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1. — Introduction.

Here, | propose to present some results that | hatened in the search for and
study of solutions of several types of nonlinear wave egpustthat are likely to
generalize the equations of wave mechanics.

Numerous authors have already sought to introduce nonlmaee equations by
starting with a phenomenological study of interadditny looking for a nonlinear theory
whose quantum field theory is an approximation.

| have adopted another viewpoint by looking for whethemes very general
considerations might otherwise give them exactly, &t ledoen restricted to classes of
nonlinear wave equations that might be introduced. Sgaftom an analysis of these
types of solutions of the Klein-Gordon equation, | wad [£6-18 to examine the
acceptable generalizations. Conversely, these genéimigaatisfy wave equations that
are generalizations of the Klein-Gordon equation. Incdse of plane waves, | was also
led [16] to discover a type of nonlinear equation that was dyreencountered by R.
FINKELSTEIN, R. LE LEVIER, M. RUDERMANN 6], L. SCHIFF RQ], and N.
ROSEN and H. B. ROSENSTOCHY].
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2. — The principal solutions of the Klein-Gordon equation.

The usual wave mechanics represents corpuscles withaubyspiave functiong/(x,
Yy, z t) that are solutions of the Klein-Gordon equation:

Oy + kg =0,
1 2 2 2 2
( ) D:ia_— a_+a_+a_ , :uo:ﬂ:’ h:i
cot®> (ax* ay* 07 7 21T

Whereas general theorems show the equivalencdl ¢hea complete systems of
solutions of wave equation, the applications of @awechanics show that it is necessary
for the problems that are examined to use bastemsgsthat possess, for example, special
symmetries. In a nonlinear generalization of wawechanics that seems desirable in
various regards since it is possible that onlyaserbasic systems will be considered, so
the equivalence between systems might result aoiy fa degeneracy that is associated
with the linear approximation.

Depending upon the problem that is being studisel principal types of solutions of
the Klein-Gordon equation are:

a) Solutions of plane-wave type,

by " " invariant wave type,
o " " spherical wave type,
d " " guided wave type.

a) The solutions of “plane-wave” type are obtaingd sbarting with equation (1)
upon supposing that the functiogi§x, y, z, t) depend upon only one variable — namely,
— which is a linear combination gfy, z, t:

== [Wt —(px)] = Kct — (Kx),

St

by the intermediary of four constantd/,(p:, p2, ps) or (K, K1, Kz, K3), which are such
that:

W=cp? + mict or  KP=KZ+ 12

The function ¢(t) that is a solution of (1) is then a solution bk tdifferential
equation:
d*y(r)

(2) ?‘*‘40(77:0-

The general solution of (2) is a combination ob tiypes of solutions, one of theyn
being even and the other ogebeing odd:

(3) Y. =Acosr, Ys=Bsinr.
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The functions(t) = ¢Kct — (Kx)) can be considered to be the result of a Lorentz
transformation that is applied to a particular solugigt) of the proper system, which is a
solution of (1) that is independentxfy, z One then has:

T=[pCt= 2—7Tmo ct.
h
The plane waves (3) that are of the foggr) define a complete system of solutions
of (1) that are functions afthat are uniform, periodic, and have bounded amplitude.
b) The invariant solutions are obtained by starting with pon considering the
particular solutions of that equation that depend upon ondy w@miable, which is a

relativistic invariant.
One generally takes this variable to be:

(4) u=+ct’-r?,

or
W=t - ¢ +y + ).
One easily sees that:
d> 3d
5 O=—s+——r.
®) du* udu
Equation (1) then determinggu) by way of:
(6) d—2+§£+ﬂ2 W(u)=0
du¥ udu “° '

This is, moreover, a differential equation whoseegal solution is expressed by means
of Bessel functions of order one:

A C C
) u) = m Ji(tou) + Na(tou) = j H . (1) +TZ H® (1),

(J1, N; are Bessel functions of the first and second kindile H® and H® are the
corresponding Hankel functions of order 1.)

¢) andd) In order to introduce spherical waves and guidesdes [L8], we shall now
assume that there exists a privileged frdgein which the wave functiong(x, y, z, t)
are expressed in the form of a product of a funafig(t) of t and a function(x, y, 2) or
$ilr, 6, 9):
(8) U, 1) = (O (X Y, 2 = ga(t) gelr, 6, 9).

We then have:
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1 d%,

prel ORUAQLALY) + iy, =0.

402( )C_
We introduce two constantls, A, which are such that:
A=A = ,UOZ ’

in which ¢4 (t) and ¢x(x) satisfy the equations:

Cld ity + A =0,
A, (%, Y, 2D+ Agp,(% ¥ 9= 0.

(9)

(We assume that; andA; are real and restrict ourselves here to the cagdichA; > 0,
in order to not introduce solutions of a type thanishes witht. These solutions that are
damped in the course of time must not be discairdadyeneral study, which we shall not
make here.)

We then obtain for the functiogn(t):

(10) () = crexpliJAct] +c exp[-ifAct] = ¢ cosg/A,ct)+ ¢ sin(/A,ct).
For (X, y, 2), there are two cases to consider:

1) A1> /,102,/]2>0.
Alﬂz +/]2[//2 =0,

which then admits for its acceptable solutions:
(11) Uelr, 6.9) = T IAY W) + RNV, 1 Y(6.9).

2) A1 < /,102,/]2<0.
= || ¢ =0,

which has for its solutions that remain boundedmhe oo:
(12) W(r, 6, ¢) = — Hl(\/ Py 6.9).

If we restrict ourselves to the casd ef0 then we are no longer considering spherical
functions y™"(8,¢), and what remains is:
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(13) Yo(r, 6, @) = yn(r).

One thus has, in the case above:

(14) ) = A sm(\{Zr)+ 5 cos(r/)l_zr },
(15) 0 = 2 expb 12, 1)

The solutions that are called “spherical waves’omthodox wave mechanics are
obtained by starting with these expressions uptimge

2 2
:W :KZ, Azzglelz,

(16) Z! h2c2 72

SO
A=A =KZ=|K = 2.

One then necessarily hds> 4, and forl = 0 the general spherical wave solution is
written:
(17) Weph. = Y(t) gu(r) = [c cosKet+ ¢ sinKct] A

_ aSin(Ketx |[K |r) , cosKcty K
_Cl . +(‘2 " .

[sin|K Ir, X cosK ﬂ}
r r

Orthodox wave mechanics likewise considers theiqoderr case of the solutions
above for which one has:

(18) A1=0, = yo(r).

One is then dealing with the case 2) abo¥e= 0 entails that )| = 4, and:

(19) W= ) = pelr) = CT expl- 1o 1],

Upon fixing the value of the consta@, this solution is considered to represent the
field ¢Ar) that is created by a sour€g that is localized to the poimt= 0 in the proper
system of the corpuscle (here, the fraiRge

One passes from the solutiogrs= ¢4 (t) ¢u(X, Y, 2), with ¢a(t) and ¢u(X, v, 2) given by
(10), (11), and (12), or (10), (14), and (15), he solutions of “guided wave” type, for
which the corpuscle is localized and describesagedtory (which is rectilinear and
uniform in the absence of an external field), byfening a Lorentz transformation on
the functiongythat depends upon time explicitly.

For a corpuscle that displaces along®@zaxis with velocity, we set:
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ct = coshyct —sinhyz, z=coshyZ - sinhyct,
X=X, y=Y, tanhy=v,

SO
r’ =x? +y?+ cosh Z - tanhyct)?,

\/)l_lt = \/)I_l (coshyct - sinhyZz).
If we further write:

\/)Tl = /4, K1 = 14 coshy K1 =t4 sinhy,

JAt=Kict - |Ky|Z,

rP=x?+y?+ (ﬁj [Z —vt]? = ¢

1

then we obtain the expression for the “guided wave”:

(20) wx,y,z,t)=

= {Cl.,C.OS(cht'—IK1 | z’)}E{ Asin(\/)’l_zp’)+ A Cos@p' )}
¢!sin P p

The term inA” introduces a polar singularity that displaces with aaigtv (0’ = 0 forx
=y =0,Z =vt). Likewise, if one restricts oneself to the regylart then a structure that
is defined inRy by a combination of solutions of type (10), (11), and (12J16y, (14),
and (15) will generate a solution that is a combinatibthey’ (X, y, Z, t') above that
displaces with the velocity.

The patrticular solution:

E l/’(") — G expr[_:uor]

leads to the guided solution:

_ Gexplp (X2 + y*+cosiy ¢ vt § 1]
[X?+y?+cosh?y (Z— vt Y T2

(21) wx,y,z,1)

which is ordinarily interpreted as a Yukawa fieldtlwa source that moves rectilinearly
and uniformly with velocity tanly=v.

Likewise, the solutions of plane-wave type remaithin the scheme of guided
waves when we seb = 0,4, = 0, ¢ = ¢a(t).
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3. — Generalized plane waves that are deduced form Jacobiligic functions.

In an extension of wave mechanics that is based iKke-Gordon equation, we
must generalize either the set of solution types thajuateconsidered or only certain
other ones that, for physical reasons, lead us to am$idm as attached more directly to
the representation of matter.

If we first consider the solutions of plane-wave typent we have seen that they be
considered as the result of a transformation of theerita group that is applied to the
particular solutions of the proper system:

(22) Ys=A sint, Ye.=A"sinr,
with
(23) Io= o ct= ZTH Mmoc’t = 27TVt

This form of solution exhibits a fundamental charaatérthe representation of
corpuscles in wave mechanics that L. de Broglie has aftgisted upon: In the proper
system of the corpuscle, the wave function is assatiwith a “clock;” i.e., a periodic
function of proper time with a perioB= h/my c? (or a frequencys = moc/h).

If we would like to generalize this concept, while afp¢ing to enrich the notion of
corpuscle, by no longer introducing just the one intrinsitstantvy = mo ¢?/h, but two or
more constants then the most immediate generalizatansists of taking the wave
functions that represent the particle in its properesgsto be certain Jacobi elliptic
functions that possess a real period and a pure imagueaigd, instead of the circular
functions cosr or sinz. The definition of these functions introduces a psahmetek
that is found between 0 and 1. Hor O, these functions reduce to giand cosr. The
given ofk is equivalent to the introduction of an intrinsic suppletagy parameter.

The theory of Jacobi functions introduces three prindipadtions:

sn(@, k) of period &K and 4K’,
cn, K) " 4K and 4K’,
dnf, K) " 2K and 2K'.

The period¥K(k) andK'(k) are defined by the integral:

2 dH
KK = | —,
® J; \J1-k?sin’@

K'(K) = K(K), withk'? = 1 —k2.

and by

Starting with these three functions, one constracygstem of 12 elliptic functions by
adding to sm, cnu, dnu, their inverse and quotients:
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1
nsu=—, ncu =
snu
snu
scu=tnu=—,
chu
cnu
csu=——, cdu
snu
dnu
dsu=——, dcu
snu

1
cnu dnu

, ndu:i,

and one has, notably, the following relations betwthese functions:

sn@+K, k) =

cdq, k),

cnfi + K, k) = - K sd, K),

dng +K, k) =

sn@, 0) = sinu,

cn, 0) = cogqy,

dnfs, 0) =1,

One will find the study of the properties of thd@sactions in numerous books on
In the name of indicating esomwill cite only the works of
APPEL and LACOUR 1], GREENHILL [9], TRICOMI [22], and the excellent little

applied mathematics.

monograph of BOWMAN?Z2].

The generalization of the wave functions that@eme-wave solutions of the Klein-

Gordon equation leads us to set 7, so:

K ndQu, K,

sn(, 1) = tanhu,

1
sn(, 1) = ,
6. 1) coshu

1
dng, 1) = .
. 1) coshu

(24) r= 4K(K)vet = M(k)%czt = %Czt = s ct

Here, K is the analogue of the factorrih the trigonometric case, and this leads us

to introduce a new reduced Planck constant:

(25) i
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which replaces the usual constant= h/27z while 1o will be coupled to the dynamical
massm, by the intermediary of: :

(26) mz%ﬁ

In the proper system, we have the possibility of defirewvgn and odd doubly-
periodic wave functions that reduce to siand cosr, respectively, fok = 0, according
to the choices:

a) Either sn(, k) and cd(;, k)
b) Or cs@, k) and sd, k).

In addition, we may define a doubly-periodic wave functlmat reduces to a constant
for k = 0 by considering the functions:

C) dn(z, K) and ndg, k).

We shall now examine the second-order differential gopumthat the choice of these
functions leads to by adopting, as a generalization,ghat®n:

f;ﬂn+ﬂn:a
T

For this, we examine the second-order differential egustivhose solutions are
Jacobi elliptic equations.
A) The equation:
yi+ (1 -2y +Ky -k*=0
has the solutions:
y= cnu if y(0) =1,
y=Kcnu if y(0) = 0.
y'+(1-2)y+ 2y =0

y= cnu if y(0) =1, y'(0) =0,

As a result:

has the solutions:

y=Ksdu if y(0) = 0, ¥ (0) =K.

B) The equation:
Y2+ (1+4) Y -Ky'-1=0
has the solutions:
y=snu if y(0) =0,

y =cdu if y(0) = 1.
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As a result:
y' + 1+ y-2y* =0
has the solutions:
y =cnu if y(0) =0, y'(0) =1,

y=cdu if y(0) =1, y'(0) = 0.

C) The equation
y2- (1 +kH) Yy +y' +k?=0
has the solutions:
y= dnu if y(0) =0,

y=k ndu if y(0) =K.
As a result:
Y - (1+K)y+24=0
has the solutions:

y= dnu if y(0) =1, y'(0) =0,
y=kK ndu if y(0) =K, y'(0) = 0.

Returning from the differential equations that arefiggtiby the functiong/(t) to the
partial differential equations that determine the fun&igfx, y, z t), one immediately
sees by correspondence that:

W, =2 cnf(Ket=(Kx)).K],
Y, = AK'sd[(Kct— (Kx)), K]
are particular solutions of:

A) (27)

(28) Oy + (1- 22 )2 +%¢/3 = 0.
8 (29) {ws = Asn[(Kct - (Kx)).K],
¢, = Acd[(Kct — (Kx)), k]

are particular solutions of:
(30) Oy + @k -2

7 w®=0.

C) (31) {wdf/l dn[(Kct - (Kx)),K],

@, = Ak nd[(Kct— (Kx)), K]

are particular solutions of:
2

(32) uw—(1+k'2)u§w+ai;w2 = 0.
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Equations (28), (30), (32) have already been encountered bgrowsnauthors,
notably, L. SCHIFF 20, N. ROSEN and H. B. ROSENSTOCK1g, R.
FINKELSTEIN, R. LE LEVIER and M. RUDERMANE], B. J. MALENKA [13], and
D. IVANENKO [11].

These equations may be written in a general fashion:

(33) Oy +ay+ w =0,

in which a and ydenote two constants.

4. — The plane-wave solutions of the nonlinear wave equatialy + ay+ pp? = 0.

Conversely, we shall use the results above to claizethe plane-wave solutions of
equations (33), which we divide into four types:

(A) Oy + @y + i * =0,
(B) Oy + 1y — 15 ° =0,
(C) Oy — iy + uzp® =0,
(D) Oy — iy + pzyp® =0,

(34)

More precisely, we shall determine when there exikitisns of these equations of
bounded-amplitude plane-wave type, under conditions thahalespecify.

A) Equation A) admits for its plane-wave solutions:

(35) W= Acn[(Kct— Kx)) + o, K,
with
KE =K F =45,
- MC
Ho P
upon determinings andk by:
2k2 2
(1-20) = 11, Az% =43,
SO
Ho =t + 17",
(36) = LEA® |
2(1 + A"

Here, one always & k* < 1/2. A plane wave is never spherical. The reduce
dynamical masgy is always greater thawm, while the true dynamic mass, has the
value:
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= hﬂo
4cK (k)

If o> 14 is fixed thend andk are determined by:

(37) A :uO :ul k2 :uO :ul.

7 244

If mp is given instead ofiy then the determination &fis more complex: In this case, one
must solve the transcendental equation:

2 2

2 he Ly
(38) (1-B) KK = o e

If one is given three constants, 16, andk (0< K < 1/2) then:

2 2K
1y (1= 2k?)’
(39) Zﬂz .
b=l and m=—"1t——
o= a2 AEETVE (- X*)

Plane waves (35) are solutions 8j for any initial conditiong/(0) and¢’ (0). For& =
0,¢=Acnr, and foré =K, ¢=AK sdr.

B) Equations of the form:
(34B) O + i — pw° = 0

admit for bounded-amplitude plane-wave solutions:

(40) W= Asn[Kct— Kx)) + &, K], K- |K =g,
with
=2~ 22)' : ,
(41) :
k2 - I'IZA
217 — 12A*

The condition & k? < 1 entails that:

2
osK<h
Hy

This corresponds to restrictions on the initigthda
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Indeed, the solution above exists only if the initialdibans satisfy the conditions:

/11
(' (0 < 27

and

(@ (0)) < %[uﬁ - 212w )],

If these conditions are not satisfied then theng@lavave solutions ofB) are Jacobi
elliptic functions that become unbounded periodmd a does not seem that such
functions are likely to represent a physically izdle corpuscular structure.

Conversely, being givep?, 12, 12 determinesi’ andk® by way of:

2 = 2 — )
s

=Ml
,uo

(42)

This solution becomes aperiodic #7= g2/ z2. Thenu? = 212 and:

(43) e = 2 tanhKct — (Kx)), ="
U,

The relationmyc = hio/ 4K then shows that ifo :,ul/x/i remains finite a¥&(1) - o

then the proper dynamical masstends to zero.

C) Equations of the typeC:
(34C) O — i + s’ = 0
admit plane-wave solutions of either the typen r or the typed dn 7 for any initial
conditions.
_ Cl _
(44) = Adn[(Kct — (Kx)) + o, K]

satisfies equation<}, where 17 andk® are determined by:

2 212 2
(45) B
2 LEA

under the condition that:
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”—12<)l252—'uzlz.

,Uzz M
Foré&=0,¢=Adnr and foré =K, ¢=AK nd r.

For |A| =t/ e, k=0, andy reduces to a constani= (4 / [b&.
Fork® = 1- namely, W | = 4~/2/ 1, — becomes aperiodic:

(dn(u ,1):ﬁj ,

but theng’= 1, #' - 0. Itis necessary that the proper dynamic magends to zero.
Conversely, ify, w7, 15 are given then:

AZ:Z_’US k2:2ﬂ§—ﬂ12

2 !

75 75

under the condition thaty’ / 2< 7 < 11}

(46) @ = Acn[(Ket— (Kx)] + o, K,

1<k<l,
is a solution of C).
(For& =0,¢ce=Acnr, and foré = F K, ¢ =+ AK sd1).
(2 andk® are then determined by:

Ho = K A"~ s
k2 - /'IZZAZ
2(/122/]2 _/'112),

(47)

under the condition that:
AZ > 2/'112
> .
H;

For A% = 242 | 42, K =1, ¢ becomes aperiodic:

,Ul\/E 1

4, coshr

(48) e =

Conversely, if if 2, (7, 1z are given then:
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(48) A2:ﬂ§+/j12 k2:ﬂ§+/'112

, : (g = 147).
1 2145 co

D) Equations of the type:
(34D) O — i + s’ = 0
do not admit bounded-amplitude plane-wave solutions.

Indeed, depending upon the initial conditions, the solutiohghe associated
differential equation:

d2y(r
Sty -uiyr= o
have one of the forms:
Atnr, )Iﬂ, Ancr.
cdr

These doubly-periodic functions become unboundedbglie and are not physically
acceptable. This leads us to discard the equabibite type D).

In the three caseg\), (B), (C), we have obtained plane-wave solutions of statipn
type.

Linear wave mechanics considers, above all, pleaess of “progressive” typei.e.,
ones of the form:

¢ =Aexpli(Ket — Kx)],

which correspond to solutions:

Y=Aexpiit, (7= Kct - (Kx))

of
diy
dr?

+(7) = 0.

One may propose to determine waves of the same foyp€34A), (34B), (34C) that
reduce to the functioms expft i1].
If one considers the equation:
YL +ay(®) =0
then direct integration gives:
y2+ df y* = xo = const.

Xo 2 0 leads to stationary W<3tve£)(0/a)2 cosax and+/ X,/ «f sin ax, while yo = 0

leads toy = A expf i ax].
Here, the differential equation that is associateith equation (34A), for example,
namely:

W'+ i + iy = 0,
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gives, by direct integration:

1\2 2,7,2 /'122 4__
(l//r) +:u1¢/ +7¢/ = Xo.

Xo % 0 leads to the stationary real solutions that weresidered previously.

Xo = 0 leads to another type of solutions.
Settingy = 1lx, one easily sees thaty = 0 then:

1
Cexpliznr]=C, expliyr] ,

(50) U1) =
in whichC,, C, denote two constants that are coupled by theigalat

_
(51) CiC = 8,;12 :

Setting 1C; = A4, 1/C, =— A», one further writes:

p)
(52) 1) = - .
expli 4t - (15 1815 A} expH ]
= AZ
expliT 1= (U 18U A explug ]
or further
p)
(53) 1)

— 1
explifar L+ (oA 18us )= (s 1 4ui N} cour

—_ AZ
[L+ (14 1817 )AZ1expl=i i 1- (W31 Aul A S cosuy

16

These functions are simply periodic. One eagsiBsshow the passage to the solutions

of the Klein-Gordon case comes about from thesgtisok ass, — O.

The plane-wavaey/Kct — (Kx)), (K> - |K F = L) is never purely progressive. A
stationary term appears along with the progressii®. This may be further interpreted
by saying that the plane waves of this type newrehuniquely positive or uniquely
negative energy. A beat terrtefme de battementlways accompanies the principal

progressive term with positive or negative energy.
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5. — The composition of wave functions in nonlinear theories.

Equations (34A), (34B), (34C) are not linear and the stitavo solutions is not a
solution. Nevertheless — and this is a point upon whickhvedl now insist — there exists
an addition theorem or, if one prefers, a composition theoremfor the plane-wave
solutions of these equations.

This results immediately from the theorem on thataddof elliptic functions.

Consider the co. We have seen that:

cnu +K) = - K sdu, sd(J+K):%cnu.

One may show that the addition theorems for ellifaticctions that are given in the
classical treatments likewise take the following ferm

cnu cnvF K?sdu sdv
1+k2cnusdu cnv sd/’
sdu cnv+ sdv cru
17 k?sdu cnu sdov crv’
snu cdv+ cdv snu
17 k?snu cdu srv cds’
cdu cdvF snu srv
17 k?snu cdv srv cd/’

cnuxv)=

sduzxv)=
(54)
snuxv)=

cduxv)=

If, for a corpuscle that is represented by equaf8?#A), one considers statesand z,
that correspond to the wave functions:

(55) wP=Acenr, YL =AK sd,,
wP=Acenr,, w® =K sd,

then the state function (1) + (2), ¢ + 1) corresponds to the functions:

(56) l,llc(l)+(2) =1 c¢n Q’l +7, K),
Y@ = Ak sd, + 7, K).

The addition theorem then gives:
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we - AW -w W)
e Py

(57)

Y@ = Nlydp® +y Sy )
Ty Y P

The possibility of constructing state functions for temrpuscles by starting with
state functions for one corpuscle makes possible theroatish of a state space that is
necessary for the introduction of a second quantization.

Second quantization has been generally considered asitegoesa linear theory. It
seems to me that this is not necessary, but that deg@mtization is essentially attached
to the possibility of constructing states for 2, 3, ... pls by starting with states of one
particle. For this, it suffices that in the theorynsolered there exists a theorem of the
addition or composition of states; i.e., that by stgrivith functions that represent a state
with n particles and a state with one particle one can noist state ofi + 1 particles.

The acceptable wave functions will then be the ondsatihait an addition theorem.
This condition, which is necessary but not sufficiesgéemsa priori very large.
Nevertheless, we shall see that one may ascribetiaytarly remarkable solution to the
determination of these functions.

Indeed, WEIERSTRASS has proved a remarkable theorem f(seexample, the
treatise on elliptic functions of HANCKOCKL()]) that answers our question.

WEIERSTRASS called an algebraic relation that linksftimetions®(u), ®(v), ®(u
+ V) analgebraic addition theorepand here is his theorem:

Any function for which there exists an algebraic addition theorem is lgoticel
theorem or one of its degenerate cases.

The application of this theorem to the plane waveitgwnis leads us to the wave
equations that were considered above in a limiting fashion.

Nevertheless, the algebraic nature of an additionréihedor wave functions is not
imposed from the standpoint of physical interpretatiowl, @othing leads us to think that
nature obeys rules that translate into algebraic.laws

| would, moreover, now like to consider a simple ex@ngf wave equations that
generalize the preceding equations and for which therexdt a non-algebraic addition
theorem for plane waves.

For this, | consider the nonlinear wave equations:

(58) {(a) oy + g4 sing =0,

(B) DY+ sinhy = 0.
If one considers that these equations are “appexficby the equations that were

obtained by replacing sigg and sinhy with the first terms in their series developments
then these equations are the generalizations of:
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(@) oy +ufw—”—gw3=o,
(59) :
B) oy y+Lye=o.

If one then setg/= ¢, 1°A%/6 = 1 then one obtains the following equations gor

(60) {mw Oy + 12¢ - 1129°=0,

(B O+ +ue’=0.

One recovers the preceding equations of types)(844 (34B).
The solutions of “plane-wave” type of equation8dpand (5&) may be obtained
without difficulty.
If one sets:
r = Kt — (Kx), with K= |K F = 12

then the “plane-wave” solutions of (&Band (5@) will be of the form:

Ux, ) = Y 1),

{(7) being a solution of thdifferential equations:

(D) +'u12 sing (r)= 0,

dr’ @2
(61)
dzw(zr) +”—1zsinh¢/ @)=0,
Ho
or
(62) (@) g7+ xsing ()= 0,
(B) Y. + xysinhy ()= 0.

We shall examine the solutions of B2 while those of (68) are obtained by a
parallel analysis.

Equations (62) is well-known in physics: It is the equation @&rgulum motion.

While the Klein-Gordon equation associates a csglauin its proper system with the
motion of a sinusoidal oscillator, the nonlineauatipns considered here are associated
with a pendulum motion.

The solutions of:

(580) Oy + 1 sing =0
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are defined only up to a multiple ofz2 If ¢4(7) is a solution then the same will be true
for:

U0 = ¢(7) + 2nT

Likewise, if one sets:
nt
(1) = () + -
then the functiongx(7) will satisfy:

(589) Oy, (1) + 4 cosyy, ) = 0

The solutions of (58) thus permit us to write down those of ®8and (58)
immediately.

In order to obtain the plane-wave solutions ofdf8t suffices for us to consider the
differential equation (62), which gives, by direct integration:

(63) @,)? -2y cosy = xo,
Xo being a constant such that:

Xo = = 2)1 cOSYb .
We deduce from this that:

2 _— _ 4)(1 H £
(64) @) = o+ ) {1 —)(0+2)(1$|n2 2]

and this leads us to consider two cases:

1) 4Xl

<1, namely, Xo=2x1.
Xot2X

Settingk® = 4y / (xo + 2x1) gives:

12 _ﬂ L2 2£
(65) W) = 2 [1 k®sin 2]
A, _ o2
? Xo*2X, Wt
SO
(67) W) = %[1— 5 smzﬂ -

In the first case, one immediately has:
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wi2 2
2 dg =t \/ZT +2§(o,
5 J1-k2sint@
or
F(%,kj :i\/ET +2g(o,

whereF(¢, k) denotes the Legendre elliptic integral:

¢ do
F(@,K) = | —m——.
8.4 'E\/l—kzsinzé?

Introducing the function am( k) = ¢, which is such that:

sin ¢ = sn, k) and cosp =cn, k),
one obtains:
(68) v am{i \/71 r+¢, ,k} :
2 k
sin%: S \/71 T+&, k}
(69)

0 < K < 1 entails the condition that:

12
cos Yoo ¥
2 4y

The solution of the second case, for which:

12
cog Yo Yo
2 4y
which demands that:

Ws < 4,
is deduced from the solution to the first casehyrelation:

F(¢, ki) =k ¢, K),
with
@, = arcsink; sin @),

21
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or by the formula that is called theciprocal modulus formula:

snku, ki) =k sn{, k),
which gives:

(70) sin% =ksn(x,r + & K.

In the case considered, we therefore have some sarptessions in terms of elliptic
functions for the plane-wave solutions for the wagreation (58).

Here, there exists a further addition theorem fomthee functions that are solutions
of plane-wave type.

Indeed, let:

n = Kjct— (K1x), I, = Koct — (K2x),
with
K? = (K2)?= KJ = (Ko = 1,

in which ¢An1) and ;) denote the preceding solutions, gbr + ) is expressed in

terms ofy 1) and ¢ r).
WU 1 =2 ar{%rﬂ‘{l.

Indeed, we have:
The addition theorem for the functions argives us:

(71) am(; = up) = arctan(tru; dnuy) = arctan(tru, dnu;) =

= arcta{%«/l— k? sin? ¢2} + arctan{%./l—k2 sin® ¢1} :

1 2
(sin ¢, = snusy, COS@, = CcNuy, sing, = snuy, COS@, = CNUy).

One immediately deduces the corresponding additionehetar the functiongA 1),
YU1r). It is not necessary to emphasize the non-algelmtzaracter of this addition
theorem.

It might be interesting to attach the plane-waveitsmis of equations (34A), (34B),
(34C) to the developments of the quantum theory of fields

This amounts to expressing the plane waves in the(84#¢, for example, of the
form:

(72) Y1) =Acnr=Acnlp ct, K],

in the proper system, by means of functions:

(73) A cosT =A cos yct or Asin7 = Asingyct.
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The theory of elliptic function immediately provides with two developments of this
type.

a) The development of elliptic functions into Fourierieg gives us, for co:

(74) chu = i—z;#co{ (h+ 1)%}
with
q= exp[—ﬂﬁ} :
K

From this, we deduce that:
(75) WD) =Aenoct K = 122 9" osqct)

d kK =1+ q2n—1 o~ )
with
(76) M=+ 1) 2 1.

2K

The wavey(17) can be considered to be the result of a particdaes of plane-wave
solutions of the Klein-Gordon equation with a seweeof reduced proper massgs

that are odd multiples of the reduced proper mass:

T
77 L= — < lp.
( ) Ho 2K Ho < Ho

b) The development of aminto an infinite product of elliptic functions gisg:

[ 2N n
(78) cnu = 2q1/4k,2k—1/2COS@EI—| 1+ qu_l cosfru /K )+ q:_z .
K 1111-29""" cosqru /K * g™

This gives us:

or . | 14297 cosfru /K o
79 = A cnwp ct, K = 297K °k Y?cost/, ct :
( ) MT) I-JLIO ] q S/'IO |n:| |:1_ 2q2n—1 COS(TU /K )+ q4r‘|—2

with
., TT
(80) Hy = EIUO’
here. Thus:
My = o for M2 <K(K) < 71
My < o fork(k) > 7z

The plane-wavey 1) is therefore expressed in terms of an infinitedoct of
combinations of plane-wave solutions of a Klein-@&wor equation for a corpuscle of
reduced proper magg = (77K) (o .
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6. — Invariant solutions and radial solutions of the precedingquations.

We conclude this study by briefly examining solutionsafagions of the type:
(34) Oy + 2 + pap® = 0
that have the “invariant wave” type — vizi{u), with U = ¢** — (¢ + y* + 7) — and the

solutions of the types = (/r), withr? =X +y* + 7
These particular solutions are determined by the diftereequations:

[d®> 3d
(81) _W+ud +,U1} (u)+ p° =0,
[d> 2d
82 —_ -4 =0.
(82) _drz Car ﬂl}ﬂ(r) wp’®

Equations of this type have been the object of numercathematical studies,
notably, those of R. O. FORNAGUERA][ M. CIMINO [3], and JACNICYM [12].
Their integration does not seem to be attached to tittiescendentals that were
characterized up to now.

Here, we point out only the results that relatehecasgs = 0.

Equations (81) and (82) then reduce to:

(83) —j +34d }w(u)wzw = 0,
U U

(84) —3 +3i}a(r) T 12p° =0,
r r

Equation (83) admits the remarkable particular solution:

Jt1
U’

W) =

from which, one deduces the invariant wave that is singuidhe light cone:

J*1
oS = (3 + Y2+ 2)

(85) wUuxy, zt) =

Equation (84), in the form:
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2 2 d 2,7,3 —
{WﬁLFd—r}/’(r)ﬁLﬂzlﬂ (r)=0,

reduces to the Emden equatiod] [that was studied by E. A. MILNEZ1f], N.
FAIRCLOUGH [5], and R. H. FOWLERJ], notably.
Indeed, if one sets:

1
Ur) = — (1)
H
theng(r) is determined by the equation:
5. +24 4" =0,
which is the canonical form of the Emden equatiaet twvas adopted by E. A. MILNE

[14].
If ¢(r) is a solution then one sees immediately that:

A @(Ar)
is likewise a solution.
E. A. MILNE has studied the different forms foetkolutionsg(r) such that:

_ dg) _ 1
¢(r0)—01 (Ejr:%_ cY2

for ro = 1 according to the various values for Notably, he showed that there exists
only one positive integral such thafl) = 0, and which takes a valg€0) forr = O that
remains finite. Conversely (Emden solution), ieaonsiders a solutiop(r) that takes a
finite value forr = O (for which, one may se#(0) = 1, with a convenient value fdj and

is such that(d¢/dr),_ = O then one finds the function that was tabulabgdN.

FAIRCLOUGH [5] that is annulled for = ro = 6.9011, and at that poirg'(r,) =

-0.40231 and/¢'(r,) =-2.0150.
Here, the general integral of:

¢;;+§¢; +¢°=0

depends upon the two constaatandC. For any finite value o, there exists a value of
C = Gy for which there exists a solution for any giwgi®). This solution is annulled for
Ir =ro, and the tangent of that solution for ro definesC = Cy, . For the other values of
C # Cy, there exist solutiong(r, C) such thaig(ro, C) = ¢(ro, Co), but they are divergent
forr — 0, the one tending towardsee; the other towards «. E. A. MILNE has shown
the general allure of these functions by means dfagram. Nevertheless, | do not
believe that the analysis of Milne has been exténidehe domaim > ro, except in the
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general study of R. O. FORNAGUERA and in a note ofCMICYM, whose results do
not seem to agree with those of Milne.
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