Lorentz group to the
particular solutions in the proper system:

Asinr = Asinzrﬂ m ¢ t= Asin,
Wy =
21
AcosT = AcosFrr&ét.

That form of the solution exhibits a fundamental chi#raof the representation of
corpuscles in wave mechanics:

In the proper system of the corpuscle, the wave fonassociates a “clock” with it;
i.e., a periodic function of proper time with a perio®@afand frequency o, = my ¢? / h.

If we would like to generalize that concept while agpng to enrich the notion of
corpuscle by introducing, not just the single intrinsic tams/, = my ¢ / h, but two or
more constants, then the most immediate generalizatould consist of taking the wave
function that represents the corpuscle in its properesysb be certain Jacobi elliptic
functions that possess one real period and one imggoeaiod instead of the circular
functions cosr or sin 7, and they are defined by means of a nunbénat is found
between 0 and 1 ®k< 1) by the integrals:

K'=K (K),

K (K) = 2n dé
()_'[0 J1-KZsintg’

withk?=1 -k, 0<k < 1.
Those functions will tend to sinand cost whenk - 0.
The theory of Jacobi’s elliptic functions defines thfendamental functions:

sn (U, k) with periods & and 4K,
cn U, K with periods & and 4K,
dn U, k) with periods K and 2K".

Starting with them, one constructs a system of 12 fwmed#al functions by
appending the inverses and quotients of the three principetidns.
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In particular, we have the relations:
cnu

sn@+K,k):cd@,k):ﬁ,

sn {, 0) = sinu, cd @, 0) = cowy,

sn {, 1) = tanhu, cd@,1)=1,

cnU+K K=-Ksdgk=-—k 4
dnu
cn (u, 0) = cosy, sd (4, 0) = sinu,
1
cnu, 1) =———,
u1) coshu

!

dNU+K K=-K nd@k=-—_
dnu

1
coshu

dn @, 0) = 1, dnyg, 1) =
Here, we are then led to sat= 7, so:
4K (K) Vo t = 4K(K) %Czt: m'?,czt:,uoct.

Here, K is the analogue of the factorrth the trigonometric case.
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hW=——- replaces h=—.
1o will be defined bymy ¢ /7' . (We remark that! < 7).
In the proper system, we will be led to considhee¢ possible systems:
1. Asn (7, K and A’ cd (7, k),
2. Acn (7, k) and A'sd (7 K).

These two types of functions are either even ar @t reduce to the functions gin
and cosr for k= 0.

3. Adn @K, A nd (K.

The even functions reduce to constantskfer O [dn (0) = 1]. One knows that the
functions sru, cnu, dnu satisfy the following differential equations:

1. y2+(1-2) V' +Kky'—Kk?=0,
which has the solutions:
y =cnu for y(0)=1,
y =k sdu for y(0)=1.

y+(1-2)y+ Ay’ =0

As a result:
will have the solutions:
y =cnu if y(0) =1, y’(0) =0,
y =k sdu if y (0) =0, y’(0) =K.
2. y2+ 1+ Y -Ky'—-1=0
will have the bounded solutions:
y =snu with  y(0) =0,
y =cdu with y (0) = 1.
As a result:
y' + 1L+ y-2Cy =0
will have the solutions:

y=snu for y(0)=0, y’(0) =1,

y=cdu for y (0) = 1, y’(0) = 0.
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3. y'2-(1L+K)y+y*+Kk?=0
will have the solutions:
y =dnu with  y(0) =1,

y=k ndu with y (0) =K.
As a result:

y' - (1+K)y+2y°=0

y =dnu for y(0)=1, y’(0) =0,

will have the solutions:

y=k dnu for y(0)=k, y’(0) = 0.

If we return from the differential equations that aat¢isfied by the function® (7) to

the partial differential equations that are satisfiedh®y functions¥ (x, y, z t) then we
will see that:

1.
W.=Asn [%(Wt - p3],

Ws=AK sd [%(Wt— P,

are particulaplane-wavesolutions of:

2,,2
Ow +(1- 2<2)y§w+2k/]—/”°w3: 0.

2

Ys=Asn [%(Wt - p3],

We.=Acd [% (Wt — py]

are particular solutions of:
2K 1y

|:|l.|J+(1— 2(2)/,102[")'*‘7['”3: 0.

Wen= A dn [%(vvt —pyl,

W =K dn [%(Wt — py]

are particular solutions of:

2
OW - (L+K )2 W + 2;0 W=,
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3. The plane-wave solutions of wave equations with nonlineartas in Y°.

Conversely, we can utilize those results to charaet¢he plane-wave solutions to
the following four types of equations:

(a) OW + 2 W+ 1293=0,
05 OW + 17 W - 129° = 0,
» OW -2 W+ 29° =0,
() OW - W - W° = 0.

More precisely, we shall seek to determine when thest exider some conditions
that specify the solutions to those equations thaplare waves of bounded amplitude

a) When equationd) is written:
OW + 2 W+ uZw3=0,
it will have plane-wave solutions:

W=Acn [% (Wt—px) + o, K]

when one determings andk by:

2k2 2
(1-20) 1 = 1, Aﬁ=w,
mc
(o = Py )-
One then deduces:

2 2 212 IUZAZ

= P+ 1PA?, ="
o TATH 208+ 17)

One verifies that one will always have<® < 1/2 here. Therefore, the plane wakds
never aperiodic. The dynamic magss always greater tham .
Conversely, if one fixegp > 11 thenA andk will be fixed. One will then have:

2

2o Mo~ 14 e

78 2445
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Only A will depend upon , while k will depend upon only> andzs . The solutions

above are the only plane-wave solutions to equatdnvith no restrictions on the initial
conditions.

£ Equation f):
OW+ 2 W - 129° =0
will admit the functions:

W=1sn [% (Wt—px) + &, K)]

for bounded periodic functions. Here, one has:

ZAZ ZAZ
=2 =2
2 24 =y A

Lo is less thans .
0 < K < 1 implies the condition that® < g2/ u?. That corresponds to some

restrictions on the initial conditiort® (0), ¥' (0) that are necessary for the solutions to
(D) to have bounded amplitude.
Indeed, the general study of the solutions to:

Yetay=lyly'=0

shows that according to the values of the inittaiditionsy, and y;, those equations will
admit the following solutions:

1. Y=Asn[wx—x%) + &]
. 2 1 2 12 az
if 0<y?<—(a-+2lylyy)andy’< :
V2 2|y
2. Y = A scd [w(X — %) + &)

_ 12
e A= 2ly Iy }g|y|Y02SO’+ 21y %"

0

3. Yz%ns [w(x — %) + &]

. 1 ; 1
it —(a+y2|yIyy )< Y< l—ylx/a+2|y|>/02 -

'a



Petiau — On some types of nonlinear wave equations anddthgiions. 12

4. Y=Anc [w(X—%) + &)
if liyl[a+w/a2+2|y|y02]s N

Only the solutionY = sn [w (X — %) + &) will have bounded amplitude. Equatigf) (ill
then have periodic solutions of an acceptable tygg if the initial functions satisfy the
conditions:
2
0=
[+'(0)] 2,2

2

[WO)P < %(uf - J22wLy.

Conversely, being given that < z4 will determineA? andk?:

o2 —1) e Mo

7 75

Here again, onlyl will depend upons , while k will depend upon onlyp andzs . The
solution® = A Sn [...] will become aperiodic fol* = g2/ p? or 12 = (212, sn @, 1) =
tanhu, so:
w=4 tanh £ Wt — pyl.
1y h
)) Equation {), namely:
OW -2 W+ 29°=0,

will admit solutions of typel cn ror A dn raccording to the initial conditions.

a. HJ:)ldn[%(Wt—p>)+Eo,k]

will be a solution of ) if one has:

LA o 20BN i)
:uO - 2 ) - 2A2
M

under the condition that? / g2 < A* < 2422 | 1i2.
W reduces to a constant fot | =4 / 1o, k= 0.
W will become aperiodic fok? = 1 or A= ,ul\/E/,uz.
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[dn (u, 1) = 1/ coshi]:
LIJ —_ ﬂlﬁ 1

M, cosh[% Wt- px)+¢, ].

Conversely, ifip is fixed then:

2ol ol 2
2! 2
Hy Ho

in which £y is less thanu and is such thap /2 < pF < y7. Here again, onlyl will
involve the constant, ; k depends upon onjy, andzs .

b. W:)Icn[%(Wt—p))+fo,k], with 1<K<1,

satisfies equationy if:
B B ﬂZAZ
qu —,LIZ/]Z—,LIZ, K2 = 2 ,
Cor 20k A* = )
under the condition thal® > 2422 / 2.
Conversely, ifz is given with the condition thaf > £ then:

AZZ ﬂ§+/'l12

12 = My + 1
5 VR '
H

2445

Here againk is determined by andy4 ; to will enter into only the determination af
A solution of that form will become aperiodic for= 1, A* = 242 / 42, so cn (, 1)

1/ coshu (or ratherup = 4):

w = 12 1

M, cosh[% Wt- px)+¢, ].

9 The equation:
OW -2 W - 12¥e=0

never admits periodic plane-wave solutions of boundeg@limde. One will have
solutions of one of the forms:

Atnr, Ascdr, Ancr
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according to the initial conditions. We have obtainedl, bounded, periodic, plane-
wave solutions in the three case$,(5),()). Those solutions will then have the character
of stationary waves.

However, in a number of problems, wave mechanics derssi‘progressive” plane
waves of the form:

W= Ae —(vv px>’
which correspond to solutions:

W= Ae"
of the differential equation:

y.+y(1)=0.

One can demand to know: Do there exist progressive swdufmr the nonlinear
equations that were considered here?

If one considersy’, + 45 ¢*y= 0 then they will be given by integration:

Y. + 4y CY*= Ko (= arbitrary constant > 0).

If ko # 0 then one will be led to stationary-wave solutions:

y =22 sinpct,

or

y_f

COS/h Ct,

whereas the progressive solutigrns Ae™“* will correspond tax = 0, soy' =+ 1o cy.
If one considers the equation:
Yot YLy =0
then direct integration will give:

Yo Y +&y Ko

k% 0 will lead to the real stationary solutionsiicn 7 that were considered before.
ko = 0 will lead to a new type of solution that iassarily complex.
In order to obtain those solutions easily, it wgiliffice to remark that if one sets=
1/z and starts with:
2
y;z +,ufy2+ﬂ—22

then one will immmediately have:

y'=0
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2
z? +,ufzz+’u—22: 0.

One easily sees that one will then have:

_ 1
Cl gdhr — g gHr !

y

in whichCy, C, are two constants that are coupled®yC, = 12 /84.
If one sets 1 C, = Ay, 1 /C, = A then one can further write that solution as:

Al AZ
y= 2 = 2 1
ei,ulr _ :uzz Alz e—i,ulr e—i,ulr _ ,uzz AZZ é,ulr
8Ly 814

or alternatively:
Al

y= qu ' qu
(1+ 8722 )lfj e - 4—;2 AZ cosu,r

1 1

AZ

Y= ,UZ 2 | i ,U2 2 .
1+ =2 A0 (e =22 A2 cosu,r
( 81 Zj 4"’ '

One sees that the plane waves that correspondose tholutions are never purely

progressive, but involve a stationary term thatemels upon the nonlinearity factpsg,
along with a progressive term.

Similarly, one will find the following progressiwlutions for equationg3( and ()):

A
B (9= T~ 2 72
@Al | 1— :uzz /]12 +luz 21 cosu,r
774 4u;
= AZ
—i 4T ,uz 2 AZIUZ ,
e 1-2 A7 [+ 52 cospr
-l )+ S o
A
» (9= :

212 212
e 1—”2—11 + ’uz—)lzl coshy7
774 au;
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AZ

292 2,,2 )
@ Hf (1_/'12A22j +A17’1'22 COShUlT
84 ) A4

The equations considered up to now are not lireeat,the sum of the two solutions is
not a solution.

Nevertheless (and this is a point upon which | trmwv insist), there exists an
addition theorem for the plane-waves that were idensd up to now, or if one prefers, a
theorem on the composition of wave functions.

With a convenient composition, one can start ftam solutions and construct a third
one.

That addition theorem must result from the additibeorem for elliptic functions
here,

| shall first recall the relations:

cn U +K) =-ksdu,
1
sd U +K)= Ecnu,

sn (U +K) = cdu.

One can show that the classical addition theom&redliptic functions can be likewise
written in the following form, which is more adagt® our problem:

cnu cnvF K?sdu sdv

cnuxv) = ,
ty) 17 k*cnu sdu crv sd/

sdu cnvt sdv cru

sdUxv) = )
b£v) 17 k*sdu sdu crv crv

If we consider two states that correspond to #ieesr; and 7, that are characterized
by the wave functions:

Wh=denn, WPO=AKsdn,
WA= denn, WYP=)AKsdrn,

then the state function (1) + (2) —\¥r(7n1 + 1) — will be characterized by the functions:

WO*@ = Qcen (n+ 12, K),

WOr@ = JK sd (1 + 12, K) .
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The addition theorem will then give us:

/]3(l.|,)(1) l_p(2) l-IJ @ W (2))

q_)(l)+(2) —
c 2
/]4 k l.|J(1) l.|J(2)l.|J @ l-IJ (2)
l.|J(1)+(2) A (l.p(l) l_p(2) + l-IJ @ W (2))
° /]4 kz l.|J(1) l.|J(2)l.|J (1)L|J (2)
k'2

The possibility of starting with state functions foreooorpuscle and constructing
state functions for two or more corpuscles makes a deqoantization of the theory
possible.

4. More general nonlinear wave equations.

The generalization of wave functions that was aereid up to now started with
solutions of plane-wave type.

I would now like to examine the possibility of generaligithe waves of invariant
type. Indeed, it seems reasonable that the nonlineee eguations to be considered
must present the relativistic invariance of linear wavehagics.

We have seen that after introducing the variabie\/cztz—(x2+ y’+ 7°) into the

equationOW + £2W = 0, we could determine invariant solutidfs(u) by means of the

2
differential equatlon(o(lj—u+%%J + ,uoj W (u) = 0, and | have indicated its solutions.

One of the characteristics of that equation ig¢ tharesents a critical point for its
solutions only at the point = 0; i.e., on the light cone.

It seems that one can demand that the wave funscfiwhich are solutions of more
general equations) should preserve that propertt least, that they should possess only
solutions withfixed critical points(i.e., ones that are independent of the integnatio
constants).

If we seek a relativistically-invariant second-ergartial differential equation then
the most general form for one will be written:

(E) Ow,+F (1awj z(a_wj’ a2 a—w,w,u =0.
c ot 0x ot 0X

The invariant solutions will be functionsf only u that satisfy the differential
equation:

d?y  3dy (dwjz dy

_—t+———+F| | — U—

du* u du du du

,u,w(u):l:
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If equation (E) must likewise admit plane-wave solutithen upon setting:

Mo ct = [Wt —(px)]
it will be necessary that:
w? 2 a2 2
o P

and equation (E) will lead to a differential equation thgppends upon only
Now:

2 2 2 2
v o d_l-l;, (Ea_wj —Z(a_wj N (d_wj , Cta_w—xa_w_, n‘bcz'd_w,
dr c ot 0x dr ot 0x dr

and as a result, (E) will give a differential equatio 7 if u does not enter into the
equation.
If that equation is realized then:

10w’ WY oW ow
E Ov, +F||=— | - > | — | t—-Xx—,¥Y| =0
(&) ° Kc 6tj Z( 6xj at  ax :l
will give rise to two differential equations:
2 2
(El) _d l.I:+§d_w+|: (ﬂj ,uﬂ’q)(u) =0,
du u du du du
(E2) OI2—W+F (d—wjz TOI—qJ W) =0
? dr? dr ) dr’ '

Generalizing the properties of the invariant plaveese functions of ordinary wave
mechanics will lead us to postulate:

a) The solutions of Emust have fixed critical points.

L) The solutions of Emust be continuous, uniform functions that arenof@a (or
ones of finite amplitude).

One can obtain all of the second-order differémgpations of the form:
y'=R(,y") or Y'=RXYY’),

in whichR is rational iny”and algebraic ix andy and its integrals are either uniform or
have fixed critical points, by means of some resafta paper by P. PAINLEVE] that
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was completed by B. GAMBIER1]. Those papers gave all of the forms that are
allowable within the scope of the hypotheses above. efbation:

y' +ay+pBy’=0

is equation (4) of table (9) in Painleve.
Among the remarkable nonlinear wave equations that andextuce from Painlevé’s
tables, | would like to point out only the equation:

(1w w1 o, o
(C) ENJ—(l—EjKEEJ —z(&j }EW” W =0,

in whichn is an integer.
One can easily findll of the solutions of that equation.
Indeed, letp (X, y, z, t) be such that:

(C) O¢+u; ¢=0,

and letW; =[¢ (x, Y, z, 1)]", so equation (G will imply that:

le—(l—ijwi[(—lw; jz —Z(w’x)z} +nf W, =0.

n)w.|\c
One then sets:

2

M2 =02, =N,

As a result, equation (C) will admit all of thellg®mns of (G) (plane waves, invariant
waves, guided waves, etc.), with:

C) = L
XY, Z6m)=[pXy 2t ﬁ)]

for a corpuscle of magg = 4 /\/n withW =¢".
As a result, consider the equation:

10w\ oW\ | 1
Ov-A|l=| — | - _ —+ Zl.IJ:O_
L(atj z(axj:lw H

In order to require that = 1 — 1h, with n an integer, it will sufficdo impose upon
that equationthe demand that it must adnplane-wave solutionghat areuniform

functions ofr, and the states of mags=m/ \/F will result from that. Here, one sees
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how a uniformity conditionthat is imposed upon wave functions can lead to a
guantization of mass.

| would now like to point out another viewpoint that lpsgss richer in possible
extensions.

Up to now, second quantization has been consideredadirar attribute.

| think that this is not necessary, and it seems to e decond quantization is
essentially attached to the possibility of constructigtes with two particles, ..n
particles upon starting with states with one patrticle.

In order for that to be true, it would suffice thatretheshould exista theorem of
addition or composition of states the theory considered; i.e., that when one staith
wave functions that represent a state wigharticles and a state with one particle, one can
construct the wave function that represents a stiten + 1 orn — 1 particles.

The acceptable wave functions will be the ones thatitaa theorem of addition or
composition. That condition seems very broad. Nbeedss, that problem will possess
a partial solution.

Indeed, WEIERSTRASS has proved a remarkable theoremn rétetes to our
problem.

WEIERSTRASS gave the name afgebraic addition theorento an algebraic
relation that couples the functiogs(u), ® (v), ® (u +v), and here is his theorem:

Any function for which there exists an algebraic addition theorem is lgticel
function or one of its degenerate cases.

That will then lead us to the nonlinear equations thabtave considered.

Nonetheless, the mathematical hypotheses that @osliiced are not justified from
the physical viewpoint. Nothing leads us to assume thatenabeys rules that translate
into algebraic laws.

I would like to conclude, moreover, by considering a sinepkemple in which | shall
recover all of the character that is admissibledoronlinear wave equation without the
hypothesis of algebra coupling or algebraic addition.

In order to do that, consider the nonlinear equation:

(D) OW(x, Y, z )+ 4 sinA¥ =0.
In the first approximation (?AW will be small, and that equation will be written:

OW+2AW=0
or
OW + 7AW = 0, W=,
In second approximation:

2 13
OW + 12 —% Wi= 0,

and with 2= 12 A*/6:
OW + 12 — 1293= 0,
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This is an equation of a nonlinear type that was congidezfore.
If we setd W = ¢ then we will be reduced to:

(D) O¢ +42sing =0,

which depends upon just one parameter
If one seeks the plane-wave solutions to that equatemdhe will be reduced to the
equation:

d’p(r)
dr?

+ £ sing (7)=10.

That equation is well-known in physics: viz.,stthe pendulum equation.
Whereas the Klein-Gordon equation associates jgusole in its proper system with
the simplest oscillator, here we associate it @wiggendulum motion.

The solutions of (D) or (D are defined only up to a multiple ofi2 ¢, (7) = ¢o (7) +
2mn. Similarly, if one set®’= ¢ £ n7z/ 2 then the functiong’ will satisfy:

O¢' + 17 cosg' = 0.
The solutions to (B simultaneously give solutions to:

O¢ + 12 sing = 0,
O¢ + 17 cosp = 0.

We shall now determine the plane-wave solution®t). The equatiorp” + 1> sing = 0
gives:
@'’ -2u’cosp =G, G = Const.

Co = @5 — 244 cosgo
and thus, the condition:
—2u + 9f < Co< 247 + 47,

2 _ 2 4,U12 Y
=(C,+2 1-—H _sir L.
#°=(C, ul)[ oz S
Then let:
2

A) L22k2<1,
Cot 214

which demands thatC 244, so:

2UP< Co< 20 + 7.
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That gives:
2 4,U12 2 i 2
=—(1-k"sin"=);
¢ & ( 2)
dg :iz'uldr.
Ji-K2sinfg/2 K
Lety=¢/2:
.[)( dx - iﬁT‘f‘fo.
° J1-K?sin® y k

On the left-hand side, one recognizes the Legentzgral:

F(xk =F (¢/2,Kk).
Now, if F (¢, K) = u, and conversely = amu, then:

sing =snu, cos¢y =cnu.
One will then have that:

g :am(?lru‘o).

41 5 .
B) Let ———= >1,s0kising/2]|<1.
) C o+ 27 k; kising /2|

Letks = 1 /k and utilize the relatioR (@, ki) = k F (¢1, K) with ky = 1 /k, so one will
get:
@, = arc sinky sin @),

or the formula that is called tineciprocal modulus formula:

sn Ku, ki) =k sn @, K),
which will give:

sin g: ksn @ar+ &, K).

The determination of the plane-wave solutions thiéin be complete.

We shall show that theorresponding plane-wave functions possess an addition
theorem.

Let ¢ (us +up) =2 am (i3 + uyp), SO:

am (U = up) = arc tan (tam; dnuy) + arc tan (tam, dnu,)
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= arctan(M [1-K? sin2¢—;_ E= arctan%z//z:/ 1K sihﬁ2
2

cosp, /2

It is not necessary to emphasize the non-algebhaiacter of that addition theorem!
Nonetheless, we see that it is possible to constardinear wave equations that possess
solutions whose character generalizes that of the viametions of ordinary wave

mechanics by starting with relatively simple physicatigls.
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