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On the statics of planar frameworks 
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 The following presentation is closely linked with the treatise of Herrn Geheimrat 
Klein (1) that recently appeared with the title “Über Selbstspannungen ebener 
Diagramme.”  The analytic-geometric considerations of the aforementioned paper might 
be placed alongside the graphical representation here. 
 It will be shown how appealing to the spatial polyhedron that belongs to certain 
planar diagrams can be managed conveniently for the construction of reciprocal 
diagrams, and therefore also for the graphical determination of the self-stresses in a 
planar framework, and in connection with the aforementioned treatise, the circumstances 
under which it appears for framework diagrams that are to be regarded as the projections 
of one-sided, closed polyhedra will be considered especially. 
 
 
 1. It will suffice here to assume that a spatial, closed polyhedron that is composed of 
planar polygons and can be regarded as a stress surface will give the self-stresses in that 
planar framework that can be regarded as its orthogonal projection (2). 
 We will employ, to our advantage, the representation of the planar bounding surfaces 
of polyhedra with the help of altitude lines and gradients, which is a method that Runge 
cared to use in his lectures on graphical statics. 
 A plane cuts the horizontal plane (i.e., the reference plane) along the line 0.  We now 
choose a unit segment along a line in the plane to 
be represented that is perpendicular to the altitude 
line 0 until the perpendicular elevation over the 
horizontal plane is equal to the unit segment.  We 
draw the parallel to 0 through the projection of 
the point thus arrived at onto the horizontal plane, 
and thus get the altitude line 1.  The altitude lines 
2, 3, … are parallels at equal distances, while the 
parallels – 1, − 2, … give the altitude lines for the 
rising part of the plane. 
 The elevation of the plane that corresponds to a point whose projection has a 
perpendicular distance of 1 from the null line in the reference plane gives the magnitude 

                                                
 (1) Mathematische Annalen 67 (1909).  
 (2) F. Klein and K.  Wieghardt, “Über Spannungsflächen und reziproke Diagramme, mit besonderer 
Berücksichtigung der Maxwellschen Arbeiten,” Archiv der Mathematik und Physik.  Ser. 3, Vol. VIII, 
Issues 1 and 2.  (1904). 
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of the gradients of the plane.  We would like to agree that these gradients enter in as 
directed segments along an altitude line (ordinarily, the null line) and an arrow direction 
can go through it that gives the direction and magnitude of the vector of inclination of the 
plane (when seen from above the reference plane), after it has been rotated through 90o 
counter-clockwise. 
 If the equation of the plane to be 
represented is: 
 

z = ax + by + c 
 
in a rectangular coordinate system 
whose xy-plane coincides with the 
reference plane then: 
 

ax + by + c = 0 
 
will be the equation of the altitude 
line 0, and the length of the gradient 

will be 2 2a b+ . 

 If one draws a vector through the origin of the coordinate system that is parallel to the 
vector that is carried by the altitude line (for the sake of brevity, we would like to refer to 
this vector along the altitude line as the gradient in what follows) then the coordinates of 
its endpoint will have the values: 

x = b, y = − a. 
 
If we then (in a coordinate system whose axes are parallel to the x and y axes) shrink the 
gradients of the various planes of the polyhedron that belongs to a given diagram as the 
stress surface towards the origin, which is the pole to which the gradient of the horizontal 
plane shrinks, then the endpoints of those gradients will be precisely the points x = b, y = 
− a of the reciprocal diagram that correspond to the polyhedral planes: 
 

z = ax + by + c, 
 
from formula (5) of the paper cited in rem. 1 on page 1. 
 In the application of a gradient to a point, we then have an exceptionally convenient 
means of defining the points of the reciprocal diagram. 
 If Gk is the gradient that is applied to the plane (k) of the polyhedron, and Gl is that of 
the plane (l) then, from formula (4) of the aforementioned paper, the geometric difference 
Gl – Gk will be the magnitude of the stress along the projection of the edge of intersection 
(kl) of the planes (k) and (l), and therefore the rod stress in the rod of the framework that 
is the projection of the polyhedral edge in question. 
 
 
 2. We can now determine uniquely whether the stress that exists in the rod, which 
we know up to absolute value, is a tension or a pressure. 
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 We would next like to imagine, not a 
closed polyhedron, but a faceted surface with 
attached polyhedral zones that cover the plane 
only simply, as one would have for the stress 
surface of a framework that is in equilibrium 
under the action of a system of external forces.  
The projections of the two planar facets that 
come together at an edge of the stress surface 
then lie on different sides of the line of 
projection of the edge of the diagram. 
 We define the gradients GI and GII of the 
two planes according to what we established 
and obtain the indicated vector that is parallel 
to the projection of the edge of intersection of 

the planes I and II as the geometric difference of the gradients GII − GI when we go from 
plane I to plane II.  We will now get the correct sign for the stress when we establish that: 
The vector gives us the effect of the force on the piece of the rod that is to the left of an 
observer that lies beyond the rod in the prescribed direction.  (That agrees with the 
general discussion on page 3 of the treatise that was cited in rem. 2 on page 1.) 
 In the figure, we will then get a 
compression in the rod when we go 
from I to II.  When we go from II to I, 
the vector GI – GII will have precisely 
the opposite arrow direction as GII – GI 
did before, so we will once more get a 
compression in the part of the rod that 
is to be regarded as to the left of the 
direction in which one goes beyond it. 
 The accompanying Figure 4 
corresponds to a tension in the rod. 
 It obeys the rule for the simple covering of the xy-plane by the diagram. 
 For a double covering, we next consider a plane I of the first sheet and a plane II of 
the second sheet, which are both connected along an edge of the contour polygon.  If we 
attach the gradients of both planes according to our 
prescription then rule that was present will be 
obeyed for the transition from I to II.  However, if 
we go from II to I then we will go beyond the rod in 
the same sense as above, so according to our rule, 
we would now obtain precisely the opposite stress to 
the previous one.  Under the transition from the 
plane of the second sheet to that of the first sheet, 
we must then take the rod piece that lies to the right 
of the part that was exceeded as being definitive of 
the stress in the rod that is produced by the given 
force through the difference of gradients.  The same 
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thing will be true when we go from one plane of the second sheet to another plane of the 
second sheet. 
 We can then summarize this as: If we move along the edge of intersection in a plane 
of the first sheet then the resulting vector will give the effect of the force on the left-hand 
rod segment, while if we move along the edge of intersect in a plane of the second sheet 
then the resulting vector will exhibit the effect of the force on the right-hand rod segment. 
 
 
 3. We now apply these theorems to the case of a simple, closed polyhedron.  Let the 
closed polyhedron be two-sided and belong to the diagram that is drawn as the stress 
surface in Fig. 9.  The diagram has 7 nodes and 15 rods, so it will have 15 – (2 ⋅⋅⋅⋅ 7 – 3) = 
4 linearly-independent self-stresses.  One can easily give four such independent self-
stresses when one thinks of the rods as being endowed with stresses only in diagrams that 
contain the following figures: 
 

Figure 6.  
 We choose a completely well-defined polyhedron for our construction and assign the 
values to the z-ordinates that are indicated in the diagram, and thus obtain a well-defined 
self-stress in our diagram.  (The planes of the polyhedron are denoted by a, …, k in Fig. 
9, while the symbols of the hidden planes are enclosed in parentheses.  Fig. 11 gives a 
representation of the spatial polyhedron that belongs to the diagram in skew parallel 
projection.) 

 The construction of the 
reciprocal diagram follows from the 
foregoing discussion with no further 
assumptions: One draws the 
gradients from an arbitrary point O 
using the given prescription and 
links the endpoints of the gradients 
that correspond to planes of the 
polyhedron that come together.  In 

order to ascertain the gradient G, one needs only the direction of the altitude line in order 
to find its direction.  Its length is obtained most simply when one draws the unit segment 
1, which is chosen once, as the altitude of a right triangle and the distance a of two 
successive altitude lines as a hypotenuse section, while the other section of the 
hypotenuse is the length of the gradient.  However, being more accurate about the signs 
will give an accordingly simpler construction. 
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 In order to now distinguish between tension and compression, we appeal to a manner 
of presentation that will be of value to us for the transition to the one-sided polyhedra and 
which was also suggested by Runge on occasion. 
 We would like to start with a certain face of our two-sided polyhedron and perhaps 
paint its outer side white and the inner side red.  If we then travel over the entire 

polyhedron then we will once more come to a face 
that is already painted (inside as well as outside), and 
in fact, in the same color that we would now like to 
again bring to it.  The coloring of the individual faces 
is thus single-valued; each surface is white on the 
outside and red on the inside, and no matter how often 
we paint the outer or inner side of a face of the 
polyhedron, even for an arbitrary path, one and the 
same side will always be white, while the other one 
will always be red.  If we now consider the diagram 
that is the projection of this painted polyhedron then, 
when seen from above, the faces of the polyhedron 
above the spatial contour will project to white 
polygons, while the ones below the contour will 
projection a red polygons, and it will no longer be 
clear what we mean in this diagram by the terms 
“white” and “red” polygons, with no further 

assumptions. 
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 We can express our sign rule for rod stresses thus: If we come to a rod in a white 
polygon in the diagram then the vector of the reciprocal force plane will give us the force 
that acts upon the left part of the rod, while a red polygon will give us the one that acts 
upon the right part.  One can now easily find the tensions and compressions in our 
framework diagram.  As usual, the compressed rods are characterized by thicker lines in 
Fig. 9. 
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 4. How do the one-sided, closed polyhedra behave as stress surfaces?  Like Klein, in 
his aforementioned Annals paper, we take the polyhedron to be a pyramid that is erected 
over the free edges of a spatial Möbius band that consists of five triangles.  Its projection 
is the diagram that is depicted in Fig. 13.  The numbers that are set next to the six nodes 
give the z-coordinates of the vertices of the spatial polyhedron, while the ones in 
parentheses define the numbering of the nodes.  The planes of the polyhedron are: 
 
 a : 132 f : 136 
 b : 243 g : 356 
 c : 354 h : 526 
 d : 415 i : 246 
 e : 521 k : 416. 
 
The diagram has six nodes and fifteen rods, so there will be 15 – (2 ⋅⋅⋅⋅ 6 – 3) = 6 systems 
of self-stresses.  For a certain choice of the ordinates, we will once more select a certain 
self-stress.  Fig. 15 exhibits the spatial polyhedron, and in it – as in the remaining spatial 
figures, as well – the actual polyhedral edges that correspond to framework rods, as long 
as they are hidden ones, are indicated by dashed lines, while the hidden piercing edges 
are not indicated. 
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 The reciprocal plane – viz., Fig. 14 – can be constructed in precisely the same way as 
for a two-sided polygon, and a deviation from the usual situation first comes about when 
one determines the signs of the stresses. 
 If we once again begin to paint the polyhedron by starting with a face of it – say, we 
paint the upper side of the starting face white and its lower side, red.  We can then choose 
the manner by which the entire polyhedron is ultimately painted so that each face will be 
white on one side and red on the other.  We thus also get completely determined colors 
for the projections of the polygons, and can then distinguish tensions and compressions 



Pfeiffer – On the statics of planar frameworks. 8 

by our rules.  However, if we now wander further over our spatial polyhedron in a 
suitable way then that will show that we must paint surface pieces that we previously 
painted in one color with precisely the other color.  Naturally, that carries over to the 
polygons in the diagram, and our rules would now yield precisely the opposite sign for 
the stresses as they did before; i.e., we do not get a uniquely-determined sign for the 
stress. 
 This is the contradiction that one comes to when one considers one-sided polyhedra 
as stress surfaces.  As Herr Geheimrat Klein showed, one can avoid it when one extends 
the one-sided surface to a two-sided one by double covering, so, in particular, by adding 
an extension surface that has precisely the same vertices, edges, and faces as the starting 
surface.  One must then regard the given diagram as the double projection of this two-
sided surface, while the reciprocal diagram is the doubly-counted one-sided surface.  
Each polygon that projects to white as a plane of the starting surface will project to red as 
a plane of the extension surface, and conversely, and the determination of the sign of the 
tension in a rod by our rule will yield precisely the same compression in it, and thus, 
merely null stresses. 
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 5. We now come to the actual determination of the rod stresses that would 
correspond to certain self-stress state in our diagram.  From the discussion in the 
repeatedly-cited treatise, one achieves that by employing a two-sided polygon whose 
double projection is our diagram.  As was shown there, for any well-defined stress state, 
there is always a double polyhedron that has the xy-plane for its symmetry plane; we 
would like to choose a polyhedron whose vertices have the z-coordinates that are 
indicated for the nodes in the diagram of Fig. 17, moreover.  (Once more, the numbers of 
the vertices of the polyhedron are in parentheses.)  The polyhedral planes are: 
 
 a1 : 1′ 2″ 3′ b1 : 2″ 3′ 4″ c1 : 3′ 4″ 5′ d1 : 4″ 5′ 1′ e1 : 5′ 1″ 2′ 
 a2 : 1″ 2′ 3″ b2 : 2′ 3″ 4′ c2 : 3″ 4′ 5″ d2 : 4′ 5″ 1′ e2 : 5″ 1′ 2″ 
 f1 : 6′ 1′ 3′ g1 : 6′ 3′ 5′ h1 : 6′ 5′ 2′ i1 : 6′ 2′ 4′ k1 : 6′ 4′ 1′ 
 f2 : 6″ 1″ 3″ g2 : 6″ 3″ 5″ h2 : 6″ 5″ 2″ i2 : 6″ 2″ 4″ k2 : 6″ 4″ 1″. 
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The symmetry of the stress surface relative to the xy-plane corresponds to the symmetry 
of the reciprocal diagram Fig. 18 relative to the pole. 
 We now obtain two parallel lines in the reciprocal diagram for each rod of the 
diagram, and those two parallels will be of equal length as a result of the symmetry 
behavior of our polyhedron.  Our sign convention produces the same sign for the forces 
along these two parallels; the rod stress will be obtained by adding the two partial 
stresses.  (The compressed rods in the diagram are once more characterized by dashed 
lines.) 
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 6.  Here is a final remark on the reciprocal spatial polyhedron itself.  We have chosen 
the stress surface arbitrarily.  Naturally, it is easy to construct the spatial polyhedron, as 
was done in Figs. 11, 15, 19.  However, the points of the reciprocal polyhedron can also 
be obtained conveniently.  From the present reciprocal affinity, the relationship between 
the coordinates x, y, z of the initial surface z = z(x, y) and the coordinates ξ, η, ζ of the 
reciprocal surface is given by: 
 

ξ = 
z

y

∂
∂

, η = − 
z

x

∂
∂

, ζ = z − 
z z

x y
x y

∂ ∂−
∂ ∂

, 

 
so for the case of the plane z = ax + by + c = 0: 
 

ξ = b,      η = − a,      ζ = c. 
 
 The ζ-coordinates of the vertices of the reciprocal polyhedra are then simply the 
ordinates of the point of intersection of the planes in the starting surface that correspond 
to them with the z-axis. 
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 In Figs. 12, 16, 20, these reciprocal polyhedra are represented in skew parallel 
projection.  The planes in the starting polyhedron that are denoted by a, b, … always 
correspond to the points in the reciprocal polyhedron that have the same names.  The 
connectivity of the reciprocal polyhedron is very easy to see.  By contrast, the mutual 
intersections of the polyhedral surfaces are already rather complicated.  This is especially 
the case in Fig. 20.  On that basis, only the upper and lower parts of the polyhedron are 
indicated with the intersecting lines, while in the middle part, only the edges of the 
polyhedron whose projections are framework rods (with no concern for visibility or 
invisibility) are drawn.  The construction of the mutual intersecting lines meets up with 
no major difficulties.  One easily recognizes that each of the ten faces of the polyhedron – 
e.g., i2k2d1c1b1i2 – together with their intersecting lines with the other faces is represented 
in the accompanying figure. 
 
 Göttingen, 1 June 1909. 

___________ 
 

 
 


