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FOREWORD.

For quite some time, it was Plicker’'s goal to uniteo&lhis research on the line
structures that he introduced into geometry into one by that could be published.
Some previous papery have been only partially reproduced in it, but for thetrpast,
new and unpublished ideas were included in it. He was nategrais wish of seeing his
objective fulfiled completely, but the greater part lmf intended work had been
published completely and checked by him personally by ithe of his death. The
esteemed publisher would not like to see the scientifidigpdeprived of investigations
of such profundity for any longer than is essentiadl us, whereas the continuation of
the work should be accelerated as much as possible, baly those parts whose
publication were finalized under Plucker's own supervision aplpear. It contains,
along with the development of the general preliminaypcepts, the theory of linear
complexes, and then the beginnings of a comprehensivaythef second-degree
complexes, which Pliicker treated here for the firset{n). In the latter, he especially
concerned himself with a class of remarkable surfa¢esrder 4 and class 4 that he
called “complex surfaces,” and his methods afforded hiserdg&l assistance in his
research into their representation in terms of iimeiimodels {).

For the continuation of the work, only a small parth&f manuscript has been carried
out completely, in general; however, it is fortunabat Klein, who was, up to now,
Plicker’'s assistant in his physical lectures, which hadadly contributed to the
dissemination of the work in many way, and who wishedmake the spirit and
methodology of the examinations his own, was put inpostion of filling in the gaps in
the manuscript in the spirit of Plicker through his verd@mmmunications with the
deceased. One may then hope to see that everything [Eetedhin a way that is as
close as possible to the way that Plicker himself whale indeed wished and foreseen,
if — as has often happened for quite some time — theigation of death imposes the
apprehension that it would not be possible for him to cetaplork himself. These
continuations will be the subject of the further implabta¢gions of the theory of second-
order complexes in a way that is analogous to Pliickeesemtations on the theory of
second-order surfaces. Plicker’'s methods will thus benwess as faithfully as possible.
It will be left to a younger generation to exploit amége the rich abundance of thoughts
that Pliicker has generated in this, as in all of his ge@mavestigations, and in the
sense of newer methods.

Thus, the scientific public will turn to the currentoloas the legacy of a great
geometer, who, after his pioneering work in science irytisiger years, again turned to

() Phil. Trans., (1865), pp. 725, translated in Liouv. Jouseries 2, v. XI; Proceedings of the Royal
Soc. (1865); Les Mondes p. Moigno, Janvier, 1867, pp. 79; Adnadatematica, Ser. Il, t, 1, pp. 160.

(") Battaglini made investigations of these complexes asrmequence of Pliicker's work on first-
degree complex (Atti della Reale Accademia di Napoli, Nl. A series of Pliicker’s results are included
in this paper. Plucker found them by himself independemntigreover; his methods are completely
different, and more geometric, than the newer algebraicadgtthat are employed by the Italian school.

(" A large number of elegant models of this kind wenestmicted under Pliicker’s instruction by the
engineer Epken in Bonn.
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geometry at the end of his life, and developed new ide&sywuthful vitality, as he was
still gifted in old age with a new and large range otigi;mes, which owed so much to
his prior activities.

The publisher’'s wish, which made this project possiblenatg to give a true
expression of his admiration for the deceased throughdsistance in the publication,
likewise afforded me the welcome opportunity to recognizeiguaty the usual liberality
that the publisher has invested in the printing and endowofiehé book.

Giessen, 8 June 1868.

A. Clebsch.
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I ntroductory consider ations.

81
Coordinates of straight linesin space. Ray and axis.

1. We can regard lines from two different, but genermdjyivalent, viewpoints:

2. First, we can consider a line to be a geometric lo¢ymints— that is, as being
described by points; i.e., asay. In this way of looking at lines, we can work with point
coordinatesx, y, z, and, in a well-known way, represent a line by the egustof its
projections onto two of three coordinates pla¥gandYZ

X=1r1zZ+p,

(1)

y=sz+0,

from which, the equation for the projection onte third coordinate plan€Y will follow
immediately:

ry — sx= (ro— ). (2)
For the sake of brevity, we can set:

ro—-so =1, (3)
and let:

s p on 4)

denote the five coordinates of a line that we atarsio be a ray. As a consequence of
the relation (3) that exists between them, these doordinates will come down to four
constants that are required for the determinatfaheline.

For a line that goes through a given poxity, Z), one has:

X =rZ +p,
y =sZz+o.
From this, one gets:
_ X=X S:y—y
z-7' z-7'
_ Xz-xZ <= yZ-yz
z—-7 z-7
_ Xy - Xy




2 Introductory considerations.

Instead of the five coordinates (4) for the line, we ttake the followingsix, to which
we temporarily give an arbitrary sign:

*(x=X),  x(y-Vy), x(z 2 } (5)

t(yZ-y2, £(xz X3 =( xy Xy

Once we divide any five of the six coordinates by tikehsone, we will obtain values that

have a definite relationship to the representatioimes, and by means of which, we can
construct them. — In this way, the coordinate systermbsdome symmetric with respect

to the three coordinate axes. The condition equation:

X=X (yZ-y9)+{y-y) Xz-x9) + (-2 (xy —Xy) =0, (6)

exists between the six new equations, which is an igantrelation tox, y, z, X, Y, Z.
When we considex, y', Z, as well ax, y, zto be variable, a ray through two points

(x,y,2 and &, Y, Z), both of which are assumed to be arbitrary, will beweined. As

a result of this arbitrariness, this assumption willuee the six coordinates upon which

the positions of two points depend to four, which will bglda the determination of a

line.

3. Second, we consider a line to be enveloped by planesothte around it — viz.,
as anaxis in which all enveloping lines intersect. In order to esent a line in this
second sense by means of equations, we must make usaefcpbrdinates. If we take
the following equation for the three constants thatasgmt a plane in point coordinates:

tx+uy+vz+1=0 (7)

to be the coordinates of the plane then that will mdzat we are employing the
reciprocal values, with opposite signs, of the segmivats are cut out from the three
coordinate axes by the plane. The two equations:

t= pv+rr,
u=qgv+y,

(8)
when taken individually, represent two points ie tiwvo coordinate planesY andYZ
We can say that the system of both equations repieshe line that connects the two
points: i.e., aay. The equation:

pu — qt= (px — a7, 9)

which derives from equations (8) when we elimindte variablev, represents those
points at which the third coordinate plaXey will be cut by the same line. In a
completely analogous way to how we previously rdgdrr, s, g, p, n as the five
coordinates of a ray, when we set, for the sakeefity:
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pY— 7= @ (10)
we can now take:

P, qQ, 77 x, W

to be the five coordinates of the line that is consdiévebe an axis.
If we denote the coordinates of a given plane that uwesigh the axis by, u', v
then that will give:

t=pv +71
u=qVv +)y,
and that will yield:
ottt _u-u
vV TV
t'v—tv _u/-uv
= : X= ,
v-V v—-V
_tu'—-tu
v-V

Thus, we can also take the followisix coordinates:

+(t-t'), +Uu-u), *(v-V), } (12)

WV -UY), +(fv- 1Y), *£(ti- t)

for the determination of axes, instead of the previous (fidg, if we temporarily leave
the sign undetermined. Once we divide any five of tkeseoordinates by the sixth one,
we will obtain expressions that can serve for the coasbn of lines. The following
identity regarding, u, v, t', U, V' exists between the six new coordinates of an axis:

(t—t) (uv —dv) + (U—d) tv—1tv) + (v—V) (tuV — tu) = 0. (13)

If we regardt’, Uu', v, as well ag, u, v, as variables then a line — in the sense of an-axis
will be determined by any two plandsy, v) and ¢, u’, V') that intersect in it.

4. If the same line is first determined asag and then as aaxisthen any of the two
points &, y, 2 and &, y', Z) by which the ray is determined must lie in each of {hags
(t, u, v) and ¢, U, V) that serve to determine the axis, or, what meansdhee thing,
each of the two planes must go through each of thepowats. We will obtain the
following four equations that correspond to them:

tx+uy+ vz+1=0,
tx+uy+vz+1=0,
tX'+uy +vz+1=0,
tX +Uuy+vz+1=0,

(14)
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which include the condition that the ray that is deteadiby the six coordinates (5) must
coincide with the axis that is determined by the six coatds(12).
From the first and last pairs of equations in (14plibfvs that:

t-t)x +u-dy+Wv-v)z =0,
t-tO)xX +u-dy+v-v)Zz =0,

and from this, when we eliminate € V) and (1 — U) from them:

-Xz=x9)(t-1t) + (yZ-y2)(u—-u)
Xy —=Xz)(t-t) + yZ -y2)(v-V)

01
0.

These equations may be solved as proportions, which armatzed in the following
expressions:

t-t):(u=-u):(v=V)=(yZ Y2 : Xz—x2Z) : (xy —XY). (15)
The second and fourth of equations (14) followsrftbe first and third ones:

X=Xt+y-y)u+(@z-2)v=0,
X=Xt+y-y)u+@z-2)v =0,

and from this, when we eliminate € Z) and ¢ —y') from them:

—(tv-tV) (x=X) + U —-uv) (y-Yy) =0,
tu —tv)(x=X) + (uv —Uv) (z—2 =0.

These equations may be solved as the followinggtmms:
X=X):(y-Y):Zz-2)=@uV-Uv):({tv-tv): ({tu —tu). (16)

If we finally eliminatex from, say, the first two equations in (14) atdrom the last two
then that will give:

-ty +tv-tv)z+@t-t) =0,

tuv-tyy +{tv-tv)z+@t-t) =0,
and if we then, in turn, perhaps eliminater ¢ tV) from these equations then that will
give:

(U —tu) (yZ-y9) =t - t) (z-2),

th —-tuy:t-t)=@2z-2):(yzZ-y2. a7

from which:

This new proportion links the expressions (15) é@), and thus leads to the following
general summary of equal ratios:

X=X :(y-Y):(@z-2):(yZ-Y2):(Xz—x2Z):(Xy —XY)
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=uv/-uv):({tv-ty):(tu-tuy:t-t):u-u): (- V). (18)

We would like to take the signs of the six coordinatdsclvremain undetermined, in
such a way that they appear in the foregoing proportidims will be necessary for us
later when we apply the same coordinates to the dietation of forces and rotations)
When we restrict ourselves to the consideration ae®ihere, this assumption will mean,
in fact, that the six coordinates (5) are the threeeptmns onto the coordinate axes and
the three doubled rotational moments that relate tsetlsame forces whose point of
application is X, y, 2), and whose intensity equals the distance between thisgq y, 2)
and ', Yy, Z), and which is directed from the first point to thes® one.

5. In the summary (18), the conditions are obtained bylwaitne (as a ray and an
axis) will be represented in the double coordinate determmatibwe go back to the
original five ray coordinates and the original five axagalbrdinates then (18) will be
converted into:

r: s: 1: 0. p: ((ro—-sp)=n) (19)
= —x: m (pY-gn=w): p: Q 1.
We retain the negative signs forand y, since this is required for the symmetry of the
coordinate determination that relate<)a.

6. We can regard the proportions (19) as being ddrfvtom the proportions (18) by
dividing the first terms in the one by £ 2) and the last terms of the other lw-«V).
We can determine the two divisors in a way thaisipletely arbitrary and independent
of each other. We can then, in turn, multiply tingt terms of the proportions (19) by an
arbitrary quantityh and the last terms by an arbitrary quanititgnd we can take these
guantities to be imaginary (confer the followingnmaer). The five absolute coordinates
will then be, on the one hand:
rs_opn (20)
h h h h
and, on the other hand:

X T w pq (21)

The equations of the three projections of the l{i¢sand (2) will then be:

hx=rz + p,
hy =sz+ ¢,
h(ry —s3 = (ro—s0) = 7. (22)

() Cf., “Fundamental views regarding mechanics,” Ph#niBactions (1866), pp. 361, 369.
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The equations of the three points at which the coorelipiines of the line are cut — viz.,
(8) and (9) — take on the form:

It=pv+ 7z
lu=qv +y,
l(pu—-a=pPx-o7=w (23)

7. Areal line may be determined by two imaginary pointsyel as two real ones.
In order to also include this manner of determination, walavlike to determine the two
points &, y, 2) and ', y', Z) in the following way:

x=xX+ix, X=xX-ix,

y=y+iv, Yy=Y-iy, (24)
z=2+iz, 2= 2- i

where we leti denote unity orv/-1, according to whether the two points are real or
imaginary, resp.. The six ray coordinates (5), mvtaken with the correct sign, will then
become:

2ix,, 2y, , dz,, } (25)

2,2 - ¥'2), 2i(Xz-x%2), 2{x9- %y

Since only the quotients of any two of their siominates come into consideration in the
determination of a line, we can omit the real oagnnary factor Pthat appears in all of
the foregoing expressions, and then obtain thewollg expressions for the six ray
coordinates:

X, Yo 2, (oZ-Y2), K2-%7), &Yy -xy). (26)

The determination of the line by means of the qitiaat’, y°, 22 andxo, Yo, zo is therefore
always real. The?, \°, 2 are the coordinates of the (always real) meahefwo real or
imaginary pointsx, y, 2 and ', y, Z) through which the line goes. The distance from
one point to another igi/x; +y. + z. , and the cosines of the angles that the line to be

determined makes with the coordinate a®es OY, OZ behave like : yo : 2o, resp.

The considerations of the previous number areechaver immediately to the case in
which we regard the line as an axis, instead @yaand thus determine it by planes. If
we set:

t=t2+it,, t'=t°-it,,
u=u’+iy, u=d-iy, (27)
v=V+iy, Vv=V-iy

then we will obtain the following for the new axisordinates that correspond to the ray
coordinates (26):
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to, Up, Vo, (Uo V0 — U0 Vo), (to Vo — to VO), (to U0 — to Uo). (28)

8. If the new coordinate determinations (26) and (28) arelade to the same line
then one must have:

% Y%t m H(wE2- Y ilkeE ¥ XY XY (o)
=V - W) (Py-pY) (pd-f b sy Y

9. In the foregoing, we have determined lines by point-paidspdane-pairs, and for
them, we have taken conjugate imaginary points and plassh leaves the coordinate
determination real. However, we can also bring imagitiaes under consideration by
means of their imaginary coordinates, which we will noirgo here.

10. We can finally give the six coordinates of a lingvhether we consider it to be a
ray or an axis- a general form if we determine the points and planes wjoch its
construction depends, not, as before, by three coordjnaté by four coordinates now,
in the well-known way. We would thus like to take the damates of the previous two
points and planes to be:

!

XY, 7T, X, ¥,zZ, 1
t,uv,w, t,u,Vv,w,

resp., which comes down to exchanging:

XY, Z, xX,Y,Z
with

Xy z Xy Zz

r'r'r’ '
resp., and

t,u, v, t,u, Vv,
with

tuyv t u v
ww woww w

resp., in the previous developments. After this exgbarwe will obtain the ray
coordinates for the determination of the line:

xr-x9, yr-yn, @-zZ7n, yZ-Y2, Kz-xZ), &Yy-Xy) (30)
and the axial coordinates:

(uw-uv), tv-tv) tu-tu, tw-tw, Uw-uw), vVw-Vvw), (31
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where we have dropped the factor a7/ from the first determination and the factor 1 /
ww from the second.

For the sake of the geometric construction of the I e considered to be a
spatial element in the foregoing investigations, we metsirn from its coordinates to the
four constants upon which it depends in any case. Forthieigjew expressions for the
coordinates offer a greater number of constants tfefreely at our disposal, and herein
lies their advantage over the coordinates (5) and (128)ddx their greater degree of
symmetry.

o8]

Figure 1.

11. For greater ease of imagination, we would like tartjesummarize everything
that relates to the construction of a line in the degblordinate determination.

We would like to take the following equations for thesthprojections of the line to
be determined ont¥Z XZ, XY:

hy =sz+ g,
hx =rz + p,
ry—sx:%.

Let them be represented in the accompanying Figure 1 WindsDE, FG, HI. Let the
equations of the three points at which this line cutstioedinate planes be:

lu =qv+y,
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It =rz+7m1

pu — qt:cl—‘).

The three points that lie on the three projectidis FG, HI areA, B, C. The coordinates
of an arbitrary poinM that lies in the line are:

X =MP, y =MQ, z=MR,
and the three coordinates of an arbitrary plEd® that goes through the line are:

S R R
oT’ ou’ oV
We can determine the coordinates of the three paing C in the double way: on the
one hand, by its equations, and on the other hand, by dqhatiens for the three
projectionsDE, FG, HI, when we set the relevant point coordinates in theml ¢guaro.
In this we way, we will come to:

z=1A=0G=+1=-~
r
A f
y=GA=Ol=-—=+,
X hr
z=HB= OE:+£:—£,
B 7 S (32)
x=EB= OH=-—=-L,
77T hs
y=FC=0D=-P =17
C w h
x=DC=0OF=+9-4,2
w h

Likewise, we can determine the coordinates of the threjectionsDE, FG, HI, once, by
their equations, and then when we set the relevant éinedmates equal to zero in the
equations of the points, B, C that lie on them, and thus obtain:
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1 S n
v=———= +—= —,
OE o p
DE
1 h w
U - =-—= +_l
oD o Ip
FG £ A (33)
(- L_h_ o
OF p g
u= —é = —m = +Il,
HI 7
1 hs_
t=—=t+—=+—,
OH n t
From the foregoing summary, we shall derive just thleviang relations here:
+§:+E:tanDEZ, +%:—Il: tanFGZ ,
“ “ (34)
+i:—_:tanAOZ, +i:——: tanBOZ
ho q o p

12. The coordinates of a point and the coordinates ofr@eplall change when the
coordinate axes that mediate their geometric constructhange their position and
direction. The old coordinates will be linear functaf the new ones, which include as
constants those quantities by which the position of iber coordinate system is
determined when compared to the old one. The same thidgbevitrue for the
coordinates of the line, whether we consider it to keyar an axis.

We would like to begin with the ray coordinates, forahhiwe would like to take the
Six quantities:

X=X, X=X, X=X yX-Yyz, Xz-xZ, xy —Xy.

After a parallel displacement of the coordinate axhs, first three coordinates will
remain unchanged. We denote the coordinates of the migiw by x°, y°, 2, and in order
to distinguish the new coordinate values, we use bold-taqe,swhich yields:

Yz -yz)=(yZ-y3+ y(z 3- 4 y 'y
(Xz-xZ)=(Xz-x2)—- R( = 2+ 4 % '% (35)
0y =xy)=(xy = XY+ X(z - % x %

and from this:
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(YZ-¥2=(yz-y'2)- Y(z-2)+ 2(y-Y),
(Xz- x2)=(Xz-xZ')+ R(z-Z')- 2(x-X), (36)
(xy = Xy = (xy'=xy) = X(y —y) + Y(x-X),

where & — X), (y —¥), (z— 2) are identical withX —x'), (y = V'), (z—2). If we taker, s,
o, p, n to be the original coordinates and denote the new acwied byr', s, ¢, 2, /7
then we will obtain:

!

r=r', s=s,

o=0+y°-2%,
o=p+xX°-2r,
n=n-xs+yr

(37)

immediately from the last equations.

13. The transition from one coordinate system to agrotime in which the direction
of the coordinate axis is different can be decomposedtima® individual steps. For
example, in the simplest case, where a rectanguladicabe systenXYZassumes any
other attitudeX'Y'Z' by rotation around the origin, we would like to first atat the
original coordinate systeiXYZaround the axi®©Z in such a way that, after rotation, the
coordinate planeXZ will go through the position of the new ax®Z. Second, after
completing the rotation arour@Z, we would like to rotate the coordinate system around
the axisOY in its new attitude in such a way that the two a@&sandOZ will coincide
in the XZ-plane. Third, all that remains is to rotate the sysdeoundOZ in such a way
that both axe®©X andOY, which were brought into the coordinate plat¥¢ by the first
two rotations, will coincide witlOX andOY. The three angles of rotation, from which
the attitude of the new axes are determined with redpethe old one, appear as
constants in the relevant conversion formulas forctdwdinates of the points, plane, and
lines. We would like to compute these angles once andlfon the sense that is
appropriate to how things happen for rotational moments. fiomOX to OY, from QY
to OZ, and fromOZ to OX.

If OZ preserves its position, while the two ax@X and OY in the XY-plane rotate
arbitrarily aroundOZ, and in their new positionr@X andOY they define two angles
and ¢ with OX in the original position, then we will obtain the léaVving relations
between the old point coordinatesy, zandx, y', Z and the new ones, which we would
like to denote by, y, zandx', y', Z':

X cosa +Yy cosa,
X' cosa +y cosa,
X sing +ysind,
X
Z,

X X

sing +Yy'sind,
zZ=Z,

N < <
1
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and from this:
(x=X) =

(y-y)=

Introductory considerations.

(x=x)cosa + (y-y')cos' ,
(x=x)sina + (y-y')sina’,

(z-2)= (z-2),
(yZ- Y2 =-(Xz-xZ')sina + (yz' -y'z)sina’
(Xz-x2)= (xXz—-xZ')cosa - §z'-y'z)cosr' ,
(xy =Xy = (xy'=xy)sind,

(38)

if, for the sake of brevity, we set:
a-—a =9

If we take the five coordinates s, g, p, n andr’, s, ¢, g, 17 in place of the six ray
coordinates in the two systems then we will immedijjatebtain the corresponding
equations from the foregoing ones:

r =r'cosa +s' cosr' ,
s=r'sing +s sina’,
o=0'sina+ao'sina’, (39)
p=p cosa+o coxr' ,
n=n'sing.

In particular, if the new axe®X andQOY are also perpendicular to each other then that
will make:
r =r'cosa -s' cosr ,
s=r'sina+ssina,
o=0'sina +o'sina, (40)
p=pcosa-o cowr ,
n=nm.

If, instead of rotating the two ax€X andQY, we rotate the two ax&3X andOZ around

O in their plane and let by and y denote the angles that these axes make in their new
positionsOX andOY with OZ in the original position then we will obtain the @Aling
equations in order to express the six old ray coordinatesrms of the new ones by a
mere change of notation in equations (38):
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(x=X)= (x=X)siny + (z-2")siny,

(y=-y)= (y-vy),

(z—=2)= (x—-x)cosy+ -7 )coy , (1)
(YZ-Y3= (yz-yz)cosy- &y’ -Xy)coy ,
(Xz- x2) = (X'z—xZ')sind,

(XY =Xy ==(yz' -y'z)siny+ (xy' -xy)siny ,

where we have set:
y—-y=7%,

for the sake of brevity. From this, when we, in turnoger to the five ray coordinates,
we will get:
[ = r'siny + siny
r'cosy + coy’
S’

S=— ;
r'cosy + coy
o'cosy +n' co

o= LSO+ Y (42)
r'cosy + coy
o= p'siny
r'cosy + coy’
_o'siny +n'siny
r'cosy + coy

from which, we will further have:
P_P sing,
S

!

S

In particular, if the new coordinate ax@X andOY are perpendicular to each other then
the foregoing equations will be converted into the folloyvones:
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_r'cosy+ siny
-r'siny+ cosy’

!

S
S° -r'siny+ cosy’
o= o' cosy-n' coy
-r'cosy+ coy
= P
-r'cosy+ coy’
og'siny+n' siny
-r'siny+ cosy
P
S

(43)

nld I

If we rotate the axe®Y and OZ aroundOX then we will obtain the corresponding
conversion formulas immediately by a change of nmtathot only for the case of six,
but also for that of five coordinates, when we stathviermulas (42), as far as the latter
is concerned. Thus, it would seem unnecessary to writen db® new formulas.
Meanwhile, it must be remarked that in this exchangedtation ofOZ to OY will thus
be directed in the same sense as the angle whoseamgdric tangent was denoted oy
in the basic equations (1). Should this rotation be takémeirsense established above —
i.e., in the sense of the rotational moment ali@Xit then that would likewise yield the
reduction to it.

14. We can also go directly from the five ray coordinatethe first system to the
five ray coordinates in the second one. L&} p, g, n be the coordinates of a line in the
first coordinate system, so:

X=rz+p,
y = szt 0, (44)
ry —sx=n

are the equations of their projections.r,I§, g, ¢, 17 are the coordinates of that line in
the second coordinate system then the equations ofttihe@ projections in this system
will be:

X=r'z+p,
y=sz+0, (45)
r'y-s'x=n.

If the new coordinate axes are parallel to the olds@mel carry the displacemedity®, 2
alongOX, QY, OZ resp., then one will have:

x=x=xX, y=y—y, z=z-7.
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Hence, the last three equations will be converted into:

X=r'z+(@+xX-r2),
y=sz +(d +y’—-5 ?),
ry-sx= i +ry’-sx,

and thus these equations will become identical to equa{#4), which will yield, as in
numberl2 (37):

r=r, S=§,
p=0+xX -r2,
o=0+y -s72,

n=n+ry -gx,
If, as in numbed3, we rotate the axg3X andOY aroundO in their plane then when we
set:

z =12

X =XCcosa +y cosd,

y =xsinag +ysing
the first two equations in (44) will go to the following ones

X Ccosa +ycosad =rz+p,
xsing +ysind =sz+o.

Starting from these equations, if we, in turn, @et a = J then that will yield:

rsinag’ —scosr’' ;4 psina' —o cox’

sing sing
_rsina —scosx , - psing —o coxr
sing sing

which, when we make them identical to the first twoeqtiations (45), will give the
following relations:
r'sind = rsinag —scosda,
-ssind = rsind —scosa,
g sind= psing - ocosd,
—-osind= psinag - ocosd,

and it will then follow, in agreement with the equatidB9), that:

rsinag +¢s cosd,
rsinag +ssind,
g cosd + o cosa,
o= gsind +dcosa,

IS
I
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and:
n=rnsind

Formulas (42) may be derived in the same way.
15. As a consequence of the proportions (19), we can idesderive the conversion

formulas for the axial coordinates of a given line fran@ formulas that were developed
for the conversion of ray coordinates for it. If Wenote the axial coordinates in the

original system by:

P, q Tx W
and in the new system by:
P.q, 71X, W,
then:
g . g
p :——’ p = - —
7 7
q = B, q = ﬁ
7 7
m= E, 7t = i
7 7
r r'
X =—-—, X:— —,
7 7
w = i, W= i’
7 7

If we then preserve the direction of the coordirsates and put the origin at any poixt,
y°, 2) then equations (37) will give:

_P-Yu+ 27
1_X077l_yOXI !
_q+Xd+ 2%
1-xX°7 - y°x'
Vs
S LA— 46
d 1-xX°m - y°x’ (46)
_ X
X 1-xX°7 -y
o

W=——F".
1_X077.l_ yOX’
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If the axesOX andOY are rotated in their plane in such a way that in thew position
they define the angles and &', resp., withOX in the original position then equations
(39) will give:
_ p'sina’ - sina
sing
_g'cosa’'-p cowr
q-= .
sing
ﬂ:n’sma.—)( sina
sing
_ x'cosa' -7 comr
sing

(47)

o

"S5
If we finally rotateOX andOZ aroundO in their plane then, if we preserve the previous
notations, equations (42) will give:
_ p'cosy— coy/
~—p'siny+siny’
q'sind'
C—p'siny+siny’
m
—p'siny+siny’
_x'siny —wsiny
~ —p'siny+siny
o
-p'siny+siny

w=

8§ 2.
On complexes and congruencesin general.

16. If:

x=x) :(y-y) :(-y) (Z-Yy2d :(Xz-Xxy):(xy —XYy)
= (Uuv=uv):(tv-tv) (U —-tu:({t-t) u-u) (v-Vv)

then the ray coordinates:
x=x) y-y) :-y) :(Z-y2 :(Xz-xy):(y -Xy)

and the axial coordinates:
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(uv—=u'v) : (tv—-tv) :(tu —t'u): (t-1t) u-u) (v-Vv)

will belong to the same line. As a result, the sdimes will also satisfy the following
two equations in their ray and axial coordinates:

FIx=x): (y=y): (y-Y) : yZ -y : Xz=-xy) : Xy —Xy)] =Qn =0, (1)
Fl[(uv=uv) : (tv—-tv) : (tu —t'u) : t-t) :u-u) : (v-V)] =d,=0, (2)

if F denotes the same homogeneous function of the currecb@idinates. We say that
the totality of all lines whose coordinates satisfyhrshomogeneous equations defines a
complex We distinguish complexes by theiegrees nwhich we take to be the degrees
of their equations. Any line of the complex can be mége as a ray or axis; thus, the
second type will necessitate that a line complex bessepted by equations of the same
degrees:

which follow from each other immediately in a recipabway.

17. In equation (1), which might be homogeneous of degréegeneral, the lines of
the complex are determined by any two of their poiris/,(2) and &, y, Z). If we
consider one of these points,(y, Z) to be given then equation (1) — when we regard
Yy, Z as constants, but y, z as variable, as beforewill henceforth represent only such
lines that go through the given point and will thus defin@"order conic surface that
has its vertex at the this point.

18. Equation (2), which we, in turn, would like to take to Wt tgeneral
homogeneous equation of degreewill determine the lines of those complexes by way
of any two planest(u, v) and ¢, U, V) that intersect in them. If we consider one of
these planed'( u’, V') to be given then equation (2), which represented th@leoxmp to
now, will henceforth represent — when we consttler, v to be constant, butu, v to be
variable now — only the lines of the complex that liedasf the given plane, and thus
envelop a curve of classin it.

19. In the previous two numbers, we have proved the followhiegrem:

For a complex of degree n, the lines that go through a given point of spiate ae
conic surface of order n.

For a complex of degree n, the lines that lie in a given plane trdiaisn through
space envelop a curve of class n.

These two theorems each include the general geometinatida of a line complex
of degreen. Either of the two theorems is a necessary consequétioce other one.
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We can thus group the lines of a complex together inualdavay: Once, in such a
way that they define conic surfaces and each point of 9pdhe vertex of such a conic
surface, and then, in such a way that they envelop cang®ach plane through space
includes such a curve. The degree of the complex is tex of the conic surface, as
well as the class of a plane curve. Thereforena domplex of degree will also be
regarded as a complex nf-order conic surfaces and as a complex of plane cufes
classn.

20. The lines of two given complexes that coincide defineomagruence Their
coordinates simultaneously satisfy the equations of bothplexes, which we, by the
application of five ray coordinates, would like to reprédsnthe general equations:

Qnm=0, Q, =0, 3)
and by the application of five axis coordinates, in thienfo
&, =0, ®,=0, 3)

wherem andn denote the degree of the two complexes.

mn lines of a congruence go through each point of space, vanetihe lines of
intersection of two cones of orderandn, resp. mnlines of the congruence lie in each
plane drawn through space, which are the common tangetw® curves of class and
n, resp.

The lines of a congruence belong to infinitely many cexgd, which, when we
denote an undetermined coefficientywill all be represented by either the equation:

or by the equation:

We say that all such complexes define a two-paramebeipgrf complexes. Each of the
latter equations that represent such a group is the symbmlcohgruence and, in a
certain sense, the equation itself.

21. Congruences are classified by the number of their timgsgo through a given
point, or which lie in a given plane. This numbernsthe foregoing:

mn= k.

All complexes that belong to a given congruence aregeneral, of equal degree.
However, when the degrees of these complexes do nfiiromto the general case, one
can find one of them whose degree is lower. This akétplace in the case of equations
(5) and (6), in which, whem > n the degree of the complex will log in general, but for
special case in whicm becomes infinitely large, it will reduce o
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The congruences in which the number of lines that go thrawg¥en point or lie in a
given plane- which amounts t& — define as many types of coordinates as the number of
ways that the numbdercan be decomposed into factorsandn; thus, wherk is a prime
number there will be only one of them. Therefore derote the type of a congruence by
the symbol:

[m, n. (7)

22. The ray or axial coordinates of those lines thatwkaneously belong to three
complexes will simultaneously satisfy the correspngdiequations for the three
complexes, which we would like to represent by either:

Qm=0, Q,=0, Qg =0, (8)
or by:
&, =0, &, =0, ®_=0. 9)

They will thus be subject to three conditions. Siacéne is determined by its five
coordinates, it will follow that each of these cooadés is a function of the other three,
or — what amounts to the same thingach of the coordinates is a function of a variable
that is assumed to arbitrary. Having later developmantsnd, we take that variable to
be time, such that the foregoing can be expressed hygstoat the line in question will
generate a surface when we let time vary continuouge would like to call such a
surface that is generated by the motion of a line —riggahe trivial case of skew
surfaces — aay surfaceor anaxial surface and when we consider these expressions to
be synonymous such a surface will also refer to a ruiddce.

The coincident lines of three complexes define a ray or axial surfac

A ray or axial surface simultaneously belongs to allgleres that are represented by
each of the two equations:
Qm+ U Qn+ ' Qq=0, (10)
O+ (P + ' g =0, (10)

when  and 4" mean undetermined coefficients; it belongs to each congeuthat is
determined by any two of these complexes. We say that tile complexes that belong
to a given ray surface define a three-parameter group gfleses that is represented by
the foregoing two equations.

If we consider th&,,, ®,, ®yto be functions of the five ray coordinates, p, g, 1
then we will obtain the equation of the ray surfacep@int coordinates, y, z when
eliminate the five ray coordinates from the three equat(8) and the following three
equations:

n=ro—,
X=rz+p,
y=sz-o.
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The resultant equation iy, zis of degree &ng in general.

If we consider th&n,, ®,, ®yto be functions of the five axis coordinates), 7z ), w
then we will obtain the equation of the axial surfacplane coordinates u, v when we
eliminate the five ray coordinates from the three equat(9) and the following three
equations:

wW=pxy—or
t=pz+7
u=gqv+y.

The resulting equation will be of degremr2g in general.
A ray or axial surface is of equal order and class, in general.

Ray surfaces of a given order and class may be arrangedlifferent coordinate
types. These types are obtained from the degree ofaimplex that determines the
surface. If we denote the order and class of the subfa@ then the number of such
types will be equal to the number of possible decomipasitof A into three factors. |If
we takem, n, g to be any such functions then we can denote thedfyfiee surface more
precisely by the symbol:

[m, n, g].

23. Four complexes have only a finite number of linesommon. If the degree of
the four complexes i, n, g, h then this number will amount to:

2mngh

which will follow immediately when we determine thed coordinate values from the
four equations of the complex and either the equation:

n=ro-s
or.

w=py - o7
resp.

24. Plane curves are determined by either their pointher tangents. Two such
curves have a certain number of intersection pointcantnon tangents. If we go from
the two dimensions of the plane to the three dimensidérspace then we will elevate
ourselves from plane curves to surfaces, which arerdeted by either their points or
their tangential planes. Two surfaces intersectdpadial curve and will be enveloped by
a developable surface; three surfaces have a certain nawhbgersection points and
common tangential planes. From surfaces, we ascetahtplexes that consist of lines,
which we can, on the one hand, consider to be rags,cemthe other hand, as axes. The
lines that agree in two complexes — in which the two dexgs intersect in some fashion
— define a congruence, and those that belong to threelemssimultaneously define a
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ray or axial surface. Four complexes likewise corredgononly a certain number of
rays or axes.

There is an analysis of two variable quantities tlaat lme represented in a plane and
an analysis of three variables that can be picturegaoes The analysis of four variables
finds its visual representation when we give these vadabte meaning of line
coordinates.

25. With this, we have reached the limits of the deverlept in the present volume.
However, the path to new generalizations has beeratediti We can add a fifth
independent coordinate for the line to the four. Heregmee more encounter coordinate
relationships that correspond to the way that we éostsidered the line to be a ray and
then as an axis. If we take the fifth coordinate inftiener way of looking at things in
four coordinates to be one of the quantities for a gssgment that we will either apply
arbitrarily or at a given point then we will have thdstermined a force. Its five
coordinates are its intensity and the four ray coordinateéhe line along which it acts.
The symmetry and simplicity of the representation reqthiat here, instead of taking the
four independent ray coordinates, we also take the fivedowdesr, s, p, g, 1, between
which the relation exists that:

n=ro-sp,

and which we derive from the six coordinates of the when we divide five of them by
the other one. However, we have already occasipsabssed that these six coordinates
refer to the projection¥, Y, Z of an arbitrary force that acts along the line orite t
coordinate axes and the twice the moméntsi, N of this force in relation to the same
axis. If the magnitude of the force is given then ¢hgaantities, between which, the
relation exists:

X-L+Y-M+Z-N=0,

can be regarded as the six coordinates of the force. e ga@ordinates that take on
only relative values for rays will take on absolute valte forces. Ray complexes will
be represented by homogeneous equations in the six com@ege®rce complexes, by
general equations.

Just as we can represent a force, when it is condiderbe a ray, by a line and by
two points that lie on it, so can we represent atiootaexpressed more precisely, the
other type offorce that brings about a rotation) by a line, considered tarbaxis, and
two planes that go through it. When we then exchangpdim coordinates with plane
coordinates and correspondingly, ray coordinates with axiatdinates, the six force
coordinates:

X, Y,ZL, M, N
will go to other expressions:
X, 9,3 £ MmN,

between which, the relation will exist:

X L2490 M+3-N=0.
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These six expressions determine a rotation and are riegheded as the six coordinates
of this rotation. As a consequence of the latter ¢mmdequation, they reduce to the five
independent coordinates for it. These coordinates, whigeps®nly relative values for

axes, take on absolute values for a rotation. Homogereguetions between the six

coordinates of a rotation represent axis complexes, wioilehomogeneous equations
between the coordinate represent rotation complexes.

However, whereas rays and axes are identical, incdnthemselves, forces and
rotations, in turn, are placed next to each other in athatyis analogous to points and
planes. The principle of reciprocity finds the sameliegpon to forces and rotations as
it does to points and planes. However, the transftimm the three coordinates of points
and planes to the four coordinates of lines is entiretylai to the transition that we
make when we go from the five independent coordinates cddand rotations to the six
independent coordinates @ynames

By the term “dyname,” | am referring to the cause ofdmtrary motion of a rigid
system, or, since the nature of this cause, like thereaf a force itself, eludes our
understanding, the motion itself: i.e., not the cause, tbe effect. Since both are
proportional, in the mathematical representation thi$ @ame down to replacing an
ideal unit with a concrete one. — Arbitrary forces armdations, when they act
simultaneously, may be reduced to two forces, as wela rotations, in an infinitude of
ways. We can therefore regard a dyname in two wayselisas determining it in two
ways: On the one hand, by two forces and on the otned, by two rotations, and this
corresponds to representing, on the one hand, the caesliobtwo forces, and, on the
other hand, the coordinates of two rotations, respegtivel

However, the six coordinates of a dyname are the sam@antities:

X, Y, Z L M, N,
or.
X9,9,3 8MN

that originally served for the determination of lines fes, when we assigned only
relative values to them and between which a condéguration was imposed. They will

then serve for the determination of forces and ratatiwwhen give them absolute values,
under the restricting assumption of the condition eqoatiwhen this condition equation

is removed, they will become the coordinates of a onaFor a given dyname, the six
coordinates will take on absolute values, and converdehlg assign arbitrary values to

these values, they will determine a dyname in a limesy.

Just as the reciprocity between points and planegdaddr a line, so is the reciprocity
between forces and rotations true for a dyname. Weegmesent a line complex by one
equation in a two-fold coordinate system, just as werepresent a dyname complex by
one equation in a two-fold coordinate system. The pregest both complexes are dual,
in an analogous sense.

In the foregoing reasoning on coordinates, an internegassibility still remained
unconsidered, that involved the case in which the six ccatenin question are not
subject to the restricting condition, are assigned ondative values, and
correspondingly, we let homogeneous equations entelade pf the general equations
that represent dyname complexes. Mechanics, in phatiovould then disappear, and,
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to confine myself to a brief suggestion: Geometric stmest would appear that would
have the same relationship to dynames that lines dodesf@nd rotations.
The foregoing considerations find their completion in dyes.



Chapter One

First-degree line complexes and their congruences.

81
First-degree line complexes.

26. If we take the general homogeneous equation of thedfgtee in terms of the
six ray coordinates:

x=x), &-Y) @-2), (Z-y2, Kz-xZ), XY -XY) (1)
to be the following one:
A(x—X)+B(y-Yy) +C(z-Z) + D(yZ —y'2 + E(Xz—x2) + F(xy —XYy) =0, (2)

in order to represent a complex of first degree, thenwill simultaneously obtain the
representation of the same complex in terms of xfed @oordinates:

(t-t), @U-u), v-Vv), @-uv), tv-tv), tu-tu 3)
in the following equation:
Dt-t)+E(u—-u)+F(Nv-V)+ v -uv) +B(t'v-tv) + C(tu —t'u) = 0. (3)

In order to go from one of these equations to the ather we must only exchange the
point coordinates, vy, z X, Y, Z with the plane coordinatasu, v, t', U, v, resp., and
likewise exchangdé,B, C with D, E, F, resp.

If we take the five coordinates:

r.s g p1n, ()

instead of six coordinates (1) and (3), then, from Bad3, equations (2) and (4) will
go to:

Ar+Bs+C-Do+Ep+Fn=0 (7)
and ():

() We cannot avoid distinguishing one of the three coordiasés in the analytical representation of
the lines. In establishing equations (1) and (2) as tidafuental ones, we have cho§®afor this axis, in
order to make everything that relates to this axis symeriatthe angle between the two plan&andYZ
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Dp+Eg+F—-Axy+Bm+ Cw=0. (8)

27. We can develop both equations (3) and (4), which représesame complex, in
the following way:
(A + Fy -EZ) x
+(B - FX +DZ)y
+(C + EX-Dy)z

+ (AX +By +CZ) =0, 9)
and:
(D + Cu-BV)t
+(E - Ct +AV) U
+(F + Bt —AuU)z
- (Dt +EU +FV) =0, (10)
resp.

If we first let &', y', Z) be a given point, and we then consider/, Z to be constant
in (9), whilex, y, z are variable, then this equation will represent a plaaeely, the
geometric locus of arbitrary points of the rays thatlgough the given point; in other
words, the geometric locus of these rays themselvis. equation will be satisfied if we
replace the variable quantities with the coordinateshefgiven point; the respective
plane will go through that point. Each point of spadéthen correspond to a plane that
contains all of the lines of the complex that go throtg$ point.

If we next let the', u', V' in (10) refer to a given plang,(U’, v'), and thus regard them
as constant, whilg u, v remain variable, then this equation will represent atpoiplane
coordinates that will envelop the axes of the comptax lie in the given plane; that is,
the point at which these axes intersect. Thus, inyeplame there are infinitely many
lines of the complex that are united into a point of glahe, which we will describe by
saying that it corresponds to the plane.

At each point of space, there are infinitely many lines of the contipdéXie in a
plane that goes through that point.

In each plane that goes through space, there are infinitely many lines obmplex
that intersect at a point of the plane.

The two parts of the theorem imply each other. Ht@tionship between points and
planes is a reciprocal one. For any arbitrary poirgpaice, there is a plane that includes

This is in contradiction to the manner in which th&ational moment with respect to the three coordinate
axes is defined in mechanics.

For the sake of later investigations in mechanicsg@ede to establish that the three doubled moments
are represented by the last three coordinates (1), withsigas. The desired symmetry in relationOa
will then achieved. However, in order to further prédbe analytical examination of complexes in the
case where we take (7) and (8) to be the general equatiensnust consider the positivg and,
corresponding to it, the positiyeto be coordinates, although we must introduce the termnttiade o
and yin odd powers with negative signs. Corresponding to tHemand Ay will occur in the two
equations (7) and (8) with negative signs.
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the lines of the complex that go through this point, @mversely, for that plane there is,
in turn, a point at which all lines of the complex thatin this plane intersect.

28. The plane that corresponds to a given point is detethby any two lines of the
complex that intersect at that point, and the poiat torresponds to a given plane is
determined by two lines of the complex that lie in trenpl

Let P andP' be two points, through which the linBR) passes, and lgtandp’ be
the two planes that correspond to these points, whiehsect in a second linpg). All
lines that go througR or P' and intersect the lingy) will then belong to the complex.
If two lines that go througR andP’, respectively, intersect at any point pp() then the
plane that contains these two lines, will be the gldrat corresponds to their point of
intersection ongp’), and this plane will go througfP’). One also likewise proves that
not only the planes that correspond to the two pdend P, but, in fact, all of the
planes that correspond to all of the points of the fFP'), will intersect in the linegp).
We call the two linesRP') and pp), whose relationship to each other is reciprocal, two
conjugate polars relative to the complex.

1. Any line in space has a conjugate polar.

2. Any line in space can be regarded as a ray.

3. If that ray is described by a point then the planes that correspond todimiswill
envelop an axis that is conjugate to the ray.

4. Any line in space can be regarded as an axis.

5. If a line in space is enveloped by the planes that rotate around it thepoitie
that corresponds to this plane will describe a ray that is conjugate taxike

6. Any two conjugate lines can be regarded as a ray and an axis.

7. Any line that intersects two conjugate polars is a line of the complex

8. Any line of the complex can be regarded as two coincident conjugate lines

29. A complex is completely determined by five of iteels. Each of the lines
produces a linear equation for the determination of theiridlependent constants of the
general complex equation. Four of the five constamdiuas be replaced in such a way
that any two associated polars of the complex are giamely, since any given line
has only one associated line, which is determined ineadiway by four constants, we
will then obtain four linear condition equations betweea tlonstants of the general
equation when any two associated polars of a complegieea. Two given associated
polars of a complex are thus equivalent to four ofiritssl for its determination, such that
the complex is completely determined whenever wenkaoe other line of it, in addition
to the two associated polars.

This yields a fifth simple construction of a complex whany five of its lines are
given: If we select any four of these five lines thies two lines that intersect these four
lines will be two associated polars of the complex, andreew line that intersects these
two associated polars is a new line of the complexe dah proceed in this manner, by
appending the lines thus found in order to define new combinatiosasy four of them.
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Thus, we must not overlook the fact that four real Iwdknot always be intersected by
two real lines, since these two lines can also be imagip).

If a complex is given by five of its lines then fach given point we can construct
the corresponding plane, and for each given plane, thiesponding point. A pair of
associated polars of the complex is determined by any feen gjnes. A single line can
be drawn through a given point that intersects the polaeach pair. The line that is
thus determined lies in the plane that corresponds toptiet and is completely
determined by two of these lines. A given plane cutswieepblars of each pair in two
points. The lines that connect the two intersectiomtpamf each pair intersect in the
point that corresponds to the plane that is determineddypt these lines.

The foregoing remarks conclude with the general thebrgaiprocity. The equation
of the complexes (2) and (4) can be regarded as spes&d o&the general equation in
point coordinates, y, z, X, ¥, Z and the plane coordinateqy, v, t', U, V', by which the
reciprocity of two systems is expressed, to begin wiflthese equations are symmetric
with respect t, y, zandx, Yy, Z, as well as with respect tou, v andt’, u, v/, then the
same point will correspond to the same plane in e&¢he two systems relative to the
polar plane to that point and its pole in the othetesys This happens in the case of
complex equations. However, one must add the condh@intthe pole of a given plane
must lie in that plane itself. By this new conditianis no longer possible to construct
poles and polar planes in the desired way by means of ssidd@@der and class two.
(") Whereas, in general, the polar plane of a point ismhéted by three of its points,
and the pole of a plane, by three planes that inteedat; here, it suffices to know two
points and two planes for this determination. If a lin&t rotates around a fixed point
describes a conic surface of orddhen the associated polar will envelop a curve okclas
n in which the fixed point corresponds to the planes ¢joathrough this plane. The
lines in which the planes that correspond to the vestéike cone intersect will likewise
be then tangents that go from the vertex (which reciprocedigresponds to the planes) to

() Three of the five given lines can always be regardedras lines that include the two generators of
a hyperboloid. If a fourth line cuts the hyperboloid tloee may lay a line of the second generator of the
hyperboloid through each of the two intersection potmas intersects all four lines. If the two interseuwti
points are imaginary then both lines will be the cgpoading ones.

(") The analytical basis for this lies in the followirgnrark: In the general case, the basic equation for
the reciprocity is (we restrict ourselves here te ttase of point coordinates and make the equations
homogenous by the introduction Df

(axX +by +cZ +d7r)x+ (bX +byy +c,Z +diT)y + (X + ¢y +CZ +dy7) 2z
+ @dX +dyy +dy +ds7') 7=0.

If we write X', ¥y, Z, T for x, y, z 7, resp., in the left-hand side of this equation then lit ndcome a
homogeneous function of second degree:

M=ax?+ 2oxXy + 2XZ + 20X 7 +byy? + 200y'Z + 20hy' T + 22 + 20,7 7 + s 72
By means of this function, we can write the recigyoequation in the following way:

dn dn dn dn
—— X+ + o -Z+

ax *tTay YTz ar -0
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the curve in this plane. Namely, since these linesnigeto the complex, they will be
their own associated polars.

30. We now return to the purely analytical path of invesiiga
The ordinary coordinates of points that correspond éagitren planet{, u’, v') and
are represented by equation (10) in plane coordinates are:

__D+Cu-Bv
~ DtU'+EU+FV’
_ E-Ct+Av

Dt'+Eu + FV'
__ F+Bt'-Ad
~ DtU'+EU+FV’

(11)

If the given plane is displaced parallel to itself thies points that correspond to it and lie
in it will describe a geometric locus. If we distinglui the coordinates of the
corresponding points of those parallel planes that gugiin the coordinate origin by,

Yo, Zo then that will give, when we st u’, v’ equal to:

__ Cu-Bv
T T Dr+ES+ RV
-Ct'+ AV
= 12
Yo S T Dr v EU+ R (12)
_ Bt-Ad
Dt'+EU + FV’
and, from this:
ey = D
T T DRI+ RV
E
-y, =- : 13
Y T T DB+ (13)
F
z-7=- :
Dt'+EU + FV
From this, we infer that:
X=%):(y—¥w:(z—23=D:E:F, (14)
so the geometric locus in question, which is representédebgouble equation:
x—x°:y—y°:z—z°’ (15)

D E F

is a line. The direction of this line is independenthef direction of the parallel planes.
We call it adiameterof the first-degree line compleand say that the parallel planes are
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associated with the diameter, and conversely, orthieaparallel planes are associated
with the diameter.

All diameters of a first-degree line complex are parallel tcheather.

One such diameter goes through any point of space.

31. Among the diameters of the complex, there is jose of them that is
perpendicular to the plane that it is associated withould the double equation (15)
represent thiaxisthen one would find that:

t,u,v=DEF

expresses the notion that it is perpendicular to thallphplane (, U, V'), so equations
(12) would then give the following values &y; yo, 2 :

_ BF-CE
XO D2+E2+F2’
CD- AF
= 16
yO D2+E2+F2 ( )
AE-BD

© T DTET+F?

In particular, these coordinate values will be eéqaazero, and the axis will go through
the origin when:
AB:C=D:EF. a7

We would like to call the planes that are perpeaumldic to the axis theprincipal
intersections of the complexthe principal intersection that goes throughdhgin has
the equation:

Dx+Ey+Fz=0. (18)

If F vanishes then the diameters of the complex (amdngh one also finds the axis
itself) will be parallel to the plan®Y. WhenF andC vanish simultaneously, andyp
will be equal to zero. The axis of the complex| wilt the coordinate ax®Z; z will
take on the value above for the point of intersecti The coordinate< - x'), (y — V'),
(yZ -y'2), Xy — xy) will be equal to zero on the ax@Z This axis will then be a line of
the complex wherr and C vanish, and indeed, one that is cut by the agmlfit The
principal intersection:

Dx+Ey=0
will go through it.

32. We would like to treat equation (9), which regms the planes that contain all
of the lines of the complex that go through a gipemt ', y', Z) — in other words, the
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ones that correspond to this poinin the same manner. If we call the coordinates sf thi

planet, u, vthen that will make:
__ A+FYy-EZ
~ AX+By+CZ'
U=— B-FX+ DZ | (19)
AX + By + Cz
__C+EX-Dy
~ AX+By+CZ

If we assume that the point' (y', Z) moves along a fixed line that goes through the

origin then the ratio of the coordinates of the painty : Z will remain constant. The
point at infinity on a fixed line will corresponds to atean plan, which we denote by:

 ___ Fy-EZ

°  AX+By+CZ

U= -Fx'+ DZ

°  AX+By+CZ
_ EX-Dy

°" AX+By+CZ

(20)

It will follow from this that:
A

T AX+By+CZ
B
 AX+By+ CZ

_ C
°  AX+By+CZ

(21)

So:
t-t):u-w):(v—-w) =A:B:C.

If we regard, u, v as variables then the double equation:

t-t, _u-uy, _Vv-y,

A B C (22)

will represent a line that is enveloped by the planes dbaespond to the points of a
fixed line that goes through the origin. Since the aorigf the coordinates, by the
arbitrary assumption itself, has no special relatigndloi the complex, the general
theorem on conjugate polars in the foregoing will be pidve.28).

Equation (19) shows that if the point,(y’, Z) lies in the plane that is represented by

the equation:
Ax+By+Cz=0 (23)



32 Chapter One: First-degree line complexes and theireences

then the coordinatds, u', v of the corresponding plane will become infinitelygley so
the plane itself will go through the origin. From thtswill follow that the plane (23) is
the one that corresponds to the origin and that, asseqaence, it will be the geometric
locus of all lines that are conjugate to the onesgbahrough the origin. Lines that lie in
the plane and likewise go through the origin will bertlevn conjugates and will thus
belong to the complex.

If we consider, among those lines that go throughatfigin, the diameter of the
complex that goes through this point, in particular, tlasna result of the double equation
(15) for each pointxX, Yy, Z) of it, one will have:

X:y:Z=D:EF. (24)
It will then follow from equations (20) that:
to:0, uo:0, Vo:0,

and the double equation (21), which reduces to:

for them, will give the polar that is conjugate to thandeter as a line that lies in the
plane at infinity (23).

By the arbitrary nature of the origin of the coordinsgstem, we have thus expressed
the idea that a line that is associated with an arpitemeter of the complex will lie at
infinity in any plane that corresponds to a pointtofHowever, a line that lies at infinity
in a given plane will admit no closer approximation, siitchas lost its direction, and
will remain the same when the plane that contairsdigplaced parallel to itself. A line
at infinity will always be parallel to a given lin@éwill assume all possible positions at
infinity when the plane rotates around one of its poinis each such position, it will
correspond to a diameter of the complex. All linefinity in space define a plane at
infinity whose corresponding point is itself at infyiin the given direction, because it
lies in that plane. A consequence of this is that tameiers that converge to this point
will be parallel to each other.

Distinguished among the lines that go through the orignfiaitely many of them
that are perpendicular to the plane:

Ax+By+Cz=0 (25)
that corresponds to the origin, and thus, they wilpbependicular to any line in this
plane; i.e., to any line that is associated with ora goes through the origin, and, in

particular, to the ones that are associated with telmes The line in question is thus
characterized by the fact that for each of its points:

X:y:Z=A:B:C, (26)
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from which, to, up, Vo will take on the following values:

__ BF-CE
0 A2+BZ+C2’
CD- AF
Uy =——————— 27
° AN+B+C =7)
AE-BD

Vy =——————.
0 A2+BZ+C2

If we substitute these values in the double equation (&) th the plane (23) this
equation will represent the lines that are associatéu tiwe line (26) that goes through
the origin.

If the axis of the complex goes through the originhef coordinates axes then it will
be the one that is perpendicular to its associated H@wvever, from (15), one will then
have:

X:y:Z=D:E:F,
from which:
A-B:C=D:EF,
in agreement with (17).

33. One finds from equations (10) that:

Cu- Bv+ D=0,
—Ct+ Av+ E=0, (28)
Bt— Au+ F=0

are the equations for the three points that coorepo the coordinate plan¥g, XZ, XY,

while:
Dt+Eu+Fv=0 (29)

represents those points that correspond to thee pdannfinity and are themselves at
infinity in the given direction.
One finds from equations (9):
Fy-Ez+ A=0,
-Fx+ Dz+ B=0, (30)
Ex- Dy+ C=0,

are the equations for the three planes that canespo the points at infinity in the
directions of the three coordinate ax@X, OY, OZ, while, as we already pointed out
(23):

Ax+By+Cz=0

represents the plane that corresponds to the origin
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34. From the three equations (9) and the three equations @€),obtain
correspondingly, the condition equation:

(Ax+By+C2 (Dt +Eu+Fv) + AD+BE+CF) =0 (31)
if (X, Y, 2) is a point andt( u, v) is a plane that mutually correspond to each othativel
to the complex.

The foregoing equation includes, as a special case:

AD +BE+ CF = 0. (32)

This special case corresponds to a particularizatioimeofirst-degree complex.

35. The two general equations:

AX=X)+B(y—-Yy) +C(z—-2) +D(yZ —y2) + E(Xz — x2) + F(xy —Xy) =0,
D(t—t) +E(u—d)+Fv-V)+Auv —Uv) + B(t'v —tv) + C(tu' — tu) = 0,

which represent the first-degree complex in the doubleddowaie determination, will
simplify when we let one of the rectangular coordérates coincide with one of the axes
of the complex, from which, the other two will lie & principal intersection of it. If we
choose the coordinate axis that coincides with the dxiseacomplex to b©z, OY, OX,

in sequence, then, by the vanishing of:

A, B, andD, E,
A, CandD, F,
B, C andE, F,

respectively, the foregoing two equations will assumddhawing forms:

(xy =Xy+ Kz 2=0, (v=V)+ k(td-tu =0,
(Xz=x2)+ K y =0, (33) (u=u)+k(tv-1tv) =0, (34)
(xy =Xy+ K x X=0, (t-t)+k(uv-dy=0.

In this form, they include only one constaky, @nd it is the same in all equations. This
is obvious from the outset. This value does nanhge when we go from one of the two
equations in the same row to the other one. fbiimwrs from the double determination
of the line by means of point and plane coordindtesn which, for example:

xy = Xy _ v-V
z-7 tu'—t'u’

However, the value of the constdawill also remain unchanged under the transition
from one of the three equations of the complex® of the other ones. The expressions:
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Xy -Xy Xz-x2 yZ-yz
z-72  y-y ' x-X

for example, have an absolute geometric meaning whgnatieereferred to an arbitrary
line of the complex, which is mediated by the currdmiice of coordinate system, but
independent of it. Under the transition from the ooerdinate system to another, the
foregoing three expressions will go into each other bpn®eof the corresponding
coordinate permutation; however, their geometric meaningschammust always be the
same, will not change, and, as a redultjll not change, either.

We would like to call the quantitit, which represents the length of a line, the
parameterof the complex. The complex is completely deterchitgy its parameter,
when we neglect its position in space.

36. The general equation of a first-degree line complexuded five mutually
independent constants in each of the two coordinate detelonmatEquations (33) and
(34) involve just one constant. The number of consthassthus been reduced by four.
However, since we have six constants at our disposah®mdetermination of a new
coordinate system, the coordinate system that isedbdhis of the latter equations will be
determined only incompletely. We have two constantslaMai for position, without
which these equations could change in any manner. Wecuwoslfirm this in the
following number.

37. The first of the three equations (33):
(xy =xy) +k(z-2) =0,

which we can choose arbitrarily, does not change whenotigin of the coordinates
moves arbitrarily alongZ, which is the axis of the complex. The same equatibin
also remain unchanged when the coordinate system rotatgardy aroundOZ Then,
on the one hand; andZ will remain unchanged, and, on the other hantd;- X'y will
also preserve its value. This expression, in fact, septs the projection ontdY of
twice the area of the triangle whose three vertaresthe origin of the coordinate system
and the two pointsx(y, 2 and &, Yy, Z), through which the lines of the complex are
determined, and this projection will not change when tmepdex rotates around its axis
OZ Thus, equations (33), and as a result, equations (3#)séhees, will remain
unchanged when the origin of the axis of the complex sxaleng the axis of the
complex and the coordinate system rotates around this keaxather words:

A first-degree line complex remain unchanged whenever it is disptazadel to its
axis and when it is rotated around it.

All of the lines of the complex in the original pasit go to other lines of it after the
translation and rotation.
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38. We can transform the general complex equations (2)n{d)the six equations
(33), (34) step-wise by changing the coordinate systemceSire single constant that
enters into these equations has the same valueKyim,this transformation one will be
dealing with only the determination df, and it will suffice to carry out the
transformation in a single case. If, for the sakbrefity, we use the equations:

Ar+Bs+C-Do+Eo+ Fn=0, (7)
Dp+Eq+F-Ay+Bmr+ Cw=0 (8)

for our basis, instead of equations (2), (4), then equaf@3isand (34) will assume the
following form:

r+£:O,
n+k=0, X
p+ks=0, (35) 7+d =0, (36)
-0 +kr =0, X
P20
X

We shall confine ourselves to deriving the firseqgtiations (35) from equation (7).

If we displace the original coordinate system,which equation (7) is referred,
parallel to itself, and the coordinates of the nexigin are x’, y°, 2, then, by an
application of the conversion formulas (37) of d®, this equation will go to the
following one:

A+ -EA)r + B-FX+DP) s + (C+EX-DY)-Dd +Ed +F7 =0. (37)

In particular, when:

the form of the original equation will do not changnder the displacement of the
coordinate system. The complex will then remag shme when it is displaced parallel
to the direction of those lines that are represkhtethe last equation when we regard the
X2, y°, 2 in them as variable — i.e., parallel to the dimetof the diameter [cf., (15)].

We obtain the cosines of the angles that this dieahdirection makes with the three
coordinate axe®X, OY, OZin the form of:

D E F

[D2+E2+F2, [D2+E2+F2, [D2+E2+F2,

resp.
We would like to rotate the original coordinatst®m aroundZ through an angle

in the sense that was established in no. 13. Enenconversion formulas (40) of no. 13,

the general equation (7) will go to the followingeo



§ 1. First-degree line complexes. 37

(Acosa+Bsim Y + FAsim+B cog § + C

38
—(Dcosa+E sinp y'+ €D sir+E cog Q'+ Fnp' = ( (38)
We would like to determine in such a way that:
-Dsina +E cosa =0, (39)
from which:
=2
= 4
cosa = (40)

We can then write the equation of the complex in tilwing way, if we omit the
prime:
Ar+B's+C-Ds+Fn=0, (41)

an equation that, singeis missing, characterizes the complex in questiomaswhose
diameters are parallel to t&Z plane. Sinc&C’ andF’ keep their previous values, one
will find that:

A=(AD + Ba—cosa,

B = (-AE+ BE)%, (42)

D'=(D* +E)
D
and from this:
AD' = AD+ BE, (43)
D'*=D?+E?
After performing the first rotation of the coordbe system, we would like to rotate it
through an anglg’aroundOY, which, as in no. 13, may be measured flomto OX
The conversion formulas (43) of no. 13 will themagi

(A'cosy-C' siny Y'+B's+ (A siry+ C cog ) (a4)
- (D'cosy—-F' siny y’ + €D’ siry+F' cogr) =
for the equation of the complex. In order for tew axisOZ to coincide with the
diameter of the complex that runs through the origi must drop out of equation (44).
We correspondingly set:
D' cosy—F’siny=0, (45)

from which:
12

L 4
D'2+F'2 ( 6)

cos y =
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For the sake of brevity, we can then write the comglguation (44) in the following
way:
Ar+B"'s+C"+F"'nn=0. 47)

SinceB" keeps its previous value, one will have:

cosy
F
cosy
Fr
_Fn - (DIZ + F12 Clcisy

i H

A'=(AF -CD)

C'=(AD+CF) (48)

and from this:
C' _AD+CF
F" D?+F”
_ AD+BE+CF
C D2+EZ+FZ

(49)

If we finally displace the coordinate axes pataitethemselves, as in nd2, then
equation (47) will become:

(A +F ) r + (B —F )& +C" +F" 1 =0, (50)

and will reduce, when we take:

A" O B"
== —, X = —_—, 51

y) F" F" ( )
to:

n+k=0, (52)
when we, for the sake of brevity, set:

AD+ BE+ CF
D*+E*+F?

k (53)

The complex will then have its axis along tB& coordinate axis, while, as usual, the
other two coordinate axe§®X andQY, which are perpendicular to each other &xj
will intersectOZ at an arbitrary point.

39. We immediately obtain the interpretation for tbam of the equations:

n+k=0, &y —xy) +k(z—2Z) =0.
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If we imagine a force of arbitrary intensity thatsaat the direction of any line of the
complex then we can regard the expressigh«{x'y) as the double moment of this force
relative to the axis of the complex ar{Z) as proportional to the force on this axis.
Thus:

If an arbitrary force acts along the lines of a linear complex thenrdtie of the

projection of this force onto the axis of the complex to the momens dbtce relative to
the axis will be constant and equal to the parameter of the corfiplex

E B

K

Figure 2. Figure 3.

If we take the pointsx(y, 2 and &, Yy, Z), by which the lines of the complex are
determined, to be, in particular, the two poitandB at which the coordinate planes are
be cut by them then the valuesxandy' will vanish. One will then have:

Xy=K(z - 2), (54)
so, referring to the figures (Figs. 2, 3)(one will have:

_ OH[DJ
EG

k (55)

which is an immediate consequence of the foregoing theowehich also follows
immediately from the determination of the constantsterline (confer number 11). We
will get:

() This theorem will enter into the later discussiorthaf mechanical aspects in its natural connection
with other things.

(") For our purposes, there is a certain advantage toaifieot projection under which the three
mutually-perpendicular coordinate ax@g, OY, OX are represented in the same plane in such a way that —
say —OZ andOX keep their natural position, but the positive extensfo@Ycoincides with the negative
extension oDX
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-n=0J- (;—gz—OJ cotanBFX=0JtanOJK = OK =k, (56)
-n=0H- (E)—é=OH cotanADY=-OHtanOHK' =-OK' =k (57)

for an arbitrary line of the complex. Therefod& will be drawn perpendicular tGF
andHK' will be perpendicular t&D. In the case of the first figur&,will be positive,

and in the case of the second figl&yill be negative.
From the aforementioned numb&t, if we employ the axial coordinates of a line
instead of its ray coordinates, and then start witletjuations:

w= % =0, @—V)+k{iu —tu =0
then we will have;
_1_OFMmJ_ OF tanAOZ= - OF tanOFK' = - OK' =k, (58)
w oG
_1_ %:—ODtanBoz:ODtanODK:OK:k. (59)
w

Thus,FK' will be drawn perpendicular tOA andDK will be perpendicular t®B.
The following construction may also be mentioned (Hg%):

Z Z
E 1 E
7 G M Y X X! o X
. . D FDNY ¢
D D |OF F'
Figure 4. Figure 5.

Through the point©E and FG, which are the projections of a given line of the
complex, we can, in a single way, lay a system of pawllel planeEDF’ and GDF’,
which intersect the coordinate ax@g, OY, OX in the pointsE andG, D andD’, F and
F’ respectively. We then get:

Eg=1 pD'=-7  EE=-

and from this:
DD'[FF
n=————. (60)



§ 1. First-degree line complexes. 41

In order to construct this expression, we draw a ptemallel toXY throughG that cuts
DE atA andF’E atM. We will then have:

_ DD'[FF _ AGIGM
EG EG

= GK =k, (61)

if K is the point of the triangl@ME at which the perpendiculars from the vertices to the
opposite sides intersect. In the first of the twarfes, k is positive, while in the second
one, it is negative.

40. Since the equation for the complex contains only omstaat when the axis is
given and assumed to be a coordinate axis, it will &lsarue that this complex is
determined completely when a line of the complex isntike given, along with the axis.
Just as the constant was determined tk ibeghe latter developments, as long as a line of
the complex was given, so can we also converselytwasall lines of the complex
whenk is given. We can subject the line that we would likel¢termine to three linear
conditions from the outset, and thus arrive at a serigoroblems that | will not discuss
further here.

41. We again take the equation of the complex to be:
(xy =Xy) +k(z-2) =0. (33)
If we regardx, y, z as the variables then:
y - x—X-:y+k-z-k-Z=0 (62)

will be the equation of the plane that correspondstopmint (', y', Z). If we call the
angle that this plane makes with the axis of the camptben we will have:

k2

I A = e K (63)
and, as a result:
k2
y?+x?= ol (64)

The interpretation of the foregoing equations gitree following geometric relations:

If any point P is given then the same associatedeMill go through any line that
can be drawn from that point perpendicular to thixesaf the complex.

The associated planes of all points that havestmae distance from the axis of the
complex all define the same angle with this axis.
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While a point describes a circle when it rotates around the axigs$wriated planes
will envelop a cone of rotation that has that point at which the plane aiiritle cuts the
axis for its vertex.

If the points of the circle describe a diameter when they paradlel to the axis then
the cone will be displaced parallel to itself, such that its vesiéhalways remain on the
axis.

Diameters that have the same distance from the axis of the codepies the same
angle with their associated planes.

42. If we take a line through a poiRtthat is drawn perpendicular to the axis to be
the OX axis then the coordinates andy' will vanish. The equation of the associated
plane will then be:

Xy =kz (65)

For the points of those lines that cut tfigplane, one has:

Yotana=X, (66)
z X
so for the line that is perpendicular to it and goesuph the origin, one will have:
Y-_x or E:—E,. (67)
z k y X

If k is given then we can then likewise determine the pthaeis associated with an
arbitrary pointP, and conversely, if any point and its associated plemgigen then we
can determine the paramekeof the complex.

Let a perpendiculaPK to this axis be erected by the aforementioned manner of
projection at the poir®, which is assumed to be @¥, and let its length be taken to be
equal tok. Any line OL that is drawn througl® perpendicular tdOK will then be the
intersection line of the plane that correspond® twith the coordinate plang¢Z The
plane itself is found with that. Likewise, when tHareLOX andk are given that will
immediately yield the poirfe that is associated with this plane.

If the pointP is at a distance from the axis then tawill decrease in proportion to
the distance.

The foregoing gives an intuitive picture for a compleRll lines that go through the
arbitrary pointP and cut the lin€OL belong to the complex, and this will still be true
when the poinP and the lineOL are displaced parallel to the axis, and also when the
point rotates around the axis wiL. The circle that the point describes under this
rotation will correspond to a cone of rotation whose gxiss through the center of the
circle and is perpendicular to its plane, in such & that any line of the complex that
goes through a point of the circle will contact thiseoBy the converse of this theorem,
one must consider that, to some extent, equations (63)c@6&spond to the same cone
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of the same circle for two different complexes whosampaters have the same absolute
values, but opposite signs. Of the two tangentialgdahat can be laid through a point
of the circle to the cone, if the sign of the partank is given then only one of them can
be chosen whose intersection line with ¥¥plane defines an angle with the axis of the
complex whose trigonometric tangent (66) is equal téx+ Due to the fact that when
the circle moves parallel to itself along the &8 thus describing a cylinder of rotation,
the cone that corresponds to the circle will move parédl itself in a manner that is
similar to the one that was already discussed iptéeious number.

43. The lines in space arrange themselves into pairsresiect to a given complex,
such that each line will have its associate and tagioaship of any two associated lines
to each other will be reciprocal and will be mediabgdthe complex in a linear way.
From the discussion above, we would like to base paltyais, in turn, upon the simplest
equation for the complex:

(xy =Xy) +k(z-2) =0,

where the axis of the complex is taken to beQEeaxis.
Let (X,y, Z) and k", y’', Z') be any two points in space, and let the line that ctiane
them be one of two conjugate polars. The equations offribigre:

(Z-2)x=( %= B):—( X% %%

68
Z-2)y=(9- P):~( Y% Y% (58)

and their five ray coordinates, which we would likedistinguish byro, S, &, @, 7o ,

are.
_xX=X _y-y
=727 %™ Ty
_ XZ-X2_ yu- %
T T T T (69)
_xy =%y
,70_ Zr_zr :

We can construct the second of the two associabdatspas the line of intersection of
those two planes that correspond to the two péxity', Z) and &', y”, Z'), which lie on
the former plane, and which are the following ones:

y'x= Xy+ kz= kz=0,

70
y'x= X y+ kz= kz=0. (70)

From these two equations, one obtains, by sucadg®liminatingy andx:
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(XY = XY) x+ K~ %= R #( X'z~ "X)} =0,
(XY =Xy) y+ k=(y- 9 =#( Yz YR =0,

and therefore the first four of the five coordirsatd the second line, which we would like
to distinguish by®, &, &, &°, n°, will be:

(71)

o=k XX : g=ka Y Y :
Xy =Xy Xy= Xy
’z’_x’z ’2_ r, I (72)
pP=kFEXE oo pYEm V2
Xy =Xy Xy= Xy

From the combination of the foregoing four equatianth equations (69), one obtains a
series of relations between the five coordinateéb@®two conjugate polars:

PP G O
r, r° s, s
L r (73)
0 -_ 70 -~
s 8 o, 0
and furthermore:
oo’ 58
n, k' n, k'
Py _ P° a’ i
_0 = — _O i
n, kK n, Kk
and from this, when we consider that:
,70 U Y ,00
it will follow that:
non® = k2. (75)
We can summarize all of the relations in the folluyvequations:
r0 _S) _100_ UO_,70_k
2 =3 ="2=_9="0=__ 76
r0 S0 ,00 0 k ,70 ( )

The reciprocal relationship between the two assedidines is expressed in these
equations collectively. In order to go from themed of the two conjugate polars to the
first one, we obtain:
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o
o

. S _5
o_k’ o_?’
n n 7
P p T 0
n° k' k

If we consider that any two mutually perpendicular plahasgo through th®Z axis
can be taken to be th€Y, YZ coordinate planes without changing the equation of the
complex in any way then we can deduce from the first dvequations (73) that any
plane that goes through the axis of the complex wiltldeby any two associated lines in
such a way that the two points of intersection Wil on a straight line that is

perpendicular to the axis.
The square of the distance to the point at whichadribe two associated lines cuts
the plane perpendicular to the a®ig, which is determined by any valuezfs:

(S0 2+ m)* + (ro 2+ po)>.

The value ofz for which this distance is a minimum is:

z=- 3% (78)
S+

If we draw the XY-plane through the shortest distance (which will ncange the
equation of the complex) then we will obtain the dtod equation:

S G +rom=0, (79)

and the shortest distance itself will be:
T3+ s

The condition equation (79) brings with it the correspogdexpression for the other
conjugate polar:

S+ =0 (80)

The shortest distances from any two associatedptdethe axis of the complex lie in
the same plane perpendicular to this axis and ¢dent the same line in this plane.

The last part of this theorem follows immediatelynirethe foregoing theorem. The
direct proof of it is based in the fact that when wetle OZ-axis coincide with the
shortest distance to one of the associated lgewill vanish, which brings with it the
fact thatd® will also vanish (74). As a result of equation (7@)will then vanish, so,
from (74), r° will, as well. Since equation (80) will be satisfied thys, the proof is
complete.

The shortest distances themselvesmm@ndg’. Thus:
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k2 k2
=- = =—-___ 81
o So Ao ,70 SO,OO ( )

44. There are infinitely many complexes that have amine for their axis. Each of
them is determined completely by one of its lines. hEatctwo conjugate lines thus
determines a complex that also has the given axissfawn axis, and on which that line
lies. The parameter of the given complex is propoaiicto the mean of the two
parameters of the two new complexes. All of the limesne of them have the lines that
lie on the other one for their conjugates. We can ttalltwo complexes twgolar
complexes relative to the given one.

The foregoing delivers a series of simple constructiamsthe manner of
representation that we are using. If the complex:

n+k=0

is given then we can construct the associated line tgiaen line, and the complex will
be determined completely when the axis of the comglepvien, along with a system of
two conjugate polars that fulfill the conditions thiagm the previous number, must be
satisfied by a given complex axis.

Let DoE andFyG be the projections of a given line ont@ andXZ (Fig. 6). I1fOZ is
the axis of the complex then we will know that tr@responding projection of the
conjugate line likewise goes throughand G, and all that will still remain for the
determination of this line is to find two poir®8 andF° at which its two projection®Y
andOX intersect. In a manner analogous to the earlier waeyould like to letA; and
By denote the points at which the given line meetsrthandXZ coordinate planes, resp.,
and their projections ont@Y (OX, resp.) byJo (Ho, resp.). Finally, let the complex

parameter k be

7 equal to OK = -
B '
B oo B OK'.
: e\\\ "\‘ 7
] ~ ‘\‘ L’ .
AN In the figure, we
it Ko have dropped
: RS AN perpendiculars from
: RNASYE K' to HoE and from
E RN R G K to JG. The first
] p4 R perpendicular  cuts
P OY at D° and the
vy ' X kn\ secgnd one cut®X
T Dy D]~ [0 F o AF
Ho TR0 0 One draws two
YK lines fromK andK’
Figure 6 fﬁo;‘)s and Ho 6:”‘3)
W

perpendiculars from these two lines@oandE, respectively. These two perpendiculars
will cut OX andOY atF° andD?, resp.
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The two foregoing constructions are immediately linkatth equations (74).
On the one hand, one essentially has the constny&ib, (34)]:

F=kPLo= K __ oK. tanAOb = OK tanOKF® = OF, (82)
n, tanAOZ
P=kP-_K __ox. tanBy0OJ, = OK' tanOKD" = OD; (83)
n, tanB,0Z
on the other [8 1, (33)]:
0
tanFGo=-0=—k o= OK OF : (84)
n, 0J, OG
] 0
tanD’EO=-L =Kk 2 = OK _OD (85)

n, OH, OE

From the foregoing constructions, we can likevdseve other ones that immediately
give, instead of the projections of the lines tia to be determined, the points at which
they cut the coordinate planes.

We likewise obtain the complex parameter OK = — OK' immediately when the
two associated polars are giverK and K' will then be the crossing points of the
perpendiculars that can be dropped from the vertidehe triangles,GF° andH.ED® to
the opposite sides.

The parameters of the two polar complexes, whietshall distinguish by andk’,
are given immediately from a discussion in an eariumber. One drops perpendiculars
from Do andD° to OB, andOB’, resp., which cu©Z atK, andK®, resp. One will then
have (no. 39):

ko = OKo, K = OK®, (86)
from which:

OKo - OK? = OK”. (87)

45. If the parameter of the complé&wanishes then that will specialize the complex.
Its equation:
Xy —=xXy=0 (88)

shows that all lines of the complex cut its axiBhe general geometric definition of a
first-degree complex preserves its validity, suleht tinfinitely many lines of it will go
through each point of space, all of them will liethe same plane, and correspondingly
each plane that goes through space will containitefy many lines of it that intersect at
the same point, even with the specialization. Qhbse planes that are associated with
arbitrary points will intersect in the axis of tbemplex, just as points that are associated
with arbitrary planes will all lie on this axis. llAliameters of this complex will coincide
on its axis. Any arbitrary line will be associatwih the axis.

If we represent the complex by the general eqnatio
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Ar+Bs+C-Do+Ep+Fn=0

then in order to express the idea*that it is spec@lizéhe manner in question (cf., also
no. 34) we will obtain the equation:(

AD + BE + CF=0. (89)

For the determination of those lines of the complaxt go through any given point,(y,
2), we can eliminate, s, andh between the general equation of the complex and the
equations:

X=rz + p,

y=Sz+ g,

ry — Sx= 1,

which express the idea that the given point lies oritee(r, s, o, ; 77). In the resulting
equation:
(A+Fy—-E2r+ (B-Fx+D2s+(C+Ex—-Dy=0, (90)

r ands determine the direction of the plane that is assediavith the pointx, y, 2). If
the three equations:
A+ Fy-Ez=0,
B- Fx+ Dz=0, (91)
C+ Ex-Dy=0

() Here, we omit the case in whi€h E, andF vanish simultaneously, and thus:

(= AD+BE+CF
= DMELF?
becomes infinitely large. The basis for this is dkes: A complex with infinitely large parameters,
whose equation we shall take to be:
(xy —Xy) +k(z-2 =0,

includes only those lines that are parallel toXfYeplane or lie at infinity. The foregoing equation wiifi,
fact, be satisfied only when one either has:

z—-72=0
or:

XY-Xy_ o

z-7

For such a complex, the concept of axis as a completeyndi@ed line will then fall away since every line
parallel toOZ will have an equal to right to this name.

However, we can also consider the same complex to benplex of a special type whose parameter
equals zero and whose axis lies at infinity in X¥eplane. The justification for this lies in the faloat as
long as the condition:

AD+BE+CF=0

is fulfilled, one can generally speak of a complex of spégie whose parameter is equal to zero (cf., also
equation (91) in the text).
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are satisfied simultaneously (which the condition eQua{89) assumes) then the
direction of the associated plane will be indeterminalbe point X, y, 2 will then be
assumed to be on a line whose three projections aresespied by the last three
equations, if we consider y, zto be variable. This line will be the axis of the céamp

Without the restricting condition equation (89), theefpring three equations, when
taken individually, will represent planes that corregptinpoints that lie at infinity along
the directions of the coordinate ax@X, OY, OZ

In a similar way, the three equations:

D +Cu- Bv=0,
E-Ct+ Av=0, (92)
F+Et-Au=0

represent those points in the coordinate plafs<zZ XY that are associated with these
planes. These three equations will be valid siamdbusly when the condition equation
(89) is satisfied. The three points will thendieng a line and will be the ones at which
the three coordinate planes are cut by the axiseo€omplex.

The condition equation (89) remains unchanged wieonsider the complex to be
an axial complex and correspondingly represeny thie equation:

Dp+Eq+F—-Ay+Bm+ Cw=0.

However, we remark that this equation will thenilhesory in the special case that we
consider if we take the axis of the complex to he of the three coordinate axes, as we
did in the case of ray coordinates.

We can satisfy the condition equation (89) in sactvay that we set three of the
constants of the general complex equation equaéto, and will obtain four essentially
different cases, when we choose the vanishing aaotssto be, in sequence:

D,E F, A, B, C, C,D,E, A B, F.
These four cases correspond to the following egaostin ray and axis coordinates:

Ar+Bs+ C=0,
-Ax+ B+ Cw=0,
-Do+Ep+ Fn =0,

Dp+ Eq+ F=0,

Ar+Bs+ F7 =0,
-Ax+ B+ F =0,
C-Do+Ep=0,
Cw+ Dp+ Eq=0.

(93)
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In the case of equations (93), the axis of the compdaxali infinity on all of the lines that
intersects it. It is, like all lines of the complgagrallel to the plane that is represented by
the equation:

Ax+By+Cz=0 (97)

[cf., the note about (89)].
In the case of equations (94), the axis of the comgl@elipendicular at the origin to
the plane that is represented by the equation:

Dx + Ey + Fz=0. (98)

In the case of equations (95), the axis of the complparallel to the coordinate axis
OZ and cuts the plan€Y at a point that is represented in this plane by the eoquat

Bt — Au + Fv=0. (99)

In the case of equations (96), the axis inXieplane in question is finite and will be
represented in this plane by the equation:

C + Ex—Dy=0. (100)

46. In the foregoing, when we took the axis of a comptesbe one of the three
coordinates axe®Z, OY, OX, we were led to present its equation in the followimgpde
forms:

n+k=0, p+ks=0, o-kr=0,

in which k means the parameter of the complex. The origin cas lthve an arbitrary
position on the axis of the complex and the remaining teordinate axes can be
assumed to be arbitrary, under the condition that temain perpendicular to each other
and to the axis of the complex. From now on, we wakéltb take an arbitrary diameter
of the complex that is parallel to it to be @&-axis, instead of the axis. With no loss of
generality, we can lay théZplane through the diameter and the axis. We wouéltbk
denote the distance from the diameter to the axi8.byVhen we switch (cf., nd4):

n with  7+y°-r,
the same complex that was previously represented by theaqua

n+k=0
will be represented by the equation:
n+yr+k=0 (101)

from now on. Since th®Z andOY axes will remain unchanged if we then rotate@he
axis in theXZ-plane in such a way that after the rotation it formsaagle ofo with OZ,
the conversion formulas (42) of numid&; if we write ' = d, y= 0, will express:
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randn
in the following forms:
rsind nsind
rcosd+1  rcosd+1

resp. If we substitute these expressions in the equafidhe complex then that will
give:
n sin 5+ y°r sin 5+ k(r cosd+ 1) = 0. (102)

omeans the inclination of th€Y-plane with respect to th@Z-axis, and thus with respect
to the diameter of the complex. If we determine thadimation by the equation:

Y’ sind+kcosd=0 (103)

then that will simplify the equation of the complexainhe following form:

k
+ =0, 104
4 sind (104)
or:
n+k =0, (105)
when we set:
k
— =K. 106
sind (106)

We have called the constdathe “parameter of the complex,” but we can alsbit#ie
“parameter of the axis of the complex,” and in thisseespeak of the parameter of any
arbitrary diameter whatsoever, and, in particular,kletlenote the parameter of the
diameter that is taken to be tB&-axis. Among the diameters of a complex, the axis has
the smallest parameter.

When we represent the complex by the foregoing equatienrefer it to any of its
diameters as th®Z axis and take an arbitrary associated plane throughaheter to be
the XY-plane. The two axe®X andOY in this plane will be perpendicular to each other
andOY will be the projection of the diameter onto the plassociated with it.

In order to then go from an arbitrary diameter toahks, we merely need to displace
this diameter along the line in the conjugate plane, and dp@deng a line segment of
length:

-y* =K cosd.

The equation of the complex, which we can write enftrm:
xy =xy)+k(z-2 =0, (207)
will remain unchanged when we rotate the rectangulardioate axes arbitrarily inside

the XY-plane. However, if we rotate them independently of edbéar in such a way that
after the rotation they make an anglden we will have to switch:
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(xy =xy) and 1
with:

(xy =Xy) sine and 77sing,
resp. Thus, the form of the complex equation will &lgibremain the same:

n+k'=0, (108)
in which we set:

K oK __p (109)
sine  sinesind

This will be the equation of the complex when we tadleQ@Z-axis to be an arbitrary
diameter that makes an anglaevith its plane and choose two arbitrary ag®s andOY
in the plane that subtend an angle

We obtain the corresponding forms for the equations:

ek _g o- X - (110)
sind sine sind sine

when we letOX andOY, in sequence, coincide with the axis of the complestead of
oz

47. Up to now, in our discussion of complexes we have definentioned the
influence that the sign of the parameter has on rnthture of a complex. We
correspondingly obtaitwo essentially different types of complex of the first defyree
the two signs that this value can have.

If we select any line from among the lines of the clem@nd translate it parallel to
the axis of the complex while rotating it arbitrarilyoand this axis then in all of its new
positions it will coincide with other lines of the coleg. It thus continually contacts a
cylinder of rotation whose axis is the axis of the ctex@nd whose circle of intersection
has the shortest distance for the lines from the d@xiseacomplex for its radius. The line
that contacts the cylinder can, in agreement wittstaeement, move around the cylinder
in such a way that it envelops a curvéhis curve will then be a helix that lies on the
cylinder. If we displace the helix through the height of lomp the cylinder then the
tangents to the helix in the various positions of thedatill all give complex lines that
contact the cylinder.

Let:

n+k=(ro-s) +k=0
be the equation of the complex, and let:
V+X =R (111)

be the equation of a cylinder of rotation that has i @ the complex for its own axis,
and whose circular basis has radtusAny line whose three coordinates are:
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r=0, p=R, 0=0 (112)

will then be a tangent to the cylinder. In order to espithe fact that it belongs to the
complex, we obtain:
Rs=k. (113)

The line lies in a plane that is parallel to thécoordinate plane. If its projection onto
YZ defines an anglé with OZ that has a positive trigonometric tangent then it balthe
tangent to aight-wound helix that is described on the cylinder. As a resitithe
following equation:

Rs — RanA =Kk, (114)

the parameter of the complex k will be positiv@nversely, if taml is negative then the
line will be tangent to deft-wound helix that is described on the cylinder ati
parameter of the complex k will be negatiom the last equation, however, it follows,
when we seR equal to all positive values in it, that all lines afaanplex will be tangent
to right-wound helices when one line of it contactight-wound helix, just as all lines of
a complex will be tangent to left-wound helices whea bme of it contacts a left-wound
helix. We thus have two essentially different tyjd first-degree complexes, which we
would like to distinguish asght-woundandleft-woundcomplexes.

We can regard a first-degree complex as the totality of tangentditehéhat are
inscribed in a cylinders of rotation and whose circular intersectionse hadii that
increase fronD to . All helices are wound the same way for the same complex.

For every cylinder, the pitdmof the helix is determined by the equation:

_27R

= , 115
tan/ (115)

If we eliminateA between this equation and the foregoing one then thagive:
h-k= 2R (116)

that is:for any cylinder, the product of the pitch of the helix with the paranuétéhe
complex is equal to twice the area of its circular section.
48. If we represent a complex by the general equation:
Ar+Bs+C-Do+Ep+F=0

then we have:
_ AD+BE+ CF
k =
D?+E?+F?
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for its parameter. The complex will then doght-woundwhen:

AD +BE + CF>0 (117)
andleft-woundwhen:

AD + BE + CF< 0. (118)
The transitional case:

AD + BE + CF=0 (119)

corresponds to the notion thhe axis of the complex is cut by all of its lifefs, no. 45).

The values of the constaktare equal, but of opposite sign, for two conjugate
complexes. The helices of both complexes are ombpsitound. For the sake of
visualization, we can regard two complexes as theomimages of each other, if we
think of the plane of the mirror as being perpendicutarthe common axis of the
complex.

Each point of space is cut by two oppositely wound helibat are inscribed on the
same cylinder and each belong to one of two conjugate eaegpl The tangents to the
two helices at this point are lines of the two comegethat go through it. The angle that
they make with each other is72¢ 1). However, one has:

tan (m—-A) = E (120)

so the tangent of the angle at which the lines ofwlzecomplexes intersect each other is:

2Rk

tan 27— 1) = Vo=

(121)

This angle of intersection decreases with the distdramm the point to the axis of the
complex. When:
k=R

it will go through a right angle, and it will becomeeevarger wherR increases further,
such that foR = o, it will approach the limitz

Only one helix of a complex goes through each given pdihe tangent to this helix
at the given point is a line of the complex and thes ih the plane corresponding to this
point. This plane is determined completely by a secmadthat goes through this point
and belongs to the complex. We find such lines in tresecutive tangents to the same
helix. The plane that contains the two tangentiasosculating plane of the helix at the
given point.

The osculating plane to a complex helix at each of its points is the ghane
corresponds to this point.

We find the confirmation of this theorem in the fattton the one hand, both planes
go through the tangents to the helix at the given paimd, on the other hand, they both
go through the perpendicular that can be dropped from this tpdime axis.
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If a point moves along one of two associated polaes @t each point they will
correspond to a helix and an osculating plane to it dlvaays goes through the other
polar. If the line is a sideSeitg of a cylinder that the helix is inscribed tnin other
words, a diameter of the complex — then the correspgnaisculating planes will be
parallel and will be the planes associated with themdiers, such that the polar
associated with the diameter lies at infinity (

49. | shall conclude this investigation of first-degree carps with some general
remarks.

Just as we can construct polygons whose vertices degiven plane from lines, and
solid angles whose planes go through a given point, walsa simultaneously construct
spatial polygons and polyhedra from the lines of a first-adeegoanplex that correspond
to them. The sides of these spatial polygons are thesemfgéne polyhedra. At the
vertices of the polygon, two successive sides of it intltrsect. The plane that goes
through two such sides will be the plane that corredpda the vertex in the complex
and a face of the polyhedron. The mutual relationshipsdagt polygons and polyhedra
are the ones that we already spoke of in the notermber29.

We would like to call a spatial polygon whose sides lares of the complex a
complex polygomand the corresponding polyhedrorgaemplex polyhedran

In order to describe a complex polyhedron, we chodsee af the complex and an
initial vertex of the polygon that lies in it. Just @&finitely many lines go through any
plane through a point, so do infinitely many lines obanplex go through a point. On a
complex line that goes through the first vertex of igumn, we choose the second vertex,
then choose the third one on one of the complex timetsgoes through it, and so on. In
order to close the polygon, through the last point thaetermined in this way, we draw
the plane that corresponds to this point under the @mplt will intersect the first
complex line at a point. The line that connects lpatimts will be a line of the complex
and close the polygon. We can derive a complex polyheidoom the corresponding
complex polygon, or also construct it directly in a m&nthat is analogous to this one.
To that end, we consider a given complex line to beetlge of a polyhedron and lay the
first face of it through this edge, through an arbitrarsnplex line in this plane, we lay
the second face, through an arbitrary complex lineandtter, the third, and so forth. In
the last-determined polyhedral face, we determine the paamtcorresponds to it in the
complex. The plane that goes through this point anditsiecomplex line closes the
polyhedron.

The sides of a complex polygon are oriented the sathat is, they are tangents to
equally-wound helices — and that will define a characterssquence of vertices of that
polygon as a consequence. The faces of a complex potyihéhrough which two
oriented edges of it go will be rotated in the sameeseMge can refer to polygons and
polyhedra as right-wound or left-wound in their own right@ading to whether they
belong to right-wound or left-wound complexes, respectivelhe mirror image (we
revert to our previous manner of visualization and, in ttake the reflecting surface to

() We have always taken the constants in the generalienadta complex to be real and thkisas
well. However, if we combine several complexes therg#reerality of the discussion will extend in such a
way that we must now consider complexes with imaginangtemts.
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be perpendicular to the complex axis) of a complexgmotyor complex polyhedron will
belong to the conjugate complex and will be wound the ofgosiy.

50. A plane curve will be enveloped by a line that consgantives in the plane, and
a cone surface will be described by a line that rotatashdrone of its points. A spatial
curve will be enveloped by a continuously moving line th&drggs to a given complex at
all of its points, while a developable surface will bawdtaneously described by it. We
refer to any of the former agirvesand any of the latter atevelopable surfaces of the
first-degree complex.

We can inscribe infinitely many curves of a given c@ampn any given surface.
Such a complex curve will go through each given point®flien surface. The tangent
to the complex curve at this point will be the line in evhthe plane that corresponds to
tbe given point in the complex intersects the tangéptane to the surface at this point.
()

In order to summarize everything in a word: Just as tkeageometry of the plane
there is also geometry of the first-degree complex.

§ 2. Congruences of two linear complexes.

51. The coincident lines of two first-degree linear coempk will define aline
congruence. We can consider the lines of a congruence to be ragisaaes, and
correspondingly, congruences can be represented in twe: iest, by a system of
equations in ray coordinates:

Q=Ar+Bs+C-Do+ Eo + 7 =0, )
Q' =Ar+Bs+C- Do+ Ep+ Fnp=0,

and secondly, by a system of two equations in axial coaiek:
®=Dp+Eq+F-Ak+ Br + Qu=0, @)
®' =Dp+Eq+ F- Ak+ Br+ Cw=0.

52. In each of the two complexes that determine thagagence, infinitely many
lines will go through a given point that will lie in théape that corresponds to the point.
The line of intersection of the two planes that cgpoand to the given point is the single

() In order to clarify the general reasoning of the texa simple example, we would like to consider
the outer surface of a sphere whose center fallseoaxis of the complex, and whose radiis arbitrary.
The complex curves inscribed on this sphere define amsystéoxodromeghat intersect the meridian of
the sphere at an angleAfwhich is given by the equation:

tan)lzh.
R



§ 2. Congruences of two linear complexes. 57

line that simultaneously goes through that point and totfiplexes, and will thus belong
to the complex.A single straight linewill go through every point of space, which we will
saycorresponds to the poininder the congruence.

In each of the two complexes, infinitely many linel ie in a given plane that cuts
the point that corresponds to the plane. The stréigghthat links the two corresponding
points in the given planes will be the only one thiatultaneously lies in that plane and
the two complexes, and thus belongs to the congruecngle straight linewill lie in
any plane that is drawn through space, of which we wyllthat it corresponds to the
planeunder the congruence.

We can regard the two given relations, one of which wécessarily be a
consequence of the other one, as gleemetric definitionof a congruence of linear
complexes.

53. For the determination of a congruence, we can repgt@cevo given complexes:
Q=0, Q=0
with two other ones that will be represented by thiewahg equation:
Q+uQ' =0 (3)
for an arbitrary choice of the undetermined coefficjignand we can then also repldee
andQ' with ® and®’, resp. We say that all complexes that can be repred by the

foregoing equations, and two of which will determine thegcoence, define &wo-
parameter group of linear complexes.

54. In number3l, we obtained the following equation for the principatisecof the
complex (3) that goes through the coordinate origin:

Dx+Ey+Fz+ u(D’x+E’'y+F’2 =0, 4)
and this equation will be satisfied for arbitrary valueg @fthen one simultaneously has:

Dx+ Ey+ Fz=0, (5)
D'x+ Ey+ Fz=0.

Since the coordinate origin will be assumed toald@trary from now on, this will
therefore express the idea that in any complexcagsrameter group that belongs to the
congruence will intersect the principal sectiort g@es through a given point in the same
straight line. Since the diameter of a compleyaspendicular to its principal section,
that will yield the following theorem:

The diameter of any complex in a two-parameter graul be parallel to its plane.
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55. In order to determine the direction of the diametex, will get the following
double equation:

= =2 (6)
D+uD' E+uE F+uF’
when we introduce the direction constangds:
r:D+’UD,, S= E+’UE,. (7)
F+uF F+uF
If we eliminatey from these equations then we will find that:
(E'F-ERF)r-D'F-DF)s+(D'E-DE)=0. (8)

The direction of the plane that is parallel to thenteter of all the complexes is
determined by this equation. When we replaaads with x / z andy / z, we will get the
equation:

(E'F-EF)x-DO'F-DF)y+(D'E-DE)z=0, 9)

which will represent the plane that goes through thgiroin the chosen direction in
ordinary point-coordinates, and we will then get the double teguafor the
determination of the direction that is perpendiculaihtd plane:

X _ Yy _ Z
EF-EF DF-ED DE-DE’

(10)

If we make this direction th®Z-axis thenF and F’ will vanish, and the complex
equations (1) will become:
Q=Ar+Bs+C- Do+ Ep =0, (11)
Q' =Ar+B's+C- Do+ Ep=0.
The diameters of all complexes of the group (3) thén be parallel to th&Y-plane.

56. If one of the three following condition equations
D'E-DFE =0, D'F-DF =0, E'F-EF =0 (12)

is true then the straight line along which the @pal section that goes through the origin
intersects all complexes of the group will lie imecof the three coordinate plan€g XZ,

YZ resp. The diameters of all the complexes wiintlbe parallel to a plane that goes
through OZ, OY, OX resp. |If the three condition equations (12) westisfied
simultaneously then that would raise the contramhicthat a plane would have to be
simultaneously parallel to the three coordinates,axvhich would prevent any
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determination of that plane. One would then correspoihdfirgl one of the complexes
of the group (3):

y=-D __E__F

DI EI FI

whose equation we could take to be the following one:
(A’'D-AD')r+(B’'D-BD’)s+(C'D-C D) =0. (13)

All of the lines in this complex would be parallel to thiane that is represented by the
equation:
(A’'D-AD')x+ (B’'D-BD)y+(C'D-CD)z=0. (14)

The congruence would be specialized in this case by théhcsince its lines all belong
to this complex, they would all be parallel to thenglathat was just determined.
Therefore, the axes of all complexes in the two-patamgroup would be parallel to
each other, which could be seen in the double equation {¥@)would like to call such a
congruencarabolic We will exclude them from the following consideraspand will
subject them to a special discussion later on{8)p.

This case will also come about especially wheandF " vanish, and:

D’E - DE’ =0, (15)
moreover.

57. If we shift the origin of the coordinates to any pdidt y°) then the constant term
in the equation of the complex group (3) will become:

(C+EX -DY%) + u(C’+E’ X - D"Y).

This term will then drop out when the new origin in ¥i¢plane is assumed to be on the
straight line that is represented by:

(C+Ex-Dy)+u(C'+E’x-D’y) =0. (16)

If we take this point to be the intersection of the straight lines:

+Ex- Dy=0,
C+Ex yO} 17

C'+E'x-Dy=0

then the constant term will vanish from the equatiballocomplexes of the group. One

will then get:
Q=Ar+Bs- Do+ Ep=0,
! ! I 0- p (18)
Q' =Ar+B's- Do+ Ep=0.

We have:
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Ax+By+Cz+ u(A’X+B’'y+C’'2 =0 (29)

for the general equation of those planes that correspmriie origin in the various
complexes of the group (3) (n82), and this equation will be satisfied, independently of
the particular value gf, when one simultaneously has:

Ax+ By+ C z=0,
y } (20)

Ax+ By+ C z=0.

All of the planes that correspond to the origin whién intersect on the straight line
that is represented by the two equations, and since tia will assumed to be arbitrary
from now on, we will arrive at the following theorem:

In the complexes of a two-parameter group, a given point will correspoptanes
that intersect in the same line.

This theorem is given immediately by combining the onegimber$2 and53.
When C and C’ vanish, the planes that correspond to the origin urtevarious
complexes of the two-parameter group will interseeh@ltheOZ-axis.

58. WhenF andF’, as well a<C andC’, vanish,OZ will become a common line to all
complexes, and thus a line of the congruence that éssetted by the axes of all
complexes (cf., nd31).

In any congruence, there is, in general, a single and completely-detdrsthaggyht
line that will be intersected by the axes of all complexes dfhgarameter group by
which the congruence is determined.

We would like to call the straight line that has anlex@e relationship with the
congruence thexis of the congruenceWhen we base the determination of the function
on equation (18), we will take the axis of the congrueadeettheDZ-axis.

When the condition equation:

D'E-DFE=0

is verified, the congruence can generally no longerepeesented by the system of two
equations (18)F andF’cannot both drop out. The principal sections of allglexes of
the two-parameter groups that go through the origin wiintintersect (when the
condition equation above is satisfied) on one of thegdit lines that lie in the coordinate
planes, and whose equation will be the following one:
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From numbe4, the diameter and especially the axesof all complexes of the group
will be parallel to a plane that is perpendicular htattline. Therefore, th&Y-plane
cannot be parallel to the diameter, in general, aecefbre one will get the impossibility
of F andF"vanishing. This possibility first will arise when:

that is, in the case of a parabolic congruence, swthetijuations (5) become identical,
and corresponding to that, all of the principal setithat go through the origin will
coincide. All of the complex axes will then be perpeuldicto this plane, and will then
be mutually parallel, in agreement with numbér In order forF andF “to drop out, one
will then need only to choose thér-plane such that it is perpendicular to the plane in
guestion, or- what amounts to the same thirgthe OZ-axis must lie in that plane,
although it can have any direction within that plane.

However, when the condition equation above is satis€ andC’ cannot also drop
out simultaneously, in general. In fact, insideXdf the shift of the coordinate origin that
demands this dropping out is illusory, and indeed in suchyathat the two lines (17), at
whose intersection the new origin lies, will be pkefal (The values oF andF’do not
come into consideration in this.) Only when one has:

simultaneously, and as a consequence, the two straaght(IL7) coincide in a single one,
canC andC/, in turn, be removed by a shift of the origin, and indeethabend, we can
take any arbitrary point of the straight line:

1+E(—EE]_+E(—E:O
cC C c C

to be the new coordinate origin. Later, we will esnater the case in which the two lines
(17) coincide in a single one, and we will see that thisaidence is based upon a special
position of the congruence relative to the coordinatesgyst

59. If one of the three conditions:
A'B —-AB =0, AC-AC =0, BC-BC =0 (21)

is satisfied then any straight line in which all of than@s that correspond to the origin
intersect will lie in the coordinate planesy, XZ YZ respectively. If two of these
equations — and consequently, all three of them — areis@tisen among the complexes
of the group (3), corresponding to:
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4o A B_ C
Ar Br Cr’

there will be one of them whose lines all intersectitenaxis, and this axis will go
through the origin. We can take:

—-(AD -AD) o+ (NE ~AE) p+ (A'F ~AF') n=0 (22)

to be its equation. These conditions will correspomemC and C' vanish and one
simultaneously has:
AD -AD =0. (23)

The axis of the complex that goes through the origlhtiagn lie in theYZplane.

If CandC', F andF’ vanish at the same time, and the condition (23) is l&ewi
fulfilled then the axis of the complex will coincideitiv the coordinate axi®Y. The
discussion of this case will find its completion lafi@rno. 76).

60. The complexe§2 andQ’' are any two that we have selected arbitrarily froen th
complex group (3). However, among the infinitude of complereshe group, in
general, one will find ones that depend upon one lessarinsind whose lines will all
cut the axis (cf., na45). For the determination of these complexes, we wakgdtd start
with the function determination (18), which, from theefgoing, is always permitted,
except in the case where the condition equations (12)kaweise valid. All axes of the
complex, which is, moreover, represented by the equation:

(Ar+Bs—Do+Ep)+m(Ar +B's—-D'c+Ep) =0, (24)

will then intersecOZ in a right angle.

If the complex that corresponds to an arbitrary valug & of the type referred to
then, from numbed5, we will obtain the following equations for the thyg®jections of
its axis:

(A -E+uA -E2=0, (25)
(B -D2+u(B -D'2=0, (26)
(Ex-Dy) + u(Ex-D'y) = 0. (27)

In such a complex, the plane that corresponds to d pospace is the one that can be
drawn through the point and the axis of the complex irclvhll of its diameters coincide
(no.55). The equation of the plane that corresponds to tiggnas, by our assumption
on the coordinate axes, the following one:

(Ax+By) + 4 (A'x+B'y) =0. (28)

The axis of the complex will then lie in this plane.
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If we express any point on the axis of a to-be-deternaneplex by X, y, 2) then the
foregoing four equations will exist between these coordmaimultaneously. If we
eliminateZ from (25) and (26) then we will get:

(A+uAR)D+ubD)+B+uB)E+HE)=0. (29)

We obtained the same equation by eliminatyng x between (27) and (28). It
expresses the idea that the parameter of the compleghes (no38). We could have
posed it from the outset.

61. When we develop the last equation, it will become:

(AD' +BE) // +[(AD +AD) + (BE + EB)] ¢+ (AD + EB) = 0. (30)

If we denote the roots of this equationglyand s then that will give:

__(AD+AD)+(BE+ BE)
0+ tho= AD+BFE ! (D)
[(AD- AD)+(BE- BB]*-4( AB- AB( DE DE§

- 2 _ _
(/j) luo) (Ar D+B E)2

(32)

There are then two complexes of a special kinthéncomplex group:
Q+Q"' =0,

such that the lines in each of them intersect alfiged line — viz., the axis. According
to whether the two values pf andz are real or imaginary, the same will be true Fer t
two complexes and their axes. We would like td tted axes of the two complexes thus
determined the twdirectrices of the congruence.

All lines of a congruence will cut its directrices.

62. From the result that we achieved in the previousiber, we can, moreover,
define a congruence geometrically by saying that the totality of all lines that cut two
given fixed straight lines. The straight line etcongruence thabrresponds to a given
point is thus the one that goes through the given modtintersects the two directrices,
while the straight line thatorresponds to a given plane the one that connects the
intersection points of the given plane with the thiectrices.

63. If we eliminatey from the two equations (25) and (26) then thak gwie:
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A-Ez _ B+Dz

] 1 - ] [ (33)
A-Ez B+Dz
and when we develop this, we will get:
(D'E-DE')Z +[(A'D - AD) + (BE-BE)] z+ (A'B' - AB) = 0. (33)

The roots of this equation determine the planes in wihieldirectrices of the congruence
lie, and thus the points at whi€¥ will be cut by the two directrices.
If we eliminateu from the two equations (27) and (28) then that will give:

Ex-Dy _ Ax+ By

= : 35
E'x-Dy Ax+By (35)

The two values that this equation gives yof x are the trigonometric tangents of the
angles that the two directrices of the congruence maltethe direction ofOX in the
plane that was just determined. If we set:

=tandg,

when we call that anglé, then when we develop (35), that will give:

(B'D —BD)) tarf 9 + [(AB - AD') — BE - BE)] tan— (NE — AE) = 0. (36)

64. Due to the coincidence of tl@Z coordinate axis with the straight line that cuts
the two directrices of the congruence that is detemnibg (3) at right angles, the
equations of the two complex€s and Q', which we choose arbitrarily from the two-
parameter group, will assume the following form:

Ar+Bs- Do+ Ep=0,

' ' = (37)
Ar+B's- Do+ Ep=0.

We can remove even more constants from the systénwoaéquations.

The point that lies on th8Z axis at the midpoint between the two directricesl di&l
called thecenter of the congruencand one half-the distance between the two diresric

shall be called itxonstant. If we then lay theXY-plane through the midpoint of the
congruence then equation (34) will give:

(D —AD)) + (BE - BE) = 0, (38)

and thus, if we denote the constant of the congruenfe by
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A= /_A,B;AB’ (39)
D'E-DE

D'E-DE =0

Because the case:

under discussion is temporarily exclud@dyill always take on a finite value.

Up to now, the directions of the two coordinate axegeh@mained undetermined.
We now additionally determine these directions in sackay that it bisects the angle
that the directions of the two directrices define vadch other — which can happen in
two ways — so equation (36) will give:

(AD -AD) - BE — BE) = 0, (40)

and the trigonometric tangent of the angle that thectons of the two directrices make

with OX will become:
/ AE- AE
tand=+,| ———. 41
B'D-BD (41)

If we give theOX and OY axes the directions that were just referred to, and
simultaneously assume that the origin is at the cesftéhe congruence then the two
condition equations (38) and (40) will be likewise valid, aad then be replaced by the
following two:

AD-AD =0, (42)
B'E -BE =0. (43)

We would like to call the two coordinate axes in the tmmsithus determined thevo
auxiliary axesof the congruence. They lie in tleentral planeof the congruence and
bisect the angle that the two projections of theatiirees onto this plane define with each
other.

65. This coordinate system yields:

A:J_g \/ﬁ (44)

DE DE

tand = i\/—i :i\/—ﬁ. (45)
BD BD

A congruence is determined by its two directions in a tiveay, and will thus depend
uponeight mutually-independent constantSix of these are again related to the choice of
coordinate system, which is determined completely whemake the principal axis and
the two auxiliary axes of the congruence to be cooreiagés. The two complexes (37)
that serve to determine the congruence depend upon speindent constants that enter
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into their equations. Since there are two condition éopus(42) and (43), the number of
them will reduce to four. Two of these four constantt ba still superfluous, which
finds its explanation in the fact that we did not chowge distinguished complexes of
the two-parameter group:

Q+uQ' =0

for the determination of the congruence, but two arlyitcares — namelyQ2 and Q'
—corresponding toy = 0 and 4 = o, respectively. However, two distinguished
complexes of the group are the two that have the tvectdices for axes; that is, the ones
whose parameters are equal to zero. If we take thesedmplexes to b andQ' then
that will yield the two new condition equations:

AD+ BE=0, (46)
AIDI + BIEI = 0 (47)

Along with the six constants of the position, two cang$ will then remain for the
determination of the congruence. The number of corsstaiit then necessarily be
reduced to eight.

66. In the new coordinate determination, the expressiBh¥ &nd (32) that were
developed above will become:
AD' + BE

=—2— 4
W+ b 2 ND+BE' (48)
> (AB- AB)( D E- DE)
- =- : 4
W~ o) == == g ey (49)
The two rootg” andp are real when:
(AB-AB)(D'E-DFE) <0, (50)
and imaginary when:
(A'B-AB)(D'E-DFE) > 0. (51)

The foregoing expression can be written in accardamith the conditions equations (42)
and (43) in the following form:

2 ' 12
ABDFE B_A , ABDE s A .
B A B A

The reality of the two roots will thus depend upshether the productd’'B'D’'E' and
ABCE which agree with each other in sign, are negativpositive. In the former case,
(£ and 1 will be real, and with them, in accordance witd)(4nd (45)A and the two
values of tan? will be real, as well; in the latter cagé, 1o , A, and the two values of tan
J will be simultaneously imaginary.
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67. The two values off and i will be equal to each other when one of the two
condition equations:
A'B-AB =0, DE-DE=0 (52)

is satisfied. However, in this case, with consideragjimen to equations (42) and (43),
one will generally get:

The two complexe2 and Q' of the two-parameter group, and consequently all
complexes of that group, will then be identical to therfihe determination of the
congruence becomes illusory.

The apparent contradiction is resolved by this.

68. However, there are also special cases in which theaiequdarm (18) keeps its
meaning even when the two valy#sand i, are equal to each other. In general, the two
equations (42) and (43), in conjunction with one of the égoations (53), demand the
second of the latter equations. However; gay— A andA’ are equal to zero then this
will no longer be the case; we will then be dealinthvein actual congruence that is of a
special type.

In fact, (44) and (45) will vanish in this case, as wellAaand tand. The two
directrices of the congruence coincide in a straight line. agreement with this, the
numerator in the value (49) for{ - 16)* will vanish, while the denominator will keep a
finite value.

In our case, we can take the equation of the two-paeangroup (37), with
consideration given to equation (43):

B'E - BE =0,
to be the following one:
(BstEp)—-Do+ u[(Bs+Ep) -D'qg =0, (53)

and select the distinguished complexes from that grolye tthe following two whose
equations are:
Bs+Ep=0, o=0,

and these equations will also be written in the follmyviway in homogeneous
coordinates:
By—y)+E(Xz-xZ)=0, yz —y'z=0. (54)

The first of the foregoing two complexes has ¥ coordinate axis for its axis; its
parameter i8 / E. The second complex is of a special kind that haarameter that is
equal to zero. Its axis, which will then cut all of lises, will fall along theOX
coordinate axis. In agreement with (44) and (4»% will then be the directrix of the
congruence.
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Whereas a congruence must generally be determined byaitslitectrices, in the
special cases in which the two directrices coincide wisitraight line, in addition to that
straight line, yet another new complex of the two-pa&atamgroup that is determined by
the congruence will be given)(

In the complex whose equation is the following one:

By—-y)+EXz-x2 =0,
any point of thedX coordinate axis will correspond to the plane:
By+EXz=0,

wherex refers to the distance to the point from the origiimr any other complex of the
two-parameter group (53), we will fithe sameplane, since/ andz will vanish for all
points that lie alon@X. This plane goes throughX. We then conclude:

If the two directrices in a congruence coincide with a straight e that line itself
will be a common line of all complexes; that is, a line of the cegre.

We thus obtain a congruence of the kind in question wheriake all lines in a
complex that cut a fixed line in it. When a point advargleng a line of a complex, the
plane that corresponds to it will rotate around that (ime 28). Infinitely many lines of
the congruence will then go through each point of thaigéirdine in which the two
directrices coincide, which will all belong to a plahattgoes through that straight line,
in its own right. If the point advances along a straigie then the plane will rotate
around it. The relationship between points and planesnipletely reciprocal.

We further specify tha#, A', B, andB' be equal to zero. From (44), will then
vanish, while, from (45), ta# will take the form O / O, and since no relation exists
between the vanishing coefficients, it will be indeterr@naThus, to be consistent, the
numerator and denominator in the expression (49)ubr ()? will likewise take on the
value zero.

Any line that goes through the origin in the XY coordinate plane is ataket the
congruence.

We take the equation of the two-parameter group thatdhgruence determines to
be the following one, into which only mutually-independesstants enter:

-Do+Ep+u(-D'c+Ep) =0. (55)

In particular, we can select the following two comglefrom this group:

() The basis for this lies in the fact that a stralijte representfour constants, while a congruenee
which, like the present one, is specified by one cooditi will depend uporseven We find thethree
remaining constants in the second given complex, whighdepends upon onthree arbitrary constants,
since it is coupled to thigvo conditions that its axisutsthe straight line in which the two directrices of the
congruence coincide, and in factight angles



§ 2. Congruences of two linear complexes. 69

p=0, o=0,
which will have the following equations, when expresseabimogeneous coordinates:
Xz-xz=0, yZ-yz=0. (56)

Therefore, the congruence encompasses, on the one dihtides that lie in theXY
plane, as well as all lines that go through the origin.

Every line of the congruence cuts all of its directrices. Trexttices are themselves
lines of the congruence.

In general, a single line of the congruence in questiongeithrough a given point:
viz., the line that connects it to the origin. Intmardar, if the given point lies in th¥Y
plane then infinitely many lines of the congruence wiltigmugh it that all belong to the
aforementioned coordinate plane. If one shifts thetgbat is assumed to be in thg
plane to the origin, in particular, then each of ttraight lines that go through it will
belong to the congruence.

On the other hand, in general, one line of the congrukeEen each given plane:
viz., its intersection line with th¥Y coordinate plane. If the plane that goes through the
origin coincides with th&Y coordinate plane, in particular, then each of thegtt lines
that lie in it will belong to the congruence.

69. In the foregoing, we took the principal axis of a congceeand its two auxiliary
axes to be coordinate axes, and thus represented the corgtuethe following two
complex equations:

Q= Ar+ Bs- Do+ Ep=0, (37)
Q'=Ar+B's- Do+ Ep=0,
under the assumption that:
AD-AD =0, (42)
BE-BE=0, (43)
and obtained:
n2=- 28 (44)
DE
tart 9= -2 (45)
BD

for the geometric determination of the congruence. Hw two equations leave
undecided whether the directrix of the congruence thaegponds to + tae? cuts its
principal axis at a point for whichk = + A or z = — A, so the other directrix, which
corresponds to — ta#, will cut the axis at the point whosehas the opposite sign.
Therefore, in agreement with the above, we willvarrat the same equations (44) and
(45) when we simultaneously change the signé @indB andA' andB' in equations
(37), or — what amounts to the same thing — the sigis aridE andD’ andE'. If we
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denote the complexes that corresponding to this exchiayglee symbol€; and Q;
then the following equations will enter in place of finevious ones:

Q Ar+ Bs+ Do - =0,
. Eo } 57)

Q;=Ar+B's+ Do- Ep=0.

The two congruences that are represented by the two @uyairs (37) and (57) have

the same center and the same central plane, and peydando it, the same principal

axis and the same auxiliary axes. The distances bettieetwo directrices and the

angles that their directions make with each otheregteal in the two congruences. The
relationship between the two congruences is a reciporeglwhen we once more appeal
to the previous image of a reflection and consideiXifiplane (or some other coordinate
plane in its place) to be a plane of reflection, ¢ine will be the mirror image of the

other. We would like to call two congruences that héwn relationship to each other

two conjugatecongruences.

70. In the foregoing, we showed that a congruence sinedizsly belongs to all
complexes in a two-parameter family, and that amoegetltomplexes, in general, two of
them will be of the special kind whose parameter is eipuatro. The axis of each of the
two complexes will be cut by all of its lines, from whj it will follow that all lines of the
congruence will cut its two axes, since they must bilong to these two complexes.
Correspondingly, we have defined these axes to beabealirectrices of a congruence.
However, we can also regard the two directrices fratfferent viewpoint.

71. A congruence is determined in such a way that its $imesltaneously belong to
two complexes that are taken arbitrarily from a twoap@eter group of complexes. The
complex will be represented by the equation:

Q+uQ' =0,

when we sej/ equal to two successive, arbitrary values in it. It ey, however, the
number of independent constants in that equation wiltdaeiced by one unit. The
number of constants upon which the congruence depend$evillamount to:

2(5-1)=8,

which is the sum of the constants in two complexesmnwtheir constants have been
reduced from five to four. If a line that belongs to tbagruence is given then we will
obtain a linear condition equation between the four temts of each of the two
complexes by which the congruence will be giveRour given straight lines of the
congruence are necessary and sufficient to determinevtheomplexes, and thus, the
congruence. Two straight lines that do not belong tcctimgruence are determined by
four given straight lines of the congruence if theyrnséct the four given ones. These
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lines depend upoaight constants; they mutually determine the four given linekadin
lines of the congruence.

Four lines of a complex will determine a congruence tiatcomplex belongs to. If
the congruence is given ligur of its lines then a complex that belongs to the coegre
will be determined by &fth line. The two lines that cut the four given lines anethe
one hand, the two directrices of the congruence, anthewther hand, two associated
polars of any complex that belongs to the congruence.

Two associated polars of a given complex are the two directat@scongruence
that the complex belongs to.

The two directrices of a given congruence are two associated polars cbampjex
that belongs to the congruence.

If the two directrices coincide in a straight line then this comrfioa to all
complexes will then itself be a line of the congrugoteno.68).

72. In general, only one line of a given congruence wiltlgough a given point, just
as only one of its lines will lie in any plane. Wen@@nsider the two directrices to be the
locus of points through which infinitely many lines oétbongruence go, as well as, on
the other hand, the locus of all points that are envdldgyeplanes in which infinitely
many lines of the congruence lie. Namely, if a poinhssumed to be on one of two
associated polars of a complex in the two-parametenpgthen the plane that goes
through the point and the other polar will be the plkia¢ corresponds to the point in the
complex. Therefore, if the two associated polar®rgglto all complexes of a two-
parameter group then each point of one of the two conpotars in all complexes will
correspond to the same plane that is determined by théh&tat goes through the other
polar. The relationship between the two polars to cbmplexes of the group is
completely reciprocal. Conversely, we can also stih a plane that is drawn through
one of the two polars; the point that corresponds toplaae in all complexes of the two-
parameter group will then be the same point, and indeedl| lle the intersection of that
plane with the other polars. Thus, whereas a givemt pail correspond tane straight
line in a congruence, if it is assumed to be on ond@ftwo directrices, in particular,
then it will correspond toneplane that goes through the other directrix, justngsgpdane
that generally corresponds &osinglestraight line, will correspond tone point that lies
on one of the directrices when it goes through ther atinectrix.

73. We can thus paraphrase the foregoing definition ef divectrices in the
following way: They are the geometric loci of thosenp®ithat correspond tihe same
planein the various complexes of the relevant two-paranfeteily, or also the loci of
points that are enveloped by those planes that corr@gpoime same poinih the various
complexes. This is immediately linked to a new analytaetermination of the two
directrices of a congruence whether we make use ofo@ylimates or axial coordinates.

As before (3), we would like to take:

Q+uQ' =0
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to be the equation of the complex group, in which we gépeset:

Q =Ar+Bs+C -Do+Ep+Fp,
Q' =Ar+Bs+C -D'og+Ep+Fn.

The equation of the plane that corresponds to a given Yoy, Z in any complex of the
group that is referred to an arbitrary choice of unueiteed coefficients will then be the
following one (no27):

(A+Fy —EZ)x+ (B-Fx +DZ) y+ (C+EX —Dy) z+ (AX + By + C?)
+U[(A +Fy —EZ)x+ (B -FXx +D'Z)y+ (C +EX -Dy) z+ (AX +BY +CZ)]
=0. (58)

This equation will always be satisfied, no matter vthatvalue ofz might be, when one
has:
(A+Fy —EZ)x+(B-FX +DZ)y+(C+EX -Dy)z+ (AX +By +CZ) =0, (59)

(A +F'y —EZ)x+ B -F'X +D'Z)y+ (C +EX -D'y) z+ (AX +BY +C?)
= O, (60)

simultaneously. The two planes that are representedelg #quations will correspond
to the given point in the complexe&3 and Q'; they will have a common line of

intersection with the planes that correspond to émeespoint in the various complexes of
the group. In particular, if the two planes (59) and (60)adethen all of the planes

(58) that correspond to that point will coincide. In @rfie this to happen, the last two

equations must be zero identically, which immediatelydgi¢he followingsix relations:

A+Fy-EZ = B-FX+DZ _ C+EX- Dy _ A+ BY + Cz
A+Fy-EZ B-FX+DZ C+EX-Dy A+By+Cz

(61)

The point &, Yy, Z) that is determined by (61) lies on the two directrioésthe
congruence. We would like to consider its coordinates & Mariable and
correspondingly drop the prime that they are endowedfrath now on.

74. In order to interpret equations (61) geometrically, veeila like to letP andP',
Q and@’, R andR denote those planes that are associated with theGixe®Y, OZ,
resp., in the two complex&s andQ’' — in other words, they correspond to the points that
lie at infinity on these axes — and denote the plandscttaespond to the origin in the
two complexes by andS’. The equations of these planes will then be:
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A+Fy-Ez= p=0, A+ Fy EzZ =0,
B- Fx+ Dz= =0, B- Fx D= =0,
C+ Ex— Dy= r=0, C+ Ex Dy= =0,
Ax+ By+ Cz= s=0, Ax By Cz 'sO.

(62)

The following two identities exist between the lineardtionsp, g, r, sandp’, d, r', S :

63
p'x+dy+rz= § (63)

PX+Qy+rzz s }
Reciprocally, the special form of the eight lineandtions is determined by these two
identities.

The straight line$PP, QQ, RR, SS are four straight lines that correspond in the
congruence to those four points that have a distinguish&itigoorelative to the chosen
coordinate system, namely, the three points thattlimfaity in the directions of the
three coordinate axes and the origin. The four lbedsng to the congruence. The two
directrices of the congruence are determined complételsaying that they cut these
four straight lines. The two directrices will al orimaginaryaccording to whether the
ruled surface that has any three of the four straighsPP, QQ, RR, SS as the lines of
its generators is or is not cut by the fourth of tHemss, respectively.

After introducing the eight symbols, the four-part equa{ic1) will become:

£:ﬂzlzgs. (64)

As a consequence of the two identities (62), this willnediately yield the three-part
equation:
P-9_-T (65)
r

U !

P q

This equation will then be sufficient for the determimatof the two directrices. It will
resolve into the following three equations:

pg = pq
pr'=pr, (66)
qr'=qr,

which represent three second-order ruled surfaces that@aogh the two directrices. As
a consequence of the four-part equation (64), three ned sulrfaces get added to these
three ruled surfaces, which likewise contain the twoctliees, and which will be
represented by the equations:
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ps=g@s
ps=g@s (67)
as=ds

The two directrices are determined in this way suchttigt intersect on any two of the
six hyperboloids (66) and (67)(

() It should be stressed especially that the four-parttiequés4) represents system of two real or
imaginary straight linesn exactly the same way that the three-part equation:

X% _ YYo _ Z°%

a b c

represents aingle straight line. The foregoing equation then containsifidependent constants, one of
which is superfluous and comes down expressing to the fadix¢hg, z)) is an arbitrary point of the line
that is represented. By the determination of the fanstthat was made, equation (64) contains ten
independent constants, including two superfluous ones thagquieed by the fact that the two complexes
Q andQ'’ can be replaced with two other ones in the two-parmgebup:

Q+uQ =0.

It would seem appropriate to derive this result direetbywell.
Equation (65) will be satisfied when the three equations:

p=Ap,
q=A4d,
r=Ar

happen to be satisfied simultaneously, which, when deedlowill go to the following ones:

(A-AR)+(F-AF)y-(E-A E) =0,
(B-AB) —=(F-AF) x+(D-1D) z=0, (68)
(C-AC)+(E-AE) x-( DA D) y=0.

Those points that simultaneously lie in the planesahatepresented by these equations will belong to the
locus that is represented by equation (65). However, @ivem value ofl, the foregoing three equations
will generally contradict each other. This contradictiwill be eliminated only whew, y, z become
infinitely large, and thus the relevant point goes to ityfinHowever, it would then not be permissible to
derive the fourth equation:

s=As
from the foregoing three.
However, if one has:
(A-AA)D -AD") + B -AB")(E —AE") + (C —AC')(F —AF") = O, (69)

in particular, then one of the three equations in qorestill be an algebraic consequence of the other two;
the three respective planes will intersect in a strdiglet Since the last equation generally gives two
values to/, there will also be two such straight lines. Théfof these two straight lines will then be
points that lie at infinity whose coordinates satisfy eigua(65), and thus (64).Two straight lines will
then be represented by equat{@d), namely, the two directrices.

In order to add some clarifications, we would like &rtswith the theorem thatvo ruled surfaces of
order and class two that go through two straight lines will intersetivo other straight lines, in addition.
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If C andF, C’andF’are equal to zero, in particular, then setting the éyressions
(61) equal to each other will yield tpe two equations (34) @& by which we
previously determined the two directricep (

This theorem will also preserve its meaning when oni@ftwo given straight lines lies at infinity in a
given plane. The surfaces will then no longer be tme-sheeted hyperboloids, but two hyperbolic
paraboloids whose lines will be parallel to a generafttine given plane. Thus, if the six surfaces (66) and
(67) have two fixed straight lines for the lines of onahafir two generators then, when composed pair-
wise, they will have two other lines for the comntioes of their other generator. Conversely, it mhsh
be verified that any two of the six ruled surfaces goutjindhe same two straight lines.

If we return to the functions that are represented bgyh#ols that enter into equations (66), and set,
for the sake of brevity:

(EF-EF)x- O'F-DF)y+ (D'E-DE)z=g,
(AB—-AB)-(AF-AF)x+ BF-BF)y+[(AD-AD)- BE -BE)] z=h,

then the first of the three equations (66) will assureddhm:
h2 + gz= O, (70)

with which, the last two of equations (65) will go to foBowing ones:

h,+g2=0,
h+gz=0. } (1)

The functiongy are the same in the three equations. The expredsiansh will be obtained immediately
when we first switctB andB' with C andC', E andE' with F andF’in h,, as well as switching with z
with a change of sign and changing the sigr; afe then switchA andA’ with C andC', D andD' with F

andF’, as well as switching with z, with a change of sign, and changing the sign of

The original form of the three equations (66) showsttiethree ruled surfaces that are represented by
these equations, when taken pair-wise, iRReQQ, RR for a common generator. The new form of these
equations shows that these three surfaces are hypgubddiboloids and have a second common generator
that lies at infinity in the plane that is represdriby the equation:

(EF - EF)x— (D'F-DF’)y + (D'E - DE) z=h =0.

This plane is parallel to the three lirfeR, QQ, RR.
We can then develop equations (67) in the following way:

(pg—p9 y+ ( pt— pn =0,
(ar'-qr)z+(pd- g9 *0, (72)
(pr'=p'r)x+(qr'-gqr) y=0,

and then, from the foregoing, we can also write tlsrfollows:

hz+h,y=0,
hz+hx=0, (73)
h y+hx=0.

() Confer “On a New Geometry of Space,” Phil. Trans. (186%)750.
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75. Here, we would like to append to equations (61) only theudson that is
connected with those two cases that were left othe@previous discussion as a result of
the special coordinate determination. In the one casehas:

E = E = i, (74)

DI EI FI

while in the other case, one has:

B=o=c (79)

A B C

In the first case, when we set:
D E F

= — == == 76
H D' E' F’ (76)

we will get a complex whose equation we can take thédollowing three identities:

(AD-AD) r+(BD- BD)s+(CD- CD) =0,
(AE- AE) r+(BE- BE) 3( CE CE=0, (77)
(AF-AF)r+(BF-BF)s+(CF CP)=0.

All lines of the congruence will then be parallel to angl whose equation we will get
when we replace ands with x / zandy / z, resp., in the foregoing equations. A directrix
lies at infinity in the same plane: viz., the line atfersection of parallel planes. We have
called a congruence whose one directrix lies at infeapppraboliccongruence. The first
expressions in (61) give the means to determine thetiardéicat does not lie at infinity
when one sets them equal in pairs:

(AB- AB)-(AF- AF) x( BF- BP w[( AD AD+( BE BE =0,
(NC-AC)+(AE- AB) x[( AD AD+( CF CH§ y( CE CE =, (78)
(BC-BC)+[(BE- BE+( CF CH] x( BD BD y( CB Cp =20

These three equations represent three planes thatagmlhthe directrix. In particular,
whenF andF “vanish, the conditions in question will reduce to:

D'E-DFE=0.

We then get the following mutually identical equationstfe plane that is parallel to one
directrix:

(AD- AD)x+(BD- BD) y+(CD- CD) =0, } (79)

(AE- AE)x+(BE- BB w( CE CE 20,

and the following equations for the other one:
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(AB- AB)+[( AD- AD)+( BE- BB] zO0,
(NC-AC)+(AE- AB) x( AD- AD y( CE CE =0, (80)
(BC-BC)+(BE- BB x( BD B) y( CB CpP zO0.

The directrix that does not lie at infinity will thdxe parallel to th&XY-plane.

The conditions in question will also be satisfiedparticular, wherD andD’, E and
E' vanish simultaneously. One directrix will then lieiafinity in the previous plane,
which will now be represented by the equation:

(AF-AF)x+ BF-BF)y+ (CF-CF)z=0. (81)
For the one directrix, one gets:
(AB-AB)-(AF- AF) x( B~ BP 0,
AC-AC
=— = 82
y C'F-CF (82)
_ _BC-BC
C'F-CF

It will then be parallel to th€©Z axis and cut th&Y plane at a point whose coordinates
are determined by the last two equations. If we substibet®e coordinate values in the

first of the last three equations then that equatidhbeisatisfied as a consequence of the
identity:

(AB-AB)(CF-CF)+(BC-BC)AF-AF)-(AC-AC)(BF-BF)=0.

In particular, if:
(AD-AD)+ BE-BE)+ (CF-CF')=0 (83)

then that will specify a parabolic congruence. Thereupo® three planes (78), by
whose intersection the finite directrix of the conguaeemvas determined, will become
parallel to each other and to the plane in which thergkdirectrix at infinity lies.

The two directrices of a parabolic congruence coincide in a straighalinginity.

We shall not go further into this special kind of congag since it is completely
analogous to the case that was treated in nuter

The foregoing condition equation (83) will be satisfied dog62), in particular,
when:

(84)

AD+BE+CF=0,
AD'+BE+CF=0.

Thereupon, all complexes of the two-parameter group ihatletermined by the
congruence will be of the particular kind whose paramsetanish. In agreement with
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that, the three planes (78) will coincide in a singte.o Since the axes of all complexes
that belong to a parabolic congruence are parallel toaaeln, we conclude that:

The congruence has infinitely many mutually-parallel directrices tkanlthe same
plane. The directrix at infinity also lies in that plane.

This case corresponds to the second case of nusBbelt is merely the common
intersection of the directrices, which has been shibanfinity.

76. When the condition equations (63) are fulfilled, thec&devalues of the
undetermined coefficient:

=-= (85)

will correspond to a complex of the two-parameter groapithrepresented by one of the
three following mutually identical equations:

-(AD-AD)o+(AE- AB)p+( AF- ABn =0,
-(BD-BD)o+(BE- BE)p+( BF BHr =0, (86)
-(C'D-CD)o+(CE-CE)p+(CF CHn=0.

The axis of the complex will be perpendicular at thgio to the plane that will be
represented by the last equation when we switeh g 7 with X, y, z resp. Since the
parameter of the complex is equal to zero, this axisheilbne of the two directrices of
the congruence. In agreement with that, equations (61)bwikatisfied whelx, y, z
vanish simultaneously. In the present case, thesei@ogiatill reduce to:

B_C
=—=—. 87
B C (87)

A+Fy-Ez  B-Fx+Dz _C+Ex-Dy _ A

A+F'y- Fz B-Fx+Dz C+Ex- Dy A

If we set the first three of their four terms equath® fourth one then that will give:

(CF-CF)y-(CE-CE)z =0,
(CF-CF)x—(CD-CD)z=0,
(CE-CE)x-(CD-CD)y=0.

These equations, in which we can wEt@ndA in place ofC, can be consolidated in the
following way:
X y z

= = , (88)
CD-CD CE-CE C'F-CF

and represent the directrix that goes through therorigi
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The condition equations (63) will be satisfied, in patdr, whenA andA’, B andB’
vanish. If we set the first three expressions in @fijal to each other pair-wise then we
will get:

[((E'F - EF)x-(DF- DF) y+( DE- DE) ¥ =0,
[(C'F-CF)+(EF- EF) x-( DF- DF) y+( DE- DB  ¥O, (89)
[(CF-CF)+(EF-EF) x-(DF- DF) #w( DE DB k %0.

In order to satisfy the foregoing three equations semelbusly, it will suffice to set:

2=0, } (90)
(C'F—CF)+(EF- EF) x-( D F- DF) y=0.

The straight line that is represented by these two equasidhs second directrix of the
congruence. It lies in th€Y coordinate plane.

77. If one has:

simultaneously then the congruence will be a parabo&cvamose directrix that does not
lie at infinity will go through the coordinate originThe equation of the plane that is
drawn through the origin and parallel to the lines of ¢bagruence will then be the
following one:

Ax+By+Cz=0.

The directrix that goes through the origin will halie equations:

and the plane that goes through the origin and is peiqéad to it will have the
equation:
Dx+Ey+Fz=0.

78. If we specialize by setting:
AB -AB =0, = == =— (91)

then all of the lines of the parabolic congruence wdl garallel to a plane that is
perpendicular to thXY coordinate plane, while its directrix will go through thregin.
If:
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A A BB =0, — == =— (92)

then all lines of the parabolic congruence will be areo the XY plane.
If:

D'E -DE =0, F,F =0, A_B_C (93)
A B C(C
then the directrix of the parabolic congruence wallih theXY plane.
If:
D,D',E,E =0, A-BC (93)
A B C(C

then the directrix of the parabolic congruence willd@on theOZ coordinate axis.
If:
AA,BB,D,D,EE=0 (95)

then the lines of the parabolic congruence will be peredltheXY coordinate plane, and
its directrix will coincide with theOZ coordinate axis. With that assumption, the
equation of the two-parameter complex group will become:

(C+Fn) +u(C +F7n) =0, (96)

and for an arbitrary choice &fall complexes of the group will be represented fay (

n+k=0. 97)
If:
S=o= (99)
cC D E
then
C D E
—— = — == 99
H C D’ E' (99)

will give the following equation for a complex of thedwarameter group:

(NC—AC)r + (BC —BC)s— (CF—CF) n=0.

() If we setn equal to the expressioﬁg then the equation in the text will go to the followingeon

Xy-xXy _
-7 =k

and wherk is undetermined, it will give:
Xy —xy=0, z-7=0
simultaneously.
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This complex will be of a special kind whose linesiafersect its axis, and that axis,
which is a directrix of the congruence, will be paildaitethe OZ coordinate plane here
and will cut theXY plane at a point whose equation in line coordinatebaifglane will
be the following one:

(BC—-BC)t— (A'C —AC)u— (CF—CF)w=0.

[Cf., n0.45 (95)].
In particular, if:

wTeE AT T T o (100)
A B C E F
then one directrix of the congruence will coincidelvitieOZ axis.
In order to give one last example, we would like to set:
222 Z=o=2 (101)
A B F C D E
If we then take:
y=-A__B__F
A B F (102)
y=-C-_D__E
C' D' E

in succession then we will obtain the following equatiémstwo complexes of the
group:

Q+uQ' =0,
namely:
(AC-AC)-(AD- AD)o+( AE ABp=0, (103)
(AC-AC)r-(BC- BC) ss( CF Chnp=0.
These two equations will reduce to:
-Do+Ep=
C-Dbo+Ep=0, (104)
Ar+Bs+ F7 =0,

and will represent two complexes of the special kindsehparameters vanish. The axes
will be the directrices of the congruence. One offithall lie in the XY plane and will be
represented in that plane by the equation:

C +Ex—Dy=0. (105)

The other will be parallel to th®Z axis and will cut theXY plane at a point that will be
represented by the equation:



82 Chapter One: First-degree line complexes and theireences

Bt—Au+F=0 (106)
in that plane.

79. Up to now, we have appealed to rectangular coordinate faxehe analytic
representation of a two-parameter complex group and thgrwence that it determines,
and thereby chose the center of the congruence toebeotirdinate origin and thez
axis to be the line that intersects the two directratagyht angles. When we then let the
two OX andQY axes coincide with the two auxiliary axes of the caegce, we obtained
the general determination of them in numé@in the simplest way.

However, we can also take any arbitrary line of thegnoence to be th®Z axis and
the point at which it cuts the central plane to beahgin. If we then displace the two
auxiliary axes in that plane parallel to themselves in sualay that they intersect at the
new origin then, as before, they will bisect the anbé the two directrices define with
each other when projected onto the central plane &ahglt is clear that the equation of
the complex group will keep its previous form in the n@erdinate determination. Jf
is the angle of inclination of th@Z axis with respect to th¥Y plane therA / sin y will
enter in place ofA, moreover; that is, the distance from the intéisagoint of theOZ
axis with the two directrices to the coordinate origin.

Finally, we can also choose the tX andOY axes in the central plane arbitrarily
without changing the form of the equation above, in suafay that they will define four
harmonics with the projections of the two directricé§e can refer to th®Z axis as a
principal diameter and th@X andOY axes as two conjugate auxiliary diameters of the
congruence. The conjugate auxiliary diameters will almain real when the two
directrices are imaginary.

Previously, we defined two conjugate congruences in such ahatyhe axes and
auxiliary axes were the same for both, except thadifeetrices that went through the
vertex of the axis had their directions switched. Vém ceplace the axis of the
congruence in this definition with an arbitrary diametét.congruence will then have
infinitely many conjugates: Each of its diameters walirespond to one.

80. The foregoing includes the complete discussion ofwlecongruences that are
determined by two-parameter complex groups. In the sequelowtel like to link this
discussion with some new considerations that are detednm order to give an intuitive
picture to the nature of such congruences.

In connection with numbe9, with the assumption of rectangular coordinates:

Ar+Bs—-Do+Ep=0 (107)
represents one of the two complexes of a special keidhave one of the two directrices
of the congruence for an axis. We then get the foligvequation for the determination
of the constants in this equation:

AD +BE=0, (108)

along with the two equations (44) and (45). The first twad@¢@n equations yield:
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AZ
o7 c N tarf 9, (109)
and (44) and (108) give:
2
% =2, (110)

If we divide the last two equations and consider (108) thanwill give:
—=— =tafd. (111)

If we setD = 1, while only taking absolute valuesAfB, E, and we consider that, from
number66, the product:
ABC=A’tarf &

must have a positive value for the case of real diocestrthen that will give the four
following possible determinations of the constants:

A=-Atand, B=+A, E =-tand, (112)
A=-Atand, B=-A, E =+tand, (113)
A=+Atand, B=+A, E =+tand, (114)
A=+Atand, B=-A, E=-tand. (115)

The first two combinations, and likewise the last twan be derived from each other
when one simultaneously changes the signs ahd tand. The first two combinations
thus determine the complexes in question of one of twugate congruences, while the
last two determine those of the other one. When we set

—=og-Atangi - tand[p+As= 0O, (116)
Z'=g-Atand + tandp-As= 0,
we can then represent the complex group of one congrisgnce
= +uz =0, (117)
and when we set:
=, So+Atandli + tandp+As = O, (118)
=, So+Atandt — tandp-As= O,

we can represent the conjugate congruence by:

=+ U=l = 0. (119)
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81. Perhaps it is not inappropriate to also derive thegloing equations in a direct
way. While preserving the coordinate determination up to fetvihe equations of the
two directrices of a congruence, which are regarded an,diee

=t X =A
y =tang[X, z=A, } (120)

y=—tand[X, z=-A.

One will then be dealing with the determination of twanptexes of a special kind
whose axes coincide with the two directrices. If wepldice the two complexes with
their axes in such a way that the latter shift intoXMeoordinate plane, which coincides
with the central plane of the congruence, then we géll the equations of the two
complexes in the new position immediately when wedwihe giverx andy directions
with p and ogin the equations, resp. In this way, we will get:

o =tandp, } (121)
o=-tand[p.

If we then return the complex to its original posititben we will have to switch (nd2)
pandowith:
p+ALT and o+A5,

resp., in the equation of the first one and with:
p-ALT and o0-ATl5
resp., in the equation of the second one. After tlubaxge, we will get:

-At -t +A$=
o-NAtand andp+AS 0,} (116)

o-Atang i + tan?[p-A$ = 0.

These equations are the same as the ones that weoyust for the first of the two
conjugate congruences; we will get the equations of thendeane by changing the sign
of tan#in (116), (118).

82. We can take the two complexésand=', instead of the two complex€s and
Q', for the determination of the congruence, and thus refirédse same complex group
that we previously represented by the equation:

Q+uQ =0 3)

by the equation:
Z+u='=0 (117)
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from now on. When we develop this equation and set:

1K) (122)
1+ u
for the sake of breuvity, it will become:
o-Atand ¥ — A (tand Jo—-A k) = 0. (123)

When we substitute all possible values Aoit will represent all of the complexes of the
two-parameter group by which the congruence isroeted.

Two complexes, in particular, belong to these demgs, which correspond to the
valuesA = 0 andA = w0, and when we set:

Atand =K,

(124)
A _
tang o.
for the sake of brevity, they can be representethéywo equations:
Q°=+0-k°[r =

g 0 (61)

Q,=+p-k,5=0.

The parameters of the two complexes kirandk, . Their axes coincide with the two
auxiliary axes of the congruence. Their point offeisection is the center of the
congruence. Due to their distinguished relatigm$bithe congruence, we would like to
emphasize them especially, and call thenwts central complexes.

When the conjugate congruences enter in placheofiven one, the axes of the two
central complexes, which coincide with the commauxileary axes of the two
congruences, will remain the same. The absoluteesaof their two parameters will not
change, but only as a result of changing the sigaro simultaneously with the sign of
both parameters.

If we set:

Atand= Ao,

for the sake of brevity, then the equation of tbeplex group will assume the following
simple form:

Q%+ Qo= (0-Kr)+ A (0+ks) =0. (126)
One has:
kOK) :_AZ,
0 127
k—:—tanzﬂ, (127)
ko

and therefore:
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K-k=—bo =28
singcos? sinZ
-2A
kK°+k, = , 128
% tan 29 (128)
0_
ko kO:—00529.
k™ +k,

Here, we get théwo parameters of the central complex of the congruencajdition to
the six constants of its position, for the determinationhat tcongruence.

83. If we start with the two equations:

Q=Ar+Bs—- Do+ Ep=0,
e AR (129)
Q' =Ar+B's- Do+ Ep=0,
by which we previously determined the congruenaod, lzetween whose coefficients the
relations will exist:
AD -AD =0,
B'E -BE =0,

when the auxiliary axes of the congruence are chtséde theOX andOY coordinate
axes, then we can easily derive the equation ofwecentral complexes from this. To
that end, we merely need to subtract the two emsmtiafter we first multiply the first
one byB' and the second one By and then multiply the first one # and the second
one byA. Inthat way, when we consider the foregoing @ equations, we will get:

(BD -BD) g+ (AB -AB)r =0,
(NE -AE) p+ (AB -AB)s =0,

from which:
ko:_A'B—AB
BD-BD'
129
K = AB- AB (129)
AE- AE

84. In order to determine one of the complexes intihe-parameter group that we
would like to represent by the equation:

Ar+Bs-Do+Ep=0,

we must know its parametky the value ot for the point at which its axis cuts tkZ
axis, and the anglevthat the direction of this axis defines with theedtion of theOX
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axis. For the determination of these constants, weteainin the same simple way, once
by assuming that the two central complexes are knawd,then by assuming that the
two directrices of the congruence are known. Correspgnii that, if we first set the
last equation to equation (126) identically, and then sefqual to equation (123)
identically then that will yield the following relations

A= - kK =-Atand,

B= Ak, = A4,
D=-1,

E= A =-Atand.

(130)

If we setC andF equal to zero then the general equations of the previoagrpahs
(15), (16), and (53) will yield

E
tanw=—,
D
AE-BD
== =~ 131
2= St (131)
_ AD+BE
E’*+ D’
for the complex in question. If we introduk® ko, andA, then that will give:
tanw=- Ao, (132)
2=~ 2 _(€k) (133)
1+ A2 ’
K® + A2k,
k= ——, (134)
1+ A;
and thus, when we eliminatig:
z= (K —ko) sin wcosw (135)
k=K cos w+ K sirf (136)
and finally, after eliminatingu
Z+ k-K)(k-k)=0. (137)

When we introduce the constants of the two diiges; equations (135) and (136)
will go to the following ones:
z=npSN20 (138)
sin 29
K=—2A DSII‘](&)+19)DBIFI@)—19 ).

139
sin 29 ( )
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Each value ofw corresponds to a single value oin (135), (138), and a value of the
complex parameter in (136), (139). However, since ealtte \&f z corresponds to two
directions of the complex axis and two value,ofthich can be real or imaginary, there
will be a maximum distance between the complex axdstlas central plane. Equation
(138) will give this maximum immediately, correspondinghe anglew= 77/ 4:

= 1(K’ ko), (140)

k=- = 1(K° + ko). (141)

85. The discussion of the foregoing analytic developseyields a series of
geometric results.

In number64, we gave th®©X axis one of the two directions that bisect the acute and
obtuse vertex angles that are defined by the two destof a given congruence, and
choose the positive half of this axis arbitrarily. \d#&culate the angle between the
positive half of theDX axis and the positive half of ti@Y axis. The positive half @Y
is determined when we denote that one of the two dwmextthat corresponds to a
positiveZ by 4. (3 71— J) enters the two-fold coordinate system in plac&,oéind thus

(124) reciprocally switches the valueskBfandk, with a change of sign. We would like
to choose the coordinate system in such a way@Xabisects theacute vertex angle,
which is defined by the projections of the two direcsiase the central plane of the
congruence K’ is then positive in (128 is negative, and since taf#2 0:

K +ky < 0.

The parameter of the central complex whose axisalimsgOX is k® and positive, while
the parameter of the central complex whose axis l@®aY is ko and negative. The
absolute value of the second parameter is taken to begtiean that of the first.

Previously, along with the given congruence, we constlugteecond one that we
called its conjugate (nd9), and which we obtained when we simultaneously changed
the signs of the two parametéPfsandk, of the given central complex, or — what amounts
to the same thing — whel remained the same arftichanged its sign. Along with the
given congruence, one can define yet a third one, whiclwavdd like to call itsadjoint,
and which one obtains whdd andk, are switched with each other with their signs

changed, as well. It will emerge from (124) by Ietti@—ﬂj enter in place ot

Finally, we obtain yet a fourth congruence thataigs upon the given one immediately
when we first take the conjugate of the given oné ten take the adjoint of that one,
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which amounts to switching’ andko without changing sign, or — what amounts to the
same thing — replacing with (g—ﬂj :

Under our assumption, £2is an acute angle for the given congruence; the
corresponding angler— 29) will be obtuse for the adjoint congruence. If denote the
parameters of the two central complexes of theiaidfmngruence bykf) and k), to
distinguish them, then we will have:

(K) + (ko) > 0,

and sincel{) is positive andl) is negative, K¥) will have a larger absolute value than
(ko)-

The axis, the central plane and the two auxilaxgs in it, as well as the distance
between the two directrices, will remain the saoveafl four congruences.

86. If we denote the coordinates of any point onakis of any complex in the two-
parameter group by y, zthen we will have:

2 2

- X if w= —L
cos w= vravd sirf w ey
with which, equation (135) will go to the followirane:
¢ =y z+ (K —ko) xy=0. (142)

This equation represents the ruled surface thégfised by the axes of the complexes of
the two-parameter group that determines the congeue

According to whether we take one or the otherhaf two signs in the foregoing
equations, it will refer to the given congruenceiterconjugate. Should it refer to the
given one, then from the coordinate determinatia tve chose, according to whick’ (
— ko) is positive when takg / x to be equal to the tangent of the angle- and thus,
positive — the value of will also be positive and equal toA&t We must then choose the
lower sign, and thus obtain:

(¢ =y’ 2= (K’ —ko) xy = 0. (143)

The only constant that enters into this equatiovizs (K — ko) — is the sum of the
absolute values of the parameters of the centrapéex. However, from (140), this sum
will also be twice the maximum &f and thus equal to the heighbf the surface that is
included by two planes, through whose midpointdéetral plane goes. The surface will
be cut by each intermediate plane along two sttdigés that are perpendicular to each
other in the central plane, in which coincide wikie two axes of the central complex.
When the intersecting planes of the central plangeraway on the positive side, the
angle that they define with each other will alwlggome smaller, until it vanishes far

= 77/ 4 in the limit plane, and the two lines then esak into a single one. When the
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intersecting planes of the central plane move away@mégative side, the angle that the
two lines of intersection define with each other vidcome an obtuse one, until it
becomes equal terin the other limit plane, which correspondsaae= — 77/ 4, and then
the two lines of intersection will again coalescequéion (135) shows that lines that
bisect the angle of the two lines of intersectionnragbitrary plane that is parallel to the
central plane will lie in those two planes that detine same angle with thé¢Y andYZ
coordinate planes)(

Since the given congruence depends upanconstantk® andk,, but the surface in
guestion depends upon jushe constant that is the difference of the latter twos t
surface will have the same relationship to infinitelsgny congruences, so it will be the
geometric locus of the relevant complex axes. Amoageltongruences, one also finds
the adjoint of the given one; we can then exchddgmdk,, while changing their signs,
without changing the equation of surface. This surfage Has the same relationship to
the given congruence and its adjoint.

87. We would like to determine the complex in the Y
two-parameter group geometrically in such a way that we
apply the parameters (with consideration given to their
signs) that correspond to its axes that all inter®@cto the
axes. We will then get a curve that is inscribed inrthed
surface that was considered in the previous number, by X
which the entire two-parameter complex group was
determined. We would like to call this curve the
characteristic curve of the congruencdt will suffice to
know the projection of that curve onto tK& coordinate Y
plane; each point of the projection will then correspto a . )
single real point on the surface. Figure .

Equation (136) will be the equation of that projection ifapcoordinates when we
considerk to be the guiding ray in it and simultaneously consiwé&r be variable. When

we set:
X .
k= +xX*+y*, cosw:E, sma):%,

this equation will go to the following one:

¢ +y)’ = KX + koY), (144)

and will thus represent the projected curve in ordinarytpmordinates. This equation
will remain the same when we simultaneously chakigandk, . The curve that is

represented by the equation will then have the saméoredatp to the given congruence
and its conjugate. It consists (Fig. 7) of four pair-vageal loops, which lie inside of
four of the vertex angles that are defined by the priojecif the two directrices.

() Which is a great simplification for the modelstthaan construct for this and similar surfaces, and
that appeal to geometric intuition.
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88. When we treat equation (137) in the same way that eaetl equation (136) in
the previous number, it will produce a new surface that fwesigh the curve of double
curvature that was just determined. This equation willdreverted into the following
one:

(¢ +y + 7 + 10k = 00 + ko) 0 + YD), (145)

and will represent a fourth-order surface. This surfaieb& a surface of revolution
whose axis i©9Z For its meridian curves in th& plane, we get:

(X2 + 22 + kO k0)2 — (kO + k0)2 X2,
when we lety vanish, and:

Z+ (xi—k0+l<°j2: [—ko_kojz.
2 2

This equation represents a system of two circlesseltwo-sided radius is:

1K~k =h, (146)
and whose center on tkiX axis has the distance:

~1( @ +ko)=c (147)

from theOZ axis, on the opposite side. The two circles s#etr alongOZ in those two
points at which that axis is cut by the two diries ().

The new surface will then be generated by rotasingjrcle around the axis of the
congruence. Its radius is equal to one-half thghteof the ruled surface (142). Its
center lies in the central plane, and its distdrm® theOZ axis is equal to the parameter
of the complex whose axis falls in the limit plasfethe ruled surface (142). The surface
of rotation lies completely between those planes witl be contacted by each of them
along the circumference of a circle.

Equation (145) will remain unchanged wHérandk, are exchanged reciprocally, as
well as when both constants change their signslsmeously. The surface of rotation
thus refers simultaneously to the given congrues&onjugate, its adjoint, and the one
that is conjugate adjoint to it.

89. To summarize, we get the following determinatminthe axes of the two-
parameter complex group by which the given congreers determined: We have
assumed that? < 7/ 4. We would like to start with the valuwe = 0, for which, the
complex axis will lie in the central plane and tbemplex parameter will attain its

() We can remark, in passing, that the intersection paifithe two directrices with the axis of the
congruence are the two focal points of an ellipsoid aftiat whose center coincides with the center of the
congruence whose rotational axis lies al@and is equal td, while the radius of its equatorial circle
has the value.
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positive maximunk. Whenwincreases from 0 to #, the complex axis will move away
from the central plane on its positive side, while tenplex parameter will decrease.
When wthen increases front to 77/ 4, z (which is the distance from the central plane
that goes through, where the complex axis will coincide with one oé tthrectrices of
the congruence) will increase until it attains its maxmn of%(kO — ko) = h, while the

complex parameter will go through zero and take on negadives, and the limit will be
equal to%(k0 + ko) =c. If the complex axis advances in such a way as toerataund

OZ from w= 7/ 4 to w= 1/ 2 then it will again approach the central plane, wthke
negative value of the complex parameter will increade itiiattains the maximum dfy

in that plane. If the rotation continues framr= 77/ 2 to w= 377/ 4 then the axis will
again move away from the central plane on its negatdes util it attains its negative
maximum (viz.,— h) in the limit z, while the negative value of the complex parameter
will decrease and take the vala@n the limit. Under the rotation fromw= 377/ 4 to w=
71—, the axis will again approach the central plane untibincides with the second
axis of the congruence, correspondingto— A, while the negative complex parameter
will decrease until it vanishes. If the axis comgeits rotation around®Z when w
increases fromsf — ) to 7rthen it will once more approach the central pland ardgain
assumes the position from which we started, while thepdex parameter, which
changes its sign, will increase and, in turn attainpdsitive maximum in the central
plane.

90. In order to achieve symmetry in this investigation, we massider the given
congruence simultaneously with the aforementioned dtnere that depend upon it
immediately. That will first demand that we reconsidiee ruled surfaces that are
determined by equation (142) with the double sign. We can eeyrg®e system of these
two surfaces by the single equation:

(¢ +y)° 7 = (€ ~ko)* X Y. (148)

The complete intersection of the surface of rotafibd5) with the two ruled surfaces
decomposes into two algebraic space curves, one of
which lies on each of the two surfaces. The Y

projections of the two spatial intersection curvesoont
the central plane cover it, and thus resolve into two D
sixth-degree curves, one of which will be represented D’
by thezprevics)us eoq%ation: ,
X+ =K X +kyy)s, 149 : '
(¥ +y)’ = K y) (149) | cfc AVA
while the other one will be represented by the
following one: B
0€ +Y))’ = (ko X + K y?)%. (150)
B
Under the assumption of real directrices that we have Y
used up to now, each of the two curves (Figure 8) will Figure 8

consist of four loops that define a four-fold point at the



§ 2. Congruences of two linear complexes. 93

coordinate origin. When one rotates one of the two suirvés plane around the origin
through an angle ofr/ 2, one will obtain the other one.

The characteristic curve of the given congruence liesyupe first ruled surface
(142), but it does not define a closed path in it. Its ptme onto the central plane of the
congruence defines only one-hAIDBOCof the curve (149). It is limited by two points
that lie onOX on both sides of the origin and at equal distances ifrom

The characteristic curve of tlagljoint congruence lies on the same ruled surface, and
its projection is thed’OB' OC' half of the curve (150). Analogously to before, it bseak
into two points orOX.

The characteristic curve of tlmenjugatecongruence lies in the second ruled surface
(142). Its projection defines th@ODOA half of the curve (149), which extends the
projection of the characteristic curve of the givemgroence to the complete curve
(149). The two characteristic curves break into the sameointsA andD onOX.

The characteristic curve of tlkenjugate-adjointcongruence lies in the second ruled
surface, and its projection defines the second @&D'OA" of the curve (150), which
extends the projection of the characteristic curvethef adjoint congruence to the
complete, algebraic curve.

The second projecting cylinder, which cuts the centaigln the curve (150), cuts
the first ruled surface along a closed curve that istm®f two components: viz., the
characteristic curve of the adjoint congruence andhtineor image of the characteristic
curve of the conjugate-adjoint one.

Likewise, the characteristic curve of the conjugateiatcongruence and the mirror
image of the characteristic curve of the adjoint congreatefine a closed curve on the
second ruled surface, which, like the foregoing one, @surve (150) for its projection.

The four closed curves thus determined define the com@atgart of an algebraic
space curve. Each of them has two double points, whichplan the common axis of
the four congruences in those two points at whichdkatis cut by the directrices of the
congruences. Each space curve will be divided into fourches at these two points,
such that we obtain sixteen such curve branches,ah waich all emanate from the two
points on the axis. The eight curve branches on olee surface and the eight curve
branches on the second ruled surface have the eighd tfothe two curves (149) and
(150) for common projections. Those curve branches that the large loops for their
projections cut the limiting lines of the two ruled sadsa in points that have the same
distance from the axis; those curve branches whoseqgbians are the small ovals do not
cut the axis.

The four closed curves lie completely on the surfdgetation that is represented by
equation (145).

91. If we start with a given ruled surface (143) then we @nyahe characteristic
curves of infinitely many congruences on it. Each ofe¢heurves is determined by an
intersection with a surface of rotation that is inéddvith the ruled surface between limit
planes. These limit planes contact the ruled surfa@estraight line and the surface of
rotation in a circle. The directions of the two tam lines that cut th©Z axis are
perpendicular to each other; the two contact circkegehtheir centers on the axis and
their radii equal to each other. The individual surfaderotation is determined
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completely by this radius. This radius is equal to distance from the center of the
circle that is generated by rotating the surface of mtaroundOZ to that axis. If we
successively give the center of this circle in the cémlane, whose radius always
remains the same, all possible distance fromQHeaxis then we will get all possible
surfaces of rotation and a congruence that correspondshméthem.

If we preserve the previous notation then the diffezenf the parameters of the two
central complexes will not change; it will be:

K2 —ko = 2h, (151)

while the sum of these constants will vary from eoagruence to another in such a way
that:

K2 + ko = - 2c. (152)
Thus:
K=h-—c, ko=-(h+c), (153)
N =-KCk =h*=c? (154)
0 —
taf 9=- K- h=¢ (155)
k, h+c

If we then successively take the constarity which the instantaneous surface of rotation
is determined, to have all possible positive values daai value of that constant will
correspond to a characteristic curve on the givendrwserface. The curves that
correspond to the instantaneous adjoint congruencespogibess the same absolute
values ofc, but with the opposite signs.

92. If ¢ = 0 then one will get:
K=-k=h=A, tarf 9= 1. (156)

The two directrices will then lie in the planes thatitl the ruled surface and have the
largest possible distance from the central plane. irTheo directions will be
perpendicular to each other and will be the same fon bdjoint congruences. The
equation of the surface of rotation in this case will be

X +y? +2Z =h% (157)

Whenc increases, the absolute value of the negafiveill increase, while that of the
positiveky will decrease. The distance of the two directricem the central plane will
decrease, and the angle that their two directions make each other will always
increase beyond a right angle. Within the limits lofad O, we can choose the distance
between the two directrices of a congruence arbitrariihe circle that generates the
surface of rotation will then cut the axis of rotationved real points.

At the limitc = h, one has:
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K =0, ko = — 2h, A=0, tand = 0. (158)

The parameter of one of the two central complexesgjigl to zero. The two directrices
of the congruence coincide with tk&X axis. The circle that generates the surface of
rotation contacts the axis of rotati@x at the coordinate origi®. The equation of the
surface of rotation becomes:

(¢ +y +2) 2= (C +yP). (159)

As before, the characteristic curve determines thenpeter and the axis position of
infinitely many complexes. This is the first case thas treated in n@&8.

Whenc > h, K° will become negative, asls . The two directices of the congruence,
like their adjoints, will become imaginary; either thdirections or their intersections
with OZ will remain real. The surface of rotation will definecomplete circuit, as long
as the generating circle does not cut@axis, and its intersection curve with the ruled
surface will be drawn around that axis without cutting it.

When the absolute value of the negatiéncreasesc (the distance to the center of
the generating circle) will always grow larger, while tiatio of the two parameters of the
central complex of the congruence will approach unitythe limit, one will have:

tarf 9=- 1. (160)

93. We can infer an uncommon, simple process for taymhe characteristic curves
of all congruence on the given ruled surface from the equat

Z+Kk-®)(k-k)=0. (137)

Under the transition from one characteristic curvartother, the two constark®andk,
will increase by the same quantity, which might alsdHeevalue ofz The foregoing
equation will always be satisfied during it when the J@deak themselves take on the
same increases.
Therefore, let any characteristic curve that is

Y inscribed on a ruled surface be given, and we can
take it to be, in particular, the one along which the
ruled surface is cut by a sphere that has the same
altitude above its diameter and also the same center
as it. We will then successively obtain all
X X Characteristic curves when we approach all
intersection points of the given curves with the
generators of the ruled surface on these generators
of the axis by a constant increment or go away from
it.

v We will arrive at the same construction in a
geometric way when we ponder the fact that a

Figure 9. characteristic curve is the geometric locus of those
points at which the generators of the surface is cut
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by the circle that describes the surface of rotation, #md fact that from one
characteristic curve to another, the center of thedec(whose plane goes throu@)
will approach theZ axis or move away from it.

94. When we project the characteristic curves of twigjuggate congruences onto the
central plane for the case in which the surface @itiaot coincides with a spherical outer
surface, we will obtain the equation:

(¢ +y)P = (6 =y (161)

for the projection. Like the general curves (149) or (15® projected curve will have a
four-fold point at the origin; the four loops that it etsts of are equal. With our
assumption, the two curves (149) and (150) will coincideerotie (161) (Fig. 9).

Under the second transition (Fig. 10), where the twatdlioes coincide witl©Z, the
two equations (149) and (150) will go to the following ones:

(@ +yA)? = 4p2 (162)
(¢ +y) = 4t (163)

When the value of that corresponds to increasiodpy + h gradually gets larger by
/ 4 in such a way that in the one case it decreaséstwatnishes and in the other case it
approachesr/ 2, two loops of the curve (161) will gradually vanish whiea points at
which, in one case, th®X axis and in the other case, t@& axis are cut by it, always
move closer to the poil@, while likewise its tangents that intersecOaalways approach
the respective coordinate axes and coincide with therhen t
limit. The curve will then consist of two equal ovdlsat
contact one of the two auxiliary axes on Y
opposite sides.

Finally, whenc grows beyond and
J becomes imaginary, the curve will
surround the originO, at which four
isolated points of it will coincide (Fig. x X X
11), moreover.

The curves that are represented by
each of the two equations (149) and
(150) for different choices of constants,
like the space curves whose projections
they are, will all be obtained when one
of them is given. When we consider Figure 10 v
to be a guiding ray in the equation: Figure 11

k=K cos w+ ko sirf (136)

this equation will be the equation of the same curve ilarpooordinates that we
previously represented by equation (149). One of these asrgeen by definite values
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of k® and ko, and we will get all of the remaining ones when wetlese constants
increase by the same quantdly However, we will then have:

k+ 0= (K + 9 cof w+ (ko + I sirf w; (164)

i.e., all guiding rays will increase kyfrom one curve to another.
The equation of the curve (162) becomes:

k= 2hsirf w (165)

in polar coordinates, so this curve can be constructed ex@aptionally simple way with
the help of a curve with a diametdr. 2The construction of all curves (149) and (150) is
then given by that.

95. The discussion of the complexes of a two-paranggterp:
Q+uQ' =0

is still lacking for the case in which a parabolic congogeis determined by this group.
For the determination of such a congruence, it is sefficco know its single directrix
and a plane that is parallel to all of its lines. Wald like to take the directrix to be the
OX coordinate axis. Among the complexes of the group, orlehveih find one whose
equation is:

o=0. (166)

We would further like to draw th&X coordinate plane througbX in such a way that it

is perpendicular to the plane that all lines of thegcoence are parallel to. We can then
give the equation of that plane the following form:

X+Az=0, (167)
in which A means a given constant. We will then get:
r+A1=0, (168)

in order to express a complex that consists of lihas are all parallel to the plane in
guestion, and which will then likewise belong to thegraence.
When takeQ andQ’ to be the two complexes thus determined we will get:

s+u(r+A)=0 (169)

for the equation of the group. This equation says thatiradls |of the parabolic
congruence cut th®@X axis and are parallel to the plane (167).

The axes of the various complexes that define the paralmmgruence all lie in the
XY plane and cut out a piece:
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y=-uA (170)
from theQY axis in that plane (n@®&1). The respective parameter is:

k=-u, (172)
and therefore:
y=Ak (172)

will be the equation of the characteristic curve offiaeabolic congruence. When we lay
k along the complex axis fro@Y outward, and thus as this equation will represent a
straight line inXY that defines the same angle wWilX as the plane (167) does with the
YZ coordinate plane.

96. In connection with the geometric considerationswomber79, in analogy to
what happened in numbel6 for a single complex, we can deduce some analytic
developments that aim to put the equation for a congeuiaha its simplest expression in
oblique coordinate, as well. Let:

o-KRr=0, p+ks=0 (173)

be the two central complexes by which a congruence isgmlieed in rectangular
coordinates. We would like to place the origin in thetiad plane at an arbitrary point
(L, y°). To that end, if we first displace the coordinagstem parallel to itself in the
direction ofOY through an incremenyf then the equation of the second complex, which
hasQY for its axis, will remain unchanged, while the equatibmhe first complex will

go to the following one:

kO
S— r =0, 174
sind® (174)
in which:
Y’ sind° -k cosd? = 0. (175)

The OX axis will remain a diameter of the first congruenmder this displacement. In
order for us to rotate th®Z axis in theXZ plane aroundY in such a way tha®X
defines the angl&® with OZ in the new positionYZ will have to be the plane that is
associated with the diametéX, and 5° will have to be the angle of inclination of the
diameter out of its associated plane. The av@&will remain a right angle.

If we then displace the axis system paralleOd through an incremeng then the
equation of the first complex (173) will remain hanged, while the equation of the
second complex will go to the following one:

o+ _ko =0, (176)
sing,

in which:
Xo SN + Ky cosd = 0. (177)
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Here, the angle is the inclination angle dY with respect tXZ, so it is the inclination
angle of the diameter of the complex that fallO¥ with respect to its associated plane.
The angleXOZremains a right angle.

The equations of the two planes that are associatde itwo complexes witX —
the diameter of the first one — a@l — the diameter of the second complex have the
equations:

X = cotdP [%, } (178)

y =cotd® [&.

Finally, if we take the)Z axis to be the line of intersection of the two assted planes

then theYZ and XZ planes, which are conjugate @X andQY, resp., will no longer be

perpendicular to each other in the analytic representafidhe two axes. If we denote
the angles¥OZandX0Zby £ ands, resp. then we will have:

sin 0% sin& = sind sing = sin (179)

when we letd denote the inclination angle of the n®& axis with respect tXY.

If we then take any two diameters of the central demm beOX andOY, instead of
its two axes, when we displace the original cooreireates parallel to themselves, and
takeOZ to be the intersection of two planes that are agsetiwith those diameters, then
the equations of that complex will become:

K Ko e
o- ——[O =0, p+—[k=0, (180)
sind sind

and the same congruence that was previously detedny the equation:
(c—®r)+u(p+ks) =0

will now be determined by the equation of entiritlg same form:

(a— K mjw(mﬁaj:o (181)

sind sind

in the new coordinate system.

97. If we eliminate cod® and cotd, from (178) using (175) and (177) then we will
get:

Y __ K%
X kY
or
0

tana Oand = —kE : (182)
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if aanda are the angles that, on the one hand, the lineitiet the new origin to the
old one, and on the other hand, the projection ofrié principal diameter of the
congruence, define with tH@X axis. In particular, ik’ = ky then the two lines will be
perpendicular to each other for any change of origin.

We have:
) 1
sir? 9= :
1+ cot 0° + cof g,
so:
—12 =1+ cof 3°+ cof &,
sin

Xg y02 B 1
i€ @ T tars (183)
or:
1
K?x + kT y” =02 O——. 184
X+ kY - (184)

It follows from this thatowill be constant when the new origin is chosen ¢oom an
ellipse in the central plane whose axes fal@andQY in the way thako relates td<,
resp.

The principal diameters of a congruence that have the same inclinationesjikat
to the central plane cut that plane in the points of an ellipse.

98. Let animaginary congruencée given by two imaginary complexes. Under the
assumption of rectangular coordinate axes, we wiikddo take the equation:

(0-krV-1)+u(p+k,s/-1) = 0 (185)

to be the symbol of such a congruence. When walsineously change the signskef
andk, this equation will go to the following one:

(0 +krV-1)+u(p-k,s/-1) = 0 (186)

It will then refer to yet a second imaginary corggice. In analogy with the above, we
will refer to the two congruences as two conjugateginary congruences. The
eqguations of the two congruences can be combirtedhe following quadratic equation:

(0+ pp)* + (ar — ke 9> = 0. (187)

The two central complexes of the two congruences ar
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oF klr\/—_l =0, ptK,sy-1=0.

The two congruences have a real common principal axitvamdommon real auxiliary
axes. The distance between the two directrices lamdcamgle that the two directrices
define will be equal for both of them. If we call thdistanceA and that anglef then,
from number82, we will have:
kl kz = AZ,
(188)

koo tarf .
K,

If ki andk, agree in sign theA will be real and tar? will be imaginary. The two
directrices of the one congruence will then intersleettwo directrices of the other one at
two real points on th©®Z axis. The directions of the two directrices will ineaginary.
When projected ontXY, they will be represented by the two equations:

Jk Tkt [~k Oy= 0,

which can be combined into the following one:
ky X2 + ko y2 =0.

Whenk; andk; have opposite signg, will become imaginary and taf will remain
real. The projection of the two directrices ot® will then be real, but the points at
which theOZ axis is cut by them will be imaginary.

In summary, we have encountered a four-fold distindbetween congruences:

1. The two directrices areal.

2. The two directrices anenaginary, and indeed in such a way that either they go
through a real point or they have a real direction.

3. The two directrices are imaginary, but they cutatkis of the congruence in two
real points through which the two directrices of the ggaje congruence also go.

4. The two directrices are imaginary and go through abp@int on the axis of the
congruence, but they have real directions.

In the first two cases, the complexes of the twapeeter group that the congruence
determines will be real, and in the last two, they lagl imaginary.
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§3.

Congruences of three linear complexes. Ruled surfaces.

99. Let:
Q =Ar+Bs+C-Do+ Ep+ Fnp=0,
Q=Ar+B's+C-Do+ Ep+ Fn=0, (1)
Q"=Ar+B's+C-D0Do+ Ep+ Fn=0

be the general equations of three given first-degree exegl The straight lines whose
coordinates satisfy these three equations will simetiasly belong to three given

complexes. They will simultaneously belongalb complexes of the three-parameter
group that is represented by the following equation:

Q_I_/jQr +/j, Q": ’ (2)

when we denote two undetermined coefficientgdandy’. From numbeR2, such lines
will define a surface obrder and class twaso if we first direct our attention to only real
straight lines, it will be a one-sheeted hyperboloid taat degenerate into a hyperbolic
paraboloid. We must then not overlook the fact that doimdylines of one of its two
generators will be determined by the complex group. We wbeld like to refer to this
generator as thigrst generatorof the surface.

100. Three of complexe®, Q', Q" that are chosen arbitrarily from the three-
parameter group, when taken pair-wise, will define tlo@egruences( Q'), (Q Q"),
(Q', Q"). The lines of the surface will then also belongtese three congruences, and as
a result, will intersect the two directrices of eadtihe three congruences. Three of the
six directrices will be sufficient for the determiiwat of the surface, from which, we will
get the usual construction of the hyperboloid. Howeadeng with the first generator of
the surface, we will also encounter its second generdtbe lines of the first generator
are the ones that belong to all of the complexesethhee-parameter group, while the
lines of the second generator will be the directriceallocongruences that we obtain
when we combine the complexes of the group pair-wise.

101. In order to construct the ruled surface, we can alsorréd the complexes of
the three-parameter group, and for that purpose, choeskrde complexeQ, Q', Q", in
turn. LetA’B° be any given straight line, and kB, A'B', A"B" be the three associated
polars of this line relative to the three complex&hose lines that clA’B° andAB, A’B°
and A'B', A°B® and A"B", respectively, will belong to the complex&s Q', Q". In
general, there will be two straight lines that cut fgiven ones. Thus, the two straight
lines that cuA’B° andAB, A'B', A"B" will simultaneously belong to all three complexes,
and thus, to the ray surface. We will obtain thees&no rays of the surface when we let
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any other complexes of the group (2) enter in place efctmplexe), Q', Q". The
polars of the given straight line with respect tocalnplexes of the group will define a
congruence that has the two rays of the surfacesfalirigctrices.

The two points at which the given straight line strioy the rays of the surface can be
real or imaginary and coincide. In the latter case,stirface will be contacted by that
line.

In particular, we can choose the straight K18° in such a way that it is one of the
two directrices of the congruence that belongs to tmptexesQ andQ’, so the polar
A'B' will coincide withAB. Any ray of the surface will then cut the two lin&8° and
AB; these lines belong to its second generator. Howeheratys of the surface will also
cutA"B", as well as the polars 8fB° relative to all complexes of the group.

In summary, we obtain the following general theorems

A one-sheeted hyperboloid simultaneously belongs to three mutually independent
complexes, and as a result of that, to all complexes of a three-paragreup. The
straight lines that are common to all complexes are the rays afstggénerator, while
the directrices of the congruences of any two of these complexes thef lines of its
second generator.

The polars of a given straight line relative to all complexes of aetparameter
group define a congruence whose two directrices are those two rays sifrtaee that
cut the given straight line. The polars of an arbitrary line of these@generator of the
surface relative to all complexes of the group are lines of that gemer

102. The central planes of any three congruences thahdped the surface intersect
in a point at which three diameters of the congruenceg., those three straight lines
that go through that point and cut the two directrideb® three congruences — mutually
bisect each other. These diameters are likewise thegeeters of the surfaceTheir
vertices are their intersections with the direetsithat are lines of the second generator of
the surface.

The central planes of all congruences of a three-parameter group:
Q+ﬂQI +/,IIQ" :0

intersect at the same point: viz., the center of the surfacésthaten by the group).

() Since a direct proof of this theorem might seesirdble, | will add the following:
The expression:
A’B — AB;
when we replace the two compleXesandQ' with any other two complexes in the two-parameter group:
Q+1Q'=0

(perhaps when we take corresponding value¥d ahd o), will be converted into the following one:

A+ AA)B+AB)-(A+ L A) B+4B)=(l-2% (A’B-AB).
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We can consider two arbitrary lines of the second gesreddtthe surface to be
directrices of a congruence that the lines of ite fysnerator belong to, and likewise
consider two arbitrary lines of its first generator todivectrices of a congruence that the
lines of its second generator belong to.

The foregoing expression — and the same thing will be tualf expression&'C — AC, B'C — BC, ...
that are constructed in the same way from two paiooksponding coefficients of the equations of the
two complexe€) andQ’ — will then change its value under a permutation of tdmeptexes only in such a
way that a factor ofX, — A% appears, which merely depends upon the choice of thedmplexes in the
two-parameter group.

The central plane of the congruence that corresponitie tiwo-parameter group, whose equation we
would like to take to be the following one:

p' =0,

is independent of the choice of the two complexes thanaile for the determination of the congruence.
As a consequence of that, the coefficients of its equatiost be homogeneous functions of the same
degree of A’B — AB’) and analogously-defined expressiods:¢ — AC'), B'C —BC), ...

Similar statements are true for the two congruences:

Q+AQ"=0, Q' +AQ"=0,
whose central planes might have the following equations:
p=0, p=0.

In our special case, the expressions of the form istigueare contained in the three equations only in
a linear way.
If we take any congruence of the three-parameter cangpbeip and represent it by:

Q+pQ +4 Q")+ AQ+4LQ +1£Q")=0
and its central plane by:

then when we set:
] 0 0 — ] 0 "o—
= gl = g = - P’ = 1oL,

we will easily deduce from the foregoing that:
qEﬂp+7T’p,+7T"p"|

from which, one will get the proof that all centralmpta intersect in the same point.
We can express this theorem in the following way:

The central planes of the congruence of a three-parameter comuag define a three-parameter
group of planes in their own right.

Just as the equation of the complex group is the symlmlray surface, the last equation will be the
equation of the symbol of a point, namely, the centéh@iurface, at which infinitely many central planes
will intersect.

Here, | must content myself by saying that | can givexended interpretation to the theorem in this
book, when it is expressed in the new form, that is &ssocwith a far-reaching viewpoint. Should | be
allowed to extend the developments that are restrictsttamht lines here to forces, rotations, dynames,
later on, this theorem would find its modest place ipstesnatic whole.
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Any plane that is parallel to any two lines of the same generator of aldojpier and
bisects the distance between them will go through the center of theesur

The locus of the centers of all surfaces that gautfindwo non-intersecting lines is a
plane. The locus of the centers of all surfaces gbathrough a spatial rectangle is a
straight line.

If a third line of a generator is added to two lines efgame generator then pair-wise
combination of the three lines will yield three congruaniteat have these line-pairs for
directrices. The surface is determined completely bgeltongruences. The intersection
point of the three central planes of the congruenctdsisenter of the surface; the three
straight lines that go through the center and cut W directrices are three of its
diameters.

103. A plane that cuts a second-degree surface in one sthaighwill intersect it in
a second one, in addition. The two lines of interseatidl belong to the two different
generators of the surface. Each such surface willtbagential plane, and the point at
which the two generators intersect on it will be tostact point. Any line that goes
through the intersection of two lines of different gextors and lies in the plane that goes
through these lines will be a tangent to the surfa&elane that goes through a given
generator and the center of the surface will be a taiadgrtane in which the contact
point lies at infinity in the direction of the given gea®rs when the second generator is
parallel to the given one.

The planes that one can draw through each of thediveatrices in each of three
congruences whose lines belong to the first generatar safrface and parallel to the
central plane will be tangential planes at the vestioé the relevant diameters. The
central plane is associated with the diameter weldb the surface. The two directrices
are lines of the second generator in the tangentiaépjame obtains the lines of the first
generator when one draws a straight line through theexwef the diameter in any
tangential plane that is parallel to the directrixhaf other one.

104. From the foregoing, a plane that is parallel to amg tines of the same
generator and bisects the distance between them wtiirgagh the center of the surface.
If we let the two lines coincide then the plane in goeswill go through that line itself,
and will thus be a tangential plane that goes throughehter. The contact point will go
to infinity. If the straight line is generated by a tonous motion of the surface then the
plane in question will envelop a conic surface that vikéwise be described by a straight
line that goes through the center and will remain paradithe straight line that generates
the surface in all of its positions. We will obtalietsame conic surface when the straight
line that describes the surface belongs to the otheragene This conic surface, which
will thus contact every plane that goes through the ceme any line of one of the two
generators, and whose sides will be those lines thatraven through the center parallel
to any line of one of the two generators, is calledagymptotic conef the surface. The
sides of the asymptotic cone are not the only strdigas that contact the surface at
infinity. Any straight line that lies in a tangentjlane to the asymptotic cone and is
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parallel to those sides along which that cone will batacted is arasymptote of the
surface. Two such asymptotes can be drawn through each point otlitsidene that are
parallel to two of its sides.

105. The two lines of the second generator of a surfadegbahrough the two
vertices of any of its diameters are the two direeriof a congruence that belongs to the
surface. The central plane of the congruence is #ireatral plane that is associated with
the diameter relative to the surface. If we projbet two directrices onto the central
plane along the diameter then we will obtain the aegtes of the intersection curve of
the surface with the central plane. Any two assedialiameters of the intersection curve
will fall on two associated auxiliary diameters of t@ngruence. Any diameter of the
congruence and two associated auxiliary diameters ineigral plane shall be called
threeassociated diameters of the surface.

According to whether the diameter does or does nobierer the surface, the
directrices of the relevant congruence will be remlimaginary, respectively, and
corresponding to that, the two asymptotes of the iet#ien curve in the central plane
will also be real or imaginary, respectively. Thiswveuwill be ahyperbolain one case
and anellipse in the other. The intersection curves in planes #natparallel to the
central plane will be equally-oriented hyperbolas oipsdls. The hyperbolas will
degenerate into systems of straight lines in the plr@go through the endpoints of the
diameters and are tangential planes. The ellipsdsaimibys keep finite dimensions,
since the corresponding tangential planes are imagindémnye consider one side of the
asymptotic cone to be the diameters then the diresta€¢he relevant congruence will
coincide (cf., no68), and the plane that contacts the asymptotic cone #hangide will
be its central plane. The intersection curve of sheface with the central plane
degenerates into a system of two parallel lines whoseedé& is a side of the cone. The
intersection curves in parallel planes pegabolaswhose diameters are parallel to sides
of the cone.

106. Every diameter of the surface corresponds to twergifit congruences whose
directrices intersect at the endpoints of the diarseded are lines of the two different
generators of the surface. We have called two suapreences (no79) two conjugate
congruences relative to the diameter. Those of tiveseongruences that have two lines
of the second generator for directrices belong toittes lof the first generator; the other
one, which has two lines of the first generator foedtrices, belongs to the lines of the
second generator.

107. The associated polars of a given liAgB, of space relative to the various
complexes of the three-parameter group:

Q+uQ' +pu'Q" =0
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by which a ruled surface is determined define a congruenosemwo directrices are
lines of the first generator of the first surface (b@1). The given straight line cuts the
two directrices at two points. Let these two intet®n points b&d, andBy ; they are
likewise the two intersection points of the given lwéh the surface. Let the two
directrices beAs A° andBy B®. The planes that go throudl B, and Ay A° will contact
the surface becauge A’ is a line of the first generator; let the contact ptit lies on
this line beA’. Likewise, the plane that goes throulhBo and By B® will contact the
surface at a point @, B let that point b&°. We would like to connect the two contact
point%Ag andB®, which lie on the two directrices, and thus on theamerfwith a straight
line A'B".

If a tangential plane of the surface is drawn throaudihe of its first generatoBo A°
or By B?, respectively, then the line of the second generatoigtes through the contact
point, A° or B, respectively, will be determined in such a way thatilit cut any other
line of the first generatoB, B° or Ay A, respectively. In the construction abowe,B°
andA° By will then be lines of the second generatésA’B’B, will be a rectangle that is
described on the surface whose two pairs of opposite $idiEsg to the second
generator. The two diagonals of the rectangle wilApB, andA’B%. The sides of the
rectangle will likewise be four of the six edges defaahedron; the surface itself, which
will contain each of two successive sides, will contde ruled surface at the four
corners of the rectangleA, By and A°B° will be the two remaining mutually opposite
edges of the trihedron.

108. It follows immediately from the foregoing that tredationship between the two
lines Aq By andA°B® on the surface is completely reciprocal. The twageatial planes to
the surface that can be drawn through each of thencullact the surface at the two
intersection points of the other ones; the tangeptates at the intersection points of
each of them with the surface will intersect on ¢kieer one. We call the two linéso
associated polars relative to the surfacAny line in space is associated with a second
one as its associated polar.

If we determine a congruence in such a way that we danaay two lines of a
surface to be its directrices then the congruence sslb@ate lines pair-wise in such a
way that each of these lines will correspond to anather with which, it will define two
associated polars relative to the surface. Thosdesket lines that coincide with their
associates polars will belong to the surface.

Any two lines of the one generator, along with any twasliokthe other one, define a
rectangle that is inscribed on the surface, as the ddges of a tetrahedron that is
circumscribed on it; the two diagonals of this rectangte— what amounts to the same
thing — the two opposite edges of the tetrahedron, wilWoeecbnjugate polars relative to
the surface.

109. Three lines of the one generator of a ruled surfacdetlaree lines of the other
generator will intersect each other at nine points le&ing to the surface. These three
points can be arranged into three groups:
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P, Q, R, P', Q’, R, P", Q", R" (3)

in such a way that at the three points of the samepgtiee three lines of one generator
will intersect the three lines of the other generatdhe nine points will correspond to
nine planes that contact the surface at these points:

P, G, P, r, p", g, . (4)
The three lines of the one generator will containpgbigts:
P,Q" R, R P, Q, QR F,
and the lines of the generator will contain the points:
P,R", Q, Q PR, R Q" P.
The nine points will determine three hexagons thatreeribed on the surface:

PQRP QR,
PQ' RF QR (5)
PQRP QR

In a similar way, we obtain three six-faced bodlest are defined by the tangential
planes at the corners of the three hexagons. Tire gebmetric structure is determined
just the same regardless of whether we start withhitee points of the three groups (3),
or the three tangential planes at three such pointdinally with one of the three
hexagons (5), and correspondingly, arbitrarily chooseetboints of the surface, or three
of its tangential planes, or a hexagon that is inscrivethe surface from the outset.

If we start with three pointB, Q, R of the surface then a plang, @, R) will be
determined by these three points and a pgnt(r) will be determined by the three
tangential planes at these points. The three linestefsection of the three tangential
planes will be the three diagonals of the third hexagon:

The three diagonals of a hexagon that is inscribed on a ruled surface intatgbet
same point.

The first inscribed hexagon h# and P’, Q' andQ", R andR" as its opposite
vertices; the tangential planes at the three paicppbsite vertices intersect in the three
lines P, Q), (P, R), (Q, R) that connect the given poini Q, R with each other pair-
wise, and thus lie in the same plane.

The tangential planes at any two opposite vertices of a hexagon thatrisedson a
ruled surface intersect in three straight lines that lie in theesptane.
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110. An inscribed hexagon, which we would like to take to be fihst one,
determines three inscribed rectangles. The sides ofreeaiangle are those four sides of
the hexagon that meet in two opposite vertices ofhien taken pair-wise. The three
diagonals of the hexagoR'(R"), (Q', Q"), (P, P"), which intersect at the poinp,(q, r),
are three diagonals of the three rectangles; thendeboee diagonals of these rectangles
are P, Q), (P, R), (Q, R), which lie in the planeR, Q, R). Consistent with numbei04,
three straight lines that go through the same pointtiaglh have three straight lines as
associated points that lie in the same plane. Thus:

The associated polars of all lines that intersect in the same peinn lthe same
plane.

Therefore, any point in space will correspond to aglamd any plane, to a point.
The plane is theolar plane of the poinand the point is the pole of the plamelative to
the surface. From the foregoing, the tangential plarigbe surface to the points of
planar intersection curve will envelope a conic surfded goes through that curve has
the pole of the intersecting plane as its centernv€rsely, all tangential planes of the
surface that go through a point will contact the surfaca plane curve whose plane is
the polar plane of the given poin.(

111. We could deduce some analytic developments that aeendeed to further
support and extend the foregoing geometric ideas, althougiadhisl not be the place to
pursue them further. We would like to represent a rayaserthat is given by the
equations of three first-degree complexes, which we cansehaxdbitrarily from a three-
parameter group:

Q+uQ' +u' Q" =0,

by an equation in ordinary point-coordinates.

We will next take the three complexes of the groubpetohree complexes whose lines
all intersect its axis. If we determine the origin aewily and draw the three coordinate
planes through the three axes of the complex thewilvebtain the following equations
for the three complexes:

Q=C -D og+E p=0, (6)
Q'=C -D'og+E p=0, (7)
Q"EC"_D"0.+ E"pzo. (8)

We have the following two relations:

X=rz+p, y=Sz+0O

() | have already considered the three associated hextigrare inscribed on the surface some time
ago inSystem der Geometrie des Rauifeésno. 87-93), and carried out the proof in analytical symbols
that, on the one hand, the three points at which the dilgohthe three hexagons intersect will lie on a
straight line, and on the other hand, the three planesdhé&din the lines of intersection of the tangential
planes at the opposite vertices of the three hexagohisisilsect on a second straight line, and finally that
these two straight lines will be two associated gotatative to the surface.
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between the coordinates of any poiny, z that lies on any ray, and the four coordinates
r, s, p, ando of the ray, from which, the determination of théhfifoordinate will follow:

ry—sx=in.

If we eliminate the five ray coordinates from the @ig six equations then the
resulting equation ix, y, z will represent the ray surface in point coordinates.
If we first eliminater then we will get:

(B —F'Xs+F'y-D o=0,
( n +F" y) r +F"XE—E"p: 0’

instead of the last two complex equations (7) and (8), dmhwe then eliminatg and
o, we will get:
Ez[F-Dzk-C-Ex+Dy =0,
F'z0+(B -F'x+D'z2s-D'y=0,
A"+F'y-E2r-F'xk+E"x =0.

If we determine the values sfandr from the last two of the foregoing three equations
and substitute them into the first of these equatioss that will give:

Exz[E"(B —F'x+D' 2-D' F'y]
+ Dyz[D(A"+F'y-E"2 -E"F’X
+ (C+Ex-Dy) [(A" +F'Yy—-E"2(B' —F'x+D'2 +F F'" xy] = 0.
The higher powers of, y, z will vanish from this equation, and we will get:
A'BC+A" BE-CF)x+B (CF'-AD)y+C(A'D'—-BE") z
-A'EF'Oé-BDF' G7-CDE" 7
+ (CD'F"+BDE")y z+ (CE'F +A'D'E) x z+ (BEF' + A'DF ") xy= 0.

If we divide this equation bsxBC and write:

E b _F D F _FE
C ! C ! Br ! Br ! An ! An
as:
tr , un, t", \/ , ur , V",

respectively, then that will give the following equation:

1+ +t")yx+ U +u)y+(V +Vv")z
+U XU U Y HV V2
+UVHU V)yz+ ([ VHUV)XZH (T U +"U)xy=0. (9)
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This equation will represent the same surface in pointdotates that was originally
represented by the three complex equations (6), (7),8ndWhen we introduce the six
new constants, those three equations will become:

t'p+u'c+1=0,
—Vo-t'n+s=0, (20)
un-vp+r=0,

and as a result, whgnandy’denote two undetermined coefficients, the general equation
of the three-parameter complex group by which the ray siitadetermined will be the
following one:

tp+u o+ ) +uVo+t"n—-9+u (U n-Vv'p+r)=0. (11

112. If we setz y, andx equal to zero in equation (9) in succession then we will
obtain:

(tx+Uu'y+)t'x+ Uy+1)= 0,
(Vz+t'x+)V z tx1)=0,
(Uy+Vz+)Jd w vz21)=0.

The intersection curve of the surface with the tlme&dinate planes will thus degenerate
into a system of two straight lines. The surfacd b&l contacted by thXY, Xz, YZ
coordinate planes; the lines of the second generatoe alitfiace in these planes will be:

t'x+u'y+1=0,
Vz+t'x+1=0, (12)
uy+Vz+1=0,

and the lines of the first generator will be:

t"x+Uuy+1=0,
V'z+ tx+1=0, (13)
u'y+vz+1=0.

The contact points in the three coordinate plandisbeithe intersections of the lines of
the first and second generator in each of the threeeplaThe three lines of the second
generator will be the axes of three complexes ofthinee-parameter group on all of

whose lines the complexes intersect, or in otherdsothree directrices of three

congruences of the group. If we exchange the threedine second generator with the
three lines of the first generator then the followihgeeé complexes will enter in place of
the three complexes (10):
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t"o+u'c+1=0,
-V'o-tn+s=0, (14)
u'n-vp+r=0,

and for the determination of its ray surface, we wbltaon the new three-parameter
complex group:
t"p+uo+ 1)+ (V'ortn-s) + yU'n-vp+r)=0. (15)

Any congruence of one of the two three-parameter conglexps (11) and (15) will
correspond to a conjugate congruence in the other one.

113. In particular, if:
t+t"=0, u+u'=0, V+VvV'=0 (16)

then the equation of the surface will assume theviatig simpler form:
1-t2x —u?yY—viZ+2u Vv yz+ 2t V xz+ 2t U xy=0. (17)

The two lines of different generators in each of tire¢ coordinate planes will then be
parallel to each other, and will be equally distant fithwn coordinate origin. It will be
the center of the surface. The three coordinateeplarll contact the asymptotic cone of
the surface.

114. If the surface is &yperbolic paraboloidin particular, then the three straight
lines (12) will remain lines of the same of its genetdout will be subject to the
condition that they be parallel to a given plane. éftake the equation of this plane to
be:

ax+by+cz=0 (18)
then that will give:

(19)

oloc

_u _V
V" ! t" !

oo

a_t
b un’

which yields the following condition equation between sheconstants upon which the
surface depends:
tuv=tu V. (20)

As a result of this condition equation, the lines @& $skcond generator will be parallel to
a second given plane. If we take:

ax+by+cz=0 (21)

to be the equation of that plane then that will give:
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I t" bl u" CI V"
== - = - T (22)
u c Vv a t

oo

If we develop equations (18) and (21) then that will give:

t"V'x+Uuvy+ vv z0, } (23)

t'Vx+Uu'Vvy+ vv z=0.

The line of intersection of those two planes that thesl of the first and second
generators of the paraboloid are parallel to will deteerthe direction of itsliameter.
We will find this by considering the condition equation (20):

t't"x _ u'u"y _ V'\/IZ

= = . 24
t' _t" u' — u" \/J — \/' ( )

115. Up to now, we have mainly considered straight linebaoays because this
manner of presentation lies closer to our viewpoint, aadeguire brevity. The concept
of a straight line as aaxisis, however, equivalent. Ray congruences will then apjee
be axial congruences and ray surfaces will appear to bésaxfaces. Here, we would
like to consider the same surface that we have justdedas a ray surface as an axial
surface from now on. It will be determined by the previcasiplexe€2, Q', Q", which
will be represented by the following equations:

® = Cw+tDp +EQq=0, (25)
® = B a7+D p+F =0, (26)
" =—A"k+E"q+F" =0. (27)

We will obtain the equation of this surface in plane doatest, u, v when we eliminate
the five axial coordinates from the foregoing three eqnatand the equations:

t=pv+r
u=qv+k,
pu—-gt=w

If we then eliminatew 77 x from the first and sixth, second and fourth, and thel tnd
fifth of the foregoing six equations, respectively, theat will give:

(Cu+D)p=(C t-E)q,
Bt+F) =B v-D)p,
(A'V+E) q= (A" u-F),

and thus, when we multiply these three equations togetieewill get:



114 Chapter One: First-degree line complexes and thayreences

(Ct—-E) (A u- F)(Bw D) _
(B't+F)(Cu+ D)(A w E)

If we divide the numerator and denominator of this foacbn the left-hand side of this
equation byA" [B' [IC then, when we, in turn, introduce the previous constaargdt”,
U andu”, v andv’, for the sake of brevity, that will give:

(t-t)u-u)v-v) _, (28)
t-t"Y(u-u)(v-Vv)

When we develop this equation, the product of the threablas will drop out. It will
represent the same surface in plane coordinates thaprexeously represented by
equation (9) in point coordinates.

116. The foregoing equation will be satisfied when one haslsaneously:

t-t'=0 u-u =0
-u =0, v-V' =0, (29)
-V =0, t-t"=0,
and likewise, when one has simultaneously:
t-t'=0 v-V' =0
-u =0, t-t" =0, (30)
-V =0, u-u=0.

Equations (29) and (30) will reduce to six distinct onad,\@hen taken individually,
they will represent six points, two of which will len each of the three coordinate axes.
When they are combined pair-wise, as we did in the fonggthe axes, which lie in the
three coordinate planes and likewise on the surfackrepitesent, on the one hand, the
three lines of the second generator of the surface &b#)on the other hand, the three
lines of the first generator of the surface (13). Thé&serwill be contacted by the three
coordinate planes.

We can represent the surface, corresponding to its dgeblerator, by each of the
two following three-parameter groups of linear axial comgdex

(w—d p+tt Q+A(r+Vv p-t)+A (k+Vv' q-U) =0, (32)
(w—dp+t"q+A(m+Vvp-t)+ A (k+V q-u") =0, (32)

in which we denote the undetermined coefficientd by, A1, A, .
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117. If we take any three tangential planes of the asyneptotie of the surface to be
the three coordinate planes then as a consequencerefatiens (16):

t+t"=0, uUu+u" =0, V+Vv' =0,
the equation of the surface in plane coordinates gsllime the following form:

(t-tH)u-u)(v-v) _
(t+tY(u+u)(v+ V)

(33)

In the case of the hyperbolic paraboloid, the geneyahton (28) can be specialized in
such a way that the constant term drops out in thelaf@went, which will once more
lead to the previous condition equation (20).

118. In the last numbers, we have represented the gpgamerator of the same
surface, in one case by three linear equationayircoordinates, and in the other case by
three linear equation in axial coordinates, andvddrthe equation of that surface from
three linear equations in point coordinates, in oage, and in plane coordinates, in the
other.

As a second example, we would like to determineled surface by three complexes
of a special kind when we take their equationsedhoee that emerge from the previous
ones when we permute the constants with their rec# values and reciprocally switch:

rnspon wth poq7zka
resp.
In that way, when we denote the reciprocal vatogs t”, U, u”, vV, V' by x, X", vy,
y', Z,Z', respectively, we will get the following compleguations in place of the three
in (10):
Xm+yk+1=0,
-Zk - Xw+ q=0, (34)
Yw-Zm+ p=0.
119. If we eliminate the five axial coordinatpsq, 7z «, wfrom these equations and

the three equations:
t=pv+rm u=qv+k pu—qQt=w

then we will get the following equation for the e in plane coordinates:
1+ X +xX)t+(y +y)u+(Z+2)v

XX CHY Y P+Z 72V
Y ZHY Z)uvE (X Z+ X Z) v+ (XY +X'Y") tu=0. (35)
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We will get this equation immediately when we replécé’, u', u”, v, v’ with X', X", y,
y', Z,Z' andx, y, zwith t, u, v, resp., in equation (9).
In order to express this complex (34) in ray coordinatesget:

n-y'r+x3=0,
p+ Z20-X =0, (36)

1A

-o-7Z's+y =0,

and when we eliminate the ray coordinates o, g, n from these three equations and the
following three:
X=rz+p, y=sz+ g, ry — Sx= 1,

x=0(y=Iz= ) _,
(x=X)(y= Y)(z 9

we will get:

(37)

We will obtain this equation immediately when weslexnget’, t”, u', u”, V', v’ with X,
X', Y,y Z, 2" andt, u, vwith x, y, z resp., in equation (28).

The two equations (35) and (37) represent the saumface in plane and point
coordinate that was represented by the systemrmeduliequations (34) and (36) in axial
and ray coordinates.

120. If we setv, u, andt equal to zero in equation (35) in succession themill get:

(Xt+Y'u+)(Xt+ yw1)=0,
(Zv+ X t+) (Z w k#1)=0, (38)
(Yu+Z w1)(yu zw1)=0.

Whereas the tangential planes of a surface of @t class two that are parallel to a
given straight line will envelop a cylinder, in geal, this cylinder will degenerate into a
system of two parallel straight lines when we tdie given straight line to be the three
coordinate axes in succession. The coordinate awxXeshen be parallel to any three
generators of the ruled surface, or — what amaientse same thing — any three sides of
the asymptotic cone. All planes that go througl lame of the surface will then be
tangential planes to the surface. Three linesheffirst generator that are taken to be
parallel to the three coordinates axes will themparllel to the three lines of the second
generator. The two point-pairs at which g XZ, ZY planes are met by the lines of
both generators, which are parallel to ©& OY, OX axes, respectively, will be
represented by equations (38).

121. In agreement with that, in order to satisfy eque{37), we will get, in the one
case, the three equations-pairs:
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x=X =0, y-y =0,
y-y =0, z-7'=0, (39)
z—-2=0, x=X =0,

which represent the three lines of the second generaibrnahe other case, the three
equation-pairs:

x—X =0, z—-7'=0,
y-Yy =0, x—-X =0, (40)
z-72=0, y-y =0,

which represent the three lines of the first generatdrich are parallel to the three
coordinate axe®Z, OX, OY andOY, OZ, OX respectively.

123. The three complexes of a special kind by which theasarfs determined — in
one case, by equations (34) and in the other case by egué®) — have those lines of
the second generator that are represented by the egpatiai39) for their axes, and on
the other hand, are determined by the fact that they aedlgbao the OX, OY, OZ
coordinate axes and cut t&, XZ XY coordinate planes, respectively, which will be
represented by the equations:

yu+Z w1=0,
Zv+ Xt+1=0, (41)
Xt+y'u+l=0
in these planes.
If we take the three sides of the asymptotic conef itsdde the coordinate axes then

that will give:
X+x'=0, y+y' =0, Z+7=0. (42)

The equation of the surface in plane coordinates vah issume the following form:
1-x2-y2u-22V+2y Z v+ 2xZ Qv+ X y Qu=0, (43)
and the equation of that surface in point coordinatesasdime the following one:

(x=X- Iz 8 _, )
(x+X)(y+ Y)( 2+ 3

124. Finally, first under the assumption of rectangelaordinate axes, we would like
to take the following three equations for the cae®pk of a three-parameter group:

Q+ﬂQ’+ﬂ,Q":0
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that determine a ruled surface, namely:

Q=o0-Kkr=0,
Q' =p+k,s=0, (45)
Q"=n+k, =0.

The axes of the three complexes then will fall uploe threeOX, OY, OZ coordinate
axes, so like them they will be mutually-perpendiculad amersect each other at the
coordinate origin. The parameters willkek;, ks . If we combine the three complexes
pair-wise then we will get three congruenc@s Q"), (Q, Q"), (Q, Q"), whose principal
axes will fall uponOX; OY, OZ, resp., and whose pairs of auxiliary axes will fall @y
andOZ, OX andOZ, andOX andQY, resp.

If we, as before, eliminatg, o, and; by means of the three equations:

X=rz+p, y =Sz+ ¢, X —sy=1
then that will give:

y—-sz—kir =0,
X—rz+k;s =0,
ry —sx+ks =0.

It follows from the first two of the foregoing equat®that:

kko+D)r = xz+ky,
(kike+Z)s=-yz+ki X

and when we eliminate ands from these two equations and the third of the foregoing
three equations, it will follow that:

k1x2+k2y2+Ko,Zz+k1k2K0,:0,
or:
2 2

x_y+zz+
ks Kk kk

1=0. (46)

125. If the parameters of the three original complexesall positive, and thus the
parameters of the three new complexes will be negativeonversely, when the former
is negative and the latter is positive, then the sarfadl be imaginary. In every
remaining case, as long as the values of the parammeteasn real, the surface will be a
one-sheeted hyperboloid. The values of two of the thaeameters of the two groups of
complexes will then agree in sign, and the values efpitesent three parameters will
have the opposite sign. According to whether the petrens) of the first, second, or third
complexes of the group do or do not deviate in sign froenptéwrameters of the two
remaining complexes, the imaginary axis of the hypertolill fall upon theOX, OY,
OZ coordinate axes, respectively. In the first casewilget:
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A

when we set:
kk = &,
kk = -1, (48)
kk,=—-¢C.

If we base the foregoing developments on planerdioates, in place of point
coordinates, and thus consider the lines of theptexnto be axes, instead of rays, then
we will get the following equation for the sameedisurface, which will now become an
axial surface from now on:

kokst? + ki ks U? + ki ko V2 + 1 = 0. (49)

126. Any given straight line in space is parallel falee infinitude of diameters of a
three-parameter group. We can then consider the ttoordinate axes to be diameters of
three complexes by which a ruled surface is detexdhi In the case of rectangular
coordinate axes, equations (45) will representeticaamplexes whose three axes fall upon
the three axes of the ruled surface. The pringgeaameters of the three complexes are
ki, ko, ks . When we take any three associated diametetisabfruled surface to be the
coordinate axes, equation (45) will always repregénee complexes of the three-
parameter group, except thét, kp, ks will then no longer represent the principal
parameters of the three complexes, but the parasnefetheir three diameters that
coincide with the three coordinate axes. We wdiglelto denote these three parameters
by, k?, k3, kJ, to distinguish them, and let the three constahtwe keep their meanings
as principal parameters of the three complexes.wdldd like to call three complexes of
the three-parameter group whose diameters ardglamhny three associated diameters
of the ruled surface that is determined by thisugrdhree conjugate complexe®lative
to the ruled surface. Let, &', € be the three angle€OY, XOZ YOZ resp., that the three
coordinate axes define with each other, when tgda@nwise, and letd’, J, 0 be the
inclination angles 0©Z with respect toXY, OY with respect toXZ, andOX with respect
to YZ respectively. The three expressions:

sing" sind’, sing’sind’, sinesind

will then be equal to each other. If we denoté tadue byy; for the sake of brevity, then
we will get:
k2
y y' y
and thus:
Kk kI =kiikoiks. (50)
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If, corresponding to equations (48), we set:

Q= &
1= -1, 51)
0=

then we will get:
BRORCESENE
2 b, G

for the equation of the ruled surface in obliquerdmates. aOJ—_l, bo, co mean those

radii of the surface that coincide with tBX, OY, OZ coordinate axes, respectively. If
we set:

yEghc =0 (53)

then it is known tha® will be a quantity that does not change when vke tny other
three associated diameters of the surface to bedbelinate axes instead of the three
given associated diameters.

127. If we multiply the last two equations (51) witlhah other term-by-term and
divide by the first of these equations then thdk giwe:

2 2
e =25

8

and if we introducd in place ofk’then:

2 2
ki =y b°a§C°

62
g .
Thus:
ki =% Q ) (54)
3,

k; is the principal parameter of the complex of thee¢-parameter group whose
diameter is parallel to th®X axis, anda; (when taken with the opposite sign) is the

square of the radius of the surface that falls up@t axis. Since we can take any
arbitrary diameter of the ruled surface to be adimate axis from the outset (whereby,

a; must be taken to have a positive or negative aigrording to whether the new
diameter cuts the surface or not), this will imnagdly yield the following theorem:
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The principal parameters of the complexes of a three-parameter growsew
diameter is parallel to any diameter of the ruled surface that israehed by the group
are, conversely, proportional to the square of the length of the diawietiee surface.

128. An arbitrary plane that is drawn through the origisimultaneously associated
with a diameter of the ruled surface, the principal @ignof a congruence that belongs
to that surface, and a diameter of a complex of hheetparameter group by which the
surface is determined. The planes that are associdtethes diameter of the surface are
parallel to the central plane of the congruence andlikegviise associated with the
diameter of the complex that coincides with the adisanof the surface. This will follow
immediately from the equations of the three conjugatepteas (45) by which a ruled
surface is determined, also under the assumption of olda@prelinates. The diameter of
one of the three complexes that falls upon one othtee coordinate axes is associated
with the coordinate plane that goes through the othercbordinate axes, and that plane
will be, on the one hand, the central plane of thegcuence that is determined by the
remaining two complexes and, on the other hand, the thalhpdane of the surface that
IS conjugate to its diameter that coincides with thendizr of the complex.

A complex of a three-parameter group is determined tglp when the direction of
its diameter is given. In the previous number, we obthits parameters in the simplest
way by means of the corresponding ruled surface. Tiegding discussion gives us the
associated planes to its diameter. The constructi@s axkis therefore reverts back to the
one in numbe#6.

One applies the parameters of the complex to theed@&nof the surface that has the
given direction of the diameter of the complex frima center outward and projects them
onto the diametral plane of the surface that is @atal with the diameter. From the

previous number, the parameter will be equaltor,®, if we denote the length of the
radius of the surface by, and its projection will be equal to:

©
— COSQ,
r0

if we call the angle that the diameter of the swfdefines with its conjugate plage. If
we then displace the diameter of the surface parallé@self on the projecting plane
through an increment that is equal to that projection the displaced diameter of the
surface in the new position will be the axis of the ptax.

This displacement can be performed in the oppositetaire Corresponding to that,
we will get the two axes of two different complexéattare parallel to each other and
equally distant from the center. These two complexeleng to the two different
generators of the ruled complex.
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129. We obtain:

k10:iboco, k20:$aoco, k30:i$ tl) (55)
2 b, G
for the parameters of the diameters of the threeugatg complexes that fall upon the
OX, QY, OZ axes, resp., and:

h:igp bzign m:¢§- (56)

for the principal parameters of that complex. In agance with equations (58K, and

k) have the same signs akd deviates from them in sign, from which, it will follow

with consideration given to the proportions (50), thaandk, have the same sign, while
ki has the opposite sign to them. We must then takéhtbe upper or the three lower
signs together in equations (55), as well as in equations (56)

If we multiply the three equations (55) by each othemtby-term then that will give:

k’k ks’ =+ a0ho Co. (57)
The product of the parameters of the diameters of three conjugate cempheat
coincide with the three associated diameters of the ruled surfampie to the product

of the three radii of the surface.

If we multiply the three equations (56) by each otkemtby-term then that will give:

3

CHIS

k;K,
abc

ki ko ks == —+J/ hobpco==% y?Abe,

SO:

55’

=+ )2 (58)

From the same three equations (56), we will further get:

1 1
+0O| —+—
(8 -b’-¢)= [&+&+&J

and from this:

2 _Rh2_ A2
+i+_1 =+ w (59)
k, Kk abc

x|

The sum of the reciprocal values of the paramebdérany three complexes that are
associated with a given ruled surface is constant.
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130. We would like to displace the axes of the complexes three-parameter group
by which a ruled surface is determined parallel to themseintil they go through the
center of the surface, and then, when we considedidraeter of the surface to be a
guiding ray, apply to each of the from the center outwdrelprincipal parameters of the
complexes that also have that diameter for their. oW will then get a new surface that
plays the same role in relation to the ruled surfaeg the characteristic curve of a ruled
surface does in relation to it. We would like to ¢a# new surface theharacteristic
surfaceof the ruled surface.

If we denote any guiding ray of the characteristicaefoyr and the corresponding
guiding ray of the ruled surface bythen we will have:

©
r?

r==%

We would like to refer the ruled surface (47) to itethaxes as coordinate axes. When
we then call the three angles that an arbitrary ggidayr; defines with the three axes
£, ythen we can write the equation of that surface it below:

cosa_coSB _cosy _ 1
2 B JZ P

and obtain the equation of the characteristic serfahen we replacg/r,* with its value

+r /© in this equation. In this way, we will get:

I+

r,

o cosa _ co$f _ cosy| _
a’ b? ¢

and if we revert to the rectangular point coordsat

x> y* 7
@{¥—§—?} =172 (60)
If we square both sides of the last equation arit\p + y* + Z°) anda® b? ¢? for r? and

©?, respectively, then that will give:

b {X——L-i} =0¢+y + 2] (61)
a~ b c
or:
B> P -a Py —a D) =a’ b’ & (¢ +y + 7). (62)
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131. The complete characteristic surface decomposes timto parts that are
individually represented by equation (60) when we takgth both signs in succession.
There will always be two three-parameter groups of dexes that have the geometric
relationship to each other that the complexes of wwe dgroups differ from each other
merely by the fact that their parameters have oppegjtes. Two such complex groups
will correspond to the two generators of the same surfacparticular, there will thus be
two systems of three conjugate complexes whose diasnate parallel to any three
associated diameters of the ruled surface, as wellwdnose respective parameters are
equal, but have the opposite signs. The two generafotise ruled surface will be
determined by the two groups of associated compleXé&& characteristic surface will
be related equivalently to both generators.

132. In accordance with the relations (48), we can introdiaegrincipal parameters
of three conjugate complexes whose diameters aregqldmthe axes of the ruled surface
into the equation of the characteristic surface ic@laf the three semi-axes of the ruled
surface. In that way, we will find that:

(kX +lo ¥ +ka 2) = (0 +yP + 2, (63)
while the equation of the ruled surface itself will beeaime following one:
ki X2 +ko Y + ks Z = ki ko ks, (64)

after the introduction of those constants.

If we setx, y, z equal to zero in equation (63) in sequence then we Widlio the
following equations for the intersection curve of tharelateristic surface with the three
coordinate planes:

(kX +k ¥)*=(X+ ¥)?
(kX +kZ)*=(X+ 2)7 (67)
(Y +kZ)*=(y+ 2)°

Three congruences are determined by three comjuganplexes, when taken pair-
wise, which we can refer to as thre@njugate congruences the ruled surface, in their
own right. The two systems of three conjugate dergs whose diameters are parallel
to the three axes of the ruled surface correspontivb systems of three conjugate
congruences, each of which has an axis of the muefdce for its principal axis and its
other two axes for auxiliary axes. The three coagces of one of the two systems
correspond to one of the three congruences of ttier gystem of the other generator of
the ruled surface. The first of the three equati(@¥) agrees completely with equation
(149) of the previous paragraph. From that, weritthe following theorem:

The three intersection curves of the characteristidface of a given ruled surface
with the three principal sections XXZ YZ of the latter surface are, in these principal
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sections, the projections of the characteristic curves of trwagigate congruences that
have OZ OY, OX for their principal axes, respective(y.

We confirm what the discussion in the previous paragraphise intersection curve
(67) asserted, and remark merely that the intersectiovecthat lies inXY and XZ
consists of four loops and has a four-fold point at #weter of the surface, while that
point will be an isolated point for the intersectiame that lies inYZ

133. In order to satisfy the equation of the characterigurface, we can
simultaneously set:

kX +ky+kZ=+xkOkkk } ©8)

Xt Y+ 2=k KKK,

when we denote two arbitrary constants byand «,, between which the following
relationship exists:
K2 = K03.

In particular, this relation will be satisfied when tiwe constants are equal to unity. A
characteristic surface can be described by a space cwavesthe intersection of a
sphere with two second-order surfacés.each of its positions, this curve will determine
complexes whose parameters are equal, up to sign.

In our case, the given ruled surface is a one-sheefsttioloid. If we once more
introduce the square of the semi-axes into the last teumt®ns, instead of the

parameters, then we will obtain:

X2 y2

a? b’

z
C2
X+y+Z=kNEBC

==K,

(69)

When we setk and xp equal to unity, the first of the two foregoing atjans will
represent the given one-sheeted hyperboloid whemake the lower sign and a two-
sheeted hyperboloid when we take the upper sigme tlvo hyperboloids will have the
same asymptotic cones, and the squares of any qually-directed diameters of them
will be equal and of opposite signs. We would ki&ecall a one-sheeted hyperboloid and
a two-sheeted one that have this reciprocal reiship to each other twassociated
hyperboloids.

The characteristic surface of a given one-sheeygetpoloid goes through the curve
along which intersect the given one-sheeted hypeitband the two-sheeted hyperboloid
that is associated with a sphere whose radius isaktp the cube root of the product of
three semi-axes of the given hyperboloid.

() We can extend the theorem in the text to three anpimasociated complexes of a given ruled
surfaces and the three corresponding associated diamete
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If we let the linear dimensions of the two hyperboldiitsease in a quadratic way
and let the radius of the sphere thus determined incre@ase cubic way then the
intersection curves will describe the characterisiifase.

134. The complete characteristic surface divides into pads that are separated
from each other by the asymptotic cone. The one pasisterof path curves that lie on
the one-sheeted hyperboloid. They determine the parametetemplexes whose
diameters are parallel to the real diameters of thengone-sheeted hyperboloid. The
other part consists of path curves that lie on the gineeted hyperboloids. They
determine the (always real) parameters of the complestese diameters are parallel
(along their lengths) to the imaginary diameters ef gfiven one-sheeted hyperboloid.
When the diameter of the surface through which the siflése asymptotic cone goes
becomes infinitely large, the corresponding parametér®ecome zero. This transition
will correspond to the transitions between real andginsy diameters of the surface
and between positive and negative parameters of theleresp

135. Up to now, we have considered merely the one-sheeteerldoloid whose
generators are real straight lines. The imaginasdrsurfaces, which we would like to
callimaginary ellipsoidscorrespond to the case where the parameters dirée ¢entral
complexes have the same sign. If we correspondsegly

ko ks :az,
ki ks = b?, (70)
ki ko :C2

then we will get the following equation for the imagiatlipsoid:

2 P2
.§+§+§+1:a (71)

However, equation (64), which represents the ruled syrfatiealso remain real
when the parameters of the three central complaxedtaneously become imaginary. If
we replaceks, ks, ks with the imaginary valueg~/-1, k,v/-1, ki~/~1then that equation
will go to the following one:

KX +Ky+KZ=-kkK. (72)

Here, we have, in turn, two cases to distinguish: €ithnly two of the three new
constants have the same sign and the third one happbsite sign, or the signs of all of
them coincide. In former case, we can set:

k= &,
ki k, =-b%, (73)
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and obtain:

X z
e (74)

The surface is thentavo-sheeted hyperbolaidn the second case, we can set:

K, k; =&’
ki ks = b2, (75)
kl kz = C2
and get:
X2y 7z
2ot (74

The surface is then atlipsoid

Two imaginary generators will intersect at each pofrthe two-sheeted hyperboloid
and the ellipsoid. The surfaces will be generated bygimaay lines in two ways, since
the two imaginary straight lines that intersect ahgaoint of the surfaces will belong to
their two generators.

136. The considerations concerning characteristic surfacesinmber133 will be
first completed when we consider the characteristifaserof the imaginary ruled surface
(which remains real), and the imaginary characteristicfaces of the two-sheeted
hyperboloid and the ellipsoid, in addition to the charastiersurface of the one-sheeted
hyperboloid.

We have called the one-sheeted and two-sheeted hyperheloah, are represented
by equations (47) and (74), two associated hyperboloids inadewheré; = k , ko =
k,, ks = k;. Under the same assumption, we will say that theginary and real
ellipsoids that are represented by equations (72) and (7p), as associated.

In order to get the equation of the characteristic sarfar the imaginary ellipsoid

(72), we merely need to change the signs’cdndc? in the equation of this surface for
the one-sheeted hyperboloid (47). In place of (61), ol¢h&n get:

a b’ {z—z+§+§} = (¢ +y +2)], (77)

and in place of (69), we will get the following two equaso

2 2

X

X Y.
2 b2

c
X+y +Z =k &5 ¢,

| N

==K,

QD
N

(78)
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in which the previous condition equations persistd@nd «, . Here, the characteristic
surface consists of a real and an imaginary compong&héese two components will be
generated by curves, along which real and imaginary eklipshat are associated with
spheres will intersect. Among the imaginary ellipspidse finds the given one, in
particular. The real ellipsoid that is associated vtitill always be intersected by the
characteristic surface along a real curve that simedtasly lies on a sphere whose radius
is equal to the third root of the product of the three seras of that ellipsoid.

If the equation of the real characteristic surface (6BYhe case of the one-sheeted
hyperboloid and the imaginary ellipsoid is to be relatethtéocase of the two-sheeted

hyperboloid and the real ellipsoid then we must switGhc, ks with kix/-1, ki+/=1,

k:~/~1. The square of the guiding ray of the characteristitase will then become
negative, so the surface itself will be imaginary.wdwer, we will get a new real surface
when we takev/-1 for the imaginary guiding ray. We will then get:

(KX +K Y+ K 2)* = +y +2),

and wherk; = k7, ko = k;, ks = k3, in particular, this equation will be the samelasone
that we started with.

The characteristic surface of a one-sheeted hypeiththen likewise determines the
imaginary parameters of all complexes of the asged two-sheeted hyperboloid, as
well as the characteristic surface of an imaginagilipsoid, and the imaginary
parameters of all complexes of the associatedetigisoid.

137. In number98, we distinguished between four different typescohgruences.
Any diameter of a surface of order and class twat thas a center will coincide, in
direction and magnitude, with the principal diametkta congruence that belongs to the
surface. It will thus correspond to the diametérthee one-sheeted hyperboloiof a
congruence of the first or second kind, accordmgvhether this diameter does or does
not cut the hyperboloid. The transition referghe case in which the two directrices of
the congruence coincide in an asymptote of thesearf

Any diameter of ammaginary ellipsoidwill correspond to a congruence of the second
kind.

Any diameter of awo-sheeted hyperboloidill correspond to a congruence of the
third or fourth kind according to whether it doedoes not cut the surface, resp.

Any diameter of aeal ellipsoidwill correspond to a congruence of the third kind.

138. The surfaces of order and class two that haveember and, in one case, are
generated by real straight lines and in the otlasecby imaginary ones are excluded
from the foregoing developments; viz., the hypedahd elliptic paraboloids, resp.
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139. In number 111, we already determined a second-order surface by three
complexes whose parameters were equal to zero. hgedhédrom this that the axes of
three such complexes should be considered to be lindsafecond generator of the
surface that are cut by the lines of the first generaide drew three arbitrary planes
through the three lines of the second generator and tesk thlanes to be coordinate
planes. The surface then contacted these three plartesse planes cut the surface in
three lines of the first generator, in addition to timee lines of the second generator. In
each of these planes, the intersection of the lireesstive two-fold generator of the points
at which they contacted the surface. With analogousrgstns, we can also determine
the two-sheeted hyperboloid and the ellipsoid. We taketla@e tangential planes of
one of these surfaces to be coordinate planes. Habbkse planes will then go through
two conjugate imaginary lines of the surface, and thess vk intersect in the real
points at which the planes contact the surface. Gensiwith that, we would like to set:

t't" =t +t/-1,
u', U EL[)iL[)\/?l, (79)
VRVERVERV VA

when we return to the cited number. Equations (12) and {8)ab number, which
represent the three lines of the second generator aridrde lines of the first one that lie
in the three coordinate planes, will then go to thie¥ahg ones:

(t, +t'/=1)x+ (U, — Un/~1) y+ 1= 0,
(V, + V)v/-1) z+ (1, - t/-1) x+ 1= 0, (80)
(Up + U/ =1) y+ (%~ Vi/=1) 2+ 1= 0,
and
(t, —t:J=1)x+ (u, + Un/-1) y+ 1= 0,
(v, = Vp/-1) 2+ (4 + t/-1) x+ 1= 0, (81)
(U, = Uyv/=1) y+ (4 + V/=1) 2+ 1= 0.

The coordinates of the three contact points with tineetXY, XZ, YZ coordinate planes
are ():
~Up e

[ ’ ! y2 = ] r !
tOUO + tOuO tOUO + tOuO

(*) Equations (81) immediately give:
XiY14=XY2 2%,

which is a geometric relationship between any thregdatial planes of a given surface of order and class
two, but this is not the place for a discussion af.th
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) = _—‘/0 2= _—to (82)

[AYAE S AVA [AYAE S AVA
V% "W

in=— L= —.

UO\/O+ %VO UO\/O+ %VO
We get the equation of the ruled surface from (9):
1+ZoX+ 2y +2pz+ (t02+t62)x2 + (uo2 +U;)2)y2 + (Vo2 +\/02)22
+2UVo— Uy V)Y z+ 2 oVo—tyVy) X Z+ 2( Up — tyuy) X y=0. (83)

According to whether:

(to2 + tgz) °> (toVo — toVo) (toV— Vo
or

(to2 + tgz) °< (to\/o - tgvo)(to\/o_ t,ov() g

this equation will representteo-sheeted hyperboloit anellipsoid, respectively .

If we setto, Ug, Vo equal to zero in this equation then that will give:
1+t +UPYy’ -2 Z2-2Q yz2'¢'y xz2't'ux=0. (84)

The surface will then be a two-sheeted hyperboloid ghaeferred to its center as the
origin of the coordinates.

140. The determination of the elliptic paraboloid is coetely analogous to the
determination of the hyperbolic one in numh&4. The condition equation (20) goes to
the following one:

t—?+u—?+ﬁ =1 (85)
t0 LIO \/0

Along with the lines of the two generators, the two etathat are parallel to them will

also be conjugate imaginary. We get the following equstifmn them, which we
combine into a single one:

[(toVo + toV) F (Vo= tVaV=1] X+[( UVt W F( Wiy w11 ¥( ¥+ '3
:O, (86)

and for the determination of the direction of the metdrsection, we will get:

() Geometrie des Raumew.26.
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t02+t2)2 « = U02+UE)2 y: V02+\/02 , (87)
t Up Vo

from (24).

141. With that, we have represented all of the real sadaf order and class two by
equations of three linear complexes whose parametersvanid derived their equations
in point coordinates from a system of three such equatibasone-sheeted hyperboloid
(9), the same thing, referred to its center (17), the hgtierparaboloid (9), under the
assumption of the condition equation (20), the two-sheeyperboloid, and the ellipsoid
(83), the former referred to its center (84), and finallgder the assumption of the
condition equation (85), the elliptic paraboloid (86). Hssumption that the coordinate
origin lies inside of the stated surfaces remainsuebedd here for the cases of the two-
sheeted hyperboloid, the elliptic paraboloid, and the eilijosThere is no inside and no
outside for the case of the one-sheeted hyperboloid.infdgnary surfaces are excluded
completely. The coordinate system will become illysehen the origin is chosen to be
on the surface.

142. The same surfaces of order and class two that we tepresented by three
linear equations in ray coordinates have also been repeesey us in an analogous way
by three equations in axial coordinates, and just as we dhenwved the equation of the
surface in point coordinates, we have also derived the equatithe that surface in
plane coordinates. For real surfaces that are nergesu by real straight lines, equation
(28), which we obtained in numbgt5, will go to the following one:

((t —to) —tyv/=1)((U = Uy) — Up=1)((v= )= W/-1) _
((t—t,) +t=1)((U - u) + UN-1)((v- v)+ \W-1)

(88)

If we develop this then the imaginaries will vanish frims equation.

143. Real and imaginary conic surfaces, as well as rehiraaginary plane curves,
can be represented by three linear equations, either incoaydinates or axial
coordinates. These are not to be regarded as surfacles®two or as surfaces of order
two.

144. However, the question of whether the ruled surfacaswe have represented
by the symbol:
Q+uQ' +pu'Q" =0

might degenerate into other geometric structures by apcg the complexeg, Q', Q"
is not resolved with that.
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We would like to let one of the three complexesineita full generality, but assume
that the other complexes are of the special sott ahaof the lines in each of them
encounter a fixed straight line, and that the two fixedight linesintersect or — what
amounts to the same thindie in the same planeWe would like to let the tw®Z and
OY coordinate axes coincide with them. The equations:

Q=np=ro-=0, Q"=p=0
will then represent the two complexes in question. s&éhawvo equations have the

consequence thaither o or p will be equal to zero. In agreement with this, ondhe
hand, all lines whose coordinates satisfy the three ieqgat

Ar +Bs+ C=0,
(89)
p=0, 0=0,
and, on the other hand, all lines whose coordinategystitesthree equations:
Bs+ C- D=0,
(90)
p=0,r=0,

will belong to the ruled surface that is representedbythiree-parameter complex group.
All lines that simultaneously belong to the three caxes (89) will lie in the plane that
is represented by the equation:

Ax+By+Cz=0 (91)

and will go through the coordinate origin in that planell liAes that simultaneously
belong to the three complexes (90) will lie in &coordinate plane and will go through
the point in that plane that is represented by the exuati

Cu-Bv+Dw=0. (92)
The plane (91) will remain the same for all compleatthe three-parameter group:

(Ar—Bs+C)+up+u’'s=0

as it is forall of the planes that correspond to the coordinaterorigihe point (92) will
remain the same for all complexes of the three-paemgeoup:

(Bs+C—-Do) +up+u'r=0

as it is forall of the points that correspond to tti& coordinate plane.

The lines that belong to the ruled surfaces thus dateththerlie in two planes and
go through a fixed point of the line of intersection of the two planeaci ef these two
planes. The two planes and the two points correspond to each other in plexesmof
the three-parameter group.
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We can represent the ruled surface by a second-orderayuapoint coordinates.
We will then obtain the two planes that we just detertyim®wever, each trace of the
generators of these planes will vanish along a strdigétthat rotates around a fixed
point inside of them. We will get the two points whea appeal to plane coordinates for
the representation of the ruled surface; however, ¢@ade of the envelope of these
points will vanish along a straight line that lies ifi@d plane.

145. In this case, the geometric determination of thedrsurface will come down to
the determination of the straight lines that interdeat given, mutually-intersecting,
straight lines and belong to a given complex, moreovdrese lines will either lie in the
plane of the two given straight lines and go throughititersection point or they will go
through the intersection point of the two given stralgtgs and likewise lie in the planes
that correspond to that point in the complex.

The foregoing geometric considerations can be extendesu¢ch a way that a
complex of the special kind can be found amongst theloms of the group. The fixed
lines that are cut by all lines of this complexes andcclwvidio not encounter the two given
straight lines, in general, will, like them, be cut b tines of the ruled surface. This
ruled surface is, in general, a one-sheeted hyperboloadevimes cut a generator of the
three given straight lines, but degenerates when tvileathree given lines intersect into
a system of two planes or a system of two poinspeaetively.

Nothing essential will change in the foregoing relatfops when the fixed line
encounters one of the two given intersecting straigles)i One of the three lines of the
same surface generator will then be cut by the remainingatwiwo points, or — what
amounts to the same thing — the three generators witl tigo planes. These two planes,
on the one hand, and the two intersection pointshe@mther, will be the ones into which
the ruled surface will degenerate.

146. However, if the intersection point of the two giv&naight lines corresponds to
the plane that goes through that line in the complekéisecthree-parameter group then
the constant8 andC will vanish in the foregoing analytic developments plane (91)
will then coincide with theYZ coordinate plane and the point (92), with the coordinate
origin.

In this case, the ruled surface will degeneratetintocoincident planeg@ system of
two coincident pointsn these planes, respectively).

147. In the last cases considered, one must carefullingissh between the one for
which:
=0, p=0, n=0, (93)
or
r=0, p=0, 7=0, (93)
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with no further conditions. In the first case, tltelinates of every straight line that
goes through the origin will satisfy the three-parametamplex equation, while in the
second case, the coordinates of every straight lindi¢lsan theYZ plane will satisfy it.
Just as two coincident directrices will first determeneongruence (n@®@8) when one

adds the condition that its lines belong to a given dexnghat has a line that coincides
with the directrices, so will three generators tigat through the same point first
determine a ruled surface when one adds the conditaintghlines belong to a given
complex. When these two conditions are absent, vileobiain, in the first case, a
complex of the special kind whose lines cut the twoadent directrices instead of the
congruence. In the second case, two of the three earagliations:

p=0, nsro-sp=0 (95)

require thar o must be equal to zero, and this condition can corresfaotieé vanishing
of g, as well as the vanishing of Thus, the two foregoing equations will be equivalent,
in the one case, to the three equations (93), and iothee, to the three equations (94).
The congruences of the special kind that are represéyté¢he two equations (95) and
have theDZ andOY coordinate axes for their directrices will encompasshe one case,
all lines that lie in therZ - viz., the plane of the two directricesand in the other case,
all lines that go througb - viz., the intersection of the two directrices. ieoadds the
condition o = 0 to equation (93) then all of the lines that lie in ph@ne of the two
directrices and do not go through their intersectiohlelexcluded from the congruence.
If one adds the condition= 0 to equation (94) then all lines will be excluded from th
congruence that go through the intersection of the twertdices and do not lie in the
same plane as them. We can then say that thedquatiens (93) and (94) together will
represent the congruences of the special kind. The dh#&dse one component of the
congruence will envelop a point that we will consideb¢oa ruled surface of class one
that can be represented by an equation in plane coordindies lines of the other
component of the congruence will lie in a plane thatwilé consider to be a ruled
surface of order one and that can be represented by aipedgngoint coordinates X,

148. In the present paragraphsin which we introduced the straight line, in its
double geometric meaning as a ray and an axis,spa@ elemeninstead of the point
and the plane we determined a surface of order and class two by threarlequations
in such a way that each of its two generators were septed by three such equations.
While the surface, and thus its tangential planes andabetact points are real, the two
lines of intersection of the tangential planes with sheface — viz., the two generators
that go through the contact point — can be real, dé ageimaginary. From that
viewpoint, thus extended, we can regard all surfaces ofr @@ class two as ruled
surfaces. All of the properties of such surfaces, inodhe path that is taken in the
foregoing, can be derived in the same way from the dgmusof the three linear

() In order to prevent possible mistakes in the analytisalussion of the particular cases in question,
it is generally advisable to base it upon homogeneougiegsan the six line coordinates. For example, if
we switch theDZ andOX coordinate axes with each other in the foregoing awcalytliscussion then we
can easily be led to hasty conclusions.
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equations in ray and axial coordinates as they have beendieqvéo now from the
discussion of a quadratic equation in point or plane cooefinat




Chapter Two

Second-degr ee complexes.

Part |.

Two-fold analytic representation of a complex of degree two. Complex curves of
class two that are enveloped by lines of the complex. Complex cones of order two
that are described by linesin it. Complex surfaces of order and class four, one of
which is described by complex curves, and the other of which is enveloped by
complex cones.

§1.

The general equation of the second-degree line complex in ray and axial
coordinates.

149. Of the four ray coordinates:
rs pa,

r ands mean the trigonometric tangents of the angles tleatwb projections of the rays
onto theXZ andYZ coordinate planes define with t& coordinate axis, whil@ and o
mean the line segments that these two projectionsutudf theOX andOY coordinate
axes. The fifth ray coordinate:

n=ro-g

is derived from them.
Let the general second-degree equation in the five cotedite the following one

():
Ar’+Bs’+ C+ Du*+ Ep*+ p?
+2Gs+ 2Hr+ 2Jrs+ 2Kon — 2lon — 2Mpo
—2Nro + 20sp

+2Prp+ 20+ 2R9)-2Sg- 20+ 2b=0

(1

() The same considerations that allowed us to take neggitins for the coefficients afandx in the
general equation of the first-degree complex in five ragxaal coordinates, respectively (confer the note in
number26), allow us to do the same thing in the corresponding mxpsafor the second-degree complex.
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This equation contains nineteen mutually independent constiinssunnecessary to
add a last term of +\2; that would have the effect of reducing the absolute saddii¢he
constantsN and O by V. Indeed, the introduction of such a superfluous term would
succeed in making things symmetric, in general. It is not @oleiso preserve such a
term for special examinations, and all the less sinceameadd it into special cases with
no further analysis.

150. From this general equation, we can immediately go dheadollowing one, in
which X', y,Z andyx, y, z appear as the coordinates of any two points of a lindeof t
complex ()(7):

Ax=X)*+ B y- Y)°+ G z ¥°
+D(yZ-y2*+ E kz Xr'+ E Xy 'Xy
+2G(y-yY)Nz= 9+2H(x ¥(z 2+2 dx ‘X vy 'y
+2K (XY = XW(XZ= x2+2 L Xy XY Yz 'Yyz2 M xz 'Xz 'yZ' )

+2N(x=X)(yz= y3+2 Q@ y Y( 2-x2)
+2P(Xx= X)(Xz= x2+2 Q@ x Y Xy 'Xy
+2R(y- Y)(xy=- Xy+2 & y Y yz 'Yz

+2T(z- 2)(yz—- yp+r2 Y z ') 'xz = 0.

(1)

If we regardx, y', Z as the coordinates of any fixed point and then take tloebet
constant, while we let, y, z vary, then this general complex equation will be nea¢ion

of a second-order conic surface. This conic surface will have the fixed fumi its

center, and its lines will be the lines of the complex that go thrthegbenter.

151. Of the four axial coordinates:
P, 4. 77 K,

the last tworrand x, when taken to be reciprocal and negative, mearxthatly are the

two points at which the straight line cuts tk& and YZ planes, respectively. If one
connects these two points with the coordinate origih wiraight lines then these lines
will define two angles with th®©Z axis in theXZ and YZ coordinate planes whose

(*) Introductory considerations in n2.
(") The two terms:
2N(x =X)(yZ —y'2) + 20(y -Y)(Xz - xZ)
would combine with the superfluous term:
2Vn=2V(z -Z)(xy —XYy).

However, the three terms could then combine into theviatlg two:

2N =X =X)(yZ —=y2) + 20 = Wy - ¥)(X2-x2).
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trigonometric tangents, which are taken to be reciprowdlregative, will bg anda.
The fifth coordinate:

W= pK—qrr
is derived from them.

The equation of the same second-degree complex thatepresented in ray
coordinates by equation (I) will become the following onéh the use of axis
coordinates {:

Dp®+Eqf+ F+ A°+ BT°+ Q?
+2Kq+ 2Lp+ 2Mpg+ 2Gm—- 2Hkw— 2FK
-2Np +20g7
+2Sp7+ 2Tw+ 2Uqu-2Pg- 2@+ 2R= 0

(1

152. We can immediately go from this general equatioorn® in whicht’, u’, v and

t, u, v appear as the coordinates of any two planes that intensdte line in question
(**):
D(t-t")*+E(u—u)*+ F(v- V)?
+AWV-UY + Bt t)°+ @t 't)f
+2K u=u)(v=V)+ 2L(t= t)(v= v)+ 2 M(t= t)(u- U)
() +2G(tu —tu)(tv-tv)+ 2 H(tu— tY(ul~ Ly+2 J'tv ty( Uv "uy

+2N(t-t)(u/-dyYy+2Q u- U)(v-tv)

+2S(t=t)({v=tv)+ 2T(t= b)(tu— ty
+2U (u-u)(u-tu+2P(u— U)(u~ Ly
+2Q(v—=V)(uv-uy+2 R v VY('tv ty=0.

When we lett’, U, v refer to an arbitrary, fixed plane and correspondirggigisider
them to be constant, equation (IV), which is the genegalation of a second-degree
complex, will represena curve of class two that will be enveloped by the lines of the
complex that lie in the fixed plane.

153. The exchange of:
r,s1,-opn
and
-KTTWpq 1,

as well as the corresponding exchange of:

x=x), (y -¥), 2-2), (yZ -¥2), Xz -x2), (xy —Xy)

() Introductory considerations from r.
(") Intro. cons., no3.



§ 1. The general equation of the second-degree line coinplay and axial coordintes. 139

and
(uv —dv), (tv—-tv), (tu —tu), t—1t), (u—-u), (v-v),

which we must make in order for equations (1) and (1) and sops(ll) and (1V) to be
consistent with each other, come from the exchafige

r,s o pn
with
P, QK T

resp., on the one hand, and the exchange of:

Xl y, Zl X’l Yl Z’
with
t,uvt,u, Vv,

resp., on the other, as well as the reciprocal exchange o

A, B, C, G, H,J, P,QR
with

D,E F, K, L, M, ST, U
resp., in both cases.

154. Equation (1) will first become symmetric when we m#keomogeneous by the
introduction of a sixth variable into it, as was suggestieeady (intro. cons., n6). If h
is the(new variable, and we preserve the superfluous coNstanoreover, then (1) will
go to ():

() The introduction oh amounts to the replacement of the first of the threggtions of the straight
line (r, o s, 0):
X=rz+p, y=sz+ g, ry =sx+n
with the following two:
hx=rz+ p, hy=sz o

We can thus represent the straight line in a synmeticin terms of the two equations of any two of its
projections, such as the last two, in the followingywa

SX=ry —1n, sz=hy-g,
and the following:

ry =sx+ 7, rz=hx-p,
in which the condition equation will be fulfilled:

ro—sp=hn.

It is hardly necessary to remark here that when we\@rit- 2) for h, equation (V) will go to equation (1).
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Ar’+Bs’+ Cit+ o?+ B+ W?
+2Gsh+ 2 Hrh+ 2 Jrs+ 2 Kon — 2lon - 2Moo
—2Nro + 20sp + 2Vip
+2Prp+20m+ 2R3+ 2Seg— 2T+ 2Up= 0

(V)

155. A permutation of the three coordinate axis with eadterotorresponds to a
permutation of the constants in the general equatidheo$econd-degree complex. We
would thus like to use equation (ll) as a basis, but fos#ke of symmetry, we will add
the term:

2V(z - 2)(xy = Xy),

when we exchangd andO with N“andO’, resp., and set:
N=N"-V, O0=0'-V"

If we then first exchange the two coordinate a®esandOY with each other therx (- X)
and { — y) will switch reciprocally, while £ — Z) will remain unchanged, as well as
exchanging Xz — xZ) and — yZ - y'z), while ky — x'y) will change sign. In that way,
the exchange will by no means affect the coefficients:

C,F,JM,
while

A D, G, K
will switch with

B,E, H,L,

respectively, with no change of sign, and:

N'P,RT
will switch with
O,l S) Ql Ul

resp., with a simultaneous change of sign,\ahdill change its sign.
Thus, in equation (V):
r andp
will switch reciprocally with
sandg,
respectively, whiley will change it sign.

If we secondly permute tH@X andOZ with each other then the expressioxs-(X)
and ¢ — 2) will switch in (1), while (y — y') will remain unchanged, and likewisgZ(—
y'2) will switch with — &y — Xy), while X'z - xZ) will change its sign. Correspondingly,
one exchanges:
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r andp
with
hand —n

resp., in (V), whiles changes its sign. The exchange will therefore aftgct the
coefficients:

B,E, H,L,
while the coefficients:

A D,G,K
will switch with:

C,FJM,
resp., with no change of sign, but:

N"P,R T
will switch with:

V.U, S Q,

resp., with simultaneous sign changes, @ndill change its sign.

If we thirdly permute the two ax€3Y andOZ with each other then the expressions (
—Y) and ¢ — 2) will switch with each other in (I1), as well asy{ — X'y) and — Kz — x2),
while (x — X) will remain unchanged, angl{ — y'2) will change its sign. One exchanges:

sando
with
h andn,

resp., in (V), whileo changes its sign. The exchange will not affect:

A D,G,K,
while the coefficients:

B,E,H, L
will switch with:

C,FJM,
resp., with no change of sign, but:

OP,RT
will switch with:

ViQ U, §

resp., with a simultaneous change of sign, Mfdill change its sign.

It remains for us discuss the modifications that corbeut when we let the
superfluous term drop away.

If we setV’equal to zero in the first permutation then the coefilisie

N andO

will switch simultaneously with the exchange of thX andOY coordinate axes with a
change of sign.
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If we setO’equal to zero in the second permutation then that vake¥’ = - O, N’
=N - Q With the exchange of th@X and OZ coordinate axesy” and N’ will switch
with a change of sign, or — what amounts to the saing:t

OandN -0
will switch with no change of sign.
Finally, in the third case, the coefficients:

N andN - O

will switch with a change of sign simultaneously witle OY andOZ coordinate axes.

One should not overlook the fact that in all equatkhesrotational moments @X
with respect taOY, of OY with respect ta0Z, and ofOZ with respect tdOX are to be
taken after the permutation.

156. Since equation (Ill) contains the same constariigt in a different sequenee
as equation (1), if it is to represent the same secleglee complex when referred to the
same coordinate axes then the permutation rules tha demeloped in the previous
number will also preserve their complete and immediatidity for the equation of the
complex in axis coordinates.

157. If we place the coordinate origin at any poixy, {0, Z) then the following
expressions will appear in placemfo, 1 (intro. cons. nol4):

P+120—Xo,
o+sSB-Yo,
n+s%—ryo,

while r ands remain unchanged, with which, equation (1) will go 9o (

(A+EZ+ F¥-2Ky z+2 Pz-2 Q)
+(B+DZ + F¥-2Lxz+2Rx-2 S) °s
+(C+ Dy + EX -2 Mx y+2Ty- 2 Ux)

+DJ& +EQ +Frf

() If we introduce the three terms:
- 2Nro+ 2050+ 2Vhpp,
in place of the two terms:
- 2Nro+ 2050,

then we can write the values of these terms that werohfter conversion as:

—2(N =Ly +Mz) ro+ 2(0 + Kxg —Mz) sp + 2(V - Kxo + Lyo) /7.
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+2(G-Dy,z - K{+ Ly y+ Mxz— Ox+ Sy Tg s
(VI) +2(H —Ex ¥, + Kx y,— L+ My, z+ Ny— P+ U r
+2(0-Fx Y+ Kxz+ Lyz- Mg-(N Oz Qx Ry
+ 2Kpn - AL on - Mpo
—2(N +Kxo— Ayo + Mzg) ro+ 2(0 + Kxo — Lyo —M2o) sp
+2(P +Ez—Kyo) ro+ 2Q —Fyo +Kzo) 1y
+ 2R+ Fxo—Lz) sn—2(S —Dz + Lxg) so
+ 2(T + Dyo —Mxo) o+ 2U —Ex + Myp) p= 0.

158. In order to refer the equation of the complex in lag@ordinates to the new
origin, we merely need to carry out the same pernmrtsitby which we derived the
complex equation (lll) from (I) in numbdi53 in the present equations. In this way, we
immediately get:

Dp® +Eqf +F
+(A+EZ+ F{-2Ky z+2 Pz-2 Qyk’
+(B+DZ + F{-2Lxz+2 R§-2 Sp7
+(C+Dy>+ EX -2 Mx, y+ 2 Ty—- 2 Ux)w’
+ 2Kg+ 2 p + 2Mpq
+2(G-Dy,z— K{+ Ly y+ My z- O¢ Sy Tpw
-2(H-Ex,z+ K y— LY+ My g+ Ny- Py UZkw
20 -Fx %+t Kxz+ Lyz- Mz-( N D& Q¢ Ryx
-2(N+Kx, - 2Ly, + Mz) ;c+ 2(O+ 2K%- Ly— Mg) g
+2(S—-Dzy +Lxo) prr + 2(T + Dyo —Mxo) pw
+2U —Exo + Myp) qw+ 2P + Ez —Kyp) g«
+2Q—-Fyo+Kz) k +2R+Fxyg—Lz) 7= 0.

(V1)

159. We would like to further replace the coordinate sydt@mhich the complex (1)
was originally referred with another one whose ax¢srsect at the original origin, but
whose directions have changed arbitrarily. In the duotory considerations, this
coordinate conversion was performed in three succespemtions, in which each time
one of the three coordinate axes was preserved, whiletilee two were rotated in their
plane arbitrarily. We thus satisfy ourselves with iwgt the result of these three
analogous operations. Starting from a rectangular cooedsystem, we would like to
preserve th€®Z coordinate axis and rotate the ot andOZ coordinate-axes in such a
way that in their new positions they define the angteend & with OX in the original
position, so that the angle that tBX and OY axes define with each other in the new
position becomesa’— a) = J. When we switch (intro. cons., nt):

r with rcosa+scosa’ s with rsinag+ssing;
p with pcosa+ ocosa, o with psina+osina’
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n  with 77sin 3,
equation (I) will go to the following one:

(A cog a+Bsirf a+ 2l sinacosa) r> + Bsirf a’+Acos a’+ 2)sina’cosa’) &
+C
+ (D sirfa’+ E coga’- 2M sina’cosa’) & + (E coa + D sirf @ — 2M sina cosa) &
+F sirf 307
+2(Gsina’+Hcosa’)s+ 2H cosa +Gsina) r
+2J (sina cosa’+ sina’cosa) +Acosacosa’+Bsinasina’)rs
(v + 2(K cosa-L sina) sind Oon —2(L sina’-Kcosa’) singon
-2(M (sinacosa’+sina’cosa) -Dsinasina’—E cosacosa’) po
—2(Nsina’cosa —-Osinacosa’ —Pcosacosa’+Ssinasinag’)ro
—-2(0sina’cosa —Nsinacosa’ +Psinasina’—Scosa cosa’) sp
+2 (Pcos a—(N-0)sinacosa—Ssirf a)rp+ 2 Qcosa+Rsina) sindI 7
+2 Rsina’+Qcosa’) sind k-2 Ssirfa’+ (N=0) sina’cosa’ - P cosa’) so
-2 (Tsina’-Ucosa’) o+ 2 U cosa-Tsina) p=0.
If we set:

T o , .
1925, sin@’ = cosa, cosa’=-sina

then the coordinate system will remain rectangular vahde merely rotated through an
angle ofa around theZ axis.

Under the same change of coordinate system, equdtipwi{l go to the following
one:

(D sirfa’+ E cosa’— 2M sina’cosa’) p* + (E cos a + D sirf a - 2M sina cosa)
+F sirf 9
+ (Aco a +Bsirf a+ 2)sinacosa) ¥ + (Bsirt a’+Acos a’+ 2l sina’cosa’) 1f
+C o
+2 Kcosa-Lsina)sing [ +2 (L sina’-Kcosa’) sind[Pp
-2 M (sinacosa’+ sina’cosa) —D sinasina’—E cosa cosa’) pq
(IX) +2(Gsinag’+tHcosa’) mw -2 Hcosa+ Gsina) kw
-2 (sinacosa’+sina’cosa) +Acosacosa’+Bsinasina’) ik
—2(Nsina’cosa —Osinacosa’ — P cosa cosa’+ Ssinasing’) px
—-2(0sina’cosa —Nsinacosa’ +Psinasina’ —Scosa cosa’) gir
+2 Ssifa’+ (N=0) sina’cosa’—P cog a’) prr+ 2 (T sina - U cosa’) pw
+2 U cosa-Tsina) qw— 2 P cosa- (N-0) sina cosa - Ssirfa) pk
-2 (@Qcosa+Rsinag) sindk+2 Rsina’+Qcosa’) sind = 0.
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§2.

Equatorial surfacesthat are described by a complex curve whose plane moves
parallel to itself.

160. Due to the great complexity of a second-degree complexnust try to find
some means of easing our overview, and thus our understaotithgt subject. The two
theorems that we already gave in the previous paragesplise immediate geometric
expression of equations (II) and (1V), which represeatdticond-degree complex in the
two-fold coordinate determination, will serve as a me@nthat end for us. Namely,
when we, on the one hand, combine the infinitely manys lofethe complex that lie in
the same plane into a single group, we can introduceuheg of class two that is
envelopeddy them in place of it. On the other hand, when weéeuthie infinitely many
lines of the complex that go through that point inir@up, we can, in an analogous way,
introduce thasecond-order conic surfathat the complex defines in place of it.

Since all lines in space lie with a given point in sonaa@] in order to encompass all
lines of the complex, we will then need, on the oaed) to consider only those complex
curves whose planes go through the given point. Orotiter hand, since all lines in
space cut a given plane, we will obtain all linest& tomplex when we consider only
those cones whose centers lie in the given planeus,Tihfinitely many ¢?) complex
curves (infinitely many#?) complex cones, resp.) will appear in place of indilyitmany
(«0*) complex lines.

161. We can go a step further. If a plane moves thervanying curve of class two
that is enveloped in it by lines of the complex will deserdbsurface. If a point moves
then a surface will be enveloped by the varying complexesdhat has that point for
their vertices. In the determination of the compiakinitely many o) complex curves
(infinitely many @) complex cones, resp.) will replace these surfacéke simplest
surfaces of this kind will correspond, on the one handheocase in which the plane of
the curve thus described rotates around a fixed axis or mpavakel to itself, and on the
other hand, to the case in which the center of thel@mwg cone describes a fixed
straight line, or, when the fixed line goes to infinity, the case in which the cone
degenerates into enveloping cylinders whose axes are paralgiven plane.

We would like to call all such surfaces thus determowdplex surfaces.

When we introduce these complex surfaces, we canceefiie infinitely manyo®)
complex lines with infinitely manyef) complex surfaces whose fixed axes lie in a given
plane and intersect in a given point of this plane.

We would like to subject each of the given generatoth@ftomplex surface to an
analytical discussion, in succession.

162. We would like to start with the general equation:
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D(t — t)% + E(u — U)? + F(v — V)?
+ A(UV —U'v)? + B(t'v — tV)? + C(tu' + t'u)?
+ 2KUu-u)(v-v)+2A(t -t)(v-V)+2M(1 -t)(u—-Uu)

+ 2G(tu' —t'u)(t'u—tv) + 2H(tu" —t'u)(uv —u'v) + 2J(t'v —tv)(uv —u'v)
+2N(t—t) (u/ —uv) +20 (u-—u)(t'v—tv) (V)
+25(t-t) (fv-tv) +2T({t-t) (tu —tu)
+2U (u—Jd) (tu —-tv) +2P (u—d) (uv —uv)
+2Q(Vv—-V)(uv —uv) +2R(v—-V) (t'v-1v),

which represents the second-degree complex in axial catedinIf we considdt, u', vV

to be constant in this equation then it will represecurae of class two in space that will
contact all planes whose coordinatgs v satisfy the equation. This curve will lie in the
plane {', U, v)) and will be enveloped by lines of the complex in it.

The projection of this curve onto one of the threerdimates plane¥Z XZ XY is
deduced immediately when we s$eti, v equal to zero, respectively. In that way, if we
only consider the projection on¥Z and likewise make the equation homogeneous by the
introduction ofw andw then we will obtain:

(D2 +EU? +Fv2+ KU V + 2Lt V + 2M t U)W
—2FVW +KUW +LtW-N-Otu -PU?-QuUV +RtV +St?)vw
+ (AUZ+BI2+FW2 -2t U - QU W + 2Rt W)V
—2EUW+KVW+MtW+NtV+PUV+QV?-Tt?-Utu)uw (1)
—2AUV+Gt?—HtU-JtV-KW?-OtW+PUW-QVW)uv
+(AVZ+Ct2+EW?—HtV+2PVW-2Ut W) U*=0.

163. If we taket', U, V' to be constant in the foregoing equation andvetary then
the plane t(, u’, v, w) that contains the complex curve will move paralkeitself. In
particular, if we make the assumption that this plangaigllel to theyZplane then we
will get:

!

=-X,

u =0, V' =0, tﬂ

in whichx' means the distance from the instantaneous plane abthplex curve to the
YZplane. If we likewise divide by? then equation (1) will be converted into the
following one:

DW +2(LX - Svw ( F¥ -2 R B¥

2
+2(MX +T)uw+ 2(KX* - Ok— Q uw ( EX+2 Ux G- 0. @)
Once the distance to a plane that is parallel %Z has been determined, this equation
will give the projection of the complex curve thatlie that plane ont&Zin ordinary
line coordinatesl, v, w, or also this curve itself in its own plane when vuspléce therZ
coordinate plane parallel to itself in such a way thaincides with the plane of the
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instantaneous complex curve. If we then also congiderbe variable and then drop the
prime then that equation:

DW +2(Lx- S vw 2( FXx-2 Rx B %

+2(Mx+T)uw+ 2(KX¥ - Ox Quw ( Ex+2 Ux ¢ 0 3)
will representthe totality of all complex curves whose planes are parallel to Yiixad
point and line coordinates x, u, v, w.

Complex curves in planes that are parallel to each ddfere a complex surface that
we would like to call arequatorial surfacewhile the individual complex curves might
be calledatitude curves.

Equation (3) includethirteen mutually-independent constants. Since the coordinate
determination has no further relationship to the equatsuidhce than the fact that the
direction of theYZ coordinate plane is a distinguished one, the equatuiéhce will
depend upofifteenconstants, in all.

164. We obtain the determination of the center of thulde curve in a plane that is
determined byx in a well-known way by its equation in line coordinatesThe
coordinates of this point are:

Lx' - S MxX +T
z= , = , 4
5 y 5 4)

and when we drop the prime that will yield:

Dz- Lx+ S=0,
z- Lx+ } 5)

Dy—-Mx-T=0.

When we consider theto be variable, these two equations will represent ghtrine,
and this straight line will be the geometric locushe tenters of the complex curves that
define the equatorial surface. We would like to call shiaight line thediameter of the
equatorial surfaceand the planes of the latitude curves #ssociated planes of this
diameter.

Any system of parallel planes corresponds to an equatorial surface icothplex
with a diameter that is associated with the planes that are paralled tonin plane.

165. Equation (3) gives any latitude curve in its plane in limerdinatesy, v, w after
this plane has been determined by the value oHowever, we can also represent this
same curve in its plane by the ordinary point coordinatsdz. We will then find its
equation in a known way)(

() If the sameconic section in th¥Z plane is represented, in one case by means of pmndinatesy,
z, and in the other case by means of line coordinateswv, by the two equations:

ay2 + yz+ 2dy + 2ez+f=0,



148 Chapter Two, Part I: Second-degree complexes.

[(Lx-92- D(FX-2R% § ¥
+2[(D(KX* -Ox- QG —-(Lx- §( Mx T] ¥
+[(Mx+T)> - D(EX -2Ux+ Q] 7
+2[(Mx+T)(FX¥-2Rx+ B—(Lx ¥ Kik- Ox B
+2[(Lx-S)(EX-2Ux Q-( M¥ T( Kx—- Ox § :
+2[(Kx2 —Ox— G%—( FR -2 Rx B( Ex-2 Ux (J=0.

(6)

If we consider not jusy andz but alsox, to be variable in this equation then it will
represent the equatorial surfanerdinary point coordinates.
Equatorial surfaces are therefore fourth-order surfaceBhey will be cut by the

planes that are conjugate to their diameter in secosel-@urvessince a double ray of
the surface will lie at infinity in these planes.

166. We obtain the following three equations:

DW +2(Lx- S v ( FR-2 Rx B ¥
+2(Mx+T)uw+ 2(KX — Ox Q uw ( BEx+2 Ux ¢ 1F 0,

Ew’ +2(My- U)tw+ (DY - 2Ty+ Q ¢

7
+2(Ky+ P)vw+ 2(Ly + Ny= H) tw ( F§+2 Qy A3%= 0, (7)

FW +2(Kz- Quwt+ ( EZ-2 P Al
+2(Lz+ Rtw+2(MZ-(N- Q 2 J tw( Dz 2 SzB)t* =0

for the equations of the equatorial surface whoseutiitcurves are parallel ¥z XZ,

XY, respectively, in mixed point and line coordinates. Tits 6f the foregoing three
equations is equation (3) of numkis3, and the other two are derived from it by the
permutation rules of numbds5. When we substitute all possible values for the three
variablesx, y, z, the equations will represent the individual latitude cumekeir planes.

AW + Bvw+ CV + 2Duw+ 2Euv+ Fu? = 0,

then we can determine the constants of the one equatienms of the constants of the other one in the
following way:

a= B2-AC, A=b’—ac
b=AE-BD, B =ae-bd,
c= D?-AF, C=d*-af,
d=CD-BE, D =cd-be
e=BF -DE, E = bf-de
f= E?-CF, F=¢€’—cf

| have abstracted these expressions from second grdug ‘afevelopments” in nog84 and552.
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In particular, if we sek, y, z equal to zero then we will obtain the equations ofhinee
complex curves in the three coordinate planes:

DwW? —2Svw+ B9 +2 Tuw 2 Guvy Cu= 0,
EwW — 2Utw+ CE+ 2 Pvw- 2 Htw A% = 0, (8)
FW? —20uw+ AU+ 2 Rtw 2 Jtt Bt= 0.

§3.

Meridian surfacesthat are described by a complex curve whose plane rotates
around a fixed straight line.

167. Equatorial surfaces, which were the subject atn@ration in the previous
paragraphs, are the geometric loci of curves thiit be enveloped by lines of the
complex in parallel planes, or, in other words, ondnose planes intersect in infinitely-
distant straight lines. They are to be regarded ggecialization of complex curves that
are the geometric loci of complex curves whose gdago through a fixed axis. We
would like to refer to such complex surfacesrasidian surfaceswhile we likewise call
the complex curves that define a meridian surfaegidian curvesand the plane in

which they liemeridian planes.
The determination of the meridian surfaces is eated with the equation:

(Dt"*+EU?+ FV?+2KUV+2 Ltv+ 2 Mt ) W
—2(FVW+ KUw+ Ltw—(N- Qtt- PG- Quw Rty '8
+(AU?+ Bt?+ FW?-2Jtu-2Quw 2 Rty ¥
-2(Euw+ KVvw+ Mtw+ Ntv+ Puw Qv- Ti— Utu uw
-2(AuV+ Gt? — H'U' - JtV - Kw? - Ot W+ PUW- Qviy uv
+(AV? + Ct?+ EW* -2 Ht v+ 2 PUW- 2 UtW) &= 0,

)

by which we determined the equatorial surface enpgfevious paragraphs.

168. For an arbitrary choice of coordinate systemgcame— with no loss of generality
— take the fixed axis around which the planes ofcthraplex curve rotate to be one of the
three coordinate axes. If we choose it to beQHBeaxis then we must sget andw equal
to zero in the foregoing equations. It will themtg the following one:

(Dt"*+EU?+2M{U) W+ 2(N- O tu+ PF- St) vw( Ad+ Bt-2 Jtu?

, , , _ )
+2(Tt' +UU) t Cuw—2(Gt— Hu) tuw Ct a=0.
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The position of the meridian plane is determined’ By’; if y andx are two of the three
coordinates of an arbitrary point of the plane thencere determine them in the same
way by:

tl

ik

u

X <

The last equation will then be the following one, whenlikewise order it in powers af
andy:

(EX -2Mxy+ DY) W+ 2(PX—(N- QO xy Sy ww( Ax2 Jxy By? (10)
-2Ux-Ty) yfuw-2( H¥ Gy Yluy Cya= 0.

When we permute th®Z andOY with each other according to the permutation rules of

the first paragraph, this equation will go to:

(FX* —2Lxy+ DY) W—-2(QX— Nxy T2 uw( A¢2 Hxz Cp° (11)
+2(Rx—-S2 Zivw2( Jx Gz ww BZ2°wv0,

and this equation, in turn, will go to the following oneemtwe switch the two ax&3Y

andOX with each other:

(Fy* -2Kyz+ EZ) i+2( Ry—- Oyz Uz tw( By 2 Gyz §7°

-2(Qy-P2 ZOvw-2( Jy Hy @ tw AzZl®w 0. (12)
Equation (11) represents the projection ovifoof those complex curves whose planes go
throughQY, while equation (12) represents the projection off®f the complex curves
whose planes go throughX. We would like to regard the latter th& general equation
of the meridian surfaces in mixed point and line coordinates.

Like the general equation of the equatorial surfaceit(8pntainsthirteen mutually-
independent constants. However, whereas in the casequatorial surfaces, the
coordinate system depended upon the surface only insofdreadirection of theYZ
coordinate plane was given by it, here, the meridiafasemwill be determined by tf@Xx
axis. A meridian surface will then depends upowr new constanfsn addition to the
thirteen constants above, seventeergonstants, in all.

169. We would like to base the following discussion uponldtter equation.
If we denote the angle that an arbitrary meridiam@ldefines witiXZ by ¢ then:

tan¢:1.
X

We then obtain the equation of the projection of #levant meridian surface onXZ
when replace the coordinates:
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y andz
in the last equation with the trigonometric functions:
sing and cosp,

resp. It will then go to the following one:

(Fsin®¢ - 2K sing cog+E cosp W
+2(Rsin’ ¢ — Osing co®-U cop iw

. . (13)
+(Bsin®¢ + 2G sing cog+ C cosp
-2(Qsing— Pcosp )cog hw- 20 sigi+ H cas )cositvr A Casllv =
and, when we divide by cbg, that will give:
(Ftar ¢ - XK tap+E W
+2(Rtarf ¢ — O tary — U Jtw (14)

+(Btar ¢+ 2G tarp+ C )
-2(Qtang - P)vw- 2(J tapp + H )twr AV = C

Finally, if we rotate theXZ coordinate plane arour@dX through an angle g, such
that after the rotatiorKZ will coincide with the relevant meridian plane in thew
position, then the new coordinate determinatidrw will remain unchanged, while one
will get v/ w for v/ w [Ocos @, which is constructed in ordinary line coordinatesOah.

In order to then obtain the equation of the meridiarvein its own planewe have to
write v, in place ofv [osg, in equation (13), with which, it will go to the followingne:

(Fsin® ¢ — 2K sing cog+E cdsp W

+2(Rsi* ¢ — Osing cog— U cosp w

+(Bsin* ¢+ 2G sing cog + C cdsp ff
-2(Qsing - Pcosp yw- 2(Q sigp+ H cog tw+ A¢=

(15)

When we considep to be variable, the last equation will represent ttality of all
meridian curves; in other words, the meridian surfasedfit

In the case of equations (13) and (14), this will happench a way that oncg has
taken on a definite value by the choice of the manmidiane, these equations will
represent the projection of the meridian curve offoin line coordinates, v, w, with
which the curve itself will be given. The same cumitk be represented in its own plane
by means of the latter equation (15) by the choice.oflf the meridian plane rotates
aroundOX then the meridian curve in it that generates thediarisurface will change,
independently ofp. In each of its positions, it is referred to the umgfeal remaining



152 Chapter Two, Part I: Second-degree complexes.

axis OX and a variable axi®Z, which rotates aroun®X with it and in the meridian
plane that contains it.

We thus arrive at an analytical representation amadstcuction of the meridian
surfaces that is completely analogous to the reprdgemtand construction of the
equatorial surfaces.

170. The equation of the pole of ti@X axis relative to the curve of class two that
was represented by equation (14) that corresponds to thatarstous values gfis the
following one:

(Qtang—-P)w+ (Jtang + H) t—Av=0.

The curve (14) is the projection oX& of the relevant meridian curve, and thus the pole
in question is likewise the projection of the pole a @X axis relative to the meridian
curve itself. Two of the three coordinates of thahpuwiill then be:

= Jtang + H S = -A
Qtang-P’ Qtang - P’
and the third one will be:
—Atang

=zOang=———.
y / Qtang - P
In order to determine the geometric locus of thée paf OY relative to the various
meridian curves, we have to elimingtdrom the foregoing three equations. To that end,
we set tarp equal to its valug / z in the second equation, which will give:

Qy-Pz+A=0. (16)
The first equation gives:
= Jy+Hz _ Jy+Hz
Qy- Pz A

from which, it will follow that:
Ax+Jy+Hz=0. (17)

We have thus arrived at the following result:

When a plane rotates around a fixed axis that iiest, the geometric locus of the
poles of that fixed axis relative to all complexwvas that the plane contains during its
rotation will be a straight line.

We would like to call this straight line tip®lar of the meridian surface.

171. The foregoing equation (15) is, in turn, regardedhe equation of the complex
surface in mixed coordinates. tgnis then to be considered as one of the threerlinea
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coordinates/ / z, x/ z, 1 /z of a point &, y, ), whilet, u, w mean the line coordinates of
the plane.

In order to represent the meridian surface that wakspkin point coordinates vy, z,
we return to equation (12), which is equivalent to (15). riféeely need to introduce the
two point coordinatex and z in place of the line coordinatds v, w by which that
equation expresses the projections of the meridian curvdsaimplane ontorZ The
known transformation (nol65, Note), when applied to the present case, will give the
following equation when we likewise divide

[(RY - Oyz U2)*-( Fy-2 Kyz E¥ By2 Gyz Of
-2[(Jy+ H)(F¥ -2 Kyz- E9)-( Qy Bt Ry Oyz ik
+[(Qy- P2*- A Fy-2 Kyz E2] % (18)
- 2[(Qy-P3(By+2Gyz C)-( Jy He Ry Oyz
+2[A(RyY - Oyz U9 -( Qy Pt Iy hix
+[(Jy+ H)* - A By +2 Gyz C3]=0.

The meridian surfaces, like the equatorial surfaces, are then of toder

172. Any straight line that goes through @& axis cuts the meridian surface in four
points, two of which will coincide on that axisThe axis is then a double ray of the
meridian surface. An arbitrary plane cuts the meridian surface in a fearter curve
that has a double point on its double ray. That point gallto infinity when the
intersecting plane is parallel to the double ray. Ifglae goes through the double ray
then it will also be a double line of the intersectionve. As a consequence, the order of
the curve will reduce to two, with which it will becoraecomplex curve.

§4.

Meridian surfacesthat are enveloped by complex cones whose centers
lieupon a straight line.

173. All lines of a second-degree complex that encountevengitraight line can be
grouped together in two ways: On the one hand, they défeneotality of all tangents to
infinitely many complex curves of class two whose plageghrough the straight line,
and on the other hand, they define the totality of akdiof infinitely many complex
cones of order two whose vertices lie along the gstemight line. We can thus consider
the same complex surface that we regarded as beinglEs@omplex curves in the
previous two paragraphs as being enveloped by complex coneadtmn.

In agreement with that, one can draw two tangenteg¢ccomplex curve that lie in
each plane that goes through a given straight linegbas through an arbitrary point.
These two lines are lines of the complex, and whempliuee rotates around the given
straight line as an axis, they will generate a conitasarthat belongs to the complex,
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which has the given point for its vertex and whichuwmescribes the complex surface in
guestion. Each point of the given straight line willrtredrrespond to a complex cone
that will be of order two, since it will be cut by eaghthe planes that go through its
vertex along two straight lines. The curve in which saatone contacts the complex
surface is not a plane curve, in general, nor do the taagplanes to the surface at the
points of a complex curve generally envelop a conic surface

174. We would like to start with the general equation:

Ax=X?+B(y-y)*+C(z-2°
+D (yZ — Y2 +E (Xz — x2? + F (xy — Xy)?
+t26(Y-Y)Z-)+HKX-X)(Zz2-9)+2(x=X) (y-V)

+ 2K (Xy = Xy) Xz —x2 + AL (xy = XYy) (yZ —Y2) + M (Xz — x9)(yZ - Y2
+2NX=X)(YZ-y2)+20(y—-Y)(Xz—Xx2) (1
+2P (X=X)(Xz—=x2 +2Q (X = X)(xy —Xy)

+ 2Ry -Y)(xy —=Xy) +2S({y-Y)(yZ - y2)
+2T(z-2(yZ-y2+2U (z-2(Xz-x2 =0,

which represents the second-degree complex in ray cotaslindf we considex', y', Z
to be constant in this equation then it will represese@nd-order cone that goes through
all of the points in space whose coordinatey, z satisfy the equation. This cone will

have the pointX, y', Z) for its vertex and will be the geometric locus of lines of the
complex that go through that point.

The intersection of this cone with one of the theceerdinate plane¥Z XZ, XY is
obtained immediately when we sety, z, resp., equal to zero in the foregoing equation.
In this way, when we consider only the intersection with we will get the following
equation:

(AX? + By?+ CZ+2 GYy'z#+ 2 Hx'# 2 JXy
—2(CZ+ Gy+ H%—(N- Q Xy Pi- Sy- Tyz UYz
+(C+Dy?*+EX*-2Mxy-2Ty+ UY Z
-2(BY + GZ+ Jk+ NXz= Qx- RxXy Sz 0z vy

—2(DyZ - G+ K¥¥ - LXy- Mk2z- Ox Sy Tz
+(B+DZ%+ FX*-2L%2-2 Rx 2 32 = 0.

(19)

This equation is analogous to the one that we derived.ih62 from the equation of
the complex in axial coordinates in order to represenptojection of the complex curve
that lies in thet(, U, V', W) onto the coordinate planéZ In order to derive the new
equation from the earlier one (1) directly, we have dalgetw andw equal to 1 in it
and then proceed in accordance with the permutationirufeemberl53.
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175. Equation (19) represents a second-order curve in thalinate planeYZ
namely, the locus of intersection points of lineshef complex that go through the given
point X, Yy, Z) with that plane. The cone is thus determined coniglete

If we considerx', y', Z to be variable in this equation, along wjtlandz, and regard
them as the coordinates of the vertex of a complex dben we can say thahe
foregoing equatior(19) represents the totality of all complex cones, and therefore also
the complex itself.

We would like to let the pointx(, y', Z) move along a straight line. The complex
cones in question will then envelop a complex surfateveltake that straight line to be
the OX coordinate axis, in particular, then the enveloped surfeiltebe the same
meridian surface that we determined in the previous paragyespthe geometric locus of
those complex curves whose planes intersect in dimag sixis.

176. When we sey’ andZ equal to zero, consistent with the assumption that was
made, the latter equation will go to the following one:

(FX2-2R%X+ B ¥-2(K&- O%- G yz( Bx+2 Ux [?

+2(QX - J) Xy-2(P%+ H) kz# Ax=0. (20)
When considex’ to be variable, along with andz, this equation will then represent the
totality of all conic surfaces of the complex whosediges lie on th€dX axis, and is then
to be regarded as the equation of the complex surfatestbaveloped by them, in the
sense that was established above. The equation givbaddor such a conic surface in
YZ in point coordinates once its vertex is determinedxby Any straight line that
connects this point with a point of the base will tbera line of the cone.

We can construct the tangential planes to the coretty, and indeed in such a way
that we draw planes through its center and the tangetiie base iYZ A coordinate of
one such tangential plane is:

1

t
w
SO0 we can write the latter equation in the followiagni:

(FW* + 2Rtw+ Bf) y¥—2( Kw+ Otw Gf) yz( Efv2 Utw C) ? (21)
+2(Qw+ Jt) wy-2( Pw H) wz A= 0.

The foregoing equation represents the meridian surfacenixed point and plane

coordinates.

177. The tangential planes of the enveloping cone are liketaisgential planes of
the enveloping complex surface. The vertex of the spaoreding enveloping cone is
determined by the choice bf w as the coordinate of such a plane. Since that plag® go
through a tangent to the base of the con&Znthe other two coordinates of such a
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tangential plane will be identical with the two coordésof that tangent in its plane. If
we then introduce the line coordinatas/ w andv / w in place of the two point
coordinatey andz, with which this equation goes to the following one whea applies
the transformation formulas (nd65, Note), after division by*:

[(Kw* + Otw— Gt)?—-( Fw+2 Rtw+ Bf)( EWw-2 Utw CJ]
—-2[(Pw— HY)(FW +2Rtw+ Bf)—( Qw J{ K&+ Otw Gd]
+[(Qw+ J)* - A FW+2 Rtw+ BY)] ¢
+2[(Qw+ J)( EW -2 Utw+ Ct)—-( Pw HY( KW+ Otw G9]
- 2[A(KW + Otw— Gf) - (Qw+ Jy( Pw Hiuv
+[(Pw— Ht)*> - A EwW -2 Utw+ Cf)] 4 =0

(22)

then this equation will represetite same meridian surface in plane coordindted we
represented ipoint coordinatesn the previous paragraphs by equation (18).

The meridian surfaces are surfaces of order four, as well as sarédiatass four.

178. In order to obtain the polar plane to X axis with respect to an arbitrary
conic surface whose vertex lies in that axis, we sinmglgd to draw a plane through its
instantaneous vertex and the polar to the coordinaggnomelative to the intersection
curve inYZ If we take equation (20) to be the equation of thirggction curve, onoé
has been chosen, then, as is known, we will obterequation:

QX -Jy-PX+H)z+AX =0

for the polar in question after omitting the commondadatf x'. With that, the equation
of the polar plane will become:

—~AX+ (QX - J)y—(PX +H) z+AX = 0. (23)

In particular, this equation will be satisfied, independerdf x, when one has
simultaneously:

Ax+Jy+Hz=0,

Qy-Pz+ A=0.

The polar planes of theX coordinate axis relative to the complex cone whosexdies

uponOX intersect in the sansraight linethat was represented by the last two equations.
These two equations are, however, the same onesvéhabtained earlier (nd.70)

for the polar of the meridian surface.

The polar of a meridian surface then has the double relationship to jtadhdhe one
hand, it is the geometric locus of the poles of the double ray of tfeesuelative to all
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meridian curves, and on the other hand, it is enveloped by the polar ptattes same
straight line relative to all enveloping complex cones.

179. One can draw four tangential planes to the complelace through any straight
line that cuts th&©X axis, two of which will go through the axis. This axidlwhen bea
double axis of the meridian surfac@ne can draw a cone of class four that has a double
plane that goes througbX from an arbitrary point on the surface. In particuifithe
point is chosen to be on the double axis of the compleacithen it will also be a
double line of the contact cone of class four — tha straight line that goes through its
center that will be enveloped by infinitely many tangerglahes. In that way, the cone
will reduce to class two, with which it will be a compleone.

When we combine these results with the ones in tregéong paragraphs, we will
arrive at the consequence that @ coordinate axis is simultaneously a double ray and
a double axis of the same meridian surfad¢e can then speak of the double line of the
meridian surface and regard it as a double ray, in one case, and a double atkis, In
other.

§5.

Equatorial surfacesthat are enveloped by cylindrical surfaces of the complex whose
linesare parallel to afixed plane.

180. A cylinder whose center on the double line of a meridianface lies at infinity
belongs to the set of complex cones that envelop thediane surface. There are
infinitely many such cylindrical surfaces. Any givenetition is a line of one such
cylinder, as well as parallel to its axis. It is obvitkigt not every two cylinders have a
common line, and that all lines of all cylinders will defite totality of all lines of the
complex. We can group together infinitely many of thencldrs whose axes are parallel
to a given plane. Such cylinders will then envelop a sarfaln order to ease the
understanding of a complex, we can then also group tagigshifinitely many ¢°)
lines into infinitely many & groups, each of which will consist of the lines of a
cylinder, and in turn, introduce infinitely many) surfaces instead of the infinitely many
(«0?) cylinders, each of which will be enveloped by infinitely mémy cylinders.

The surface that is enveloped by infinitely many comgiginders whose axes are
parallel to a given plane is nothing but the equatorial serfhat is defined by complex
curves in planes that are parallel to the given onée dquatorial surface should be
regarded as one of the previously-considered complex sarf@cose double line lies at
infinity and whose polar is its diameter.

181. In order to represent the totality of all complexirmyérs by a single equation,
we merely need to take theé y', Z in equation (19) of the previous paragraphs to be
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infinitely large. We then obtain the following equatiavhich is homogeneous in these
guantities:

[FX2-2LX7+ D#?] §-2[ K¥- Lk Mx'z Dyl v Ex2 Mey By
+2[QX*+ RXy—- Nkz- Syz T3 2 Px( N)O'xy 'Sy 'Uxz' Tyi(24)
+[AX?+2I%y+ By +2 Hkz+2 Gy'z# C7=0.

If we let a, B, y denote the angles that the instantaneous directidheofxis of the
cylinder defines with the three coordinate axes (assumitgngular coordinate axes)
then we will have:

X Yy :Z =cosa:cosf: cosy;

we can then introduce cas cosp, cosy; in place ofX, ¥, Z in the last equation. Once
these three cosines are determined, the foregoing culiveepriesent that second-order
curve along which the relevant cylinder cuts ¥ coordinate plane. If we likewise
regard the three cosines amscosp, cosy, between which, the known relation exists:

cos a + cog B+ cog y=1,

as variable thenve can also regard the same equati{#v), which now assumes the
following form:

[Fcosa—- A cosr cog—D iy \f
-2[Kcosa-L cosr co§-M cas cestD cBs ¢oyz]
+[Ecosa - 2M cosr cof+D ¢ 7
+2[Qcosa+Rcosr co§- N cas cps=S cfs ¢gosT Tpsy]
-2[Pcosa—- (N-0O)cosr cof-S cé3+U cas cps T ¢@s pox |
+[Acosa+ 2] cosr cof+ B c6B+ R cos gos G2 ¢bs gesC °gos

(25)

as also being the equation of the complex itseMl of the constants of the general
complex equation enter into it. The quantities:

cos  cosy
cosa’  cosa

y’ Zl

that appear here in this representation of the complexthe place af, s, p, g, resp., in
equation (I) op, q, 77 K, resp., in equation (llI).

182. If we assume that the axes of all cylinders are garala given plane, which
we would like to take to be theZ plane, thery’ will vanish, as opposed 6 andZz, or
cosa will equal zero. The foregoing general equation (24) thén go to the following
one:



§ 5. Equatorial surfaces that are enveloped by cylialdsiarfaces. 159

[FX?-2LXZ+ DZ°] ¥-2[ Kk- M% 0y BEXO°’z (26)
+2[QX? = NX2z-TZ] y2[ P¢ Uk 'Kl# Ka¢2 Hke Gz=0.
For the sake of agreement with the developmentseo$e¢bond paragraph, we would

like to switch theOX and OY axes with each other, with consideration given to the
permutation rules of the first paragraph. We would tiedh f

[Fy?-2KyZ+ EZ] X-2[ Ly M} Y1 xx DYyO°z 27)
-2[Ry?’-0yz- UZ] %2[ Sy Tx'y+d Bw2 Gyz 'T=z0.
This equation represents the totality of cylinders whose apeeparallel to th&Zplane,
or — what amounts to the same thing —dhjeatorial surfacehat is enveloped by these
cylinders.
When we divide by?, and after the division set:

the last equation will go to the following one:

[F tarf y— XK tany+ E] ¥* — 2L tan y—M] tan yTkz + D tarf y[7
- 2[Rtarf y—Otany—U] x + 2[Stany+ J] tan y [ (28)
+ [Btarf y+ 2G tany+C] = 0.

Finally, we would like to determine the intersecticurve of the cylinder with those
planes that are perpendicular to the axis of thiedsr, instead of the intersection curve
with XZ that we have considered up to now. To that eredswitchz with z [osyin the
foregoing equation, while& remain unchanged. When we multiply by Teghat will
give:

[F sirfy— XK sin ycosy+ E cos )t x* — 2[L sin y—M cos}j sin yCkz + D sirfy
- 2[R sirf y—O sinycosy—U cos)} x + 2[Ssin y+ T cos)] sin y& (29)
+ [B sirfy+ 2G sin ycosy +C cos) = 0.

183. In order to obtain the equation of the equatataface in plane coordinates, we
next introduce into equation (28) the quotientshaf coordinates / w andu / w of a
tangential plane to the cylinder that is also agésmial plane of the equatorial surface,
which we shall do by means of the equation:

%
tany=- —.
u

Equation (28) will then be converted into the fallng one when we first multiply by
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[FV? +2Kuv+ EU] ¥-2[ Lw M Oxz DM1%Z

30
-2[RV + Ouv- Ud] ¥2( Sv TuM ¢ Bwv2 Guv gu«0. (30)

For a given value of; equation (28) represents the intersection curve ofelegant
cylinder with theXZ coordinate plane in terms of the point coordinatesxdz. We
would like to introduce the coordinates of the tangenth&b ¢urve in place of these
coordinates and take them to tbeu andw / u. However, these two coordinates of the
tangent to the intersection curve are likewise two coatdsof the tangential plane of
the cylinder and the equatorial surface whose third coosdisat/ u. In that way, after
dividing by V?, we will find the equation of the equatorial surface in plane coordinates:

[(Lv+ Mu)? - D( FV* +2 Kuw+ EJ)] W
+2[(Sv- TY( F¢+2 Kuw Et)-( Ly MY Rw Ouv U
+[(RV + Ouv- U@)?-( F¥+2 Kuw Eg( B2 Guv G
-2[D(RV + Ouvw- Ud)—( Lw MX Sv Tl tw
-2[(Lv+ Mu)(BV¥ -2Guw Cd)-( S¥ T Rv Ouv Uit
+[(Sv- TY* - O BY-2 Guw Cf] *=0.

(31)

The equatorial surfaces, like the meridian surfaces, are likeofisgder four and
class four. The double axisof the surface at infinity inYZ is distinguished in the
foregoing equation by the fact thaandv are not present in any powers lower than two.
From the second paragraphs, the double axis at infinitth@fequatorial surface is
likewise a double ray of it. We can then say that thetegahsurfaces have atouble
line at infinity.

184. The polar plane of the double line at infinity YZ relative to an arbitrary
complex cylinder that cuts th¢Z plane in the curve (28) goes through that diameter of
the intersection curve that is associated with tliection of theOZ coordinate axis.
When we differentiate equation (28) with respect to zywileobtain:

—(Ltany—M) x+Dtanyx+ (Stany+T) =0
for the equation of that diameter, and from that:
—(Ltany—M)x-Dy+Dtanylx + (Stany+T)=0

for the equation of the polar plane. This equation velkhtisfied independently ¢f in
particular, when one simultaneously has:

Dz- Lx+S=0,
Dy —-Mx-T=0.
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The polar planes to the straight line at infinity ie ¥¥ relative to all complex cylinders
whose axes are parallel to that plane will then s#tetrin a fixed straight line that will be
represented by the two foregoing equations.

These two equations are, however, the ones thabtegned earlier (nol64) for the
determination of the diameter of the equatorial surface.

The diameter of an equatorial surface then has the double relationship to tfestesur
that, in the one case, it is the geometric locus of the centdhse détitude curves that
generate the surface, and on the other hand, it will be enveloped by #replavles of
those straight lines that lie at infinity in the planes of the latittid®es in relation to the
enveloping complex cylinder.

185. The following three equations represent the bas&&iiXZ, XY of those three
complex cylinders whose axes are parallel to the t¥eOY, OZ coordinate axes,
respectively:

Fy*-2Kyz+ EZ+2Qy-2 P# A DO,
Fx*-2Lxz+ DZ+2Sz2 Rx BO, (32)
Ey? —2Mxy+ Dy + 2Ux- 2Ty C= 0.

The second of these equations is deduced immegdfadeh equation (30) when we gt
equal to zero in that equation, and the remainivmy dre deduced from the permutation
rules of numbef55.

§ 6.

Analytical determination of the double points and double planes
of complex surfaces.

186. Let:
add+DaB+cF+2day+2eBy+f =0

be a homogeneous equation of degree two in thablasa, S5, 1 We then get the
following algebraic decomposition:

a@d®+DaB+cF+2day+ 2efy+fy)

= [aa+(b+VDP—ag B+ d- adiD a+( by b- 9B+ &y & 3f
- 2[(bd - ag —+/(b* - ag/(d* - ah ] By

= [aa+(b+VBP-agf+(d- d- a0 a+( by B- 3B+ &y & 3
- 2[(bd - ag ++/(b? - ag/(d* - ah ] By

Thus, if:
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(bd —ag —/(b* - ag(d? - af) = 0 (33)
then the given second-degree equation will resoit@ the following two first-degree
equations:

aa +(b+Jb—agB+(d+ d- afjy=0, (34)

aq +(b-v ' - agp+(d-4 d- ahy=0,
and if:

(bd — ag +,/(b> - ag/(d? - af) = 0 (35)
then it will resolve into the following two:

aa +(b+VJbP-adp+(d- d- ahy=0, (36)

ag +(b—+bF-agpB+(d+ d— afy=0.

We can combine the condition equations (33) andli(@6 the following one:
(bd—ae? — (b* —ac)(d* —af) = 0. (37)

If this condition equation is satisfied then theegi second-degree equation will resolve
into two first-degree equations.

Two of the variables — vizf and y— enter into the equation forms (34) and (36) in
the same way, while the third one — viz.~ enters in a distinguished way. We then
obtain two entirely analogous decompositions alaitg the foregoing ones, and in fact,
by a mere change of notation. Corresponding tamtlvee can also write the condition
equation (37) in the following form:

(be-cd®*— (G- ad( é- cf=0, (38)
(de- fB*—( - af)( é- cj=0.

Finally, the foregoing three will go to the followg one:
acf—a€’ —cd® —fb® + 20de=0 (39)

under the same equations when we develop themthfée equation forms (37) and (38)
show that in the event that such a decomposititsiexhe three expressions:

(b* —ae), d?-af), (€ —cf)
will have the same sign. If these signs are pasithen the decomposition will be a real

one, while if they are negative then it will be mmaginary one. If two of the three
expressions vanish simultaneously, which will imghie vanishing of the third one as a
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result of the condition equations (37) and (38), thentww equations into which the
given one resolves will be identical. One likewises:h

(bd —ag =0, be—-cd=0, de —f) =0.

The given second-degree, homogeneous equation resolgethentwo first-degree
equations (34) or the two equations (36), respectively, aicgpta whether the condition
equation (33) or the condition equation (35) is satisfieghaws/ely. That corresponds
to the expressiorbl — a@ being positive in one case and negative in the othehein
case of a real decomposition, and conversely, the sapmession is negative in one case
and positive in the other in the case of an imaginacpuohposition. This comes down to
the same thing as saying that the decomposition (34) or x&i¥,eresp., according to
whether the expressiobd — ag does or does not agree in sjgespectively, with one of
the three expressions:

(b*-ag,  @d?-af), (€-cf),

and thus, with all of them.
Some transformations are coupled with the foregoing @msa37) and (38) that will
find immediate applications in the sequel.

Equation (37) gives:
— 2 _ 2
bd-ae _ b"-ac _ i—\/bau: (40)

d’-af bd-ae ~ [d?—af

The upper or lower sign in this is taken according to véetine decomposition (34) or
(36) exists, respectively.
Furthermore, equations (38) give:

be- cd Jb?-ac

= (41)

de- fb [d2 —af |

in which the signs of the expressiof® (— cd and (e — f) determine the double sign
immediately. When no decomposition of the given seategtee function into two
linear factors is possible, which would be expressed bydhdition equation (39), we
will get:

(bd — ag(be — cd(de — ft) = — (b* —ac)(d ? — af)(e® —cf).

It follows from this that we have to take the upper ordowign in equation (41)
according to whether the decomposition (36) or (34) exmsspectively.

187. Complex surfaces, in their most general form, whiehhave called “meridian
surfaces,” are surfaces that are, on the one handiagethdy a variable complex curve
whose plane rotates around a fixed line that lies iranj are, on the other hand,
enveloped by complex cones whose vertices advance diengatme straight line. In
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connection with the first generation of the surfage,have obtained equation (15) as the
analytic determination of the surface. For the saka®fity, we set:

(Fsin®¢g - 2K sing cog+E cosp 3a ,
(Rsin*@— Osing cog—U cosp ¥ b,
(Bsin®¢ + 2G sing cog+C codsp ¥ C

. (42)
—-(Qsing—-Pcosp =d,
—-(Jsing+H cosp =e,
A= f,
so we can write the equation in the following way:
aw + 2btw+ cf® + 2dvw+ 2Zetv+ f# = 0. (42)

In this, OX is taken to be the fixed straight line that will be a dedinle of the surface,
and ¢ is the angle that the instantaneous meridian plahkesnaith a fixed plane — viz.,
the XZ coordinate plane. If we take the intersection ofithwZ in the instantaneous
meridian plane to be th@Z axis, and denote it b®Z’, while preserving the double line
of the surface as th@X axis, then the latter equation will represent theveale complex
curve in its own plane in ordinary line coordinates.

Since the constants in the last equation are fumcdg, the complex curve that lies
in the meridian plane will vary witlp — i.e., with the position of that plane. If we
establish any condition equation between these constadtthus specialize the complex
curve in it then this equation will give the meridian planewhich the curve, thus
specialized, lies.

In particular, the complex curve degenerates intostéesy of two points when the
condition equation (39) for the constants in its equgd@), which we can also write as:

f(b* —ae) + ae® + cdf — 2bde= 0, (44)
is fulfilled.

When we revert to the constants of the complex &mivise divide by cd®, the
foregoing equation will become:

A[(Rtan®¢ - Otang— UY - (Ftarig—- X tap+ E )B tdp+ & ta+ C
+(Jtang+HY (Ftarfg—- X tag+E )
+(Qtang - PY (Btarf¢+ X tag+ C)

~2(Jtang + H )Q tap - P )R tahg— O tag— U 3 O.

(45)

This equation is of degree four with respect to #an There are then four meridian
planes, in general, in which the complex curves degenganatesystems of two points.
Since these four planes go through the fixed coordinaselagithe four point-pairs will

lie in the four planes on four straight lines that thig axis. The point-pairs into which
the four complex curves degenerate will be double pointseofurface. We would like
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to call the four straight lines on which these pointgpée singular rays of the complex
surface.

A complex surface has eight double points, in general, and four singulathestysut
the double lines of the surface, which will contain the double points) tetken pair-
wise.

188. The four values of tag correspond to four groups of values for the constants in
equation (43). For any group of values, this equation will tliee the equations of the
two points in its meridian plane. We can combinedhezmiations into the following one:

aw+ (b vb?-ac)t+ (d+ d*-af )v'=0, (46)

in which we must take square roots to have equal sign inasgeand unequal signs in
the other, according to whether the decomposition (34) Qref@6ts, respectively. The
two coordinates of the two points in the respective diemniplanes are:

X:bi\/bz—ac Z,:di«/dz—af
a ’ a

: (47)
in which we will get:

_d+.Jd? - af Losd

d+./d? - af
z= =
a

y (Bing, (48)

instead of the value af above when we return to the original coordinates systéhe
singular ray that connects the two double points lieshen meridian plane that is

determined by. We obtain:
Vb? -ac ,+b\/d2—af$x/b2— ac

X= t—=[7 (49)
Jd? - af o - af
for its equation in that plane, or, with consideratom®quation (40):
— 2 — —
_ bd e, , de- ft_ b ac,, & - cf (50)

X = = .
d? - af d’-af bd-ae de- ft

We can replac& with .y and in this equation, in succession, and then obtain
sing cosy

the equations of the projections of that ray oX¥andXZ, resp.
The singular ray cuts out a segment:

Yo = de— fb _ e’ —cf
d’-af de-fb

(51)
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from the double lin®©X and determines an anglavith it that is determined by:

d’-af _bd-ae

tand= == )
bd-ae b°—-ac

(52)

The singular ray that corresponds to each valug tifat one finds is always real,
although the expressions:

\Jb? -ac and d? - af

can be real or imaginary. By contrast, the two doublatpmn the singular ray are
likewise real or imaginary according to these two esgions.

If an arbitrary line in space is taken to be the double &f the surface of a given
second-degree complex then the determination of the feuidian planes that contain
the double points of the surface will depend upon the saolubiba fourth-degree
equation. Thus, the singular line that connects thedauble points in this meridian
plane is given in a linear way. The determinatiorheftivo double points on the singular
ray then depends ultimately upon the solution of a quadmgiat®n. The four meridian
planes in which the singular rays of the surface liebmpair-wise imaginary; the same
will then be also true for the singular rays and the éwuble points. However, when the
singular rays are real, the two double points thatihen them can also be imaginary, as
well as real.

189. In the following paragraph, we shall represent the gganeral complex surface
by means of equation (20) that we determined in the thirdgmgh by means of
equation (15) by starting with the second way of detengiaicomplex. If we set:

(FX* -2Rx+ B = g
-(Kx*- Ox—-Q=h
(EX+2Ux+ C)= g

(Qx-J)=d, (3)
-(Px+H)=¢
A= 1,

while dropping the prime oxi, then we can write this equation in the following way:
ay’ + 2yz+cZ + 2dy+ 2 +f=0. (54)

Oncex has been chosen MZ it will represent the basis for the conic surfaceosen
vertex lies on the double line of the surface and througichamthe choice ok on this
double line will be determined.

The coefficients of the foregoing equation are fumdiofx. In particular, if we set:
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f(b®—ae) +ae’ +cd? — 2bde=0 (44)

then the base for the conic surface will no be lorgsecond-order curve, but that curve
will degenerate into a system of two straight lings,the corresponding conic surface
will degenerate into aystem of two planewhose line of intersection will meet the
double line of the surface at the point that is determimed. If we reintroduce the
original constants of the complex into the foregoing &@quoathen after dropping the
common factor of® we will get:

A [(KX¥ = Ox—G)? — (FxX? — Rx+ B)(EX + 2Ux + C)]
+ (Px+ H)? (A — Rx+ B) + (Qx - J)? (EX + 2Ux + C) (55)
+ 2(Px + H)(Qx - J)(Kx* —Ox—G) = 0.

This equation is of degree four with respecx.tarhere are then four points on the double
line, in general, that are no longer the centers ofiticemscribed complex cones. These
complex cones degenerate into systems of two plahesewline of intersection goes
through the four points. The planes dorible plane®f the surface. The double planes
of the surface arrange themselves into four pairs;vibedbuble planes of any pair will
intersect in four straight lines that meet the doulplesliof surface in the four points that
are determined by the values»of We call these four straight lines thiagular axeof
the meridian surface.

A complex surface has eight double planes, in general, which will@tarsthe four
singular axes of the surface, when taken pair-wise. Like the ifogular rays, the four
singular axes will cut the double lines of the surfaces.

190. The four values ox correspond to four groups of values for the constants in
equation (51). For any group of values, this equation wpkgsent a system of two
straight lines in which thé&’Z coordinate plane will be cut by two associated double
planes. These two lines will intersect in thosenfoat which the singular axis (along
which the two double planes intersect) meetsytiplane.

From the developments in numid@&5, we immediately obtain the following equation
for the equation of the two straight linesYiz

ay+ (b+xVb*-ac) z+(d d- a) =0, (56)

in which we have to take the square roots to haumlesigns for both lines in one case
and unequal signs in the other, according to thetldr the decomposition (34) or (36)
exists, respectively. The coordinates of the ttkaight lines inYZ are:

_ bxyb*-ac w _ d+yd’-af (57)
a u a ’

\Y
u

and we then get:
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Jb*-ac byd*—af &V IF - ac

v=+ Qv+
d? - af d®* - af

[ (58)

for the equation of their intersection point, or, witdnsideration given to equation (40):

— 2_ —
_ bd aeEWere-f _ b*-ac +é cf

V= = 59
d® - af d*>- af bd - ae de- fb (59)
The coordinates of this point are then:
_de-fb__be-cd__ & -cf __d*-af __bd-ae (60)
bd-ae b’-ac be- cd’ bd-ae b*-ac’

The singular axis is determined analytically by means otsmu (58), combined with
the following one:
tx+w=0. (61)

The angleg,, which XZ defines with the meridian plane, which includes thas,as
given by the following equation:

be-cd _ de-fb _ e —cf

tan@g = = = ) 62
b= d—ae di-af  de- b (62)
We finally get:
_ 2 2
xtane= [ aez * b? o (63)
(b*—aog

for the determination of the angkethat the singular axis makes wiX, which is the
double line of the surface.

The determination of four singular axes of the menidiarface is linear, since the
four points at which it intersects the double line willdetermined by solving a fourth-
degree equation. The determination of the two double plaihéseosurface, which
intersect along one of the singular axes, depends uposotheon of a second-degree
equation. The four points at which the singular axes eutdtiuble line can be pair-wise
imaginary; the same will also be true for the singale#s then. However, the double
planes that intersect in the singular axes can asmhginary, as well as real, when the
singular axes are real.

191. Meridian surfaces of a special kind have lines efd¢bmplex for their double
lines. In that case, the double lines of the surfadecaitact the generating curves in the
various meridian planes. They will likewise be comntioes of the complex cones that
envelop the surface.
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If we, in turn, take th®©X axis to be the double line of the meridian surface then
will obtain the condition tha® must vanish in the equation of the complex in order to
express the idea that this line must belong to the ampRAs a consequence of thht,
will also vanish in equation (43), as well as in equati®t). Equation (45), by which the
position of the meridian plane in which the singular riee/$s determined, reduces to the
following one:

(Jtang + H)? (F tarf ¢ — XK tan¢ +E)
+ (Qtang —P)? (Btarf ¢ + 2G tang + C) (64)
-2@tang + H) (Qtang —P)(Rtarf ¢ —Otang —U) = 0.

The equation remains of degree four with respect tagtarThe meridian surface then
preserves its four singular rays. From (47), the two doytaints on it have the
following coordinates:

2_
x:bi— “Z‘ac, z’:%, 0. (65)

One of the two points falls upon the double line of théaser Since this determination
is independent of the instantaneous valug,ane of the two double points will then fall
upon each of the four singular rays in the double linbd®turface.

The value ofx, for that point on the double line at which the singular gats the
double line will be determined reduces to:

_ Jtang + H (66)

- £
= d Qtang-P

when we lef vanish in (51).

192. As a result of the assumption that the double dihthe meridian surface is itself
a line of the complex, equation (55), by means bicty, the point at which the singular
axes cut the double line is determined, will rediace

(Px+ H)2(F¥—2Rx+ B+(Qx J( Ex+2 Ux (

(67)
~2(Px+ H)(Qx- J)(KX - Ox G=0

by the vanishing oA. Since this equation remains of degree four wagpect tok, the
meridian surface will preserve its four singularesx We obtain the following
coordinates from equation (57):

u=a, v=bx+b’-ac, w=2d, 0 (68)

for the two double planes that go through one ef fbur singular axes, and whose
intersection with the double line will be determinigy the foregoing equation. One of
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the two double planes of the surface that interseghéof the four singular axes of the
surface will then go through its double line.

When we lef vanish in equation (62), we will have:

e _ Px+H
d OQx-1J

tangy = - (69)

for the anglegy that the meridian plane that goes through the singulardefines with
XZ

193. We can write the two equations:

_ Jtang + H | (66)
Qtang-P
Px+ H
tan g@o = 69
= o] (69)
in the following way:
®(xo, tang) =0, d(x, tango) =0, (70)

in which we denote the same function ®yboth times. If we introduce the foregoing
value ofxg into equation (64) and the value of tninto equation (67) then we will get:

X (Ftan’g—- 2K tap+E » @ tahg+ & tag+ C )

—2x, (Rtarf ¢ - Otarp - U )
tan” ¢ (Fx; — 2Rx, + B+ (Ex+ 2Ux+ C)

—2tang Kx; —Ox,— G)= 0,

(71)

tar’ g, (Fx* — 2Rx+ B+ (EX+ 2Ux O
-2tang, Kx* - Ox- G)=

x’(Ftan’ ¢, - K targ,+ E } @ tahg,+ & tag,+ C )

-2x(Rtarf ¢, — Otang,— U = 0.

When we, in turn, denote the same functiorithywe can write the foregoing equations
as:

W(xo, tang) = 0, W(x, tango) = 0. (72)

If we then eliminatex, from the first two equations in (70) and (72) androm the
second two equations in (70) and (72) then we wiitain the same fourth-degree
equation for the determination gfand ¢, . If we eliminate tarp from the same two

equation pairs, in the one case, and ganin the other, then we will obtain the same
fourth-degree equation for the determinatiomgdndx.
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The four singular rays and the four singular axes intersect in the sames pdittie
double lines of the planes that go through those double lines and lie inrdspctively.

We then obtain the determination of these points &ntep when we combine these
two equations:

d(x,tang )= 0, } (73)

Y(x.tang )= 0,

in which we considex and tang to be variable’}.

") Whenx and tang | =-" | are considered to be variable quantities, each of theeations (73),
u

when taken individually, will express a relation betwéas position of a point that moves along X
coordinate axis and a plane that rotates around thati.@xjst will represent a geometric locus. The first
equation, to which we would like to restrict ourselvesshdeterminesn a general way, how any position
of the point corresponds to a single position of the planel conversely. That is the case, for example,
when the point moves along a generator of a ruled suridnike, the corresponding tangential plane rotates
around that generator. For the analytic statemethiaof let:

ay=pz

be the equation of such a ruled surface that ha®¥eoordinate axis for one of its generators when we
denote any two linear functions pyandg. The equation of the tangential plane of the surfae@wapoint
on its generator, which corresponds to the function vaduasdq’, will then be the following one:

o qy=pz
This yields:
_ P _ gxh
ang= 4 = gt

when x refers to the contact point, agdh, g, ' mean the requisite constants to be determined. This
equation has the form in question.

For the geometric interpretation of the dependency legtveeplane and a point that lies in it that is
expressed by such an equation, we can, from the outseheaizat two straight lines are given arbitrarily,
and when we let the plane rotate around one of theséres) we can determine its various positions by
tan ¢, while the position of the moving intersection pointhathe rotating plane on the second straight line
will be determined by. If, for example, we takany two associated polars of a linear compiee the
two straight lines then if a point moves on one oftihe polars then the plane that corresponds to that
point in the complex will rotate around the other oriEhe equation form above will give the law of
rotation of the plane for a given motion of the point.

The same law of rotation is true for a plane that goesigh a point that moves along a generator of a
ruled surface, and likewise rotates around a second fling generator. Finally, the same law is true for
the rotation of the meridian plane around the double of a complex surface when the plane is drawn
through a point that moves on the polar of the complex cairfaVe immediately deduce the analytic
statement of this latter geometric relation from nuni@@ in which, the equation that was cited there:

tang= Px*H,
Qx-J
which we can also write in the following form:
_ Jtang+H
" Qtang-P’
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194. In the event that the double line of the complex serfes at infinity, we have
called such a surface aguatorial surface. If we take theYZplane to be the one in
which the double line goes to infinity then we will obténe following equation for the
equation of the equatorial surface:

DW +2(Lx—S) w ( FXx—-2 Rx B ¥

(3)
+2(Mx+T)uw+2(KX¥ - Ox Q uw ( BX+2 Ux ¢=0.

We thus think of the surface as being generated by a var@iielex curve whose plane

is parallel toyZand moves parallel to that plane. The instantaneau® @if this curve is

determined byx. In special cases, as is true for the meridian sigfabe curve can

degenerate into a system of points. The straight tim&sconnect two such points are

singular raysof the equatorial surface, while the points themsedveslouble pointsof

it. The singular rays of the equatorial surface are lgatal theYZ coordinate plane; in

other words, they intersect the infinitely-distant dodinles of that surface.

If, for the sake of brevity, we set:

D=a,
(Lx-9 =N
Fx* -2Rx+ B =

(Fx x+ B=¢ (74)

(Mx+T)=d,

(Kx*-Ox—- Q= ¢

(EX +2Ux+ C)= f

then the foregoing equation (3) will go to the followingeo

aw + 2ovw+ ¢ + 2duw+ 2euv+ fu? = 0, (75)

and in order to express the idea that this equation repseseyyistem of two points, the
development of (41) will give:

D [(KX* —Ox - G)? — (FX¥ — Rx+ B) (EX + 2Ux + C)]
+ (Mx + T)? (FX¢ = Rx+ B) + (Lx — 9% (EX* + 2Ux + C) (76)
+(Lx =9 (Mx +T) (KX* —Ox—-G) = 0.

Since the degree of this equation with respect i® four, an equatorial surface, like a
meridian surface, will also have fosingular rays in general.

195. The center of the complex curve that generatesutface describes a diameter
of the complex during that generation that we have refeiweas the diameter of the

gives the pole of the double line, relative to the cexpgurve in the meridian plane that is determined by
@, for a given value op on the polars of the complex surface by way of theespoonding value of.
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equatorial surface (ndl64). If we take this diameter to be the remaining up-to-now
undetermined axi®©X then those terms in equation (3) that contaim the first power
will vanish, and in order for this to be true for everyjueaof x, the four complex
constantd, M, § andT must vanish. The foregoing equation will then reduce to:

(Kx? —Ox—G)? = Fx¢ — Rx+B) (EX + 2Ux + C) = 0. (77)

Once we have determined the planes that contain thesifogular rays by means of this
equation, we will get:

y=*,[——, z==,|-—— (78)
a a

for the determination of the two double points, when etéd sindd equal to zero on each
of these rays, in accordance with the coordinate systé&wcording to whether the
decomposition (34) or (36) exists — that is, according tetlsre andf do or do not
agree in sign, respectively — we must take the foregoipgessions foy andz for each

of the two points to have equal or opposite signs, otisiedy. The singular line will be
intersected by the diameter of the surface, and indesdcim a way that the two double
points on it lie on both sides of the diameter akegqunal distance from each other. The
angle d that the instantaneous singular ray makes withXiiplane will be determined

by the equation:
tang=+ S =2 =5 (79)
f f e

in which the upper or lower sign is to be taken in the Grssecond of the two distinct
cases above, respectively.

196. If we determine the same equatorial surface that datermined above by its
latitude curves by enveloping cylinders whose axes arelglatalthe YZ-plane then
equation (28) will appear in place of equation (3). Fordihection of the cylinder axis
that is determined by, the new equation represents the intersection of thadey with
the XZ-plane. If, for the sake of brevity, we set:

(Ftar y— X tary+E Ea,
—(Ltany—M )tany=b,
Dtary=c,

—-(Rtarf y—Otany-U E=d,
(Stany+ T)tany = e,
(Btar? y+ 2G tary+ C E f

(80)

then the equation of the intersection curve will beeom
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ax + 2oxz+ o + 2dx + 2ez+f = 0. (81)

In order to express the idea that this equation repreaesystem of two straight lines,
and thus that the enveloping cylinder degenerates into ansyst two planes that
intersect theXZ-plane in these two straight lines, the developmentoéon (39) gives:

D [(Rtarf y—Otany—U)?— (F tarf y— 2K tany+ E)(Btarf y+ 2G tany+ C)]
+ (Stany+ T)? (F tarf y— K tany+E) + (L tany—M)? (B tarf y+ 2Gtany+C) (82)
+2 (Ltany—M) (Stany+T) (Rtarf y—Otany—U) = 0.

Corresponding to the four values of tghat the solution to this equation gives, there
will then befour pairs of double planesf the equatorial surface into which four of the
circumscribed cylinders will resolve; the two planes afhepair will intersect in one of
the four singular axes of the surfaces. In each tibre¢hat is parallel to th&¥Z-plane,
the equatorial surface will project onto second-order esjrthe projections will be
systems of two straight lines in the directions offthe singular axes.

197. If we take the diameter of the complex that iasged with therZ-plane to be
the OX axis then the foregoing equation will reduce to:

(Rtarfy—Otany—U)? — (Ftarfy — Ktany +E) (Btarfy + 2Gtany +C) = 0, (83)

and the equation of the intersection curve of the raetegaveloping cylinder with the
XZ-plane will reduce to:
axd +cZ + 2ez+f=0. (84)

The equation resolves into the following two when theedoing condition (83) is
fulfilled:

axx/—ac [+ /—af =0, (85)

in which we must give the square roots the same or oppgighs according to whether
condition (33) or condition (35) is fulfilled, resp., feach of the two lines that the
equation represents.

The straight lines that are represented by the double i@qu&6) intersect in the
same point. We get:

X=F r (86)
a

for this intersection point. Thus, the singular axishef équatorial surface, along which,
two of its double planes will intersect, will also gaaigh that point. Thus, the four
singular axes, like the four singular rays of the sarfagll, on the one hand, intersect the
infinitely-distant double line because they are paratieht YZplane, and on the other
hand, will intersect the diameter of the surface, Whwe can consider to be its polar.

We get from (85):
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T = +\F (87)

for the determination of the angle that the inteisgclines of the two double planes,
which intersect along a singular axis, make with@éwith the XZ-plane in this plane.
The two double planes, along with the two planes thatsact along the singular axis,
one of which goes through the diameter of the surface ta@dother of which is
associated with it, then define four harmonic planed, are thus equally inclined with
respect to them when the diameter is perpendiculés essociated planes.

198. We encounter a special kind of equatorial surface whetakeean infinitely-
distant line that belongs to the complex to be thebloline of the surface. This comes
down to saying that all latitude curves of the surfaegparabolas.

As before, if we take the double line in tH&plane to be infinitely distant then the
constantD will vanish in the equation of the complex, under thaiagtion that was
made. Equation (76), by which, we have determined the distmteeen the singular
rays, which are parallel to the coordinate plane, wilhtpe to the following one:

(Mx+T)?(KX¥ - Ox- Q+( Lx $°( EXx+2 Ux [

(88)
+(Lx-S)(Mx+ T)( FX—-2 R%+ B=0.
The surface has lost its diameter, which has gonditaty.
If we set:
(EX +2Ux+ C) =
(R¢-0x- Q= b
2 =
(Fx*=2Rx+ B = ¢ (89)
(Mx+T)=d
(Lx-9)=¢
D-f=0
then equation (3) will go to the following one:
au? + 2buv+cv? + 2duw+ 2cvw= 0, (90)

and when we taketo be one of the four roots of equation (88), this equatiimesolve

into the following two:
au+(bx/IF - ag w2 dw 0, } 1)

aut(bsvb-agv =0,
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in which we have to take the upper or lower sign accordinghether the decomposition
(34) or (36) exists, resp.
One double point of the surface will then lie on th@ular ray at infinity, while the

other one will have:
2_
y= a | S = bi\/Zbd ac (92)

for its coordinates in its plane. The angdehat the direction of the singular ray defines
with OZ is determined by the equation:

a bx+b*-ac d
o

tanp = = = (93)
b+/b° - ac c
If we again introduce the constants of the comphtex that will give:
Mx+T
tan = : 94
B= "3 (94)

199. If we are to determine the equatorial surfacé$gnveloping cylinder then we
must start with equation (28). Under the assumpti@t was made that the infinitely-
distant line inYZ belongs to the complex, equation (76), which esges the idea that the
curve that is represented by (28) resolves intaiaqdf lines, will become the following
one:

(Stany+ TY (Ftarf y— XK tary+ E )L tap— M?*) B tary+ & tan- C (95)
+2(L tany—M )S tary+ T )R tahy— O tap— U F O.

When we again introduce the constant determing80hand lett vanish, for the sake of
brevity, equation (28) will go to the following one

ax + 2oxz+ 2dx + 2ez+f =0, (96)

and if tanyis taken to be one of the roots of the foregoiggation then this equation
will resolve to the following two:

ax+2bz+ (d+x d - af)=0,
ax +(dx+/ - af) =0,

where we have to take the upper or lower sign alegrto whether the decomposition
(34) or (36) exists, respectively.

One of the two double planes into which the compdglinder that envelops the
surface resolves will then always go to the douibke at infinity of the surface. It cuts
out a piece oOX

(97)
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— 2 _ f
Xo:—d+ d°-a __ f :_E, (98)
a d +,/d” - af b
or, when we reintroduce the constants of the complex:
_ Stany+ T . (99)
Ltany—-M

200. When we introduce the value of tgrfrom equation (94) into equation (88) and
the value ofxy from equation (99) into equation (95), we will iaer at the following
theorem for equatorial surfaces of the special kasdwe did in numbek93 for meridian
surfaces:

The four singular rays and the four singular axiesih the same plane, respectively,
which goes through the double line at infinity bé tsurface, and are parallel to each
other in that plane, respectively.

§7.

General considerations on complex surfaces, their double lines, double points, and
double planes.

210. If a straight line moves in space then it willngeate a ruled surface. It is
therefore irrelevant whether we consider it to bayaor an axis. We can represent the
ruled surface by three equations in either ray dioates or axial coordinates, which
come down to a single equation in point coordinatesthe first case, and a single
equation in plane coordinates in the second case.

202. In particular, if the straight line in space mevea such a way that any two
successive positions of it are contained in theesplane, or — what amounts to the same
thing — goes through the same point then it wilal#de a developable surface when it is
considered to be a ray; when it is considered tarbaxis, it will envelop a spatial curve.
According to the two-fold conception of a straigjhe, the ruled surface will then go to a
curve or developable surface, resp. The variosgipos of the straight line will then be
represented by two complex equations in ray orl asiardinates. If we take:

y=sz+ g,
X=1Z+p
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to be the equations of two projections of the straliglet that is considered to be a ray,
then differentiate with respect tos, p, g, and eliminate after the differentiation, then
we will get:

do _dp

— =F 100
ds dr ( )

corresponding to the assumption that was made. Oathiee hand, when consider the
straight line to be an axis and take:

u=qv+x,

t=pv+rr

to be the equations of its intersection points with oiithe three coordinate planes then,
corresponding to the same assumption, we will getdheition equation:

dq _ dp (101)

A spatial curve is simultaneously determined by any dgedlle surface, and
reciprocally, a developable surface is determined by anjyakpatve. Equation (100) is
the differential equation of the developable surface,lent@quation (101) is the
differential equation of the spatial curve.

203. We obtain a second determination of a developable suwfaen we think of it
as being enveloped by a plane that goes through two of thessiwe positions of the
generating lines, and is thus represented by two equationgne poordinates. The
planes that envelop the developable surface belongotsuviaces as enveloping planes.

We obtain a second determination of the spatial cutvenwve think of it as being
described by a point that is common to the enveloping iax@go successive positions,
and will correspondingly be represented by two equatiopgint coordinates. A spatial
curve is the intersection of two surfaces that areraied by points.

Developable surfaces are represented by a single equapomt coordinates. They
are to be considered as ruled surfaces, insofar akimkedf them as generated by a ray.
Spatial curves are represented by a single equationne ptzordinates. They are to be
considered as ruled surfaces, insofar as we think of isegenerated by an axis.

204. A developable surface can degenerate into a conic sutfpon further
restriction. All rays then go through a fixed point, dyn the vertex of the conic
surface. In order to express this,xf,(°, 2) is the vertex of the conic surface then we
will obtain the three linear condition equations:

y’=s?+a0,
x’=rz"+p, (102)
ry® —sx’ =n.
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Two of these equations will imply the third one, assumimg t and s take on finite
values. Once the fixed point is determined, the conic ceinfdll be represented by a
single complex equation in ray coordinates. If we t#ke fixed point to be the
coordinate origin, in particular, then the three coorésa; o, and 7 will vanish
simultaneously for all rays, and we will then obtaim @quation between the two
remaining coordinate ands for the determination of the conic surface.

The spatial curve can degenerate into a plane curve fupiher restriction. All of
the axes that envelop the curve will then lie in a figtathe, which will be expressed by
three linear condition equations:

u =gV’ +x w,
t° = pv* + mw, (103)
pu’ — gt’ = ww’

t° u® WV
when we tak WRw R
third one if one assumes thgtandp remain finite. When the plane is determined, the
curve will be represented in that plane by a simgleplex equation in axial coordinates.
This equation will reduce to one equation in twalwd five axial coordinates when we
take one of the three coordinate planes to be e f the curve, in particular. If that
plane isYZthen the three coordinatps7z wwill vanish for all of the axes that envelop
the curve, and we will obtain an equation in the t@maining axial coordinat@sand
for the enveloped curve, and we can also constheset two coordinates as line
coordinates in th&Zplane.

j to be that plane. Two of these equations will lymhe

205. However, we can also consider a conic surfadeeasy enveloped by a plane
and correspondingly represent its vertex by theagon:

Xt+yYu+Zv+w=0.

The conic surface will then determine a second #muan plane coordinates when it is
combined with this one. If we take its vertex ®the origin, with which, the foregoing
equation will reduce to:

w=0,

then the second equation alone will succeed inesgmting the conic surface. In an
analogous way, we can think of a plane curve asgb@ééscribed by a point and represent
its planes by the equation:

x+u’y+V0z+w =0.

The plane curve will then determine a second egnati point coordinates when it is
combined with this one. If the curve lies in orighe three coordinate planes, which we
would like to take to b&Z in turn, then we will obtain:
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x=0

instead of the foregoing equation, and a single equatievebetthe two remaining point
coordinates, which we can construct in ¥eplane, will suffice to represent the curve.

206. One can speak of the order of a conic surface only wieethink of it as being
described by a straight line, namely, a ray. That ordeqisal to the degree of the
equation by which the conic surface will be represented imt goordinates. One can
speak of the class of a plane curve only when we think a$ being enveloped by a
straight line, namely, an axis. This class is equah¢odegree of the equation by which
the curve will be represented in plane coordinates.

If we introduce the straight line into geometry apatisl element, and consider the
straight line to be a ray, in one case, and an axife other, then we must put ordinary
plane geometryas completely coordinated, alongsmtent geometryalong with curves
that are enveloped by axes in the plane and conic sutfagewill be defined by rays
that go through the point. The conic surfaces aregdfen order and the curves are of a
given class. The class of a conic surface and the ofde curve appear as secondary
concepts. It is only when we think of a conic surfacelsesisg enveloped by planes that
go through two successive generating rays that we can spealclass. That class will
likewise be the class of its curves of intersectimmg will be equal to the number of
tangential planes to a conic surface that can be drasendh a straight line that goes
through the vertex of that conic surface. It is onlyewhve think of the plane curve as
being described by the intersection of successive axésvihaan speak of its order.
That order will then likewise be the order of the canicface that can be drawn through
it, and will be equal to the number of points at whidueve will be cut by a straight line
that that lies in its plane.

207. The following remarks, which are connected with thedoing ones, touch
upon the theory of the representation of spatial strasthly means of line coordinates in
an essential way.

In order to represent a conic surface in ray coordinatesnust express the idea that
the rays that define it go through a fixed poif ¥°, Z), namely, its vertex. All three of
equations (102) are necessary in order to achieve that deippléf we take just two of
these three equatiorssay, the first two:

0 —

Y SZZ ta, (104)
X =rz°+p,

then they will express the idea that the relevant(rag, o, 0) cuts those two lines that
project the pointx’, y°, 2) onto the two coordinate plan¥& andXZ This includes the
double geometric condition thaitherthe ray ¢, s, p, 0) goes through the given poinf(
y°, 2) or it lies in the plane that contains the two projectingd, and thus goes through
the point (&, y°, ) and is parallel to th¥Y-plane. It is only when the third equation:
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n’—s¥=n

enters in that the second interpretation for equatiod) will go away, and then all that
will be expressed is the idea that the ray goes thrtheygiven point.

In order to represent a plane curve in axial coordinmesmust express the idea that
0

v
w
are necessary for this. If we take just two of thibsee equations — say, the first two:

the axes that envelop it lie in a fixed pla(w0 Wl j All three of equations (103)

u’=qv +x,
O i (105)

then they will express the idea that the relevant gxig, (77 k) goes through the line of
0

Vv
w
That will correspond geometrically to two possibiliti€sther the axis p, 9, 7z ) lies in

the given planeor it goes through the point at which tB& coordinate axis intersects
that plane. The third equation:
pl’ —qgtf® =w’

intersection of the given plar[ W E j and the tworZandXZ coordinate planes.

must be added in order to exclude the second geometrionslaitp.

If we have questions about the foregoing — at first glapaeadoxical — relations on
analytical grounds then that will be due to the fact thlaénr ands (p andq, resp.)
become infinitely large’) the third of equations (102) and (103) will no longer be an
algebraic consequence of the first two.

208. When, along with the equation:
Qn = 01

() Infinity will be avoided by the use of homogeneous linerdinates. For example, if we replace the
first two of equations (102) with the following ones:

Y(@z-2)=2(-y)+ ¢Z -y2,
X(@z-2)=2 (x -X)+ Xz -x2)

then both equations will be satisfied simultaneouslynwhe
x=xX, y=y’, z=7;

that is, when the relevant ray goes through the given.point
The same two equations will also be satisfied when:

z=7=2:

that is, when all rays lie inside of a plane thatdgallel toXY whose distance from that plane is equafto
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which represents a line complex of an arbitrary degrée ray coordinates, the two

equations:
Y=sZ+g
X =r+p,

which we can regard as two linear complex equations, ekxistiltaneously, the
coordinates of all rays that, on the one hand, defiaecomplex cone of orderwhose
vertex is &, y°, 2), and on the other hand, envelop the complex curveaséeiwhose
plane, which is parallel tXY, goes through the vertex of the cone, will satisy titree
foregoing equations. These three equatithesy simultaneously represent a complex
curve, along with the complex cone.

Likewise, the system that consists of the equation:

®,=0

of a complex of degree in axial coordinates and the two linear equations:

which we can regard as the equations of two first-degoeeplexes,simultaneously
0 0 0

represents a complex curvéhose plane i$ —,— ,—
p p P { W W

j and acomplex conic surface
whose vertex lies in that plane.

There exists a geometric relationship between the caonface of ordem and the
curve of class that is represented in the foregoing by the three conggeations that
then lines along which the conic surface is cut by the pldrbeocurve are, at the same
time, thosen tangents to the curve that go through the vertexeo€timic surface.

Only those geometric structures that are reciprocal to thenselwe be represented
by one or more equations in line coordinates.

If we go topoint coordinatesin the case ofay coordinatesthen we will tacitly
introduce the third of the three linear equations (102) tikoforegoing developments,
and any trace of the curve that is enveloped by the radysamish from the analytical
representation.

If we go fromaxial coordinatego plane coordinateshen we will tacitly introduce
the third of the three linear equations (103), and any tbdd¢be conic surface that is
enveloped by the axes will vanish from the analyticatesentation.

209. We have already presented the following two charistiemproperties of a
complex of degrea (no. 19), which are mutually reciprocal:
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Infinitely many lines of a complex of degredie in any plane that is drawn through
space, which will envelop a curve of class Infinitely many lines of the complex go
through any point of space, which will define a conic sur&decadern.

The double construction of the surfaces of a complexadrn is linked to that fact
immediately. Once we have chosen any fixed straight ive can, in one case, define
them by those complex curves of clasahose planes go through the fixed line, and in
the other case, envelop them by those complex conesewertices lie on the fixed line.

Once the existence of the complex of degneleas be established, at all, we can
couple each of the above two characteristic propertighich are only one, in principle
— with the definition of such a complex, and that defimiiwhen it is allowed, at all,
which involves the imaginary in the domain of geometryeiferred to as geometric
one in the usual sense.

The double determination of a complex of degreeould lose its meaning, and we
would search in vain for an analytical expression ferabmplex if we were to switch the
words “order” and “class” in the definition.

When we determine complex surfaces by means of thelerripat they belong to,
that determination will be coupled with the considerataf straight lines and their
coordinates. The surfaces of a complex of degrae of equal order and class, which we
would like to denote bp. We consider surfaces of ordeto consist of points that are
cut from a curve of ordgy in a plane by a straight line ptpoints. We consider surfaces
of classp to be enveloped by plangs;planes of the surface will go through a straight
line, and the enveloping cone will be of clpassComplex surfaces have a multiple line,
along which, a multiple ray and a multiple axis coinciig¢ the line bem-fold. If we
consider it to be a ray then it will cat sheets of the surface: The surface will have
tangential planes at each point of thdold line. Them-fold line is the geometric locus
of the mfold points of the surface and all curves, along which dindace is cut by
planes, will have am-fold point on that line. Thenfold line, when considered as an
axis, is a locus that is enveloped iwfold planes of the surface. Any plane that goes
through than-fold line will contact the surface at points that lie on that line. Any point
of such a plane is the vertex of an enveloping cone lhatm sheets that will be
contacted by the plane, which is alsomfold plane of the cone, along lines of the
cone that go through thme contact points on the surface.

210. The surfaces of a second-degree complex hadeuble line. They will be
intersected by planes in curves of order four and envelopedr®s of class four. When
the intersection is a meridian plane, in particudand thus goes through the double line,
the fourth-order intersection curve will decompose intseaond-order curve and two
rays that coincide in the double line. If we considerdinere to be enveloped by axes
and we appeal to its analytic representation by lowdinates in its plane then its class
will reduce to two when any trace of two coincident raysjch are foreign to the
complex, drop out: The curve in the meridian plane b&la complex curve. On the
other hand, if we choose the center of the enveloping tm be on the double line of the
second-degree complex, in particular, then such a conehwhiicbe of class four, in
general, will degenerate into a cone of class two aodenveloping axes that coincide in
the double line. Any trace of these two axes will vamien we think of the cone as
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being described by a ray. The enveloping cone will théer é@mas a second-order cone,
and thus, as a complex cone.

211. In the general case, the surfaces of a complexgvéda will detach from their
intersection curves when the intersecting plane dgbesugh them-fold line of the
surface, in particular, which will coincide in that lin&/hen we overlook thesa rays,
the order of the curve will reduce tp € m). On the other hand, since the intersection
curves whose planes go through thdold line are complex curves, and as such are the
general ones of class we will obtainn (n — 1) for the order of these curves. In that way,
we will find:

p=n(n-1)+m. (106)

When we choose the center of the enveloping cone tonbthe m-fold line of the
complex surface, in particular, that will separatexes from that cone that coincide in
the m-fold line, and when omit these axes, the class of the enveloping cone will drop
by pto (p — n). It will then become a complex cone, and will bs,such, the general
cone of ordemn, and will thus have class (n — 1). In that way, we will arrive at the
foregoing equation, which includes a relationship betweesmhich is the degree of the
complex that the surface belongsppwhich is the order and class of that surface,rand
which is the number that gives how many rays, on tleehamd, and how many axes, on
the other, coincide in the multiple lines of the suefac

212. In order for a complex surface to be described coniplbiea complex curve,
the meridian plane that contains that variable curnuest rotate around the arbitrarily
chosen multiple line by 180 degrees. Under this rotatian,ctmplex curve will go
through any given point of the multiple line of the coexpdurface in a certain number of
positions of the meridian plane. This number will likesvbe the number of sheets of the
surface that intersect on the multiple line, and thilis be equal ton.

Any point of the multiple line of the complex surfasehe vertex of a complex cone
of ordern, at which, since it is the general cone of that gnd€n — 1) meridian planes
can be drawn through the multiple lines that contaettnic surface. The(n— 1) lines
of the cone along which this contact takes place likew@ntact each other, since they
are lines of the complex, namely, the meridian cutkieslie in the same meridian plane
at the center of the enveloping cone on the multipte The numben (n — 1) will thus
determine the number of meridian curves that go througlarbitrarily-chosen center of
the enveloping cone on the multiple line, and thusntiaber of sheets of the complex
surface that intersect on the multiple line.

The multiple line is an (n — 1)fold line.
Any point of the r(n — 1)fold line of the surface of a complex of degree n is the

vertex of a complex cone of order n, at whiglm 1 1) planes can be drawn through the
n(n — 1)fold line. The (n — 1) lines along which the cone is contacted by these planes
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will themselves contact th§m— 1) complex curves that intersect at this point at the
vertex of the cone.

Along with the foregoing theorem, one likewise stabesfollowing one:

Any meridian plane of the surface of a complex of degree n containgoéegarurve
that cuts the fn — 1)fold line of the surface in this plane g~ 1)points. The tangents
to the curve at thesgim— 1) points are lines of (m — 1) complex cones that have those
points for their vertices, and contact the meridian plane along these lines

We can also immediately link the two foregoing theasewhich follow reciprocally
from each other as the statement of correlative priepest a complex, to the definition
above of the complex of degragand then obtain the following theorem:

The number of straight lines (rays and axes) that define the mulhpleflia complex
surface is equal to the order of the complex curves that generatertaeesand the class
of the complex cones that envelop it.

We have:
m=n(n-1), (207)
So:
p=2n(n—1)=2n. (108)

The surfaces of a complex of order n have order and 2lag¢s — 1), and have an (m —
1)-fold line.

213. In place of the foregoing geometric consideratiors,can just as simply pose
analytic ones. We would thus lie to start with thefaces of the second-degree complex.
We have represented the projections of the individual ma@ricurves of such complex
surfaces ontXZ by the following equation (nd.69):

(Ftar ¢ - XK tap+E W

+2(Rtarf ¢ — O tanp — U Yw

+(Btarf ¢+ G tarp + C )f°
-2(Qtang — P)vw- 2(Jtap+ H )tw AV= 0

(14)

and thereby made the assumptions that all meridiareplgo through th@X coordinate
axis and thaDZ is perpendicular t®X Any arbitrary point of this axis is to be chosen
as the origin of the coordinates. The plane of the ntst@ous meridian curve will be
determined by the anglgthat it defines with a fixed meridian plane. When wevge
equal to zero in the foregoing equation under these agguns and divide by, we will
obtain the following equation for the determination & thrections of the projections of
the two tangents to the instantaneous meridian cunteidhdetermined byp that are
drawn through the origin:
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A(%j _2@0tang + H)(%j +Btaf g —2Gtang +C)=0.  (109)

When the meridian curve goes through the coordinatenotige two tangents that go
through that point will coalesce, which is expressedlyically by saying that the

foregoing quadratic equation [n%j has equal roots. This demands that:

ABtarf ¢ + 2Gtang + C) — Jtang + H)? = 0. (110)

This condition equation has degree two in #ganTwo of the infinitely many meridian

curves of the complex surface will then go through aitrary point that is chosen on

the OX coordinate axis. That axis will then be a double linthefcomplex surface.
When we set:

% = —tany
in the last equation, it will become:
Atarf ¢y+Btarf ¢ +C+ 2Gtang + 2H tany + 2) tang tan = 0. (111)

This equation is to be regarded as the equation of a sorface. ¢ means the angle that

one line of it defines with th¥Z plane, anc{g—z/lj means the angle that it defines with

OX. Once the plane in which two lines of the core Has been determined by an
arbitrary choice ofp, that will give two values ofy by which the directions of the two
lines will be given in that plane. Howevaet ,is likewise the angle that the projection of
this line of the cone ont¥Z makes with th€dZ coordinate axis, ang/ is the angle that
its projection ontoXZ defines with that axis; one thus comes to:

tany=r, tang =s,
and the equation of the conic surface goes todlf@nrfing one:
Ar? +BS + C + 2Gs+ 2Hr + 2Jrs = 0. (112)
We will obtain the same equation when set the ¢merdinatesp, o — and as a result of

that, 7 — equal to zero in the general complex equation (t)will then represent the
complex cone that has its vertex at the origin.

214. By generalizing these considerations, we obtaéndetermination of the planes
of then (n — 1) meridian curves of clagsfor a complex of arbitrary degreg which
intersect an arbitrary point of their(n — 1) lines at the origin, and the tangents toehos
curves at that point. The equation of the comptene whose vertex falls upon the origin
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is deduced immediately when we geto, ands equal to zero in the general equation of
then-degree complex, as above. Let the resulting equatidagreen inr ands be:

d(r,s9) === 0;
when we differentiate this, that will give:

dz,
d

=0.

=

By eliminatingr from the two foregoing equations, we obtaifn — 1) values o§ for the
determination of the planes of then — 1) meridian curves of the complex surface that
intersection at the origin, and thus the directiointhe tangents to the meridian curves at
the origin from the correspondimgy(n — 1) equal roots of the penultimate equation.

215. In paragraph 6 of this section, we proved analyticdlbt the surface of a
second-degree complex haght double pointghat lie pair-wise in thdour singular
rays, andeight double planes that intersect pair-wise infthe singular axes.Just as the
four singular rays intersect the double line, the fougidar axes will lie in the same
plane as the double line, and will therefore likewisersgct it. We would like to call the
planes that can be drawn through the double line andotiresingular rays thdéour
singular planes of the complex surfaced denote the former [, $, S, S, and the
latter byE;, E,, Es, Ea, respectively. In a corresponding way, we would likecall the
intersection points of the singular axes with the dolibethefour singular points of the
complex surfageand denote the former B\, A, As, A4 and the latter b, Po, Ps, Py,
respectively.

Any ray that encounters the double line as a double réyeoéomplex surface will
intersect the surface, since it is of order foutwat more points, in addition. Any of the
four singular rays will contain a pair of double pointsadiition to the points at which it
cuts the double lines, and thus, six pair-wise coincidemtgoif the complex surfac#:
lies on that surface in its entirety.

If we draw a plane through the double line as a double frlyeocomplex surface,
which we have referred to as the meridian plane, tinesurface, since it is of order four,
will be cut by that plane in yet another curve of secomtkr, in addition to the two rays
that coincide on the double line. The meridian plaaé gbes through a singular ray is a
tangential plane of the surface, since the second-ardee in it degenerates into two
rays that coincide on the singular raflhe meridian planes that go through the four
singular rays will be contacted by the surface along these rayse complete fourth-
order intersection curve will degenerate into four rayshis case that pair-wise coincide
in the double ray and the singular ray. By contrast, af a@nsider the fourth-order
meridian curve to be a complex curve of class twoithahveloped by axes, in which the
two rays that coincide in the double line remain compjdtelyond consideration, then it
will degenerate in the present case iat@ystem of two pointsith which the double
points that lie on the instantaneous ray will coincidéne tangential plane to the surface
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at any point of a singular ray will be the singular plére goes through that ray and the
double line.

216. Since the complex surface is of class four, one can tlwvo more planes on the
surface through any axis that lies in a plane with the @olité (double axis) of the
surface, in addition to the double plane that goes thrthegdouble line. Any of the four
singular axes will be contained in a pair of double plameaddition to the double plane
that goes through the double line; they will thus be coathin six pair-wise coincident
planes of the complex surface. As a consequence patlyiplane that is drawn through
it will be a plane of the complex surface.

The enveloping cone of a complex surface of class febich has a point of the
double line for its center, resolves into the two akes coincide with the double line and
a cone of class two. The singular poiRtat which the singular axes cut the double
line are the vertices of cones of class two that dagés into two axes that coincide in
the singular axes and contact the surface at the singuilts. The complete enveloping
cone degenerates in this case into four axes thatideipair-wise in the double line and
the singular axis, respectively. By contrast, if wasider the enveloping cone to be a
second-order cone that is described by rays then itdegkenerate into a system of two
planes that coincide with the two double planes tbahgpugh the instantaneous singular
axis. The contact point of all planes with the stefthat go through a singular axis is the
singular point at which that axis will cut the double line.

217. An arbitrary plane cuts the complex surface in a feortler curve that has a
double point at its intersection with the double line. @&itlwo real or two imaginary
branchesof the curve will intersect at that double point;tie latter case, the double
point will be an isolated point of the curve. By gofngm one case to the other, it will
become a cuspidal point. That transition will corregpto the fact that the plane of the
curve goes through one of the four singular pdit$,, Ps, P4 at which the double line
of the complex surface will be intersected by the fingular axeg\;, A, As, As. The
double line will be divided into four segmen®sP,, P,Ps;, PsP4, P4sP1 by these four
points, where we shall count the two external segsntitdt meet at infinity as a single
one. The double line lies completely in the complefesay; but in such a way that it will
cut two real sheets of the surface in two segmentdthabt meet each other, while the
remaining two segments, which likewise do not meet eachr,oti# be the real
intersections of two imaginary sheets of the surfatiee two tangents to the curve at its
double point will likewise be real or imaginary, along witie two tangential planes of
the complex surface at that point. They will lietlrese two tangential planes and rotate
around the common double point in these two planes whermplane of the curve is
rotated around that point arbitrarily. If the intergsgiplane goes through one of the four
singular points then that point will generally be apadal point of the intersection curve.
The two tangential planes to the surface at such a wdlrcoincide in those planes that
go through the double line and the singular axis, respectiv@lge tangents to all
intersection curves at their common cuspidal point thaicides with the singular point
will lie in this plane, whose directions might also bethe intersecting plane. We can
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describe the complex surface by a varying curve of ordenviitbra cuspidal point that
we can rotate around the tangent at that point. Thesggerts can have all possible
directions in the tangential planes to the surface; rtigodar, when they coincide with
the singular axis, the intersection curve, like itsypJamight rotate around that axis into
all positions of the same two branches that contadhersingular axis at the singular
point. If the plane that rotates around the singulas eaincides, in particular, with one
of the two planes into which the complex cone degeeenahen its center falls upon the
singular point then the fourth-order curve that liestiwill resolve into two curves of
order two that coincide in those second-order curvesgawinose entire extent the
surface will contact the planes. Finally, if the @ahat rotates around the singular axis
likewise goes through the double line then the fourth-ordersaction curve will resolve
into a second-order curve and two straight lines thaicite in the double line that
represent a second curve of order two that contacfstimer at singular points.

218. Any point of space is the center of a cone of chass that envelops the
complex surface and has those meridian planes thatgth through the point for its
double planes. These double planes will either contactgalsheets of the conic surface
in two real lines of it or those two sheets will beagmary, and with them, the two lines
of the cone. In the latter case, the double contdlttow imaginary; viz., the double
plane will be an isolated one. The two lines alofmctv the enveloping cone contact the
double plane will cut the double line of the complex surfacevo points; that surface
will contact the double plane at these two pointse Tur singular planes;, E, Es, E4,
which contain the four singular rafs, S, S5, S of the complex surface, will belong to
the meridian planes. They will divide the infinite epanto four spatial components
EiE,, ExEs, EsEs, E4E1, each of which will be bounded by two successive singudares
and will consist of two components that meet at infinitiythe vertex of the enveloping
cone of one of the four spatial components is found emgular plane in the adjacent
spatial component then the cone in question will beaabet along two of its lines at one
of the two positions of its vertex, while in the ethposition of its vertex the meridian
plane that goes through it will be an isolated doublaeplan the transitional case where
the vertex of the enveloping cone lies in the singulanglitself, this plane will osculate
the enveloping cone; it will then be an inflection @aof the enveloping cone that
simultaneously contacts it and cuts it. If the vertéxXhe enveloping cone changes
position in the same meridian plane then the twcslmeng which the cone is contacted
by that plane will rotate in that plane around twodixm®ints of the double line in which
the complex surface will be contacted by the merighame. When the meridian plane
rotates around the double line, the two contact pointeatriine will change position. In
particular, when the vertex of the enveloping conehissen to be in one of the four
singular planes, they will coincide in those pointsadich the singular ray meets the
double line, respectively. We can envelop a complex tyna varying cone of order
four that has a given plane for its inflection plane artbse vertex moves along a
straight line in that plane. The given plane will thenthe singular plane of the complex
surface and the given line in it will then cut the double &héhe point at which it will be
cut by the ray, respectively. In particular, if the egrof the enveloping cone lies in the
singular line in the singular plane and moves along it thercone in question will have
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two sheets at all positions of its vertex that wilhtaxt the singular plane along the
singular ray. Only when the vertex is chosen to lmnatof two double points on the ray
that goes through those two of the eight double poiitghve enveloping cone of class
four resolve into two cones of class two that coinaidéhe contact cone of the double
point. That cone will have the singular ray as ongsdfines and will contact it along the
respective singular plane.

219. Any point of space is the center of an enveloping airtee complex surface
that has eight double lines that go through the eight douligspof the surface. All
curves along which the surface will be contacted by msmribing cones will also have
the eight double points of the surface for their doubletpoiitherefore, this relationship
will also exist when the vertex of the cone falls upbe tlouble line of the surface.
However, four pairs of planes will then separate ftbenconic surface, which, as a conic
surface of class four with a double plane that goes thrdabghdouble plane will
generally be of order ten, and these pairs of plandist@n coincide with the four
singular planes of the surface, with which, only ormoed-order cone will remain. The
contact curve of this cone will go through the eight doplollts of the surface and will
be cut by each of the four singular planes at two celp®ints.

If we, in agreement with the foregoing, project the sigfanto an arbitrary plane (in
order to illustrate the silhouette, we can take itedHe surface that is illuminated from a
point of its double line) from a point that lies upon itsuldle line and can move
arbitrarily to infinity in it then we will obtain aanic section that perpetually moves with
the change of position of the point on the double lind,l&ewise four straight lines that
keep their positions. They will be the projections airfsingular rays, or also — what
amounts to the same thing — the intersection lines efintftage plane with the four
singular planes of the surface. They will all go throtlghpoint at which the double line
of the surface meets the image plane, and will cuttimc section in the projection of
the eight double points. When the vertex of the amseribing cone moves along the
double line the system of the conic section and the foaight lines will transform into a
curve with eight double points.

In particular, when the vertex of the second-ordeuanscribing cone falls upon one
of the four singular points of the complex surface, asn@ result, resolves into a system
of two planes, the spatial fourth-order contact curvé eecompose into two second-
order plane curves. The eight double points of the sadalt then distribute themselves
along these two curves.

220. Any plane cuts a complex surface in a curve that hderdour, and will
likewise have class ten, since it has a double poinb@alduble line of the surface. The
tangential planes of the surface at points of the gat#ion curve determine a
developable surface. All such developable surfaces hawighedouble planes of the
complex surface in addition to their own. The intetism curve will be enveloped by all
axes along which their planes are cut by the enveloplagep of the developable
surface; the intersection lines with the eight doubn@$ will be double axes of the
intersection curve. These relations also still car@ito exist when the intersecting plane
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goes through the double line of the complex surface. PBgints will then separate from

the intersection curve that coincide pair-wise atfthe singular points that lie on the
double line, and all that will remain is a curve of class that belongs to both the
complex surface and complex. That curve will be enveldpethe eight intersections

with the eight double planes that intersect pair-wiis¢he four singular points on the
double line. If the intersecting plane coincides witk ohthe four singular planes of the
surface, in particular, then the curve of class two wakolve into two points that

coincide with two double points of the complex surfea®] the developable surface of
class four will resolve into the two contact conéglass two at those two points. Each
of the two associated double planes will then go thromghod the two double points.

221. By the restricting condition that no double plane cantain two double points
that lie upon the same double ray, and thus that two dpldsles cannot go through any
double point that intersect in its singular axis, ongiven immediately, on the one hand,
the distribution of the eight double points into four ploigr points that lie upon each of
two double planes that intersect along its singular asisyell as, on the other hand, the
distribution of the eight double planes into four plus fplanes that go through any two
double points that lie on singular rays of them.

We would like to denote the four singular rays by the sysabo

1, 2), (3,4), (5,6), (7,8
and the double points on them by:
1, 2, 3, 4, 5 6, 7, 8.

We obtain the following eight groups of points:

(1,3,5,7). (2,4,6,8)
(1,3,6,8), (2,4,5,7) 113
(1,5,4,8), (2,6,3,7)
(1,7,4,6) (2,8,3,5).

No two double points that lie upon the same line will apjreaither of the groups. Any

two adjacent groups will contain eight double points,lin @he four double points of

one of the two groups will lie on one of two double p&anehich intersect along a
singular axis, while the four of the other group will lie the other one. In the same
sequence, we would like to take the following, simpleration for the eight double

planes, instead of the foregoing one:

[, I,

[, 1V,
V, VI,
VII, VIII.
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One will then have:
(1,1, (1, 1v), (v, VI, (VI VD

for the symbols for the four singular axes along wihieheight double planes | and II, 11l
and 1V, V and VI, VIl and VIl intersect. From thelsma (113), we immediately obtain
the following schema for the distribution of the eiglatuble planes into groups of four
planes that go through their double points:

(, 1, V, VI, (I, IV, VI, VI,
(, 1, VI, VI, (L, v, Vv, VI, (114
(, V, IV, VI, (L, VI L VI,
(I, VIII, IV, V), (/I [RITAY)}

The four double planes of the foregoing eight groups intensebte eight double points,
respectively, which we previously denoted by the symbols:

~N oW
© o AN

These eight double points lie pair-wise on the four sargrdys of the complex surface
whose symbols are (1, 2), (3, 4), (5, 6), (7, 8).

Therefore, when the eight double points of the surdaeayiven, we will immediately
obtain its eight double planes, and conversely, wheratter are given, we will obtain
the former. A remarkable geometric structure that larpeciprocal to itself is present in
the eight points and eight planes.

222. If we draw an arbitrary plane through the dodbile of a complex surface and
choose a point of it arbitrarily then a complexwauof class two will lie in that plane and
the point will be the vertex of a second-order clemmone. Two lines of the cone will
be two tangents of the curve. The polar plandefdouble line relative to the cone will
go through the pole of its double line relative tte curve. This relationship will
continue to exist no matter how the plane of theweunight rotate around the double line
or how the vertex of the cone might change positonthat double line. It will then
follow from this immediately in a geometric way, &g previously proved analytically,
that the poles of the double line of a complexaefrelative to all of its meridian curves
will lie on a straight line, and that the polar p¢a of the double line relative to all
circumscribing complex cones will intersect alohgttstraight line. We have called this
line thepolar of the complex surfacdn order to determine it, we need only to corddtru
the two poles of the double line relative to any tweridian curves of the surface or the
two polar planes of the double line relative to &ng circumscribing complex cones of
the surface.
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On the one hand, if we take, instead of the meridiames, those two points that lie
on a singular ray into which the curve degenerates wkgnane coincides with one of
the four singular planes of the complex surface, iniqdar, and on the other hand,
instead of the circumscribing complex cone, those tvemgd that intersect along a
singular axis into which the cone degenerates when iitexvéalls upon one of the four
singular points of the complex surface then we willniediately obtain the following
theorem:

The polar of a complex surface, like the double line itself, t&sgts four singular
rays and its four singular axes. Any singular ray is harmonically separaithcthe two
double points of the surface that it connects and the two intersectidnslauble lines
and polars. The two double planes that intersect along any singular axis andothe tw
planes that go through this axis and the double line and polar define a systeor of
harmonic planes.

223. All of the singularities of a complex surface are dateed in a linear way
when we know the double line, the polar, and three doublggtj 3, 5, or in place of
them, three double planes I, Ill, V of the surface.this, we are assuming only that no
two double points lie upon the same singular ray and nodowble planes intersect
along the same singular axis.

We can draw three straight lines through the threengpaints that intersect the
double line and the polar. These three straight linbghaare three singular rays of the
surface, go through the three associated double points 3, #hich we obtain
immediately from the previous number. All that themaen unknown are two of the
eight double points, whose symbols we would like to brtadkeorder to distinguish
them. The known eight double points will suffice toedstine all eight double planes
(no.221):

@ 35 (M= | (2, 4, 6, 8)= I,
(1, 3,6, (8)= 1, 2, 4,5 (7)= IV,
1,54, @)= V (2,6, 3, (7)= VI,
1, 4, 6, (7)= VI, (2, 3, 5, (8))= VI,

which intersect pair-wise in four singular axes elach of the eight double planes, we
obtain immediately, and in a linear way, the contacve that goes through three known
double points and contacts the respective singiar at its intersection with the double
line, moreover. Four of the eight double pland¥|,VI, VIl intersect at one of the two

previously-unknown double points in (7), while themaining four Il, I, V, VI
intersect at the others (8). With that, the fowitigular ray is also determined.
If we start with the three double planes I, Ill,thMen those three straight lines that

connect the points at which three planes interSextdouble line and the polar will be
three singular axes of the surface, and from te&ipus number, we will likewise obtain
the three new double planes I, IV, VI, which irgect the three given ones along these
three singular axes. From numl&21, the three pairs of double planes will suffice to
determine the eight double points and the eightambrcones at the eight double points.
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The two stillFunknown double planes VII and VIII are detmed by the fact that they
contain the eight double points, four on one and four emther; their intersection is the
fourth singular axis.

The remarkable geometric structure that was alreddyree to at the end of number
221 can thus be constructed by means of the double line and ldreopahe surface —
both lines have a completely equivalent relationship toand three points or planes of
it. This structure then depends upon:

2M+3B=17

constants. However, the general complex surfacef itlgdends upon just as many
constants. That surface will be determined when thengia structure that depends
upon it is determined.

224. Some remarkable linear constructions of the generapleomsurface are linked
with the foregoing when the double line, the polar, artteeithree of its double points or
three of its double planes are given.

Determination of the complex curve in an arbitraryichan plane:

First construction. One constructs the eight double planes. A meridiane cuts
these eight double planes along eight straight lineschwhiill be contacted by the
complex curves in them. Five of these straight line$ el sufficient for the linear
determination of the curve.

Second construction. A meridian plane cuts the eight contact curvesggix@r the
eight points that coincide pair-wise in the four singplaints, at eight additional points.
These eight points lie on the complex in the merigiame. Five of them will suffice for
the linear determination of the curve. From the firgtstauction, we obtain the eight
tangents in each meridian plane that can be drawn frenfour singular points to the
curve, and from the second construction, the contactspt these tangents.

Determination of the complex cone whose vertex hesen arbitrarily upon the
double line:

Firgt. construction. One constructs the eight double points of the surfate. eight
straight lines that connect the chosen vertex viise eight double points are eight lines
of the complex cone, which is determined by five of tHess in a linear way.

Second construction. One constructs the eight contact cones at the eighble
points. Two tangential planes to each of the eightact cones can be drawn from their
centers, which are chosen arbitrarily on the double lDéthe sixteen tangential planes,
four times two of them will coincide in the four singujalanes. The remaining eight
tangential planes to the eight contact cones thatotl@m through the double line will
contact the complex cone, which is determined in afineg by five of these planes. In
the first construction, the complex cone will detered by eight lines that lie pair-wise
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in four singular planes, and in the second construdtiovill be determined by the planes
that contact it along these lines.

In order to then describe the surface itself, we meresd to let the curve of order
and class two that is determined by any position of thedrae plane rotate around the
double line. In order to envelop this surface with a comptane of order class two,
which is determined for any position of its vertex, weeheneed to let this vertex move
along the double line.

225. The foregoing discussion of the singularities of ctexgurfaces of the general
kind can likewise be carried over to the special caséhioh any line that belongs to the
complex is taken to be the double line of the surfaldeen, on the one hand, the double
line will contact all meridian curves of the surfaced @n the other hand, a common line
to all circumscribed complex cones will fall on the deulrhe. The double line and the
polar to the surface will coincide in a straight line.

In the general case, there is no direct route fneenidian curves that cut the double
line to ones that do not cut it. If there is a sirglleh curve that contacts the double line
then that line will belong to the complex, and will theontact all meridian curves.
Nonetheless, there is a direct route from circubsgy complex cones with the property
that the double line lies outside them to complex conds the property that the double
line lies inside them. For the surfaces of the sp&adl, all meridian curves will be real,
and none of the circumscribing complex cones will redaaepoint.

226. Whereas the double line will be enveloped by a meridianepthat rotates
around it, it will likewise be described by the pointswdtich it is contacted by the
complex curve that lies in the meridian plane. Any lihat goes through the contact
point in an arbitrary position of the meridian plangl wut the surface in four points,
three of which will coincide on the double line. Any aruir plane that goes through
such a line of the meridian plane will cut the surfata icurve of order four that has a
cuspidal point at the contact point and the line in goedor its tangent. The meridian
plane is the geometric locus of the cuspidal tangentalltintersection curves whose
planes go through the contact point of the complexecuanv the double line; the two
tangential planes to the surface will coincide at gmant. When that point moves along
the double line, the tangential plane to the surfacéaitpoint will rotate around that
line. The double line will be auspidal ray of the complex surfacdt will no longer
consist of segments that are the (always realjsettions of rotating real and imaginary
sheets of the surface; two real sheets of the surfdlceoalesce on the cuspidal edge.

227. A complex cone whose vertex is chosen arbitramiytlee double line has a
plane that goes through that double line for its tangéamtep If we draw an arbitrary
straight line through the vertex of the cone in thag¢atial plane and take an arbitrary
point of it to be the vertex of an enveloping conelag four then the tangential plane to
the complex cone will be an inflection plane foattikone, which will be osculated by it
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along the chosen straight line (viz., a line of infl@ctof the cone). It follows from this
that an arbitrary meridian plane will be the commarflection plane for all
circumscribing cones of class four whose verticeslie. If the meridian plane rotates
around the double line then the vertex of the complexaserthat it contacts will move
on the double line. If we intersect a circumscribingecohclass four whose center lies
in an arbitrary meridian plane with a second merigoéame then the intersection curve
will be of class four, will have the double line for itdlection line, and will have those
points on it for inflection points that are verticdglmse complex cones that contact the
former meridian plane. When this meridian plan¢hefvertex of the cone of class four
rotates around the double line, the double line will contiguedimain the line of
inflection of the intersection curve, while the imfi®n point will move along it. The
double line that entered in the previous numbersaspidal rayof the surface will now
enter in this number as arflection axis.

228. Exactly the same relationship exists between thera@évaf the contact point of
the complex curves of a complex surface of the spkicid along the double line and the
rotation of its plane around that line as the one ¢xadts between the advance of the
vertex of the complex cone of the surface along théblgoline and the rotation of its
tangential plane around that line. In numi&0, when we started with the general
complex equation and chose those complex surfacehadadX for their double line,
under the assumption of rectangular coordinates, weedrat/the following equation:

_ Px+H
QX-J’

tan g

where @, in the general case that was already considerdteifobtnote in numbet93,
meant the angle that an arbitrary meridian plane matiethe XZ coordinate plane, and
x corresponded to the pole of the double line relativbeacomplex curve that lay in the
meridian plane. In the case of complex surfaceth@fspecial kind, where the double
line is a line of the complex, and thus the constavanishes in its equation, the position
of the contact point of the complex curve with theilole line will be given byx. When
the complex surface of the special kind is, in the @& cdescribed by a complex curve,
and in the other case, enveloped by a complex coneptbagoing equation will then
express the relationship in question that exists betweandtien of the contact point on
the complex curve (the vertex of the complex cone, yedpng the double line and the
rotation of the plane of the complex curve (the tangémiiane of the complex cone,
resp.) around that double line.

When we ignore the origins of the surface, we canm refethe foregoing equation to
an arbitrary point of the surface that lies upon the ddui#eandg to its tangential plane
at that point. If the contact point moves along dbeble line (viz., the cuspidal ray of
the surface) then the tangential plane to the suidadbat point will rotate around the
double line (viz., the inflection axis of the surface) he same way that the tangential
plane rotates around a generator of a ruled surface ofedegoewhen the contact point
moves along it. The law by which the contact point amgjential plane are reciprocally
determined will be the same in both cases (see thedtein numbef93).
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229. For the complex surface of the special kind thatwresider heréfor which, all
complex curves contact the double line and that doubladisgnultaneously a common
line of all complex cones, on the one hand, when timepésx curve in any of the four
singular planes degenerates into two points, one ofatbgbints will coincide with the
intersection of the respective ray and the double lireer@as on the other hand, when
the vertex of the complex cone is one of the fongwiar points, and therefore the cone
degenerates into a system of two planes), one of thesglanes will go through the
double line and the singular axis.

Complex curves and complex cones in the complex surfagpeastion arrange
themselves together pair-wise in such a way that pointhieh the curves contact the
double line will be the vertices of cones and the plasfethe curves will contact the
cones along the double line. Those complex cones thadsmociated with a complex
curve that degenerates into two points will then deg¢aento two planes, in their own
right. Under the assumption that was made, the comgee must then contact the
singular plane along the double line. Furthermore, it roastain the singular ray that
lies in that plane, since it will belong to the surfaocenpletely and go through its vertex.
These two conditions can exist simultaneously only wihencone degenerates into a
system of two planes, one of which is the singular pldhés then proved thahe four
singular axes of the surface lie in the four singular planes, and thesiiogular rays go
through the four singular points.

229. In order to distribute the eight double points on fouthefeight double planes
according to the schema (113) in numBeL in the case of the complex surfaces in
guestion whose double lines are lines of the complex, ake the points that were
referred to as:

1, 3, 5 8

to be those four of those points that coincide on théldoline with the four singular
points:
P, P2, Ps, P4
We would now like to represent the four remaining doubletpo
2! 4! 61 71
which are the four vertices of a tetrahedron, by:

Qu Q2 Qsz Qq,

P1Qi, P2Q2, P3Qs PiQs

in such a way that:

are the four singular rays. The cited schema then gneesight double planes:

[, I,
[, Vv,
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V, VI,
VI, VI
the following symbols:
P1P2P3Qy4, Q1Q2Q3P4,
P1P2P4Qs, Q1Q2Q4Ps3,
P1P3P4Q>, Q1Q3Q4P2,
PoP3P4Qx, Q2Q3Q4P; .

The four planes I, lll, V, VIl go through the four viees of the tetrahedro@:Q.QsQa,
and all of them intersect along the double >, P; P, . The four singular planes are
then:

Es Es E; E;.

The four planes Il, IV, VI, VIII coincide with the to faces of the tetrahedron and cut the
double line, moreover, at the four singular poiRisPs; P, P1, respectively. The four
singular axes are:

(1,10, (1, 1V), (v, VD), (VI VID.

We deduce the following relations from the foregoing:

Any vertex of the tetrahedron is a double point of tdase, and its opposite side is
a double plane. The latter intersects the double lineatod the four singular points,
through which goes one of the four singular planes. Tiagghkt line that connects the
vertex of the tetrahedron with the singular point ie ofthe four singular rays and the
line of intersection of the opposite face of the tegdhon with the singular plane is one
of the four singular axes of the surface.

A singular ray and a singular axis lie in each of four singular planes that are
meridian planes. They both intersect in that plane at the corresponding asirpgpuiht
along the double line.

230. Complex surfaces depend upon seventeen mutually-indepeswesiants, in
general, and complex surfaces that have a line ofah®lex for their double line will
depend upon one less constant. These complex surfacbstemmined completely when
one is given their double line and those tetrahedrahidat the four double points for
their vertices and the four double planes for their fad@suble lines and tetrahedra can
thus be assumed to be arbitrary from here on.

The foregoing yields the following simple constructions

An arbitrary face of the tetrahedro@.( Qs, Q) is a double plane of the surface, the
point at which it cuts the double line is a singular p&intand the straight linB1Q; that
connects that point with the opposite ver@xof the tetrahedron is a singular ray of the
surfaceS, . If we project that singular ray onto the double plé@g Qs, Q) parallel to
the double line then the projection will likewise be tmgslar axisA; that goes through
the singular poinP; and the projecting plane will be the singular plea®f the surface.
The contact curve in the double plane will be determinethéyact that it goes through
the three vertice€),, Qs, Q4, and the singular poir®; in that plane and contact the
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singular axisA; at the latter point. The contact coneQatwill be determined by the fact
that it will be contacted by the three faces of theateedron that intersect at that point, as
well as the singular plarig;, and in fact along the singular r&y. This cone, with@-,

Qs, Q4) as its base, has a conic section that contactththe tetrahedral edg€®Q:s,
Q3Q4, Q4Q:2 in that plane, along with the singular a®g and in fact at its intersection
point P; with the double line. The singular a¥s is then a common tangent to that base
and the contact curve at the singular pdttat which both double lines intersect.
Whereas the contact curve goes through the three eenitthe triangle.QsQa, the
base of the contact cone will contact its threesside the name of reciprocity, we obtain
two cones — viz., the contact cone at the double ggistnd a cone with the same vertex
that envelops the contact curve in the opposite fackeofetrahedron. Both cones have
the singular rays, for their common line and contact it in the singulEnpE; that goes
through the double line. Whereas the contact cone catadaces of the tetrahedron
that intersect af,, the cone that envelops the contact curve contaithtiee edges of the
tetrahedron that meet that point.

We can repeat the same constructions three more,tamel then obtain all of the
singularities of the complex surface.

We can thus determine the complex surface itself inwags: In one case, by its
meridian curves, and in the other, by its enveloping cerlesse vertices lie upon the
double line. In regard to the former manner of detern@natio which we will restrict
ourselves here, we draw any meridian plane through theleldine that cuts the contact
curves in the four double planes in any four points, in addto the four singular points
on the double line. The curve along which the surfacebeiltut by the meridian plane
will go through these four points and contact the double hmereover. There are two
such meridian curves, and consequently, there are alsoacdawplex surfaces of the
special kind that have all of their singularities in commw- viz., the double line, the four
singular points on them, the four singular planes gieathrough them, and finally, the
four double points with their contact cones, as welhasfour double planes with their
contact curves ).

231. The discussion of the singularities of the genevahlmlex surfaces carries over
immediately to the special caseegfuatorial surfacesvhen we let the double line of the
surface go to infinity. The planes of all complex curflastude planes of the surface)
are mutually parallel, and their centers lie on tieemeter of the surface, which enters
here in place of the polar. The circumscribing complexes will be complex cylinders

() If just the singularities of a complex surface aregithen it will remain to be decided which of the
two straight lines that cut all four singular rays and @lirfsingular axes will be the double line of the
surface and which one will be its polar. By this indeiaacy, the same singularities will correspond to
two different complex surfaces that belong to two difiéisecond-degree complexes. In the general case,
the determination of the double line and polar of théaserwill depend upon the solution of a quadratic
equation. In the special case where the double linepafad of the surface coincide in a line of the
complex and cannot be separated from each other, thewdion of the surface from it singularities will
necessarily be based upon the solution of a quadratiti@guahile in the general case the construction
will depend upon a linear one, as long as we assume tlitae @fvo straight lines whose determination
depends upon a quadratic equation, one of them is the douhlatid therefore the other one will be the
polar of the surface (224).
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whose axes lie in latitude planes. There are four latiplalees — viz., the four singular
planes of the surface — in which the complex curve, vdogisidered as a curve of class
two, degenerates into two coincident straight linesvat points, when considered as a
curve of order two. The four lines that connect the foairs of points are the four
singular rays that lie in the surface entirely. Taerfsingular planes contact the surface
along the entire extent of their four singular rajyie diameter of the surface cuts these
rays at the midpoint of the two double points thatrdieghem. Four of the circumscribed
complex cylinders degenerate into systems of two plavaish are double planes of the
surface. The lines of intersection of the four pairplanes that meet the axes of the
cylinder are the four singular axes of the surface; tieein latitude planes and cut the
diameter of the surface. The intersection curve adraplex cylinder that circumscribes
the surface with a given plane can be considered thebprbjection of the surface onto
that plane along the direction of the cylinder axis.wéf let the axes of the projecting
cylinders rotate around the double line in the latitude pldrmasthey will coincide with
the singular axes of the surface in four special positidiee projections then go through
two intersecting straight lines, namely, the intetises of the image plane with the two
respective double planes. This corresponds to a trandition a hyperbola to a
hyperbola whose real imaginary axes, which go through reree been switched ).
The contact curve in the two double planes that interaleng the same singular axis
have that axis for their common asymptote, and are thesndieed by the fact that they
contain eight double points — four on one plane and fouherther — moreover. The
contact cones at each of the two double points thatpgon the same singular ray will be
contacted by that ray in the singular plane that goesughrat, and will thus be
determined by the fact that they contact eight doubleeglafour on one and four on the
other.

232. Finally, if we specialize further and consider tlases in which a line of the
complex that lies at infinity is taken to be the double bf the complex surface then of
the eight double points on the double line, in this caseeglisfour double planes will be
at infinity and four of them will coincide with the fogingular planes. One of the four
singular rays will lie in each of the latter planasd parallel it, one of the four singular
axes. The complex curves in all latitude planes valphrabolas, since they contact the
double line at infinity. When their planes move paratethemselves, the parabolas will
change in a singular plane under the transition, in wilielg degenerate into two points,
one of which is at infinity, in the sense of its extenthe circumscribing complex
cylinders will have the double line at infinity for th&ommon line and will contact it

(") We may not draw the conclusions from this that thepiex cylinders are all hyperbolic and the
projections are all hyperbolas in the case of eightdeable points and eight real double planes for the
surface (this assumption is adapted to our terminologyyo parabolic cylinders can also be given (no.
182), and that would then refer to the transition from higpkc to elliptic complex cylinders. Two
projections would then be parabolas (corresponding agegiron directions that both lie between the
directions of two successive singular axes), with whichehyolas would go to ellipses, and these into
hyperbolas.

Under the assumptions that were made, the meridiaresi®tween any two successive singular
planes are either all ellipses or all hyperbolas. p&#s and hyperbolas go to each other under the
transitions between each of the four singular planes.



§ 7. General consideration on complex surfaces. 201

along a latitude plane. It is the hyperbolic cylinders itk have latitude planes for one
of their asymptotic planes. The hyperbolas along wthiely will be cut by an arbitrary
plane are to be regarded as the projections of thecsutfelf. If we give the axis of the
projecting complex cylinder all possible directions thee of the two asymptotes of the
hyperbola will move parallel to itself. In particul#rywe project along the direction of a
singular axis (which is parallel to a singular ray) thenhyperbola will degenerate into a
system of two straight lines that are the intersestiof the image plane with the singular
plane and the double plane, which goes through the inseamia singular axis)(

The four double points that do not lie at infinity are trertices of a tetrahedron
whose faces are the double planes that do not go throegtotible line at infinity. A
face of the tetrahedron and the singular latitude plah&ghngoes through the opposite
vertex, intersect along a singular axis, and the réispesingular ray goes parallel to it in
the singular plane through the vertex of the tetrahedfdn contact curve in the double
plane has the singular axis for its asymptote and goesgirihe three double points in
that plane. The contact cone at the opposite doubié pois that double plane along a
hyperbola that likewise has the singular axis that hes for its asymptote and the three
edges of the tetrahedron that lie in it for its tangent

233. The complex surfaces to whose general discussioprdsent first section is
chiefly dedicated define a remarkable family of surfacesrdér and class four, which
we can also define independently of the consideraticdheotomplex in their own right
as those surfaces of that order and class that hakedggble points and eight double
planes (which are mutually implicit), along with a doulrke. The discussion of these
surfaces thus takes on a surprising simplicity and symyndeie to the fact that we link
their existence to the consideration of the compleaspective of the infinite variety of
their forms and the great number of their constai@s. the other hand, these surfaces
serve as an invaluable tool for the analytic discussmhgeometric visualization of the
complex. In the next section, we will go on to thscdssion of the complex itself, in
order to come back to the discussion of its surface daite

However, there is an even newer viewpoint from whiomplex surfaces can be
considered that | shall not refrain from mentioning hefée complex surfaces that we
consider will be enveloped by lines that belong to a congejend indeed to one that
consists of the coincident lines of two complexeg ofwhich is a general one of degree
two, and the other of which is a first-degree complethefspecial kind, such that all of
its lines cut a fixed straight line. Complex curves anmmex cones will be enveloped
and described, respectively, by successive lines of thgrwemce that intersect.

In an analogous way, any congruence has a reciprocéibnslaip with a certain
surface. Two successive intersecting straight linesa afongruence determine the
intersection point of the two lines and a plane thataias both of them. The point will
be a point of the surface and the plane will be a pidite

The general expression, viz.:

() Whereas two parabolic complex cylinders appear foretpeatorial surfaces, which refer to the
bounding elliptic complex cylinders when they are real, iteetwo parabolic cylinders will coincide, and
the elliptic cylinders will not exist. In special case such as all equatorial surfaces and especially all
parabolic ones all complex cylinders can be parabolic.
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2n (n-1),

that we obtained for the order and class of the surfat#se complex of an arbitrary
degreen (no. 212) reduces to zero for a first-degree complex. In tagecthere are no
lines in the surface that is enveloped by the congruenbs stirface will be met by two

straight lines, and we can represent two such stréigdd by a single equation in either
point or plane coordinates. The two straight lines ballsufficient for the determination
of the congruence, and conversely, when the congrusrgieen, we will obtain the two

straight lines in question from its two directrices.




Part Il.

Discussion of the general equation of a second-degr ee complex.

§1.

Diameter of a complex. System of three associated diameters. The complex
cylinder that isassociated with athree-axis system. Central parallelepiped.
Center of the complex.

234. For any given pland’'(u', V), if we considet’, U, V' to be constant artgu, v to
be variable then equation (IV) will immediately gitlee complex curve that this plane

!

. . . . : t' u
contains when it is represented in space by plane coaedindt we mtroducevv, wE
Voo . t u v . .
—, instead of', U, v, resp., and—, —, —, instead ot, u, v, resp., then we can write
w W W w
the condensed equation in the following form:

(D2 + EU? + FV2 + KU'V + 2LtV + 2Mt'U) WP

-2 DtW +LvW + Muw —O UV —RV?-Srv + T tu + Uu®) tw
-2 EUW +KVW +M tw + NtV + PUV + Qv? - T tu + Uu'?) uw
-2 FVW +Kuw +Ltw - (N=0) tu - PuU? - QuvV + RtV + St?) vw
-2 (AUW —KW2+Gt2-HtV -JtV —Otw + P Uw - QVwW) uv
2BtV -LW?-Gtu +HU?-Juv +NUuw +R VW - Stw) tv
—2Ctu -MW?-Gtv-HUuV +JV? - (N-0)vw + T tw - U Uw) tu

+ OW2+BVZ+CUu?—2G UV —2SVW + 2T U W) t?

+ EW2+AVZ+ CU?—2HT V —2PV W - 2U t' W) 1P

+ (FW2+AVZ+BU?=2Jt U -2QU W + 2Rt W) V= 0. (X)

When we differentiate the equation of the curve wegpect tav, we will obtain the
following equation for the center of the curvi (

(D2 + EU? + Fv2 + Ku'V + 2LtV + 2Mt'U) w
-2 DtW +Lvw + MUuwW - O UV -RV?-Srv + T tu + Uu'?)t
-2 EUW +KvVW + M tw + NtV + Puv + QV2-T tu + Uu?) u
-2 FVW +Kuw +Ltw - (N-0) tu - Pu?-Quv + RtV + St v=0. (1)

If we next set:

() The complex curve appears as a surface of classitthe imanner of representation in the text, and
its center will be determined like the center of sucbréase. Geometrie des Raumepp. 192.
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Dt? + EU? + Fv2 + 2KU'V + 2L t'V + 2Mt'u' ==/,
for the sake of brevity, then the three coordinateketenter of the curve will be:

_ Dt'+LV+MU OuUv+ R+ Stv Ttw Ut
X=- W + :

-1 -1

y:_Eu+PE\'/+M1’M+—Ntv— PuV—_'Q\3+ T+ Utu’ @)

__FVaKu+LE L (N-Otd+ PP+ QUi Rt St

-1

. t u V).
The equation of the plane—,—,— | is:
quat P {w W wj

' x+uy+vz+w =0, (3)

and this will be satisfied by the foregoing cooedavalues.

235. If we considett’, U, V to be constant and' to be variable then the plane (3)
will move parallel to itself, while the complex earin it will change continually. If we
let w vanish, in particular, then we will obtain theléaVing coordinate values for the
center of the curve in the respective plane thasdgbrough the origin and has the given
direction, and whose equation is:

' x+Uuy+Vv z=0,
namely:
= Ouv+ RV + St Tty Ud

-1

P L QU+ T€+ Utl

= (4)
S = (N-O)tu+u*+ Quv- Rty St
We can thus write the previous general coordinatees (2) in the following way:
x—x:Dt +Ll/’+Mu |
Eu + KV + Mt
y-y= = : ()
FV + Ku + Lt
Z— Z :f,.

This will then yield the double equation below:
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X=X _ y-y _ z-1 (©6)
Dt'+LV+Mu EU+KV+M{ FV+Ku+Lt'
which we can also give the following form:
X=X - z-7
X _y-y_z-2 (7)

dt du dv

If we considelx, y, z to be variable in them then the foregoing double equatidihs w
represent a straight ling/ is eliminated from them. The straight line thatepresented
will then be the geometric locus of the centershef complex curves in parallel planes
that are represented by equation (3) for an arbitrarycehofiw. We call this line a
diameterof the complex and say that itassociatedvith the system of parallel planes in
the complex, and in particular, with each of thosames.

Any system of parallel planes in a second-degree complex is, in geas=atjated
with a single diameter that contains the centers of all curvetas$ ¢wo that lie in the
parallel planes.

The complex curves in parallel planes defineegnatorial surfaceThe diameter of
the surface is a diameter of the complex.

236. If the diameter of the complex that is represebie(b) is to be perpendicular to
the plane (3) to which it is conjugate then we will abtéhe following condition
equations:

Dt'+LV+MuU _ t

FV+KU+Lt V

8
Eu+KV+ Mt _J ®)
FV+KU+Lt V'
which we can combine into the double equation:
t’ u' v
=" d= Cd= ©)
dt du dv

The diameter is aaxisof the complex in this case. The last double equatiaterstical
with the one that is obtained for the determinatiomhefdirection of the three principal

I

. I S U B
sections of a surface of class two when one consdﬁrs v w to be plane
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coordinates that are variable and letdenote an arbitrary constant, which is represented
by the equation }:
= +kw?=0.

237. The latter surface depends upon the six complex cosfahit F, K, L, M, for
the time being. Since these constants will remaindh@svhen we change the position
of the origin of the coordinates arbitrarily, we cagpthce the surface parallel to itself
without changing its relationship to the complex. @sponding to the arbitrary choice
of k, its dimensions can be changed by any arbitrary ratiave Ifjive other directions to
the coordinates axes then the six complex constante ati assume other values and
the same values will correspond to the six constantBeturface when we also refer
them to the new coordinate axes.

We would like to call the surface thus defined, whosdereand dimensions can be
chosen arbitrarily, theharacteristicof the complex. We would like to once more write
the equation of the complex in the following way:

Ar? +Bs+ C+Dd +EA + Frf
+ 2GS+ 2Hr + 2Irs+ Ksnp—2AL on—2M po-2N rg+ 20 s0 )
+ 2Prp+ 20rn + R — So-2Tog+ 2Up= 0.

When we take the origin to be the center of this serfand after suppressing the primes,
we will obtain the following equation for the charaeic of the complex:

Dt + EWY + FV + Kuv + 2Ltv + 2Mtu + W == +w? = 0. (10)

We have sek equal to unity in this equation, with no loss of gengyrali

The characteristic of a complex relieves us of angessty for analytically
discussing the direction of its diameter. A systerparfllel planes is associated with a
diameter of the characteristic, and that diametdl @ parallel to the one that is
associated with those planes in the complex. Tlassociated diameters of the
characteristic will be parallel to three diametershef tomplex, which we would like to
refer to aghree associated diameters of the compiexheir own right. We can take any
given diameter of the complex to be one of thresmaated diameters, so the other two
planes that are associated with the given ones wippdrallel. Each of three associated
diameters will be associated with those planes tfeparallel to both of the other ones
each time.

A complex has a single system of three axes thapem@endicular to each other, in
general. We would like to refer to the planes that¢haxes are parallel to when taken
pair-wise as th@rincipal sectionsof the complex. The axes will be associated with the
principal sections.

For the sake of determining the associated diamet@rcomplex, we can replace its
characteristic with its asymptotic cone, and displhe¢ ¢one parallel to itself arbitrarily.

() SeeGeometrie des Raumems.103 and152.
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If we take the origin of the coordinates to be its vetteen that cone will be represented
by the following two equations:

in plane coordinates and the single equation:

(K*—EF) ¥* + (L’ -~DF) y* + (M?>-DE) 7
+ (DK -LM)yz+ 2 EL — KM) xz+ 2 (FM — KL) xy= 0. (11)

in point coordinates.

The associated diameters of a complex have edberdiffierent directions with
respect to each other, according to whether the chastictef the complex is a (one or
two-sheeted) hyperboloid with a real asymptotic cone @eal or imaginary) ellipsoid
whose asymptotic cone reduces to an ellipsoidal poine Iatker case is indicated by the
agreement in sign of the three expressions:

K? —EF, L? —DF, M? — DE, (12)

while this agreement was not present in the former. case

238. If the characteristic is a surface of revolutianparticular, then the complex,
like that surface, will have a principal axis and infilyitmany axes along with it that are
all directed perpendicular to the principal axis, whewmapair-wise, as well as to each
other. Under the assumption of rectangular coordinegs, ahis special case will be
characterized by the fact that:

D-—=E-— =F- —, (13)

and therefore the following double equation:
Kx=Ly =Mz (14)
will determine the direction of the principal axi$. (

A more subordinate case is the one in which the chaisictegoes to a cone, which
corresponds to solving the double condition equations (13)hettlowing equations:

() Geometrie des Raumewm.154.
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All of the planes that go through space will then be ppacsections of the complex to
which the associated diameters will be perpendicudary diameter of the complex will
be one of its axes.

239. If we take the coordinate axes to which the generaltiequé) of the second-
degree complex is referred to be parallel to any threecaged diameters of the complex
then three constants in that general equation will vaashvell as in the equation of the
characteristic. Namely, one will have:

K=0,L=0, M=0.

This will happen, in particular, when rectangular axegaken to be parallel to the axes
of the complex. This can happen infinitely often whes ¢haracteristic has an axis of
rotation and the complex has a principal axis. Oneettiordinate axes is then taken to
be parallel to the principal axis, while any two straigiés that are perpendicular to each
other and the principal axis can be taken to be the balzecoordinate axes. WheédX,

QY, OZ are taken to be parallel to the principal axis in suamesthe coefficient& and

F, D andF, D andE will then become equal to each other, in tuky.L, M will vanish,
and the three coefficient3, E, F will be equal to each other in the equation if a complex
that has only rectangular associated diameters andeisec to an arbitrary system of
rectangular coordinate axes.

In this paragraph, we would like to restrict ourselvegheogeneral case in which the
characteristic is a surface of class two with a@enthe cases in which the vanishing of
K, L, M has the simultaneous vanishing of one of the three cusdba E, F as a
consequence will thus still be excluded from the discus&wrthe time being.

240. For those diameters that are associated with pldva are parallel to a given
plane:
' x+Uuy+Vv z=0,

we have obtained the following double equation:

X=X _ y-y _ z-7 ()
Dt' +LV+MU EU+KV+M FV+KU+Mt

Corresponding to the successive assumptions that:

u=0 andv =0,
t=0 “v =0,
t=0 “u =0,

from no.234, one will have:

= =Dt? X =0, y:In z:—é,
D D
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— U P
= =Eu? X ===, =0, zZ=—, 15
= y = (15)

= =Fv? x’:E, y:—g, Z =0,
F F

respectively. The foregoing double equation then resolveghet following three pairs
of equations:

Mx —Dy+ T =0, Lx — Dz=S=0,
My — Ex — U= 0, Ky —Ez+P=0, (16)
Lz-Fx+R =0, Kz-Fy-Q=0,

which represent those diameters of the complex thaasseciated with planes that are
parallel toYZ XZ, XY, respectively.

If we choose the three coordinate axes to be suchihtbptare parallel to any three
associated diameters of the complex, in particulen the three constarks L, M will
vanish, and we will obtain the following three paifsequations for the determination of
the absolute positions of these three diameters tlatparallel to theOX, OY, OZ
coordinate axes:

N
1
|

N
1
+

(17)

<

I

|
nlo Mo o|ln

X

The associated diameters,
when taken pair-wise, will Z
thus not intersect, in H / D
general. However, like any
three straight lines that do *
not intersect at all, they will B C
determine a parallelepiped, R 2
which we will consider (@)
more closely here, since itY
is indicative of the complex,
and we would like to call it
a central parallelepiped of
the complex

The foregoing  six
equations (17), when taken
individually, represent the
six face planes of a central X
parallelepiped. Any of two Figure 12
opposite face planes will go ’

L]
L
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through one of two of the three associated diametetsnall be parallel to the other of

the two. Three non-intersecting edges of the paraifeepwill be the three associated
diameters, which we would like to take toAB, CD, EF in the Figure 12. We can also
arrange the same six equations (17) that represent tleeasseciated diameters of the
complex, when taken pair-wise, in the following way:

Q P
=— =, z=+ —,
y F E
x:+E, z:—é, (18)
F D
) yos L
E’ D’

These three pairs of equations will then represenetfuations of those three edges of
the parallelepiped that are opposite to the three m$sdadiameters. Those three edges
DE, FA, BC, which also do not intersect, in their own rightll wefine a spatial hexangle
ABCDEF with three edges that fall upon associated diametdiise vertices of the
hexangle will be six of the eight vertices of thegtlelepiped. Three diagonals of the
parallelepiped will be the three diagonals of the hebearand the two point&, H that
are linked with the fourth diagonal will have the coordasat

R T P

X=+—, y=+—, zZ=+—,

F D E
(19)

X:—E, y:—g, z:—é_

E F D

One gets:

ER+ FU’ DQ+ FT’ DP+ES (20)

EF DF DE

for the lengths of the edges that are parallel to theethoordinate axe®@X, OY, OZ
respectively, and:
w=ER-FU W=D FT p-DP-ES 21)
EF DF DE
for the center of the parallelepiped whose coordinatsvould like to denote by, °,
2, to distinguish them.

241. The edges of the central parallelepiped that are mames$ by the pairs of
equations (18) have a simple geometric relationship Wwealcomplex that we will obtain
immediately when we revert to the equations of the tboseplex cylinders whose faces
are parallel to the coordinate axes. The equations ®ttfinder will be the following
ones (Chapter I, 8 5, eq. 32):
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Fy’+EZ+2Qy-2 P= 0,
Fx*+DZ -2Rx+ 2 Sz 0, (22)
Ex’ + Dy’ + 2Ux—2Ty= 0,

when we take the coordinate ax®@¥, OY, OZ to be parallel to any three associated
diameters of the complex, as in the previous nupdoat then s, L, M equal to zero.
The three axes of this cylinder will be represeritgdhe three pairs of equations (18).
Whereas three edges of the central paralleleppBdCD, EF will fall upon three
associated diameters of the complex, the threesigpedges to the@E, FA, BC will

fall uponthe axes of the three cylinders whose sides are parallel to tee #ssociated
diameters.

242. If a second-degree complex is given, and we ahdbs direction of a plane
arbitrarily then any line direction that is paratie that plane direction will be associated
with a second such line direction. Any given platieection (any family of parallel
planes) is associated with a single line directaom conversely, each given line direction
is associated with a single plane direction. Aiegq line direction is associated with
infinitely many pairs of line directions, which Wwile parallel to the plane direction that is
associated with the given line direction. There thien infinitely many systems of three
associated line directions, in such a way thathenone hand, every given line direction
corresponds to infinitely many pairs of associdted directions that are parallel to the
associate plane direction, and on the other h&edplane direction that is parallel to any
two of three associated line directions will becassted with the third of these directions.
There are infinitely many systems of three assediglane directions: They are parallel
to two of three associated line directions.

On the one hand, there are three associated adiesnet a complex that have the
direction of three associated line direction, andlee other hand, there are three axes of
complex cylinders that have the same direction, wheth we can refer to athree
conjugate cylinder axesn their own right. The three associated diamsesad the three
associated cylinder axes will define a spatial hglawhose opposite sides are parallel.
Its sides are, alternately, diameters and cylirdes. Any diameter will be cut by two
cylinder axes that are parallel to the plane dipecthat is associated with the direction of
the diameter. Any cylinder axis will be cut by t@@mmeters that are parallel to the plane
direction that is associated with the directioth&f cylinder axis.

A given plane is parallel to infinitely many diataees of the complex and the axes of
infinitely many complex cylinders. On the one haady diameter will define a ruled
surface, and on the other hand, so will any cylirades. The given plane is a associated
with a diameter of the complex, just as it is agged with the axis of a complex
cylinder. Any diameter is parallel to that cylindaxis. The axes of all complex
cylinders that are parallel to the given planetbaetassociated diameter, and all diameters
of the complex that are parallel to the plane batdassociated cylinder axis.
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243. It seems advisable to state and complete the forgg@ometric considerations
with some analytical refinements.

The totality of all curves that lie in planes thag garallel to therZ plane, and thus
define an equatorial surface, is represented (Chap. I, ®.2168) by the following
equation:

DW + 2(Lx — S vw + (FX? — Rx + B)
+ 2Mx + T) uw+ 2 (KX* —Ox — Q uv+ (EX + 2Mx + C) ¥ = 0. (23)

The plane of the curve is determined Xyand the curve in that plane will then be
determined by the line coordinategw andv /w. Should the axi©X have the direction
that is associated with théZ plane thenL and M would have to vanish. Should it
coincide with the diameter of the complex that isoagged with that plane then the
centers of all curves would have to lie upon it. This waldmand that, along with:

L=0, M=0,
one would also need to have:
S=0, T=0.

The foregoing equation will then simplify into the @iling form:
DW + (FX* — Rx+B) V + 2 K¢ =X -G)uv+ EX + 2Ux+C) ¥ = 0. (24)

The same equatorial surface that is represented bgrgoing equation by means of
its breadth curvesBfeitencurveh will be represented [Chap. I, 8§ 5, eq. (30)], when one
considers thalt, M, S andT vanish, by the following equation:

(FV? + Kuv+ EF) ¥ + DV Z + 2 RV + Ouv—UU?) x + BV — 2Guv+Cl?) =0 (25)

by means of its circumscribing complex cylinder whose ates parallel to therZ
coordinate plane. Once we have determined one of thesemecribing complex
cylinders by an arbitrary choice ®f/ u for the axis direction, the last equation will
represent the second-order curveX@d along which the relevant cylinder cuts that
coordinate plane. The axis of the cylinder that is paradlYZ goes through the center of
that curve of intersection that lies in tlEX coordinate axis and is determined by the
coordinate value:

_ RV + Ouw Ud

X = 26
Fv? + 2Kuv+ EU (26)

on that axis. If we refer the coordinateandz on any point of any cylinder axis that is
parallel toYZthen we will have:

cl<

y
z

and we will obtain:
_ Ry’ - Oyz UZ
Fy> —2Kyz+ EZ’

(27)
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as the equation of thgeometric locus of the axes of complex cylinders that are parallel
to the YZ plane.

The last equation expresses the idea that a single aylxaewill lie in any plane
that is laid through a given diameter and is paralteltite plane direction that is
associated with the diameter, while two cylinder axed intersect along the diameter
will lie in any plane that has that direction.

244. There is another way to determine the two cylinder axatsare contained in a
given plane, which we have taken to be parallel to XY&ecoordinate plane, here.
Namely, if we differentiate equation (24) with resptect then that will give:

(FX—=R V' + (Kx —OQ uv+ Ex+U) 1* = 0.

This equation immediately gives the valuexahat was just found in terms @fandu
(26). The direction of the two cylinder axes in t&itself is given by the roots of the
following equation:

RV + Ouv—Uu? = 0.

A complex cylinder whose axis lies in a given plane has tangents to the complex
curve of class two that lies in that plane that aralfgd to two of its sides. The axis of
the cylinder will then go through the center of the clexpcurve. If we project the
complex curve in the parallel plane that is closéheogiven plane onto that given plane
along the direction that is conjugate to these pldhen that projection will also be
contacted by the two cylinder sides. In other wordsjwlzeparallel planes among them
that contact the cylinder along these sides will diamdously contact the equatorial
surface that ha®X for its diameter. One is then dealing with the deteriimnaof those
points of the complex curve in the given plane at whiod équatorial surface is
contacted by planes that are parallel to the diamédtdrab surface. The cylinder that
circumscribes thequatorial surfacavhose sides are parallel to its diameters conthets t
surface along a spatial curve that is cut by a planeungoints. In particular, it will be
cut by the given plane, which is the breadth plane oftineace, in four points that are
the end points of two diameters of the complex curvéhén given plane. The two
diameters of the complex curve that are associatddtihwese diameters will be the two
axes of the cylinder to be constructed that lie ingiken plane.

245. We would now like to displace th@X axis, which, from our assumption up to
now, coincides with a diameter of the complex in sachay that it coincides with the
axis of complex cylinder that is parallel to that diéene The equation of the cylinder
whose axis is parallel to tl@X coordinate axis has the equation (240):

Fy* — Xyz+EZ + 2Qy— Pz+A=0.

We get the following two conditions for the axis of tiylircder to coincide witfOX:
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P=0, Q=0.

The general equation of the complex curves in planeditates X), which we have
placed at the apex of the developments in this paragnaphthen represent, in
particular, the complex curve that is contained iadnitrary plane:

uy+vz=0

that is laid through the cylinder axis when we eandw equal to zero in it. If we
consider thaP andQ vanish then we will obtain the following equation foat curve:

(Eu?+ 2Ku'v + Fvd) w? — 2 Uu? - OuV - RV tw
- 2(HU? = JuVv) tv+ 2 Hu'V - Iv?) tu
+ (Cu? - 26UV + BV 2
+AUV-vu)?=0. (28)

The center of this curve lies in tk#X coordinate axis, and is determined on that axis by
the coordinate value:

« = RV2 + Od v— Ul
FV2+2KUV+ EU?’

(29)

When we considev' / U to be variable in it, the foregoing equation (28l
represent a meridian surface that has the axisofrgplex cylinder for its double line. It
is characterized by the fact that the centerslaffats meridian curves lie on the double
line.

246. After exchangingy / U andv / u, the two equations (27) and (29) will be
identical. If we then le¥ /U determine the direction of a cylinder axis thgpasallel to
the YZ plane and thus cuts the diameter of the complaishparallel taOX then it will
lie in a plane that cuts the cylinder a€X at the point that is determined by (29). The
straight line that lies in that plane goes throubht point, and whose direction is
conjugate to the direction of the plane of the clexgurve that is determined by/ u',
and thus also to the direction of the cylinder dkst is determined by / u, will be the
desired diameter of the complex.

In order to then construct the diameter of the glemin question that goes through
the center of the curve (28), we appeal to theatttaristic of the surface. For the sake of
simplicity, we would like to let the previously-ueigrmined direction of the two
coordinate axedOY and OZ coincide with any two associated diameters of the
intersection curve of the characteristic with ¥i&coordinate planeK will then vanish
from the equation of the complex, and the equatfdihat curve of intersection will be:

FV + EU + kw = 0.

We obtain the equation:
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T+ ==0 (30)

for the determination of the direction that is asatexd with the directiow’ / U, which we
would like to denote by / u. If we introducev/ u into (29), in place o¥ / u’, by means
of this equation then that will give:

__ FUv’+EFOuv- E Rd
B EF(FV + EWP) (31)

Finally, if we refery andz to any point of the diameter of the complex tlsaparallel to
YZthen we will get:

cl<

Y
z

and thus:
_ —FUy’+ EFOyz+ B RZ
EF(Fy + EZ)

(32)

When we considex, y, z to be variable, this equation will represéimé geometric
locus of the diameters of the given complex thatparallel to the YZ planelt says that
a single diameter of the complex lies in any pldra is laid through the axis of a given
complex cylinder, and it is parallel to the planeection that is associated with the
cylinder axis, while two diameters will lie in amlane with that direction that will
intersect on the axis of the given cylinder.

An arbitrary planeAFF’ EGGA cuts the
diameterAB of the complex and the axBE
C D of the complex cylinder whose direction is
’ ' associated with it in two pointd and E.
C ) 1 ' Two cylinder axesAF and AF’ lie in this
plane that cut the diamet&B at A and two
: complex diameter&F and EF’ that cut the
i cylinder axisDE atE. The directions of the
o’ EE two diameters in this plane are conjugate to
/G/ I— the directions of the two cylinder axes in it,
G < y 7’“§F’ respectively. They simultaneously belong to

_ two central parallelepipeds that have two

A = opposite edges in common that fall upon the
diameterAB and the cylinder axiBE that is
parallel to it. The opposite face-planes of
the parallelepiped fall in the same plane
BCCDHHB. The two diameters of the
complex,CD and CD', that lie in these two planes are the oppositeegdy the two
parallelepipeds to the two cylinder axes in thstfolane, as well as the two cylinder axes
in the second, whilBC andBC' are those of the two diameters in the first plafide

Figure 13.
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common center of the two central parallelepipedsities plane that is parallel with the
two opposite face-planes (which we would like to takbd@arallel to th&'Z coordinate
plane, as before) and goes halfway between the two plaitewill then bisect the
distance between a diameter and a cylinder axis of tmplea that are parallel to each
other and toYZ Due to the fact that we have chosen the commouwtaireof both of
them to be parallel t¥Z from the outset, the two opposite face-planes ofrallpéepiped
will be determined in a linear way.

If we refer equation (27), like equation (32), to @€andOZ coordinate axesyhich
are parallel to two associated diameters of the cexnmr — what amounts to the same
thing — two associated cylinder axes of it, thewill also vanish on it, and we will get:

_ Ry -0yz Uz
X = . :
Fy’ + EZ

(33)

Under the assumption thgt/ z was assigned the same value in the foregoing equation
(33) and equation (32), in both equatiorsyill mean the distance between a cylinder
axis of the complex and one of its diameters, whasetibn is the same and given Py

z, from theYZ coordinate plane. One-half the sum of that distawbé&h we would like

to denote by, will then give the distance from the middle plandtef relevant central
parallelepiped to the same coordinate plane. If we adeldinations in question, (32) and

(33), then we will get:
R U
X = %{E_E} ) (34)

in agreement with (21). The valueSfis independent of the arbitrarily-chosen value of
y / z. Moreover, the midpoints of all central parallelepp&dose opposite edges fall on
the diameter that is associated with and the cylinder axis that is associated with that
plane will lie on the midline between that cylindersaaind that diameter. We draw the
conclusion from this that all central parallelepipedshwne edge that falls on a given
diameter of the complex, so the opposite edge thes ¢ail the cylinder axis that is
parallel to the diametewill have a common center.

The foregoing theorem immediately gives us a whole rsmnsies of central
parallelepipeds that have the same point for centemgsbadhemselves and with the
parallelepipeds of the first series. To that end,mexely need to replace the given
diameter with any new one that is associated withdtthen proceed in such a way that
each time new ones are replaced with ones that sseciated with them. A given
diameter of the characteristic of the complex isyéwer, associated with any diameter
that lies in the given associated diametral plane. gwen diameters will then haveo
associated diameters along which the two diametral plra¢sare associated with the
two given planes will intersect. We can then alsdrgm a given diameter of a complex
to any two given diameters of the same kind in suchyatheat we replace the first given
diameter with a third diameter that is associated t&ém, and then replace that third
one with the second given one that is associatedityith its own right. We will then
arrive at the following theorem:
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All central parallelepipeds of a given complex have the same poithtiorcenters.

We would like to call the common center of all cehparallelepipeds theenter of
the complexany plane that goes through tentral plane and any straight line that goes
through acentral line

A second-degree complex has one center, in general

A plane that goes parallel to any two associated diameters or to anysseciated
cylinder axes of a complex and lies halfway between them is a cetdared of the
complex.

Any diameter of a complex is the axis of a cylinder that is patallg; the middle
line between them is a central line of the complex.

247. 1f we takeYZto be a central plane of the complex and takeOtKeaxis to be,
first, its associated diameter and then, the cylindes todt it is associated with it then
the two ruled surfaces, one of which goes through alletltameters that are associated
with cylinder axes that are parallel Y& while the other one contains all of the diameters
of the complex that are associated with the cylindesaand parallel torZ will be
represented by the following two equations:

Ry’ - Oyz UZ
Fy* + EZ

_ Ry’ - Oyz U?

X =
Fy* + EZ

If we displace the two ruled surfacesand with them, at the same time, the rele@xt
coordinate axis- parallel to themselves and to the central plane thein équations will
not change. If, after the displacement, the conjughéeneter coincides with the
conjugate cylinder axes then the foregoing equations wilksemt the two surfaces when
they are referred to the same coordinate system.g&bmetric relationship between the
two surfaces will then be the same as the one thgust/elescribed.

In this, we can always assume that the coordinate@XemdOZ in YZ which are
parallel to any two associated diameters of the cample perpendicular to each other.
In particular, if we take the given central plane tmhe of the three principal sections of
the complex that goes through its center t@etwill also be perpendicular t®Y and
OZ If we consider the central plane to be a refilgcplane then one of the two ruled
surfaces will be the mirror image of the other oneradt suitable reciprocal displacement
of it.

238. When we take the center of the complex to be tlgnoof the coordinates and
lay the three coordinate axes through it and parallél amy three associated diameters
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and cylinder axes then when we BgtlL, M equal to zero, the equation of the complex
will become:
A’ +Bs + C+Dd +EF” + Frp
+ 2Gs+ 2Hr + 2Jrs
- 2Nro+ 20s0
+ 2Prp+ 20rn+ 2Rsp— 25— 2To+ 2Up =0, (35)

by which, the following three condition equations (no. 24)be fulfilled:

E:E, g:l, E:E, (36)
F E F D E D
from which, the following one can be derived:
PRT=QSU (36a)
The three pairs of coordinates:
y = l = 9, Z: —_S = —_P,
D F D E
x=-J-_R ,_ P_S (37)
E F E D
F E F D

will determine the position of the three associatedndiars, and the same three
coordinate pairs with the opposite signs will determihe position of the three
associated cylinder axes.

The coordinate axes will be rectangular when we tiake to be parallel to the three
axes of the complex. The central parallelepiped ihatetermined by it will also be
rectangular. The square of the length of one-halisdbur diagonals will be:

2 2 2 2 2 2
CRURONCRCRGE
F E D F E D
One of these four diagonals is distinguished by the fettit cuts none of the three axes

of the complex and none of the three cylinder axesateparallel to then. If we denote

the angles that they define with the three coordiredesOX, OY, OZ by a, £, ¥
respectively, then:

cosa:.cosp:.cosy=—.—.—= —.—.—. (39

The eighth part of the volume of the central parafigled is:
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PRT _ QSU

—_— : (40)
DEF DEF

249. Once we have accounted for the six constants opadlséion, the number of
constants of the complex will still amount to jukirteen which will be recovered in
equation (35) when we consider the condition equations (36 single condition that
must be satisfied if we would like to give the equatibthe complex the foregoing form
will consist of demanding that none of the three cartsa, E, F vanish at the same time
askK, L, M. Under the assumption oéctangular coordinate axesve can then represent
the complex by equation (35) in a single way, in general.

We will treat the special cases in which one or nadrthe three constanf3, E, F
vanishes at the same timekgd_, M later (8§ 3).

§2.

Specialization of the complexesthat have a center.
Complexes whose lines envelop a second-degr ee surface.

250. There are twenty constants in the general compgjaaten (1):

A’ +BS +C+Dd +EF” + Frp
+ 2Gs+ 2Hr + 2Irs+ Kpn — A on - 2Mpo
- 2Nro+ 20s0
+ 2Prp+ 20rn + R — So-2To+ 2Up=0,

and when we divide by any of the remaining ones that wi# gineteenconstants that

are necessary for the determination of the complextambsition; one can arrange them
into the following six groups:

The six constants of the last group can be arrangedrimugaways, in their own right;
e.g., two sets of three pairs:

P andQ, R andS T andU,
P* U, R “ Q T *“ §

and one set of two groups of three:
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PRT and Q, S U.

251. In the first paragraph, we verified that when thedhgenstant¥, L, M vanish
the three coordinate axes will be parallel to three@sated diameters of the complex.
We can then let three more constants drop out ofghat®n of the complex, moreover,
by a suitable placement of the origin. x§f yo, zo are the coordinates of the new origin
then the six constants of the last group will take onfalewing new values, which we
would like to distinguish b¥s, Qo, Ro, S, To, Uo (n0. 157):

Po=P+E 2, Q=Q-Fyo,
Ry =R+ F X, $=S-D 2, (41)
To=T+D o, U=U-EX.

If we take one of the eight vertices of the relewaamtral parallelepiped to be the origin
then three of the new constants will vanish. Acewydo whether this vertex (Fig. 12) is
one of the six at which a diameter and a cylinder axisrsect, or one of the two
remaining vertices through which will go either one of titieee conjugate diameters or
one of the three conjugate cylinder axes, one will hagerénishing of:

S, To, Uo, Ro, S, To, Qo, R0, S
Po, Qo, Ro, Uo, Po, Qo To, Uo, Po
and
S, Qo, Uo, Po, Ro, To,

respectively.
The six new constants can vanish simultaneously only wiherfollowing three
relations exist between the original ones:

+ =0, + =0,

M| o
m|c
uile)
m| o

S
+>=0. 42
5 (42)

o|-

The result of the vanishing of the new constants it ttie three new coordinate axes
coincide with three associated diameters of the complExe new origin will be the
center of the complexThe complex curves in the three coordinate plandsaisid have
that point for their common center, and at the same, the three coordinate axes for the
axes of three complex cylinders. Since the coordisgséem still depends upon three
arbitrary constants, there will generally be a systd three associated diameters in any
complex that will intersect at its center. If wefar the complex to the three intersecting
diameters as coordinate axes then its equation witlrbec

A +BS+C+DAF+EF +F 1
+ 2Gs+ 2Hr + 2Jrs
-2Nro+ 20s0=0. 43)

This equation contains ten mutually-independent constamtg, the coordinate system is
specified by nine conditions.
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The coordinates of the centers of the complex inrhitrary plane that goes through
the center of the complex are:

= Oou'v
Dt'?+Eu?+ Fv?’
_ ~-NtV
R =N EIN=VEL
_ (N-O)tu
" Dt?+EUZ+ RV

(44)

Since the values of the three coordinatgs z vanish simultaneously only when two
of the three coordinates of the plahe/, r' vanish simultaneously, there will generally
be no other diameters of the complex that go throughcénter besides the three
associated diameters, which were taken to be coordinate

When we eliminaté, u', v from them, the three foregoing equations will give:

DO’V Z + EN°X2Z + F(N — O* ¥ y? = NO(N — O xyz= 0. (45)
This equation represents the geometric locus of theeent the complex curve in the
planes that go through the three associated diametdrara rotated arbitrarily around
that point ().

252. A specialization of the complex will come aboutemhve let one of the three
constants:
N, O, N-O

vanish, along with the six constants of the last grofif® i the vanishing constant then
the three equations (44) will give:

x=0, uy+vz=0.
In any plane:
tx+uy+vz=0

that goes through the origin, the center of the complexe will lie upon the straight line
along which therZ coordinate plane intersects that plane, and will acwaipon that line
when that plane is rotated around that line. When plteate goes through th@X
coordinate axis, in particulatt,will vanish, and as a result of thgtandz will be equal to
zero at the same time &sThe center of the curve will then coincide with tr@in, or in
other wordsall of the diameters that are associated with the OX coordinate akigov
through the origin and lie in the YZ planény line in this plane that goes through the
origin will be a diameter of the complex, just awill be the axis of a complex cylinder.

() The surface that is represented by equation (45) isnalem surface that has been specified in such
a way that it will possess three double lines that iat#rat a point: viz., the three coordinate a®&s OY,
OZ Corresponding to that, they can be generated in thage by rotating a variable conic section around
a fixed axis.
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If the two constantbl andO of the foregoing group vanish at the same time as xhe si
constants of the latter group then the values, f z will vanish in equation (44) All
diameters of the complex will then go through its cenfidrey will likewise be the axes
of the complex cylinder. Any complex curve whose planesdgbeugh the center of the
complex will also have that point for its center.

In this case, the general equation (1) will become:

A +BS +C+Dd +ER + Frf
+ 2Gs+ 2Hr + 2Irs= 0. (45)

It represents a complex whose diameters all intéseits center, so five of its constants
have disappeared, and along with the six constants dfgmsi will depend uporeight
constants that are again found in its equation. Itheélreferred to any three associated
diameters as coordinate axes, which we can, despigetierality, also choose to be its
three axes.

253. When all diameters of the complex intersectsaté@nter and any three of these
diameters that are associated with each other kem ta be coordinate axes, equations
(3), (30), (12), (21) of the previous section will go to theWwing ones:

DW + (FX¢ + B) V? — Guv+ (EX + C) u? = 0, (46)
[E”—z+ ij2+ Dzz+[Cu—2—ZGE+ E’J:O, (47)
Vv V Vv
(Fy—§+ijz+[BL2+2G—y+ cjf—z( VR Hj tw A¥ =0, (48)
y Z z y

2 2 2
(Fy—2+ijz+(Bt—+ Fj y2+2[ cl o+ Ej 74235 w2 H- 2 =0.  (49)
z % W w w

The first two of the foregoing equations (46) and (47) mifiresent the equatorial
surface that ha®X for its diameter in mixed coordinates, in one case,t®yreadth
curve, whose instantaneous plane is determinex] Bpd in the other case, by means of
its enveloping complex cylinder whose axes define an amigteXZ whose trigonometric
tangent is equal to—(u / v). It will follow from equation (47) that the axes afi
enveloping complex cylinders will lie iNZ and intersect th@®Y coordinate axis at the
origin.

The last two of the foregoing equationsviz., (48) and (49) represent (in mixed
coordinates) the meridian surface that hasQMecoordinate axis for its double line, in
one case, by its meridian curves whose instantaneous sladetermined by / z, the
trigonometric tangent of the angle that it defines Wt In the other case, that surface
will be represented by means of its enveloping complex adwese instantaneous vertex
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lies inOX at a distance ofHw /t) from the origin of the coordinates. As equation (48)
shows, all meridian curves have a center that coinsdégsthe center of the complex
and should be regardedasenter of the surface itself.

254. If the constanG in the group:
G H,I

vanishes along with the previous eleven constants theri@g{d6) will show that all
breadth curves of the respective equatorial surface wdiasgeter iSOX will have two
associated diameters that are parallel to the twocased diameters of the complex.
One specifies the equatorial surface whose diametedY¥aandOZ by the vanishing of
H andl in the same way that the equatorial surface whose tBans€®©X was specified
by the vanishing o®.

If H andl vanish at the same time then all complex cones evhadpoints lie on the
double line of the surface will intersect the diameplahe that is conjugate to it along
curve whose midpoints coincide with the midpoint of tomplex.

If the three constant&, H, | vanish simultaneously then one can choose three
associated diameters of the complex to be coordina®iaxuch a way that all cones of
the complex whose midpoints lie in one of these threecisted diameters will intersect
the plane of the other two instantaneous second-ototees whose centers all coincide
with the center of the complex.

255. The six constants:
GHIKLM

will vanish simultaneously when the coordinate axestaken to be three diameters of
the complex cone whose vertices fall upon the origthane parallel to three associated
diameters of the complex. This condition can béliled for a given complex in a single
way, in general. Any two concentric second-order seda in particular, two cones
with the same vertex — will have a single systenhode associated diameters in common
(). We take the two cones to be the cone of the comple

AX + By + CZ + 2Gyz+ 2Hxz+ 2xy = 0, (50)

whose vertex falls upon the origin and the asymptotic adrtbe characteristic, whose
vertex we likewise place at the origin (11):

(K> —EF) X + (L’ —=DF) y* + (M2 —DE) 7
+2 OK-LM) yz+ 2 EL-KM) xz+ 2 FM - KL) xy= 0. (51)

The system of the two common three conjugate diametdrshen be the coordinate
system that was to be determined.

() SeeGeometrie des Raumem. 262.
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256. In the case in which all diameters of the compléargect at its vertefand we
will take its three diameters, which are associated @ach other relative to the complex,
as well as with respect to the complex cone thatthascenter of the complex for its
vertex, to be coordinate axes) the equation of the compill become:

A +BS+C+DA+EFA +Frf=0. (52)

This equation will contaifive mutually-independent constants, and together with the
nine constants of position, that will give tiheurteenconstants upon which the complex
still depends.

257. With the vanishing o6, H, I, the equations of the equatorial surface in mixed
coordinates, (46) and (47), will go to:

WP+ Fx2+Bw2+ EX+ C

S [’ =0, (53)

N

E D

+F
X +——
Y.B
+B C— +
V2

Nl N

[+ 1 =0, (54)
C

<N‘c <‘c

and can be converted immediately into the following onekijch represent that
equatorial surface in point and plane coordinates, respécti

Dz Dy?
+ +1=0, 55
FX*+B EX+C (59)
u2
C— +B
Vz—[ﬂ2+%u2+§v2+\/\/2:0. (56)
EL +F
V

The meridian surface whose double lin€iX will be represented by the following
equations in mixed coordinates in the case in question:

2
BY +C
VA

W+ N2 =0, (57)

2

y y
FY+e  FY+E
z zZ
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B, +F C ,+E

W2 2 4 W2 2 _

—_— ——[F+1=0, 58
A 0y A (58)

respectively. We obtain the equations of that meridiarface in point and plane
coordinates immediately from these equations:

2
FL4E o ¢
—L K +—0O+—F +1=0, (59)
g A
BY +C
VA
%ﬁu% tzA V2 +w=0, (60)
B,+F C,+E
W W

respectively.

The equatorial surface that has OX for its diameter and the meridiaacsuttiat has
OX for its double line will also remain of order and class four aherspecialization.

258. If the new condition equation:

BE=CF (61)
is satisfied, from which:
FX*+B _F _B
E2+C E C'

then all breadth curves of the equatorial surface (5B)be&isecond-degree curves that
are similar and lie similarly. Their equation:

D(F+B)yY+D(EX+C)Z+ (FX +B) (EX +C) =0,
when we neglect the common factor:
DE (FX* + B) =DF (EX + C),

will be converted into the following one:

Z+l+ie = =0 (62)

If we ignore the two planes:
E(FC+B)=F (EX+C)=0 (63)
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that intersect in the double line at infinity of thefaae and contact the surface along the
OX axis then the equatorial surface will reduceateecond-degree surface and lose its
double ray that lies at infinity in YZ

The two planes that are represented by equation (63)varg@lanes in which the
curve of class two that is enveloped by lines of the cexnpsolves to two points that
coincide in one point.

In a similar way, when we multiply equation (56) D§ / C and consider that it will
follow from the condition equation (61) that:

N

C—+B

+F

NN

m|O

_B
= F

SIS

then equation (56) will be converted into the followingon
> DE
Dt +Eu2+Fv2+? OV =0, (64)

which is the equation, in plane coordinates, of the rsdcd®gree surface that we just
represented by its equation (62) in point coordinates.
In this, we neglect two points:
EV +FV =0, (65)

which lie in the double axis at infinity, which will theredlikewise vanish. These two
points will be ones for which the second-order cone thdefined by the complex lines
will resolve into two planes that coincide.

When we multiply the equation of the meridian surfacgoint coordinates (59) b
/ EF, it will reduce to:

sz.}.i.pé.p_A =0 (66)
CF E F EF

as a result of the condition equation (61). When weiphylthe equation (60) of that
surface in plane coordinates by:

%(Ctz + EwW) = %(Btz + Fwh),

it will go to the following one:

CF e+ Fe+ ER w0, (67)
A A

As a result of the condition equation (61), the meridiarface will reducdo one of
degree two and lose its double ling.we consider it to be the geometric locus of p®int
and accordingly represent it by equation (66) after tdeatgon then the basis for this
reduction will lie in the fact that we are ignoringettwo planes:
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B (Fy’ +EZA) =F (BY’ + C2) = 0, (68)

which correspond to the neglected factor. These twaeplanersect alon@X and are
the two tangential planes to the surface that go thr@)h The complex curve in each
of them has resolved into a system of two points twancide. If we consider the
meridian surface as being enveloped by planes and represerggddiipn (67) after the
reduction then that reduction will be the result of thet that we have ignhored the two
points:

E (B + FwA) =F (C + EwWA) = 0, (69)

which correspond to the neglected factor. These twatgwiill be the ones at which the
surface will be cut by th©®X axis. The complex cone that has either of thesepuats
for its vertex will degenerate into a system of twangls that coincide in a point.

259. When we consider a second-degree surface to be an émuatoface, a
diameter of it will be likewise determined that is asated with a given plane direction.
When we consider it to be a meridian surface, a dianoétie will be given immediately
that corresponds to the previous double line.

260. As a result of the condition equation (61):
BE =CF,

the equatorial and meridian surface, which h@efor their diameter and double line,
respectively, will both go to second-degree surfaces. nWwhe double condition
equation:

AD=BE=CF (70)

is satisfiedthese two surfaces will be identicalVe can take the following equation to be
their common equation in point coordinates:

2 2
X_+L+i+_A = 0, (71)
D E F EF

and also switci / EF with B / DF andC / DE.

The double condition equation (70), in conjunction witd fidct thatG, H, |, K, L, M
vanish, says that the complex cone and the asymptai& ebthe characteristic, which
have the center of the complex for their commonearerdre identical. More generally,
when the six constants above do not vanish, we willioltse following five-fold
condition equation from both equation (50) and (51) in ol@express this identity:

K?-EF: °’-DF: M*-DE: DK-LM: EL- KM: FM- KL

(72)
= A: B: C: G: H: l.
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However, when the two cones above are identical,cese take each system of its
associated diameters to be coordinate axes and eathrgriameter to be th®X axis.
The equatorial surface and the meridian surface, whiclahasbitrary diameter of the
complex for its diameter or double line, respectivelyi| e identical second-degree
surfaces.

If we consider the two meridian surfaces that h@veand OY for their respective
double lines in the chosen coordinate system then theectern of these two surfaces
will be identical with the three coordinate planes. tNbrth surfaces have the complex
curve that lies inXY in common. However, the intersection curvesXid and YZ
coincide, insofar as the complex curve that lies irhed¢he two coordinate planes is, on
the one hand, the meridian curve of the one meridiaface, but it is also the breadth
curve of the equatorial surface that is identical witd other meridian surface. As a
result of thisall meridian surfaces and equatorial surfaces that haseb@rary diameter
of the complex for their double line or diameter, respebt, will coincide in the same
second-degree surface.

All lines of a second-degree complex that has been specialized inahatvhich
now depends upon only nine constants, envelop a second-degree surface. WAfe can s
that this surface is represented by the equation of the complex.

It is only due to the fact that the general complesuigjected to &en-foldrestriction
that it will go to one whose lines envelop a second-degpeface. We can summarize
these restrictions by saying tHast all diameters of the complex intersect in the same
point andsecondthe complex cone and the asymptotic cone of the clesistat of the
complex that have that point for their common ceateridentical. The first assumption
corresponds tdive condition equations that we get in their most gerferah when we
eliminate the three coordinated y°, 2 from the eight equations that we obtain by
annihilating the last eight coefficients of the comypdguation (V1) that refers to the new
origin (¢, y°, ). The second assumption corresponds tofitteecondition equations
(72).

If we satisfy the same condition equations in aed#ht sequence then we will arrive
at the same result by a different specialization.

261. We would like to turn back to equation (52) and denote theatthe curves of
the complex in the three coordinate plaN&@sZX, XY, which fall uponOY andOZ, OX
andOZ, OZ andOY, respectively, by, anda;, a, andcy, az andbs , resp. One will then
have:

2__2 2:_E

b= D’ 27 o

-_& -2 73
a E C £ (73)
.__B 2__A
8 = b =
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The same six quantities, when combined in the followiag:w
bs andc,, az andc;, a, andby,

will be, at the same time, the radii that fall alody andOZ, OX andOZ, OX andQY,
resp., of the bases Wiz, XZ, XY, resp., of the complex cylinders whose sides are phralle
to OX, OY, OZ resp. We get:

LhG=abqg. (74)

If the double condition equation:
AD =BE=CF

is satisfied by the six constants of equation (69) thenthinee complex curves will
intersect in the three coordinate planes of the thomedinate axes at the same point.
These three complex curves coincide with the bast#sedhree complex cylinders. If we
suppress the symbadsb, ¢ then we will get:

c_ B_

_____a,

E F

E:—A:—bz, (75)
D F

B-A- ¢

D E

We can choose one of the six constants of the eoogduation (52) arbitrarily. If we
set:
C=a’b’
then the last equations will give:
A=p’c?, B=a¢c,
D=-4&, E=-1 F=-c

The equation in question will then go to the following :one
b?c?r*+a® & +a’ b? =& + b’ + A1 (76)

It will represent a complex whose lines envelop aisgéaegree surface with a midpoint;
it will represent the surface itself.
The equation othe same surfada point coordinates is:

2 2
X, y. .z

W E ()

and in plane coordinates, it is:
a2t +PP U+ V=W (78)
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262. In order to represent a given second-degree surfacehfise general equation
in point coordinates we would like to take the following one:

ad +ay’ +a'Z + D'xy + D'xz+ Dbyz+ ox+ Xy + "y +d = 0, (79)

we need merely to determine the equation of the cortectttammscribes the surface,
which has any given poink'(y, Z) for its vertex. As is known), we will get:

(@ +ay’ +a'Z + d'xy + D'xz+ byz+ Zox+ X'y + 2"z + d)
(ax?+ay ?+a'z %+ "Xy + X7 + byzZ + 2cX + Xy + "7 +d)
=[(ax+b"'y+bz+c) X + (b"x+ay+bz+c)y+ (b'x+by+a’'z+c) Z
+ (cx+cy +c'z+d)]? (80)

for this equation. If we considet, y', Z to be variable, instead of y, z then the
equation of this cone will be the complex equation ofsingace. We can actually write
it in the general form:
AX=X)?+B(y-y)*+C(z-2’
+D (yZ —y2* +E (X2 — x9* + F (xy — Xy)*
+26(Y-Y)Z-2)+2HX-X)(Zz-2+2AX-=X)(Yy—-Y)
+2K XYy = Xy) (Xz—=x2 + 2L (xy = Xy) (YZ -Y2 +2M (Xz - X2 (YZ —VY2)
+ N (X =X)(yZ —yY2) + 20(y - Y)(XZ - x2) + V" (2 — (XY —XY)
+ 2P (X = X)(Xz —x2) + 2Q (X — X) (xy — Xy)
+2R(y —Y)XY - Xy) + 25(y -y) (yZ - y2)
+2T(z-2) (yZ—-y2)+2U (z-2)(Xz—-x2) =0,

in which, we have set:

() The equation in the text can be derived in the following way
The equation of any second-degree surface that contgietsnasecond-degree surface:

Q=0
along the intersection curve with a plane:
p=0
takes the form:
AQ-p’=0,

in which A denotes an arbitrary constant. Hgvds taken to be the polar plane of the poiit ¥, Z)
relative to the given surfac®j, andA is determined such that the new surface will go throhghpbint

x,y,2).



§ 2. Specialization of the complexes that have a center 231

ad-c¢=A dd- &= B 4d = C
aa'-b=D ad-W=E abh- b= F
bd-cd=G bd ct= H bd ce= |
b'b'-ab= K bl-ab= 1L bb- ab= M

(81)
b'c"-Bc¢=N, be bBEt= Q b'e- bse V
bc-ad=PR at-be Q
b'd-ac=R ac-bt= S
bc"-d'¢c=T, dec-bt=U
Thus:
N'+O’+V’'=0, (82)
and
N=N-V=0d&-2b¢t+
Hd-2B¢+ be (83)
O=0-V =-dd+2bc bte

263. In order to determine the second-degree surface wheorntplex equation is
given, we immediately obtain a series of relatiomsnirthe foregoing equations (81) in
which the constants enter into the equations of thepaand the surface linearly. For
example, the six equations:

aa' —If =D, ad -b°=E aa —b?=F,
b'b" —ab=K, bb" —db' =L, bb —d'b" =M

will yield the following six for the determination of thatios ofa, &', a’, b, b', b":

aL+bF+bB' K=0,
aM+b K+ B0 E=0,
aM+b'D+bL=0,
aK+b'L+bF=0,
a'’K+bE+ BM=0,
a'L+bM+bBD=0.

(84)

We shall refrain from writing down these relations cdetgdy, from which, the
elimination of the quantitieg, &, etc., will yield immediately the conditions that the
constants of general complex equation must fulfill neo for the complex lines to
envelop a second-degree surface.

264. Just as when we appeal to the point coordinatgs, the equation of the conic
surface that circumscribes a given second-degree surfihdxthe complex equation of
the surface in ray coordinates when we consider thedow@tesx', y', Z of its vertex to
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be variable, as well, so will the equation of the irdetisn curve of a second-degree
surface with an arbitrary intersecting plare (', v') be the complex equation of that
surface in axial coordinates when we appeal to plane cabedt, u, v and consider its
coordinates to be likewise variable. In a completglglogous way to the way that we
went from the complex equation of a given second-degpeface in ray coordinates to
its usual equation in point coordinates, we can likewise@o the complex equation of
that surface in axial coordinates to the equation o$tineace in plane coordinates. Since
both of them will always exist at the same time, wio@e of the two equations of a
complex is given in ray and axial coordinates, thedgoiay will show the simplest way
to go from one of the two equations of a second-degrdacsuin point and plane
coordinates to the other one.

265. The basis for the representability of a second-degueface by a complex
equation lies in the property of these surfaces that Emewill cut it along a curve of
class twoand any point of it will be the vertex of an envelopooge oforder twa

The surface can, on the one hand, degenerate into @soface and, on the other,
into a plane curve. In both cases, it can be repraségtan equation in line coordinates.

In the first case, all of the complex cones will elegrate into a system of two planes,
which will contact the conic surface that is being represk All straight lines that go
through the vertex of the surface will belong to thenpltex.

In the second case, the complex curve in an arbipknye will degenerate into a
system of two points at which the curve being repredentk be cut by the given plane.
All of the straight lines that lie in the plane oétburve will be lines of the complex.

Whereas a plane curve cannot be represented by a sigg&ioa in point
coordinates and a conic surface cannot be represented ibgle squation in plane
coordinates, both geometric structures will find a regresgtion in line coordinates.
However, whereas a conic surface ioafer twoand is determined by a second-degree
eqguation in point coordinates, an a plane curve @dasfs twoand is given by an equation
in plane coordinates, a second-degree complex can repoedga cone otlass twoand
a curve oforder twa

A cone of class two can resolve into two axes thi#rsect at its vertex; a curve of
order two can resolve into two rays that lie in itsn@. With this specialization, the cone
and the curve will be identical, and as before they fmlll their representation in an
equation in line coordinates.

We come to the same specialization of the second-degmaplex from yet another
direction. Its equation can be resolved into lineatdis, and these factors, in turn, can
satisfy the condition that they represent first-dega@aplexes of the special kind whose
lines all intersect a fixed straight line. When the straight lines that are represented in
this way go through the same point, or — what amountseteaime thing — lie in the same
plane, we will have, in one case, the specializee adrclass two, and in the other case,
the specialized curve of order two.
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§3.

Thelinesat infinity of the complex.
Classification of complexes by those lines.

266. If we choose a straight line in a given plane arbiyrand move it parallel to
itself ever further then it will lose every trace itf original direction in the plane at
infinity. We can also replace the given plane, whdohtains the line shifted to infinity,
with any other plane that is parallel to it. All siyfat lines at infinity in parallel planes
will coincide in a single line at infinity. The straigline that was shifted to infinity will
be the intersection of infinitely many parallel planéswill have no relationship to finite
points at infinity, except that it is parallel to a giy@ane direction of a given plane.

When a given plane is shifted ever further parallets@ifiit will lose its direction, in
its own right. The plane at infinity must be regardsdarallel to any given plane. The
straight lines that lie in it have lost any relatioipsto finite points, and thus, any
meaning in the usual sense.

These geometric insights find an immediate analytogiression. In order for a
straight line:

X=rz+p,
y=Sz+ g,
to be contained in a plane:
tx+uy+vz+w=0,

one must have the following three relations:

tr+us+v=0,
to+uoc+w=0,
tn +vo—ws=0.

If the straight line lies at infinity in the given platheno ando - and as a result, alsp
=ro- o - will be infinitely large. The last two equations whien given the foregoing
equations:

t:u:v=—0:p:n,

while the first equation merely expresses the facttti@straight line that was shifted to
infinity is parallel to the given plane.

If the given plane is shifted to infinity thenwill become infinitely large, or — what
amounts to the same thing,-u, andv will vanish. Its equation will no longer express its
direction, and the foregoing three relations wileldkeir meaning.

267. If we take the general equation of the second-degregple& to be the
following one:
A +BS +C+Dd +EAf + Frf
+ 2Gs+ 2Hr + 2Ars + Kpn — A on — Mpo
- 2Nro+ 20s0
+ 2Prp+ 20rn + Ry — 2S0—-2To+ 2Up =0, 0]
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and letp, g, n become infinitely large in it, and thus neglect the tesmaining variables,

r ands, as well as constant quantities, in comparison teettieree variables, and finally,
neglect first powers of the first-mentioned three \@es in comparison to their second
powers then that will give:

DA +E +Frf + Kpn—2Lon— Mpo=0 (85)

for the lines of the complex that lie at infinity.

This equation, like any equation in line coordinates, reptesecomplex. We would
like to call it theasymptotic complex of the given compldxom the discussion in the
previous paragraph, this complex will be subsumed by thehateadpresents a cone of
class two. The vertex of this conic surface will caecwith the coordinate origin, and
its intersection with the plane at infinity will rve of class two that is enveloped by
the lines of the complex that lie in that plane.

Any second-degree complex in whose equation the ternmecohd order irp, o, 1
are multiplied by the same constabtsE, F, K, L, M that are in the equation of the given
complex will represent the lines of the given compleat lie at infinity with the same
precision as the complex whose equation is the forggome (85). It is the asymptotic
complex, which has the same relationship to all ose¢hcomplexes as the given one, in
its own right, due to the simplicity of its equaticand corresponding to that, by the
obvious grouping of its lines, by singling out a special posiooithe coordinate system,
as well.

The degree of the approximation by which the asymptotic Bomgpresents the
lines of the given complex that lie at infinity is ontliye first degree, insofar as its
equation agrees with the given one only in the terms @dramwo in the variables that
come under consideration, but not with those of érder.

268. If we replace -g; p, 7 in equation (85) with the values i, v above that these
coordinates will assume for straight lines at infinihen we will get the following
equation:

Dt? + EUF + FV? + 2Kuv + 2Ltv + 2Mtu = 0

for the determination of those plane directions alohickvlines of the complex will lie
at infinity. If we draw planes through the coordinat@iarthat have these directions
then they will envelop a conic surface of class two, Wwhg the conic surface was
represented by equation (85) in line coordinates. We gfade the conic surface, and
with it, the asymptotic complex, parallel to themseladstrarily without changing their
relationships to the given complex. From the coordinedasformation formulas of
numberl57, the coefficient®d, E, F, K, L, M, which are the only ones that appear here,
will remain unchanged under such a displacement. ahgential planes of the conic
surface will move parallel to themselves under the d@ghent. All mutually parallel
tangential planes will intersect along a line of theegicomplex that lies at infinity.

In the first paragraph of this section, we have usedetm “thecharacteristicof a
complex” to refer to a surface of class two whosgareand absolute dimensions can be
chosen arbitrarily, and which will be represented byfdllewing equation:
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D> + ELP + FV2 + 2Kuv+ 2Ltv + 2Mtu + kw/ = 0

when we place its center at the origin of the coatéis, and lek denote an arbitrary
constant. From the foregoing, the lines of the compiat lie at infinity will lie in the
tangential planes to the asymptotic cone of the cleniatit, and this asymptotic cone
will be represented by equation (85) in line coordinates.laAg which we can shift to
infinity, but in such a way that it does not lose atgginal direction, will cut this
asymptotic cone, and thus, the characteristics itselfyell, along a curve that will be
enveloped by the lines of the complex that lie at infiniOne is therefore not dealing
with a finite characteristic and its asymptotic cone.

269. We camapproximate the plane at infinifor which we hardly have a geometric
representation infinitely many wayswhen we start with a plane with a given direction
and shift it ever further while preserving that directid®@uch a plane will contain, on the
one hand, a complex curve of class two, and on the othdy hesecond such curve as its
intersection with the characteristic. The two e@swill coincide when their planes are
shifted to infinity. In other words, the curves of all emqual surfaces of a given
complex that lie in breadth planes that are shiftedftnity will lie on the characteristic.

When a plane of a given direction is shifted, the demgurve in it will shift
continually, and that will describe the equatorial surfatle directions of the two axes
of the curve and their ratio will get closer to a aertimit when the plane is shifted ever
further, corresponding to the direction of the plafdis limit is given by the constant
direction and the constant ratio of the axes ofdimve of intersection of the moving
plane with the characteristic. Since complex curard intersection curves with the
characteristic that are contained in parallel plam#icoincide at infinity, the diameter of
the relevant equatorial surface of the given complex toeiarallel to the diameter of
the characteristic, which is associated with the ptaae moves parallel to itself, as was
confirmed by the analytical developments of the firsageaph.

The foregoing geometric insights point to the relaitetween the given complex
and its characteristic. In agreement with that, wieget the following equations:

DW? + 2Lxvw+ FX V¥ +2 Mxuw 2 KX uy¥ EX t= 0,
EW +2Mytw+ DY £+ 2 Kyuw 2 Ly tw Fy ¥= 0, (86)
FW? +2Kzuw+ EZ G+2 Lztw 2 Mz ts Dz’ 0

from equations (7) in numbdi66, which will give the three complex curves in plane
that are shifted to infinity parallel to the arhitity-chosen coordinate plan¥Z, XZ, XY,
when we neglect the first powersxqfy, z, and constants of the second power, and those
equations will coincide with the equations of theersection curves of the three planes in
guestion with the asymptotic cone of the charastieri

270. The conic surfaces of class two that are enveldyyethe lines of the asymptotic
complex can be real or imaginary, and accordintiig, given second-degree complex
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might or might not include real lines that lie at irtfyni Therefore, the general second-
degree complexes will split intwo coordinated typesWe would like to call complexes
of the first kindhyperboloida] while complexes of the second will blipsoidal In this
classification, we first ignore complexes whose gstyitic complex has be specialized in
some way.

Hyperboloidalcomplexes will have a characteristic with a reghgstotic cone, and
will thus be defined analytically by the fact that oty of the three expressions:

oo M LMK KL
K L M

will have values with equal signs.

Ellipsoidal complexes have a characteristic whose asymptotic pesheces to an
ellipsoidal point; the three expressions above will haafees thatll agree in sign for
such complexes.

271. In hyperboloidalcomplexes, the tangential planes of the asymptotie obthe
characteristic determine the directions of the plaesg which lines of the complex will
lie at infinity. The complex curves in such planed W parabolas that contact the lines
at infinity. If one moves such a plane parallel telitthen the parabola that lies in it that
is enveloped by lines of the complex will describe aapalic equatorial surface (no.
232). The side along which the asymptotic cone of the cheniatic is contacted by a
breadth plane of the surface will determine the dimecthat the direction of the axis of
the parabola will approach when its plane moves awgndr, which can happen in two
ways.

Any other plane direction, along which no line of tbemplex lies at infinity,
determines an equatorial surface whose breadth curvesspas<enter. Here, we first
emphasize that with increasing distance, when a planeritvaes parallel to itself the
complex curve in it will become a hyperbola or an elljggeording to whether the plane
cuts the asymptotic cone in a hyperbola or an ellizsp.

Two planes in which a line of a hyperboloidal comples &t infinity will go through
a given straight line, in general. If we take any pointhe given straight line to be the
vertex of the asymptotic cone of the characteris@n tthe two tangential planes to this
cone that can be drawn through the given line will leettho planes in question. They
will be real or imaginary according to whether the lies outside or inside the cone,
respectively, and will coincide in a tangential planéh® cone when the line is a side of
the cone. Corresponding to them, two parabolas ppeaaa among the meridian curves
of the meridian surface of a hyperboloidal complex; tbag also coincide. That will
depend upon the direction of the double line of the meridiaffiace relative to the
asymptotic cone of the characteristic of the complex.

The lines of the complex that are parallel to the dolibe of a meridian surface
define a complex cylinder that circumscribes the menmidizrface. This cylinder will be
hyperbolic or elliptic (), according to whether the two meridian planes in which

() Here, and in what follows, we understand hyperbolic dfigtie cylinders to mean ones that
intersect the plane at infinity in two real or twoaginary lines, resp.; thus, the imaginary cylinder wibal
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parabolic curves lie are real or imaginary, respectivéfythe two planes coincide then
the complex cylinder will be callgohrabolic.

From the foregoing, the cylinders that are defined by lites of a hyperbolic
complex will be elliptic or hyperbolic according to whet the direction of the complex
lines that generate it do or do not lie in the asymptotie afrnthe characteristic, resp.
All complex cylinders whose generators are parallel tole af the asymptotic cone are
parabolic.

272. There are no parabolic curves whatsoeveellipsoidal complexes. All
equatorial surfaces are included between two planes thdband at a finite distance
from each other. These planes refer to the tianditom planes in which a real complex
curve lies to ones in which an imaginary curve is erpedaby lines of the complex.

One finds no parabolas among the meridian curves aflatrary meridian surface
that belongs to a complex. The two meridian planeghich parabolas are enveloped by
lines of the complex in the case of hyperboloid compldikbe imaginary in the case of
ellipsoidal complexes that are independent of the dieaif the double line. As a result
of this, all cylinders that are defined by lines of an stlidal complex will be elliptic
cylinders.

273. In number 163, we obtained the following equation in mixedtpand line
coordinates, u, v, W
DW + 2 x — § vw+ (X% — Rx+ B)
+2 Mx+T)uw+ 2 KE—-0Ox—G)uv+ EX + Ux+C) > =0 (87)

for an equatorial surfacewhose breadth curves are parallel to ¥ plane. This
equation containghirteen constants, which gives thHéteen constants upon which the
equatorial surface depends when one includeswbeonstants by which the coordinate
system is specialized.

If we determine th€©X axis in such a way that it runs parallel to the diamete¢he
complex that is associated with the arbitrary plamat tis taken to berZ then the
constantd. andM will vanish.; if it coincides with that diameter th&andT will vanish
simultaneously. K will vanish when we give the two ax€y and OZ directions inYZ
such that the three coordinate axes are parallel tohtbe tssociated diameters of the
complex. The general equation of the equatorial surfatéose five more constants by
this coordinate determination, and it will go to the faliog one:

DW + (FX* — Rx+B) VV = 2 Ox+ G) uv+ (EX + 2Ux + C) u* = 0. (88)

be referred to as elliptic. In particular, one casohee hyperbolic and elliptic cylinders into systemsvad t
intersecting planes that will be real or imaginaegpectively.

If the two lines of intersection coincide with therptaat infinity in a straight line then the cylinder lwil
be called parabolic, even if it has been specializedargystem of two parallel real or imaginary planes.
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If we displace the coordinate plaM& parallel to itself until it goes through the center of
the complex then that will reduce the number of canistay a sixth unit, in accordance
with the condition equation (36):

ER=FU.

274. All equatorial surfaces for ellipsoidal complexes agpresentable by an
equation with the latter form (88), since we might atboose the direction of théz
plane. However, if we take the breadth planes o&thetorial surface to be parallel to a
tangential plane to the asymptotic cone of the chariatt for hyperboloidal complexes,
in particular, then the associated diameter of theacheristic will be parallel to these
planes, and as a result, the foregoing coordinatersysit no longer be possible. The
general equation of the equatorial surface (87) will tbee the constam, such that the
surface will depend upon only fourteen constants. We halledcsuch equatorial
surfacegarabolic.

The vanishing oD corresponds to the fact thaZ is a tangential plane to the
asymptotic cone of the characteristic whose midpoint \&ee hchosen to be the
coordinate origin. We would like to let tH@Z axis coincide with the side of the
asymptotic cone along which it will contact tN& plane. The constam will then
vanish in the equation for the equatorial surface. Irgdmeeral case, the coordinates of
the center of an arbitrary breadth curve will be:

Mx+T Lx-S
y:— , Z=- .
D D

WhenD vanishes, the center in the plane of the curvegaeillo infinity, and the direction
along which it lies at infinity will be determined by thguation:

in which a denotes the angle that this direction — viz., thectlwa of the axis of the
parabola — makes witBZ. For the parabola at infinity, one will get:

M
tana=—.
L

This axis direction will be parallel to ti@Z axis wherM vanishes.

The direction of th®Y axis still remains undetermined, as of now. We canitake
be the one ifYyZthat is perpendicular t0Z If we then draw a second tangential plane to
the asymptotic cone throughy and take it to be th&Y plane and the side along which it
contacts the asymptotic cone to be @¥¢axis then the two constarfisandK will vanish
from the equation of the equatorial surface. One thé&esvthe equation of the surface
in the following form:

2 (x—9vw— (Rx—B V2 + 2ZTuw-2 Ox+G)uv+ (EX + Ux+C) * = 0. (89)
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We can drop three more constants from this equatiorpbgger choice of origin.

275. When the expression:
Dt? + EW? + FV? + 2Kuv + 2Ltv + 2Mtu,
which corresponds to the condition equation:
DEF — DK —EL?> —=FM ? + 2KLM = 0, (90)

resolves into two first-degree factptbat will specialize the complex by eliminating one
of its nineteen constants.

The foregoing condition equation then comes down tangayiat when we e, L,
M vanish by a suitable choice of directions for the¢hroordinate axes, as before, one of
the three constant3, E, F will likewise vanish as a result. If is the vanishing constant
then the equation of the complex will become:

Ar? +BS + C+EA + Frf
+ 2Gs+ 2Hr + 2Ars
- 2Nro+ 20s0
+ 2Prp+ 20Qrn + Ry — S0—-2To+ 2Up= 0. (91)

We can eliminate three more constants from this emuan which we would like to
choose the coordinate system to be rectangular, despgenerality, by determining the
origin of the coordinates. It is essential in théofeing considerations that none of the
other constantB, E, F vanish by the choice of directions for the coordinatsaexcept
for D.

276. We have represented the characteristic of the equation
Dt? + EU¥ + FV + 2Kuv + 2Ltv + 2Mtu + kwf = 0.

This characteristic is a second-degree surface withnéercen the general case of
hyperboloidal and ellipsoidal complexes. The centethat surface and its absolute
dimensions, which are independent of the arbitrary eobhkt can be chosen arbitrarily.
In the case of complexes of the special kind that mwenaw considering, and which we
have represented by equation (91), the characteristicagdiice to a second-degree curve
with a center. We would like to call this curtvee characteristic curvef the complex of
the special kind.

A distinguished plane direction for the complex ivegi by the plane of the
characteristic curve. If we take it to be paralletheYZ coordinate plane thel, L, M
will vanish, and the equation of the curve will go to filowing one:

EW + FV2 + 2Kuv + kw? = 0.
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If we take two associated diameters of the curwe particular, its two axes to be the
OY andOZ coordinate axes the will vanish, and then its coordinate axes will be the
ones to which the complex in equation (91) is referred.

277. We have reduced the determination of the directioth@fassociated diameter
of a complex of the general kind to the consideratiothefdiameter of its characteristic
surface. We can regard the characteristic curve oh@lex of the special kind as the
limit of characteristic surfaces, and as a resal, that two associated diameters of the
curve are simultaneously associated with all plandsctrabe drawn through other ones
in an arbitrary direction each time. We can also say each straight line that goes
through the center of the curve that does not lie inplame of that curve will be
associated with that plane, and finally the fact thay auch straight line and two
diameters of the curve will define a system of thassociated diameters of the curve.

These relations carry over immediately to complexethe special kind. A given
plane corresponds to a diameter of the complex thatoeiparallel to the plane of the
characteristic curve and will remain parallel to thiane, even if the direction of the
given plane might change. In other wortlie diameters of all equatorial surfaces of the
complex are parallel to the plane of its characteristic curve.

If the given plane rotates around its line of inteisectwith the plane of the
characteristic curve then the associated diameteneotomplex will move parallel to
itself. There will then be infinitely many mutually4aédlel diameters of the complex.
Finally, if the rotating plane coincides with the plasfehe characteristic curve then the
diameter will be indeterminate. It will lose itselition when it goes to infinity.

In the general case of hyperboloidal and ellipsoidatplexes, we have shown that
any two conjugate diameters will be cut by the axis of traptex cylinder whose sides
are parallel to the third conjugate diameter. In tise cd the special complex that we are
considering here, the third conjugate diameter will be eshitio infinity every time.
However, as before, any two arbitrary conjugate diarsdtet are parallel to the central
plane will determine the directions of the sides abmplex cylinder whose axes cut the
two diameters by the intersection of their associglades. We say that this cylinder
and in particular, its axis is associated with the system of two diameters.

278. In order to confirm and extend this result, we woikd to return to equations
(5), which represent the diameter that is associatédangiven plane:
tx+uy+vz+w=0
in the general case of complexes. When we use thei@guatthe complex of the

special kind (91) as a basis, andXey, z keep their previous meaning, these equations
will reduce to:
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x—X =0,
Eu
V= i 92
y-y Eu’ + FV (92)
Fv
z2-7=——.
EU+ FV
Thus:
(y=-y)Fv=(z-2Eu. (93)

In accordance with the first of the three equations, (9®) diameter is parallel to th&Z
plane. Equation (93), when written in the following way

=L

immediately expresses the idea that the interseaiothe givenYZ plane and the
diameter of the complex that is associated with peate will have the direction of two

associated diameters of the characteristic curve, which the vanishing oK will be
represented by the equation:
EW + FV + kwf = 0.

The values ok’ : y : Z that we have used as a basis for equations (92) are the
following ones:

, _Ouv+ RV + Stu Tte Ut
X - )
Eu’ + FV
. —Ntv—-Puv- Qv+ Tt+ Utu
y= 9 , ()
Eu’ + FV
, _(N-O)tu+ PU# + Quv Rtv St
Z= 2 .
EU’ + FV

The distanced of the diameter from th&Z plane then remains the same for all planes
whose coordinates satisfy the following equation:

(EW + FV?) X = Ouv+ RV + Stv— Ttu— Uu? (95)

All such planes envelop a curve at infinity of class.twyhen the term i is missing
from the foregoing equation, that curve will contact gheaight line at infinity inYZ
independently of the choice @t We get:

Sv—Tu=0 (96)

for the contact pointy' no longer enters into this equation. It determindstnguished
direction for the complex.
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The coordinates of the poirt, ¥, Z, which determine the position of the diameter,
will become infinitely large whem andv vanish at the same time. As equations (92)
show, the diameter will then lose its directionrdinity. However, the quotieny / Z
will keep a finite and well-defined value. When wedeindv vanish, we will get from
(4) that:

Y-

!

4

wnl-

(97)

The diameter will then be shifted to infinity in theredition that is indicated by the
foregoing equation. This direction will coincide witletbne that we have determined by
equation (96). We can say that the infinitude of diarsetfeat are associated with the
plane of the characteristic curve in the complexrgdet that plane in the same point at
infinity. That point will be the center of curve thatenveloped by lines of the complex
in the plane of the characteristic curve, and will remaichanged when the plane moves
parallel to itself. We will obtain the analytic camfiation of this geometric consequence
in the following number.

279. We get:

(98)

for the intersection of the two diameters that assoaiated with theXZ and XY
coordinate planes and parallel®Y andOZ with these two coordinate planes. If we set:

P=0, Q=0

then we will displace th&Z andXY planes in such a way that after the displacement the
two diameters that are associated with these two plaiiesit the OX axis.

Of the pairs of equations (18) in number 240, by which the akehree complex
cylinders whose sides are parallel to @%, OY, OZ coordinate axes were represented,
the first one:

m| o

y=-=, z

= , (99)

showed that one of the cylinder axes coincided W@k The other two pairs of
eguations gave:

(100)
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The other two cylinder axes in the same planes tlaparallel toYZ and in which the
two associated diameters lie, will be shifted to infinity.

Of the three coordinates of the center of the ckpaeallelepiped whose edges are
parallel toOX, QY, OZ, respectively, for which we have obtained:

w=ER-FU  p_ DQ-FT ~ ,_DP-ES (21)
2EF 2DF 2DE

in the general case, oty remains finite and determined completely, whflandZ® will
become infinitely large; the ratio g andZ’ will remain determinate. We will get:

0
Y
ZO

(101)

wnl-

for it.

The same thing will be determined by this equation thatbt&ireed in the previous
number (97).

The center of the central parallelepiped that we ldnesen lies in a plane that is
determined, not only in direction, but also in positiom, which the sense that is
determined by equation (101) is at infinity. If we keep@€axis as a side of the central
parallelepiped and tak®Y and OZ arbitrarily to be two conjugate diameters of the
characteristic curve then we will obtain a seriec@ftral parallelepipeds. The same
considerations that we posed in nump48 in the case of hyperboloidal and ellipsoidal
complexes, show us here that the center of all e$ehcentral parallelepipeds will be
shifted to infinity in the same direction and in the saofame that is parallel to the plane
of the characteristic curve.

If we choose another cylinder axis of the complex acelof theOX axis then we
will obtain a new series of central parallelepipedsThe centers of all these
parallelepipeds will be shifted to infinity in the sameediion, as before, parallel to the
plane of the characteristic curve, since the determinabf that direction was
independent of the choice of tkEX coordinate axis. By contrast, the plane in which the
center of the parallelepiped is shifted to infinity vgknerally be different. If we then
choose any two conjugate diameters of the complex atatesthe one with another one
that is parallel to it then that will change the cahplane that goes halfway between the
two conjugate diameters.

We have then come to the following theorems:

In the complexes of the special kind that we amsiciering, the center is shifted to
infinity parallel to the plane of the characteristurve in the given direction:

N <

=Yoo T
z S

All central parallelepipeds that have the sametdéiriylinder axis for one of their
edges will possess the same central plane parédleghe plane of the characteristic
curve.
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280. We will get the following equation for the complex bétspecial kind:

Ar? +BS + C +EA + Frf
+ 2Gs+ 2Hr + 2Ars
- 2Nro+ 20s0
+ 2R —2S50-2To+ 2Up=0 (102)

when we let the axis of any of its cylinders coincide wiiie OX coordinate axis and
chooseQY andOZ to be any two diameters of the characteristic curvee céh add to
that the condition equation:

ER=FU (103)

and then determine that the central plane that belmngs OX axis will coincide with
theYZ coordinate plane. Finally, we can &or T vanish at will when we take one of the
two axe0Y, OZto be parallel to the direction that is determined bya&qo (101).

When one considers that simplification, equation (108)centainelevenmutually-
independent constants. When we add to themstheenconstants by which the
coordinate system was specialized, we will obtaineigateenconstants of the complex
of the special kind.

281. The asymptotic cone of the characteristic surfaca cdmplex of the general
kind will be represented by the two asymptotes of theacheristic curve for the
complexes of the special kind that we consider here.

In the case of the general complex, the curve alonighnva given plane cuts the
asymptotic cone will determine the nature of the complexecum the plane that is
shifted to infinity parallel to the given one. In commsof the special kind, this curve
will resolve into the two intersection points of thien plane with the asymptotes. The
complex curve will then degenerate irgsystem of two pointbat lie at infinity in the
direction of the two asymptotes in the plane thatdess shifted to infinity.

All equatorial surfaces whose breadth planes arelpbt@bne of the two asymptotes
are parabolic. We will also obtain a parabolic equalttsurface when we take its breadth
planes to be parallel to the plane of the charatiecurve. The equation of this surface
is:

- 2Svw+ (Fx% — Rx+ B) V2 + 2Tuw
- 200x+G)uv+ (EX + 2Ux+C) U= 0, (104)

and the surface will be specialized in such a way tleatkes of the parabola are directed
the same in all breadth planes. This direction isgreement with numbé&78, the one
along which the center of the complex is shifted to ityfin
If we determine that equatorial surface by its envelopytigdrical surfaces, instead
of by its breadth curves, then we will get the follogviequation from the developments
of numberl82:
(Fy? +EZ3) ¥ - 2 Ry?*-0yZ —UzZ% x
+2 Sy +T2)y [+ By?+ 2GyZ +CZ%) = 0. (105)
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This represents the intersectionXd with the complex cylinder whose sides are parallel
to the direction that is determined by the rati6Z.

The term inZ is missing from the foregoing equation. All complex mgérs whose
sides are parallel to the plane of the characterairve are parabolic cylinders. Their
diametral planes are parallel to the stated plangaitticular, those two cylinders whose
sides are parallel to one of the two asymptotes ofhlagacteristic curve will resolve into
a system of two planes, one of which is shifted to iyfin As a result of this, the
equation of the cylinder will reduce to one of first degrewe finally give the sides of
the cylinder the direction in which the center of tbenplex is shifted to infinity then we
will get:

Sy +TZ =0,

and the cylinder will decompose into two planes that atk parallel to the plane of the
characteristic curve.

282. We would like to call a complex of the special kingperbolic or elliptic
according to whether the two asymptotes of the charsiatezurve are real or imaginary,
respectively.

In both kinds of complexes, a line of the complel kg at infinity in planes that are
parallel to the plane of the characteristic curvdier€ no other planes that contain lines
of the complex at infinity in elliptic complexes. lhyperbolic complexes, two real planes
can be drawn through any line in space, which are paraltéetbwo asymptotes of the
characteristic curve, respectively. The complex curdbese planes will be parabolas.
With the exception of the complex cylinders whose sidesparallel to the plane of the
characteristic curve, all cylinder surfaces that belang thyperbolic complex will be
hyperbolic, and the cylinders that belong to an elliptimglex will be elliptic.

We can say that the curves of the complex thanlite plane at infinity resolve into
a system otwo real pointsin the case of hyperbolic complexes and a systetwof
imaginary pointsn the case of elliptic complexes.

283. If we consider only the terms of degree tw@ijrg, /7 in order to represent the
totality of lines of the complex that lie at infinitgs we did in the general case (867),
then we will get:

Eff +Fr*=0 (106)
from equation (102).

This equation represents the two asymptotes of the chastict curve in line
coordinates.

However, with a greater approximation than one gets Iyguhe characteristic
curve, we can determine the lines of the given complanfiatity when we neglect, as
before, first powers op and /7 in comparison to the second powers, as well as the
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variablesr, s, and constantsyhile we keep first powers of In this way (), we will get
the following equation:

Ef+Ff—26s+T) o=0. (107)
A term withN or O does not enter in. Namely, one has:
~Nro+0s0=-Ni7+(©-Nsp;

that is,r owill always have the same order as the terms witimdsp, so it will not come
under consideration.

The foregoing equation represents a new complex thatvewdd like to call the
asymptotic complex of the given one.

As in the general case, the approximation of the asymuimtnplex is of first degree
to the given one, while it would be only of degree 1/2 by ewtglg the terms of first
order ingo.

If we displace the origin of the coordinates arbilyathen the two constan@SandT
will remain unchanged in equation (91), which does not inclodi, L, M. Since we
might then displace the given complex and its asymptotioplex parallel to themselves
with respect to each otheheir reciprocal relationship will remain the same.

The equation of the asymptotic complex will be satisfidd@n we simultaneously
have:

p=0, 0=0, n=0.

All of the straight lines that go through the coordinat@iorwill belong to the
asymptotic complex. The complex further encompassestraight lines that obey the
two equations:
Ec +Fr7 =0, 0=0,
or the following two:
Ed” +Frf =0, Ss+T=0.

Any straight line that cuts th®@X axis and the two asymptotes of the characteristic
curve that lie inyZwill then be a line of the asymptotic complex. Moreaovtewill also
contain any straight line that cuts one of the twargsgtes and is parallel to the plane
through the origin:

Sy+Tz=0,

which refers to the direction in which the centerhaf given complex is shifted to infinity
in the plane of the characteristic curve. As a testilthis, the complex curve will
degenerate into the system of two points inXHAelane, one of which will coincide with
the coordinate origin and the other of which will be skifto infinity in the direction that

() Analogously, a curve branch with a parabolic asympgtateonly one point that lies at infinity, when
taken absolutely, namely, the one in which it is inteegbby the diameter of the parabolic asymptote. We
will get a more precise insight into the position of thinitely-close points by the parabolic asymptote
itself whose points will lie at infinity in the dirgon of the axis, as well as perpendicular to it wHesyt
are shifted to infinity. However, this happens in such wtwat when the magnitude of the distance to the
axis is of first order, the order of the magnitude ofdistance from the axis will only be 1/2.
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was specified by the foregoing equation. The equatoriabhcirbf the asymptotic
complex whose breadth planes are paralleYZoconsists of parabolas, like that of the
given complex. All of these parabolas will contdoe two planes that can be drawn
through theOX axis and the two asymptotes of the characteristic cutivéhe breadth
plane is shifted to infinity parallel t¥Z then the parabola in it will degenerate into a
system of two points at infinity. We have imagined tifa@sition from a parabola to two
points at infinity in such a way that the contact pintll be shifted to infinity along two
fixed tangents to the curve.

284. If the plane in which the center of a given compg¢eghifted to infinity contains
one of the two asymptotes or is undetermined then we oltihin a corresponding
specialization of the complex relative to the positad its diameter and the arrangement
of its lines at infinity. In general, such complexed dépend uporseventeemr sixteen
constants, respectively.

Here, we would like to consider only the latter caseyhich S andT vanish in the
general complex equation, along wkKhL, M. The variableo will then drop out of the
equation of the complex, thus-specialized, completely.

The most general form of equation in which these slggare missing is:

Ar’ + B + C + 2Gs+ 2Hr + 2Ars
+EF +Fif + XKpn
+20O-Nspo—-Nnp
+ 2Prp+ 2Qrn + 2Rs7 + 2Up = 0. (108)

K will vanish in this equation due to the fact that weettheOY andOZ coordinate axes
to be parallel to two associated diameters of theaciaristic curve.P andQ will vanish
when we let théOX axis (which was assumed to be arbitrary, up to now) aenwith
the axis of a complex cylinder. Finally, by displacing ¥Z plane parallel to itself, we
will obtain the relation:

ER=FU.

The equation:
Ar? + BS + C + 2Gs+ 2Hr + 2rs
+EQf + Frf
+20-Nsp-Npg
+ 2R+ 2Up =0, (109)

in which:

ER=FU,

is then to be regarded as theneral equatiorof the complex that has been specialized in
the manner in question. It will includen mutually-independent constants, to which, one
must add thesix constants of position, which arise from the factt tte YZ plane is
determined by the complex, the fact that the two a®@$and OZ have associated
directions relative to the characteristic curve, &ndlly, the fact thatOX is a cylinder
axis of the complex.
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The condition that a second-degree can then be repgdsbmt a second-degree
equation in onlyour of the five variables:

rs op (fo-p=rn),

corresponds to taree-fold specializationf the complex ).

285. It is interesting to examine the complex thus-spesdlmore closely.
For the distance from the diameter of the complat is associated with a given
plane:
tx+uy+vz+w=0

to theYZ coordinate plane that is parallel to it, we find:

RV + Ouv Ud
X= 110
Eu’ + FV (110)

from the formulas of numb&78, when we sef andT equal to zero. If we then rotate
the given plane arbitrarily around its intersectionhwihe plane of the characteristic
curve then the diameter that is associated with litalways remain in the same plane
that is determined by the foregoing valuexpfvhile the distance between the diameter
that is associated with it and tM& plane will change under rotation of the given plane in
the general case of hyperbolic and elliptic complexes.

With that, the previously-obtained result will go to tbéowing one:

The diameters of the complex that are parallel totenwyassociated diameters of the
characteristic plane lie in two parallel planes thate the same distance fronfixed
plane We would like to call this plane tlentral planeof the given complex.

The coordinates of the center of the complex in déetral plane are no longer
infinitely large; their values take the form 0 / 0. Tdsater no longer lies at infinityAny
point of the central axis can be regarded as theeareof the complex.

286. For the complexes of the special kind that we cons@ein the general case of
hyperbolic and elliptic complexes, lines at infinity Mig in all planes that are parallel to
one of the two asymptotes of the characteristic cuamd, the complex curves in them
will be parabolas. However, in planes that are f&red the central plane and thus,
both asymptotes — the complex curves will be represdmytéae equation:

() Instead of lettingr drop out, as we did in the text, we can also chgosg taking thexXY coordinate
plane to be the plane of the characteristic curve. efjuation of the complex is then written immediately
as the general second-degree equation in the four varialsles; p that we encounter when we determine
the straight line by its projections oX&@ andYZ Instead of the previous constakts, Q, we can lei,

T, U vanish here, and obtain the relation:
DP =ES

by a suitable displacement of tK¥ coordinate plane.
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(FE — Rx+B) VV =2 Ox+G) uv+ (ExX + 2Ux +C) V* = 0, (111)

due to the vanishing @& andT. They will cease to be parabolas and will degenanébe
systems of two points that lie at infinity in directs that change from one plane to
another.

The lines of the complex on one of the planesdhaiparallel to the central plane will
then consist of all lines in the plane that are jpertd two given ones. These lines can
be real or imaginary, and they can lie at infinitfthe plane moves even further from the
central plane then the directions of the two linetays will always approach the
directions of the two asymptotes of the character@irve more closely.

To summarize, the complex is then specialized by tttetfiat any point of a straight
line in the plane at infinity is the center of a cdexpcone that resolves into the system of
two planes that intersect in the line in question, or atv@mounts to the same thing —
that any plane that can be drawn through a distinguisttaglg line in the plane at
infinity will contain a complex curve that resolvedad the system of two points that lie
upon the straight line in question.

287. In the foregoing, we have discussed the case in whielcdimplex that is
represented by the general second-degree equation is spécializlation to its lines at
infinity as a result of the fact that the expression

D& +EF + Fr + Kon— 2o — Mpo

resolves into two linear factors. We would now likectmsider a new specialization of
the complex, by which, the same expression willHgesquare of a linear functipmwhich
would correspond to the fact that one simultaneously has:

K?-EF=0, L2-DF =0, M?-DE = 0. (112)

It will then come down to the fact that in the asatenl determination of the directions of
the coordinate axes, two of the three constBnts, F will vanish along withK, L, M. If
E andF are the two vanishing constants then the equation oédhglex will be the
following one:
Ar? + BS + C + 2Gs+ 2Hr + 2rs
+Dd
- 2Nrs+ 2050
+ 2Prp+ 20rn + 2Ry — 2S0—-2To+ 2Up= 0. (113)

288. Equations (2) of numbe234 will give the following equations for the
determination of the diameter of the complex thaissociated with the given plane:

tx+uy+vz+w=0,
namely:
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_ w, ,_ w, Ouw RV+ Sty Tta Uu
X=——+X=—-—+ )
t t Dt?
-Ntv- Puv- Q¥+ Tt+ Utu
y=y= 9 | (114)
Dt
Z_z_(N—O)tu+ P4+ Quw Rty St
o Dt? '

All diameters of the complex are parallel to the OX aXike direction of th€©X axis
is then given by the complex. Thixteenconstants of the complex that is specialized by
the three conditions (112) are found in therteenconstants of its equation (113) and the
two constants by which we have determined the direction efatbrementioned axis.
With no loss of generality, we can then take the coatdisystem to which the complex
is referred in equation (113) to be a rectangular one.

For the determination of the three cylinder axes that @arallel to the three
coordinate axe®X, QY, OZ, respectively, we will get:

y:oo, Z=00,
X=o, 2= —%, (115)
X =00 y—l

’ D

from equations (18)All cylinder axes of the complex are shifted to infinity.

We can eliminate the two terms in equation (113) thaeadewed witrso and o by
a parallel displacement of tl@X axis. We then choose the center of the complexecurv
that lies in theYZ plane to be the coordinate origin, which will be reprnéed by the
following two equations in the case of equation (113):

D' D’

TheOX axis will then become the diameter of the complet ts cut by the two axes
of the cylinders that are parallel @Y andOZ, and are shifted to infinity alom@X. Of
the edges of the central parallelepiped that is detedhinyethe directions of the three
coordinate axes in the complex, only one of them withain at infinity. Corresponding
to that, the coordinates of the center of the com@exye have determined then using
equations (21), will all be infinitely large. The quotientaofy two of them will take the
form O / 0. The center of the central parallelepiped is shifted to infinityan
undetermined direction.

289. For an arbitrary plane that contains ¥ axis, and is therefore parallel to all
of the diameters of the complex that lie at infinitye coordinates, y', Z (114) will take
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on infinitely large values whenvanishes; however, their ratios will remain finit€he
complex curve in any such plane will be a parabola, hedlirection of the diameter of
that parabola will be indicated by that finite ratiorofa (114), we find this direction to
be:

X 1y :Z = (Ouv+ RV —UW) : = v (Pu+ Qv : u (Pu+ Qv),

and when we set:

!

z

!

u
v

and drop the prime, that will give us:
x (Pz—Qy) = Ry —Oyz— UZ. (116)

This equation will represent a second-order conic surfduesevvertex falls upon the
coordinate origin, and which will contain tkEX axis as one side. Those two sides along
which the conic surface is cut by an arbitrary planeighdtawn through th®X axis will
give the direction in which the vertex is shifted to irifinin the chosen plane. This
direction will remain unchanged when the chosen plangdisplaced parallel to itself.
From the transformation formulas of numiéB, the coefficient®©, P, Q, R, U that enter
into the foregoing equation will remain unchanged under splatement of the
coordinate system as long as the constanks K, L, M vanish, as in the special case that
we are considering. The equatorial surfaces of the exmphose breadth curves are
parallel to theOX axis will then be specialized in such a way that the@#ath curves
(which will be parabolas) will possess the same dwmecfor their diameters. The
common direction of the diameters of all paraboldsb& given by equation (116).

In the case of the elliptic and hyperbolic complexeste is an equatorial surface that
was specialized in that way; viz., the one whose brgadties were parallel to the plane
of the characteristic curve. The axis direction th@ommon to all breadth curves in that
parabolic equatorial surface is indicated by the centdreofomplex that lies in the plane
at infinity. Corresponding to that, we will get infingetnany directions along which the
center of the complex is shifted to infinity for thengplexes of the special kind that we
are considering, and this infinitude of directions willibéicated by equation (116).

The center of the complexes of the special kind we are considering will be
undetermined. The geometric locus of them is drileeosecond-order curves that lie in
the plane at infinity.

290. The complex curves in all planes that are paradléDX are parabolas in the
case that we are considering. Consistent with thamy fquations (115), all complex
cylinders will be parabolic cylinders whose diametrahpkare parallel to theX axis.
All lines that lie in the plane at infinity and cut tX axis will belong to the complex.
We can say that the curve that is enveloped by the dhése complex in the plane at
infinity has resolved into a system of two points that edénat infinity along the OX
axis. We would like to call such a degenerate complex thaesponds to the previous
relationship garaboliccomplex.
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The cylinder whose side is parallel to the common tdoeof all diameters of the
complex resolves into a system of two planes, onehidtwis at infinity, and as in the
case of hyperbolic and elliptic complexes, if the cylinddiose sides indicate the
direction in which the center of the complex wastslitto infinity decomposes into two
planes that are parallel to the plane of the chaisgtecurve then a cylinder in a
parabolic complex whose sides possess any directiowhioch the midpoint of the
complex is shifted to infinity will resolve into a sgst of two planes that are parallel to
OX. We will find the analytical confirmation of this assen in equation (27) of number
182, which determines those cylinders whose sides are pgdoatleYZ plane — which is
an arbitrarily-chosen plane that has no distinguishddtioaship to the complex
whatsoever — by its intersection wkiZ. This equation is the following one:

Dy?[F -2 Ry?-0OyzZ —UZ?) x + (By? + 2GyZ + CZ?% = 0.
The assumption corresponds to the fact that:
Ry?-0yZ —Uz?=0;

that is, that the sides of the complex cylinder haeedilrection of one of the two straight
lines along which the conic surface (116) is cut byvtAg@lane, so it will decompose into
two linear factors in whick no longer occurs, and will thus represent two pldnasare
parallel toOX.

291. If we neglect first powers of the variableso, 77, as well as, s, and constants,
in the complex equation (113) when compared with second pow¥egr, g, 77 then we
will find that the lines of the complex at infinity cae represented by:

D& =0. (117)

All lines that cut theDX coordinate axis will belong to the previous complex. e
asymptotes of the characteristic curve for hyperbolic alligtic complexes will then
coincide in a single straight line for parabolic compke

However, we can represent lines of the complex atitpfto a higher degree of
approximation than is possible in the foregoing equation weskeep the first powers
of pandy, along with the second power a@f The resultant equation:

DA-Nn+20O-Nsp+2Pr+U) p+2Qr+Rg n=0 (118)

will represent a new complex that we would like to tld asymptotic complex of the
given one. Since we might also displace the given complexitndsymptotic complex
with respect to each othaheir reciprocal relationship to each other will remain the
same. According to the rules in numbéb7, the coefficientd, N, O, P, Q, R, U will
then keep the same values under a displacement obtindinate system parallel to itself
in the case that we are considering.
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The asymptotic complex that is represented by equation (tll&ubsume all lines
that go through the coordinate origin. When we letcthestant®8, C, E, F, G, K, L, M,
S T vanish, we will obtain the following equation from numié5 for the equation of
its equatorial surface whose breadth planes are patallidde YZ coordinate plane by
solving for the factok:

2Dry? — 2D0yz+ 2DUZ + O2x — 4RUx = 0. (119)

This equation has degree two and represents a parabolbabiitacts thérZ plane at the
coordinate origin, and whose diameter is paralleDX The reduction of the fourth-
degree equation for the general equatorial surface to degoeeomes about here, in
agreement with the developments of nunfid; as a result of the fact that the equatorial
surface splits into two planes, in which two pointsttbaalesce into one will be
enveloped by the lines of the complex. In the presesd, ¢hey will be th&’'Z coordinate
plane and the plane at infinity.

From numberl69, we get the following equation in mixed coordinates for the
meridian surface that h&sX for the double lines:

(Rtarf —Otang —U) tw— (Qtang —P) vw=0. (120)

In an arbitrary meridian plane, the curve will thesalve into a system of two points,
one of which coincides with the coordinate origin, arel ¢kher of which is shifted to
infinity in the direction that is indicated by the edjon:

(Rtarf —Otang —U)t— (Qtang —P) v=0. (121)

The cylinders of the complex whose sides possess thattidn will resolve into a
system of two planes that are parallel to the plaatishdetermined by the value of tan

é.

292. We obtain one last specialization of the complé&emwe let six constants from
the group:
D,E,F,K LM

vanish at the same time. The general equation ofdh@lex will then contain only
thirteenmutually-independent constants.

In order to represent lines of the complexhus-specialized- that belong to the
(absolute) plane at infinity, we obtain the identity:

0=0.

In complexes of the special kind that we considas; straight line that lies in the plane
at infinity will belong to the complex.The complex curve in an arbitrary plane is a
parabola. All of the complex cylinders decompose ingbesys of two planes and reduce
to first degree when one shifts one of them to infinit}le say nothing further about
central parallelepipeds of complexeEhe complex has lost its center.
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We refer to the complex whose equation is derived fthen given complex by
neglecting the variablas s, and constants in comparison to the first powers of /7 as
theasymptotic complexWe thus obtain:

—2Nro+ 2050+ 2Prp+ 2Qrn+ Ry — 2S57-2To+ 2Up = 0. (122)

As a result of the form of this equation, the relaship of the asymptotic complex to
the given one will not change when one displacgzsargllel to itself through a finite
segment.

We might next remark that the asymptotic complexose equation the constants:

Al Bl Cl Gl Hl Il
as well as the constants:
D, EFKL M,

are missing is specialized with respect to the origia manner that is analogous to the
way that it is specialized with respect to the planefatity. All lines that lie at infinity,

as well as all lines that go through the coordinateimgrigelong to the asymptotic
complex.

As in the case of the given complex, all of therdir surfaces that are defined by
lines of the asymptotic complex will degenerate into systef planes, one of which is
shifted to infinity. However, a new specialization agmse in that the other plane will go
through the coordinate origin in every case. Whereagabpla in an arbitrary plane in
space will be enveloped by lines of the complex, the cexnplirve in any plane that
goes through the coordinate origin will split into a eystof two points, one of which
will coincide with the coordinate origin, while the othef which will be shifted to
infinity. As a result of this, any equatorial surfadele complex will degenerate into a
cone of order two whose vertex will fall upon the cooatinorigin and that will be cut
by the associated breadth planes in parabolas. Imrydariany breadth plane that goes
through the coordinate origin will contact the conic stefalong a side that points in the
direction in which one of the points into which the @ curve has resolved in the
plane in question has been shifted to infinity.

293. In the foregoing, we have discussed the position o$tifaeght lines at infinity
and the behavior of the corresponding diameters fornsedegree complexes, and
illustrated this, in particular, by means of a simplecosel-degree complex that we
referred to as the “asymptotic complex.” In summary,haee thus arrived atsaxteen-
fold distinction between second-degree complexes.

In hyperboliccomplexes, the lines of the complex at infinity veiivelop a real curve
of class two, and ielliptic ones, the curve will be imaginary. In the caséygferbolic
complexes, this curve will resolve into a systemwd treal points, and in the case of
elliptic complexes, the points will be imaginary. If theg® tpoints coincide then the
complex will beparabolic. Finally, the case can come about, in whadhof the straight
lines that belong to the plane at infinity are lineshef complex.
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§84.
Tangential and polar complexes of degree one.

294. The results that were obtained in the foregoing cargdneralized with no
further assumptions when we carry over all of the idenations that we previously
posed for the plane at infinity &n arbitrary planeand toan arbitrary point according
to the rules of the principle of reciprocity. Howevere can propose a series of other
arguments that are intended to extend the theorethg ddregoing paragraphs and bring
them under a more general viewpoint.

Let Q, be a homogeneous function of degnde arbitrarily many variableg, q, r, ...

In accordance with the known theorems of homogeneauasiduns, we will then get:

9] 9] 9]
D+ —ly+— 0+ ... =n . 123
5pEb 54 o n (123)

We can thus also write the equation:
Q,=0 (124)
in the following way:

i
©

9] 9] 9]
D Cp+—" [+ —" 00+ ... 125
op [p 54 ot (125)

Thus, ifp', d, r', ... are given values that satisfy equation (124) then thalses/will

satisfy equation (125). The partial differential quotightg enter into this equation and
are generally homogeneous functions of degreel will then take on constant values
that we would like to enclose in parentheses belowrder to distinguish them. If we go
from the given valueg', ¢, r', ... to neighboring ones then we will find from (124) that:

X, dp+ X, dq+(&”j dr+ ... =0. (126)
op oq or

The following equation:

X, X, X, - =
(5pjp+[5qjq+(5rjr+...—ﬂ 0, (127)

in which the bracketed differential quotients have the nmgathat was just given to
them, is an equation of degree one in the varighlgsr, ... The given valuep', ¢, r',
... satisfy the foregoing equation, just as they satisfytemuél24), which has degree
If we then write the latter equation in the form (12%rthve will get, in agreement with

both equations:
X X
Lp'+ + L+ ...=0.
(@jp ( jq (aj

&,
aq
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However, when we go from the given valyesq', r', ... to neighboring ones, equation
(127) will give us the same equation (126) that gave usithéegree equation (124)
above. Corresponding to that, we would like to cHlla linear tangential function of the
given homogeneous functi@y of degree n

If we assume that the constant valuep'off, r', ... are completely arbitrary, instead
of assuming that they satisfy the given functtdq then the form of the functioli will
not be changed in any way. In this general case, we wigldd calll1 a linear polar
function of the given functid,. A polar function will go to a tangential function the
assumption above.

In particular, whem = 2, the differential quotients &1, will be functions of degree
one in the variables. We can then exchange the varglantities, q, r, ... with their

constant valueg', d, r', ... in the polar functioril without changing anything about in
the function. Consistent with that, we can writp&ion (127) in the following two
ways:
X2, p+ X2, q+(m2jr +...=0, (128)
op oq or
p’m2+q’m2+r’m2+...:0. (129)

op oq or

The foregoing carries over immediately to the mgeaeral case ahhomogeneous
functions. To that end, we can make the inhomogentmasion homogeneous by the
introduction of new variables, derive the polar function the function that has been
made homogeneous, which will be a homogeneous functiongoéel®ne, and set the
variables that have been introduced into it, along withr tbenstant values, equal to
unity.

If the given variable®, q, r, ... are not mutually independent, but have to satisfy
arbitrarily many (n) condition equations:

®=0,¢ =0, ... (130)
(whose degree we would like to make the same as tiag,dor the sake of simplicity)
then the foregoing considerations will be modified. $hene values of the variablps

g, r, ...that must satisfy the equation:
Q,=0

will each satisfy an equation of the following form:
Qu+ AP+ A P + ... =0, (131)
whereA, A', ... mean undetermined constants. We will obtaimolar function that is

linear with respect to any equation of that fothat corresponds to a given system of
values for the variables.
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These polar functions will represent linear equationsrvthey are set equal to zero.
They will also be satisfied by the values of the vaedalp, g, r, ... that satisfy the
following m + 1 equations:

X

p+ q+ r+..-=0,
op oq or

@ p+ @ q+(@jr+...:0
op Jq or ’ (132)

The infinitude (viz.,»") of linear polar functions that correspond to a givestey of
values of the variablgs q, r, ... definean (m + 1)-parameter grouff ).

We can choose any linear polar function from thdold infinitude of them,
corresponding to an arbitrary choiceQfA’, ... In particular, ifn = 2 then the variables
in it can be exchanged with the corresponding differeqtiatients without changing the
form of the polar function, as in the case of independanables. However, whereas in
the case of independent variables thee linear polar function that it gave has an
exclusive relationship to the system of given valuestter variables and to the given
equation, now, any arbitrarily-chosen linear polar fuorctwvill be as good as any other
one. We can say that the given constant vagiies, r', ... are not associated with any
individual polar function as they are with timefold infinite family of all polar functions.

295. If we restrict ourselves to three variables therwiliehave:

Qn :f(p’ q’ r)l

—_ d—2n d_2I’] (mnj
Mn-= p+ g+ r.
op oq or
If we give the variables the meaning of point coordinatehe plane thep', ¢, r' will
determine a point, and the homogeneous equation:

and we will get:

Q,=0 (124)
will represent a curve of order while:

() We thus ignore the case in which one finds lindaramong the condition equations. The
corresponding equation (132) will be satisfied with this mgdion, anyway, since the condition equations
themselves will not differ.
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_ [ &, X, X, _
I'I—(a_pjp+[a_qjq+(5rjr—0 (133)

will represent the equation of the polars of the givemtpelative to the curve, and in
particular, when the point lies upon the curve, it wiiresent the equation of the tangent
to the curve at that point.

The principle of reciprocity that relates to secondeo curves rests upon the two-fold
form that the latter equation will assume in the azfse= 2.

If we give the three variables the meaning of linerdmates in the plane then a
straight line will be determined by three constant vabfdaeem, and equation (124) will
represent a curve of classwhile equation (133) will represent the pole of thahigtrt
line relative to that curve; in particular, when a gfinailine is a tangent to the curve, it
will represent its contact point.

The remarks that were made in relation to curves ofravee will be true for curves
of class two.

296. In the case of four variables, let:

n=f(p.a.r,9

_[ &, x, (&j (&j
Mn= p+ q+ r+ S.
op oq or 0s

If we give the four variables the meaning of point coordigah space then the equation:

and

Q,=0 (124)
will represent a surface of orderand:

n=0 (134)

will be the equation of the polar plane to the popt ', r', S) relative to the surface; in
particular, when the point lies upon the surface, it wfiresent the tangential plane to
the surface at that point.

If p, g, r, s means plane coordinates then equation (124) will represeuntface of
classn and @', d, r', S) will refer to a given plane. (134) will then be the @@raof the
pole of that plane relative to the surface; in pardéiculvhen the plane contacts the
surface, it will be the equation of the contact point.

The double form of equation (134) in the casencf 2 includes the principle of
reciprocity for surfaces of order two and surfaces afsctavo, which was first developed
by Gergonnen an elegant way for curves and surfaces of order two.

We can also consider the four variables to be poirinercoordinates in the plane,
but a linear condition equation must exist between thethis case, and thus between
their constant values, as well. Equation (124) wilhthe turn, represent a curve of order
n or classn, and equation (134) will represent the polar of the paint(, r', S) or the
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pole of the straight linep(, d', r', S), respectively, with respect to the curve. Polars and
poles will go to tangents and contact points when thengpoint lies upon the curve or
the given straight line contacts the curve, respegtivéle can add to the given equation
of degreen, the linear condition equation that the varialges, r, s must satisfy, when it

is multiplied by an arbitrary (homogeneous) function of degr— 1. However, equation
(134) for the polars (poles, resp.) will not be changeshfar as the variablgsq, r, s, as
well as their fixed valueg', ', r', S, must satisfy the linear condition equation in
guestion.

297. Finally, if:

n=f(p,qr, st u
then we will obtain:

(S oS oS e e 5
Mn= p+ q+ r+ s+ t+ u.
op oq or 0s ot ou
We would like to give the variables the meaning of line dmattes, and indeed, we will
first take them to be line coordinates:

X=%),y-Y), 2-2), yZ -Y2, Xz—-x2), (Xy —Xy)
and then axial coordinates:
(uv —udv), (tv—-tv), (tu —tu), t—1t), (u—1d), (v-V).

The homogeneous equation:
Q,=0 (124)

will represent the same complex of degrewith either choice, and when we refer the
constant valuep', d, r', s, t', U that the partial differential quotients include to aigtra
line (whether a ray or axis), the equation:

n=0 (135)

will represent a linear complex that we would like tth @ polar complexof the given
straight line (', ', r', s, t', U') relative to the given complex of degnmee In particular, if
the given straight line belongs to the complex itdadin the polar complex will go to a
tangential complexthat is, in a complex of degree one that contaiasgilien straight
line and all of the lines of the given complex thatitifinitely close to it.

298. The six coordinates of the straight line are not peaelent of each other, but
must satisfy a second-degree equation that finds itsssiprein the identity:
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X=X)(yZ -y + Y - Y)(Xz-x9 + (- )(xy —Xy) = 0.

Corresponding to that, from the discussion in numP@t, we will obtain atwo-
parameter group of linear polar complexdsat all have the same relationship to the
given straight line and the given complex. The two-patamgroup of linear polar
complexes that is associated with a given straighe Wwill determine alinear
congruence about which, we can say, in particular, that it isoasged with the given
straight line relative to the complex of degree

In the sequel, as before, we would like to denote thdirse coordinates in the
foregoing sequence by:

r,sh-opn.

The condition equation that the line coordinate mustfgangl then be written in the
following form:
-rog+sp+hn=0. (136)

We assign the coordinatess, h', — ¢, g, 7 to the given straight line.
Without changing the given complex of degree

anol

we can add that equation to equation (136), when it has baeétiplied by a
homogeneous function of degree- 2. We can then add a ternas2to the general
equation (1) of the second-degree complex at will. Wihoss of generality, we would
like to denote the arbitrary function of degree 2 byA and consider it to be constant in
the definition of the polar function. The terms hetpolar function that we therefore
neglect will then appear to be multiplied by the fadgter’'d + sg + h'z), and that
factor will be equal to zero, since the coordinates, h', — ¢, d, 7 of the chosen
straight line must satisfy equation (136).
We can thus take the equation of the given complée tihe following one:

Qn+A(-ro+sp+hn) =0. (137)
The equation of the polar complex will then become:
M+A(-rd+sd+hy -ro+sp+h'n =0, (138)

wherell denotes the function:

=(F e SIS T S

Each value ofl will correspond to a different polar complex.
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299. Of the two directrices of the congruence that is datexd by the two-
parameter group of the polar complex, one of them wilh@de with the given straight
line. When we takd to be infinitely large, equation (138) will become:

-rog+sg+hg -ro+sp+hn=0, (139)

and, from the discussion of numbs, this equation will represent a linear complex that
subsumes all lines that cut the given straight linecolmection with the considerations
of number71, we can expression this theorem as follows:

A given straight line corresponds to the same straight line as itsigatg polar
relative to the two-parameter group of its associated linear polar comgle

This latter straight line is the second directritted congruence that is determined by
the polar complex. We say that this straight linasisociatedvith the given one relative
to the complex of degre® and call itthe polar of the given straight line relative to the
complex of degree ().

We can choose the undetermined constantequation (138) in such a way that the
equation represents a complex of degree one whose lirceg a fixed straight line. To
that end, we would like to write equation (138) in the feiloy way:

(&)l 3w}
{ R AR

From numbedb, we would then obtain:
(G2 [ oo (2o [
or oo 0s oo
&n ! &n L -
+K5hj+)|/7}tﬁ( a_,7j+)lh}—0 (141)

for the determination of. As a result of equation (136), a root of the foregoing temua
will be infinitely large, which corresponds to the fdwatt one directrix of the congruence
that is determined by the two-parameter group (138) will adéneith the given straight
line. Equation (141) will then reduce to degree one, and #Hete

() Here, we might just as well remark that a straigie &nd its polar do not have the same reciprocal
relationship to each other. The polar of the giveaigit line corresponds to a new straight line as the
polar that is associated with it, etc. There are anfipite number of straight lines that are the potsrs
their own polars.
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R D DD DD
or oo 0s J oh on

for the sake of brevity, that will give:

__ 1%
A= 2[9} (142)

n

for the determination of the second directrix, which here referred to as the polar of
the given straight line. In this last expression,ualkeies of the coordinates of the given
straight line are substituted #n andQ,, and we have employed the parentheses for that
reason.

300. If the given straight line belongs to the given comglg, in particular, then we
will get a two-parameter group ¢dngential complexedn place of the two-parameter
group of polar complexes.

The two directrices of the congruence that is determiiyethem coincide with the
given straight line. Sinc@, will vanish for the coordinates of the given straigheJithe
value of A, as we have determined it by means of equation (142), wefi become
infinitely large. The congruence has been specializetich a way that it will subsume
all of the lines of a linear complex that cut a fixeghigiht line that itself belongs to the
complex (cf., no68). The fixed straight line will be the given ong €, h', - ¢, d, 7).

Only in the special case in which the given straight beéongs to the following

complex:
cps—mnﬁd)M&”L@M&”E@”, (143)
or oo 0s Jp oh odn

along with the given compleX2,, will the value ofA that is given by (142) be
indeterminate. Sinc€, as well asp, vanishesA will take the form 0 / 0. For each
arbitrary choice ofd, we will obtain a tangential complex whose linescait a fixed
straight line. If we choos&to be infinitely large then that straight line widincide with
the given one. The given straight remains, as before, adnthe directices of the
congruence that is determined by the two-parameter groapgéntial planes. From the
discussion in numbed8, this congruence will have been specialized in such athadyit
will possess infinitely many directions that lie inlane and go through a point in it. All
lines that lie in the plane that is determined by thectites or go through their point of
intersection will belong to the congruence.

We would like to refer to those straight lines thathglto the given complex of
degreen:

Q,=0,

as well as the complex of degreen2{(1) that is derived from them:
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oz &R, K, D, (143)
or oo 0s Jp oh odn

as thesingular lines of the given complex

The singular lines of a complex of degredefine a congruence of order and class 2
On-1).

From the foregoing discussion, each singular line spoeds to a plane and a point
in a distinguished way. We would like to call that plargngular planeand the pointa
singular point of the complex, and refer to them as being associatéd @r
corresponding to the chosen singular line.

One last case still remains to be considered. If:

r-s:h:—-cd:o0:ng

_ (_&M&M&M&M&M&]
oo )\ dp )\ )Lor )\ ds ) oh
then the polar complex of the given straight line wejpresent the totality of all of those
straight lines that cut the given one independently ofsgrexial values that we might
assign toAd. The polar complexes will be identical to each otiwed will no longer
determine a linear congruence. Each arbitrary straiggtwill be regarded as the polar
of the given straight line.

We would like to call the given straight linelauble lineof the complex.

Whereas two conditions must be fulfilled in order éogiven straight line to be a
singular line of the complex, and there will then beoagruence of singular lines in a
given complex, there afeve conditions that must be satisfied in order for a givesight
line to be a double line of the complex. Since a sttdigd depends upon four constants,
a given complex will contain no double lines, in gener@he specialization of it will
then be necessary.

301. We restrict ourselves to the complexes of degreartwdnat follows.
Let the general equation of the complex in ray coateis be:

Ar? + BS + C + D& + Er® + Fh?
+ 2Gsh+ 2Hrh + 2rs + 2Kpn — 2.on - 2Mpo
—2Nro+ 2050 + 2Vhn
+ 2Prp+ 2Qrn + 2Rs) — 2S0— ZTho + 2Uhp = 0. V)

We then obtain the equation:

(Ar'+HRh +1Is' = Nd +Pg +Qr') r
+(Bs +Gh +Ir' +Ogd +Ryj —Sd) s
+(Ch +Gs +Hr"+Vn-Tdo +UQ)h
-(-Dd +Lg +Mg +Nr' +SS$+TH) o
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+ (EQ +Kif —=Md +0s +Pr +UNh) p
+(F7 +Kgd -Ld+VH +Qr +Rs) 7=0 (144)

for the equation of the polar complex of a given shiaime (', s, W, - &, g, 77) in ray
coordinates. We can detandh’ equal to unity in the foregoing equation arbitrarily.

If we start with the equation of the complex in axiabrdinates (Ill) and determine
the given straight line by its axial coordinatps ', I', — ¥, 7, &) then we will get:

(Dp' +LI" + Mg —NK +Sit +Td) p
+ (Eq +KI"'+Mp' + Ot -PK +UW) q

+ (FI'+Kg+Lp +Vw - Qrt + R |
- (-AK +HW +Ip' +Np +Pq +QI') k

+Bt+GW -1k +0Oq +RI' +Sp)
+(Cd +Grit—-HK +VI' +Tpg +Uqd) w=0 (145)

for the equation of that complex. Thus, one has:

r:-s:h:-cd:p:nf=-«k:m:ad:p:q:I.

302. In particular, if we set:

p,a,n
Wh,o, a1,
p,a,n

equal to zero, respectively, in the general equationeptiar complex (144) then the
three resulting equations:

Ar+Hh+Is—- No+ Po+ Q7 =0,
Bs+ Gh+ Ir+ Qo+ Rp— ¥ =0, (146)
Ch+Gst+ Hr+ W - To+ Uo=0

will represent the polar complexes of the three coatdimxeX, OY, OZ resp. We
can write these equations in the following forms:

X, =0, X, =0, x, =0, (146)
or os oh
resp., which will be deduced immediately when we go backuaten (144).

If we take one of the three straight lines thattienfinity in theYZ XZ, XY planes to
be the given one then:

U
H H

rys,h, g, 7,
IS N, d,
IS N, d, o
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will vanish, respectively. We then get:

—-Do+Lp+Mp+Nr+Sst Th=0,
Ep+Kn—-Mg+Os+ Pr+ Uh=0, (247)
Fn+Kp-Lo+Vh+Qr+ Rs=0

for the polar complexes of these three lines, oerwhritten in another form:

X, _ X, _p X,
oo ' o ' n

=0, (148)
resp.
303. If we setr, p, and as a resul;, as well, equal to zero in the general equation
(V) for the second-degree complex, which we would likevtite in the following way:
Qz =0

then we will find:
BS + CH + D& + 2Gsh- 2s0— 2Tho= Q% =0 (149)

for the determination of the complex curveyid We will find:

gd§22=
2 dh

Ch+Gs-To=0 (150)

for the equation of the pole of this complex curelative toOZ in a known way. On the
other hand, the equation of the polar complex éd0h axis will be:

1dQ, _
2 dh

Ch+Gs-To+Up+Vn=0.

r, o, andn, are, in turn, equal to zero for all lines of ghedar complex that lie iYZ so
the following equation:
Ch+Gs-To=0 (150)

will represent the point at which these lines is¢et.

The pole of th€)Z axis relative to the complex curve YiZ coincides with the points
at which all lines of the polar complex that lie¥Z intersect. This point of intersection
describes a straight line when tH& plane rotates arour@Z This line is then, at the
same time, the geometric locus of the polédfrelative to the complex curves whose
planes go throug®Z We then obtain the following theorem:
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An arbitrary straight line corresponds to a meridian surface in the complehe
polar of this meridian surface coincides with the straight line thahawe referred to as
the polar of the given line relative to the compi@x

In particular, a diameter of the complex will be tiolar of the straight line at infinity
in the parallel planes that are associated with it.

If we reduce the proof of the foregoing theorem toigest form then it will rest
upon the fact that it is all the same whether we 8edt, p, and 7 equal to zero in the
function Q, and then differentiate with respecthar we first differentiate with respect
to h and then set, p, and 7 equal to zero after the differentiation. Howevdiattis
obvious.

304. The foregoing gives a geometric definition for the groence of the polar
complex that is associated with a given straigld. lin

A complex curve of class two lies in an arbitrarynglahat is drawn through the
given straight line. It will be cut by the given sgfati line in two points, in general. The
tangents to the complex curve at these points willdgeto the congruence in question.

An arbitrary point of the given straight line is thedpwint of a complex cone of
order two. Two tangential planes to it can be drawautin the given straight line, in
general. The two sides along which it will be contattgthose two planes are likewise
lines of the congruence.

The congruence that is determined by the polar complex of a given striaight |
belongs to the lines of the given complex that cut a next line ofdimuiex that lies with
it in the plane that is drawn through the given straight line at a poititeogiven line.

When the given straight line is itself a line of thenpdex, it will be contacted by all
complex curves that lie in the planes that are dréamough it, and will be a common side
of all complex cones whose vertices are chosen talbaeg it. The polar will then
coincide with the given straight line. All lines thi&t in a plane that is drawn through the
given straight line and go through the contact poirthefrelevant complex curve with
the given straight line, or — what amounts to the sanmg thiall lines that go through a
point of the given straight line and are containedh@ plane by which the relevant
complex cone is contacted by the given straight imk pelong to the congruence that is
determined by the tangential complex to the given straight line.

The congruence in question has all litiest are the next line to the given one and cut
it in common with the given second-degree complex.

305. When the given straight line issengular lineof the complex, the congruence
that is determined by the tangential complex will subsathénes that lie in a certain
plane that is drawn through the given straight linewadl as all such lines that go

() This theorem can be carried over immediately frommexes of second degree to complexes of
arbitrary degree.
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through a well-defined point of it. We have called thexpland the point the associated
singular plane and the associated singular point, regpkct

A singular line of the complex will thus be contacted &ked point by all complex
curves that lie in the planes that go through it, anda@ihplex cones whose midpoints
were chosen to lie along a singular line of the compld#hbcontact afixed plane that goes
through it.

We can confirm this result analytically. If we demahat theOX coordinate axis
must be a singular line of the given complex thenefsegt the variables:

shapn
equal to zero in the two equations:
Qz = 0, o= 0,

we will obtain the following two relations between tbenstants of the given complex
equation:
A=0, Pl +HQ =0. (151)

We have determined the contact poinOfwith the complex curve in an arbitrary plane
that goes through it by means of the following equation181):

_ | tang +H | (152)
Qtang - P
under the assumption th&X is a line of the given complex, so the constanwould
have the value zerog denotes the angle between the arbitrarily-chossmepand th&XY
coordinate plane, arxy denotes the distance from the contact point tootiggn of the
coordinates. That distance will be constant, &g las the second of the conditions
equations (151) is fulfilled.
Moreover, we have found that:

Px+ H
Ox-1"

tango = (153)

under the same assumption that was used in nub®2efor the determination of the
tangential plane to an arbitrary complex cone ihé&tid throughOX and has its vertex on
OX, and also that the latter expression will takeaatonstant value when the second of
equations (151) is fulfilled.

306. When the second of equations (151):

Pl +HQ=0
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is fulfilled, equation (64) of numbet9l, by which, we determined the planes that go
throughOX for which the complex curve will resolve into a gystof two points, will
possess the double root:

tang =-— =—. (154)

H_P
I Q

This value of tarp will correspondingly resolve the complex curve iatgystem of
two points that both lie along tH@X axis. The value 0%, (152) that determined the
contact point of the complex curve widX will then take the form of 0 / O for the value
(154) of tang.

Under the same assumption, equation (67) in nurbi®®&rby which we determined
the point on th&X axis for which the complex cone would resolve into stesy of two
planes, will have the double root:

x=-H -1 (155)
P Q

This value ofx will correspondingly resolve the complex cone int@system of two

planes that intersect aloi@gX. The associated value of tagg (153) will then take the

form 0/ 0.

This gives the following geometric definition of the sirggulines, points, and planes
of a second-degree complex.

The connecting line of two such points into which a cexmurve will resolve for
certain position of its plane, or — what amounts tostiiae thing — thine of intersection
of two such planes into which a complex cone decompasea $pecial choice of its
midpoint, is asingular lineof the complex. The planes and points for which thapgiex
curves and complex cones, respectively, are specializéite manner in question are
singular planesandsingular pointsof the complex, respectively.

In particular, the eight lines of a complex surfabat twe have referred to as its
singular rays and singular axes (ri&7, 189), and the four singular planes and four
singular points of a complex surface (1245), are singular lines, planes, and points of
the complex, respectively.

In the previous paragraphs (r#5-283), we have taken the plane at infinity to be a
singular plane of the complex and chosen the sindmlarthat corresponds to it to be
parallel toYZ In agreement with the foregoing, we found that thepdexncurves are
parabolas in all planes that are parallei¥tbwhose diameter direction is the same (no.
281). The common direction of the diameters of algpailas points to the singular point
that is associated with the singular line at infinity'ia

307. If:
AHI1PQ

vanish simultaneously then that relation will specalire singular line that coincides
with OXto the complex. The valuesxf(152) and tamg, (153) then take the form 0/ 0O,
independently of the choice of variables faandx. Corresponding to that, the complex
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curve an arbitrary plane that goes thro@X will resolve into a system of two points
that lie alongOX, and the complex cone whose vertex is an arbitramyt mdiOX will
decompose into two planes that intersect aldoXg

With this constant determination, we will obtain falowing equation:

=0

for the equation of the polar complex of & axis, which represents all lines that cut
the OX axis. TheOX is adouble lineof the given complex (cf., n@00). A double line

is then a singular line whose relationship to the compées<been specialized in such a
way that any point that is chosen along it will bergslar point and any plane that goes
through it will be a singular plane of the complex.

In numbers284-286, we chose the line at infinity iNZ to be a double line of the
complex, and correspondingly found that all complexncddrs whose sides are parallel
to theYZ plane will decompose into systems of two planes tieparallel toyZ

In general, a given second-degree complex will contaidauble line. That would
require asimplespecialization of it.

308. We would, in turn, like to write the equation of th&ve;m second-degree
complex in the following form:
Q=0. (156)
We can add the identity:
-ro+sp+hn=0, (157)

when it is multiplied by an arbitrary factor, to that epra without changing the
complex itself. We will then obtain:

Q+A(-ro+sp+hn) =0. (158)

Corresponding to that, the equation of the polar coxnblat is associated with a given
straight line (', s, h', = &, @, 1) will become the following one:

(22w B2
[gpblgpdn o

which can also be written in the other form:

(Q—)lajr’ +(Q+Apj5’ +(§+)l/7j H
or 0s oh
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- (§+Arjd+ Q+/]S p+ leh n' =0. (160)
oo op on

If we assign a fixed value tbthen this double form of the same equation will be linked,
in the same sense, withtlaeory of reciprocitythat Gergonnefirst developed for plane
curves and surfaces of second order We can summarize it in the following words:

Any straight line that belongs to the polar complex of a given straightwihe
correspond to a polar complex that, conversely, the given straight lloedseto

The totality of all straight lines in space, alonghniheir polar complexes, defines a
polar system We can regard the foregoing two equations (159) and (160) -h\ahgc
identical to each other as its equation, when we considérs, W, — ¢, ¢, 17 to be
variable, along withr, s, h, — g, p, 1, but independently of them. Corresponding to
another choice of the undetermined constgnive would obtain another polar system
from the given second-degree complex that would havesdinee relationship to the
complex as the originally-chosen one. Whereas a dedegree complex depends upon
nineteen constants, each of the polar systems that are iagstcwith it will be
determined bywentyconstants.

309. In order to express the idea that the given straigétiiself belongs to the polar
complex that is associated with it, independentlyhefdpecial values that we would like
to assign to the constant if we recall equation (157) then we will get the follogi

condition:
[Q}r’{g}s# ..=0. (161)
or o0s

The lines that belong to their own associated pslgtem are the same in all polar
systems and coincide with the lines of the giveorsdegree complex.

If the polar complex of a given straight line in agydystem, for whose equation we

would like to consider (159), should be a complex of the spkitidlwhose lines all cut
a fixed straight line then, from the discussion in nundbe when we set:

o= (e =S w5

as in numbeR99, if we recall equation (157) then we will get:

(®)+1(Q) =0. (162)

() Geometrie des Raumew. 258.
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This equation will be fulfilled independently of the specialue that we gave td as
long as the two equations:

(®) =0, @=0

are satisfied. These are the same equations by whiclet®emined the singular lines of
the given complex in numb@&00. In agreement with what we said before, we wilhthe
get the theorem that the polar complexes of the singjnks of the given complexes in
all associated polar systemue complexes of the special kind in which all lines will cut a
fixed straight line.

310. In what follows, we would like to sétequal to zero, with no loss of generality,
and subject the polar system that is determined by thiate vaf A to a closer
consideration. The equation of the polar system halhtbe written in the double form:

SIS G S Gela e o
or 0s oh oo dp on
and
R Ry Ry R By B, (164)
or 0s oh oo dp an

Let a straight line be given. It will correspond tpadar complex in the polar system.
Any line of the latter will belong to a polar complexatitontains the given straight line.
However, in general, the polar complexes that correspmnide lines of an arbitrarily-
chosen line complex will have no straight lines in omm with each other. That would
require a special position of it with respect to theegipolar system.

The polar complexes that correspondwo given straight lines determine a linear
congruence. The two given straight lines will belongaoh of the polar complexes that
correspond to the lines of the congruence. Conversel\pdlar complexes of all lines of
an arbitrarily-chosen linear congruence will have tied lines in common. Four lines
of the congruence will then determine two straight linesheyr polar complexes. The
polar complexes of these two straight lines will hawer flines of the given congruence
in common, and thus all of them.

If three straight lines are given then the polar cexplill determine a hyperboloid
by way of the lines of one of its generators. An aabjtiine of that generator which
we would like to refer to as tHast one— will possess a polar complex that the three
given straight lines will belong to. As lines of thestf generator, the three given lines
will determine a second hyperboloid. The two hyperbolmdsually correspond to each
other. The lines of the first generator of the sedoymkrboloid will belong to the polar
complex of the lines of the first generator of thstfhyperboloid, and likewise the lines
of the first generator of the first hyperboloid will beg to the polar complex of the lines
of the first generator of the second hyperboloid. Tloersg generator of each of the two
hyperboloids will thus not come under consideration angér. Correspondingly, each
generator of a given hyperboloid will be associated witiecond one.
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Since we chose the three given straight lines @speso that they would intersect at
a point or lie in a plane, they will determine all linbat go through a fixed point or are
contained in a fixed plane. Thus, in the polar systemxyepoint and every plane will
then correspond to one generator of a hyperboloid. pdlee complex that belongs to an
arbitrary line of that generator will be of the spediald that all of its lines cut a fixed
straight line. That fixed straight line will go througletgiven point or lie in the given
plane, respectively. The lines of the one generdtar loyperboloid will belong to the
complex that is determined by equation (162). The hyperbagat is not specialized,
only its position in respect to the polar system.

If we take the three intersecting straight linesedhe three coordinate ax@, OY,
Oz, in particular, or the three straight lines at intfinn the coordinate plan&&Z XZ, XY
then we will get the following three equations for thetermination of the hyperboloid
that is associated with the coordinate origin or theepk infinity, respectively:

X X

— =0, — =0, x =0, (165)
or 0s oh

or
x =0, Q =0, Q =0. (165)
oo oo on

Equation (162):

0=-2E2, B S

r os op oh dn

will be fulfilled with both assumptions, and it represehis straight lines that correspond
to polar complexes whose lines all intersect a fixealgdtt line in the given polar system
(A=0).

§5.

Surfaces of order and classfour that are defined by the singular points of complexes
and enveloped by their singular planes.

311. We have a point whose complex cone resolves irggstem of two planes —
viz., asingular point— and a plane whose complex curve degenerates intsterrspf
two points — viz., aingularplane— of the complex.

The line of intersection of the two planes into whilse complex cone, whose vertex
is a singular point, has resolved, as well as the exdimyg line of the two points into
which the complex curve, whose plane is a singularepldacomposes, asegular lines
of the complex. In that sense, any singular line e@alrespond to a singular point and a
singular plane. All complex curves that lie in planes #re drawn through a singular
line will contact that line at the corresponding singyaint, and all complex cones
whose vertices are assumed to be on a singular linecasitact the corresponding
singular plane along it. We would like to refer te singular point and singular plane
that correspond to a singular lineassociatedvith each other.
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The singular lines of a given complex define a congruericéegree four. It is
determined by the two-parameter group of two complexes of elégre one of which is
given, and the other of which will be obtained when @paces the line coordinates in
the second-degree condition equation that the line auaiel must satisfy with the
partial differential quotients of the equation of theegivcomplex with respect to them.
In general, four of the tangents to a given complex cangefour of the linesSeiten of
a given complex cone will be singular lines. In marar, if the complex curve resolves
into a system of two points or the complex conelkes into a system of two planes then
two of the four singular lines will coalesce into thennecting line of the two points or
the line of intersection of the two planes.

312. When the complex curve in a given plane is speedlin such a way that it
resolves into two points that coalesce into onewweald like to call the plane double
plane of the complex. We refer to a point that is tlenter of a complex cone that
degenerates into a system of two coincident planesdasilale point. No point that is
enveloped by the lines of the complex in a double plane eamlurn, a double point,
any more than the planes that are defined by the lindsecdomplex that go through a
double point can be double planes.

Any line of the given complex that goes through a doplalee or a double point is a
singular line of it. The double planes and double pointshargetplanes and points that
contain infinitely many lines of the congruence of siaglihes.

Any singular line that lies in a double plane correspoadsas a singular plane. Any
singular point that corresponds to each singular lméurn, still does not coincide with
the singular point at which they all intersect. Moreopegy singular line corresponds to
a second singular point that is generally different ftbenfirst one. If the singular line in
the double plane rotates around the fixed point that is @peelin it by the lines of the
complex then the corresponding singular point will descalsecond-order curvéhat
goes through the fixed point. Whereas a singular point nergdly associated with a
singular point, a double plane will correspondinéinitely manyassociated singular
points that lie on a second-order curve.

Any singular line that goes through a double point will cqoesl to it as a singular
point. However, any of these singular lines will, imeeal, correspond to a singular
plane that does not coincide with the fixed plane tbatldfined by the lines of the
complex that go through the double point. All of thess@$ envelop eonic surface of
class twothat contacts the fixed plane, in particular. Wher@asngular point is, in
general associated with one singular plane, a double wdintorrespond toinfinitely
manyassociated singular planes that envelop a conic swfadass two.

We derive the analytical statements of the foreggemmetric results from numbers
289 and290, in which the plane infinity is taken to be a double plahie complex.

313. A singular line can be specialized in such a waydhg plane that goes through
it is a singular plane and that any point on it can benasd to be a singular point. We
have called such a line a “double line” of the complex B0@). However, one arrives at
a specialization of the given complex when one requinat it should contain a double
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line. We shall exclude the possibility that the givemplex is specialized in the manner
that is necessary for this to be true from further c@sition.

There can be distinguished points or planes in a giwempex with the property that
all of the straight lines that go through them (altired ones that lie in them, respectively)
are lines of the complex. Any plane that goes througlptane will then be a singular
plane and any point that is taken from the plane wilalsingular point. In numb282,
we let such a plane coincide with the plane at infinittfrom the discussion in that
number, one requires a six-fold specialization in ordethe plane at infinity for a given
complex to be of this special kind. In general, thbard will be no planes and points of
that kind. In the sequel, we shall omit the possibilitgttthe given complex has been
correspondingly specialized.

314. In order for a given cone of order two to resolue ia system of two planes or
for a given curve of class two to resolve into a systétwo points, a condition equation
must be fulfilled. A surface will then be defined by tigalar points of a complex, and
a surface will be enveloped by its singular planes. ®@irast, three conditions will be
fulfilled when the two planes into which a complex cdtiee two points into which a
complex curve, resp.) resolves must coincide. Theeetlan aninfinite numberof
double points and double planes.

In the sixth and seventh paragraphs of the previous chapteproved thatour
singular points will lie on th©X coordinate axis, which we took to be the double line of
a complex surface and was assumed to be completetyaaybiand thafour singular
planes will go through it (cf., no215). We thus immediately obtain the following
theorem:

The surface that is defined by the singular points of a complex of degreleas
order four.
The surface that is enveloped by the singular planes of a complex ha®ualass

315. In order to obtain the equation for the surface of dargpoints in point
coordinates, we start with equation (1) of the secorgtek complex in ray coordinates.
We have to express the idea that the cone that equatidre complex represents will
resolve into a system of two planes as soon as vignaseed values to the valuesy, z
Of the six ray coordinates:

x=X), §-y) @-2 (Z-yY2, Kz-x2, Ky -Xy),
we can write the last three in the following way:

((y-¥)z-y(z-2), x@z-29-K=X2), (X =X)y=x(y—¥)).

In that way, equation (I) of the complex will assuthe following form:
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a(x=X)*+2b(x= })(y- P+ €y Y

(167)
+2d(x-X)(z- )+2éy YWz ' €z'%=0,

wherea, b, ¢, d, e, f are functions of degree twoxny, z In particular, we find that:

a=A+EZ+ Fy-2 Kyz2 P#2 Qy
b=1-Fxy+ Kxz+ Lyz Mz+( N ® 2z OQx R
c=B+DZ+ FX¥-2Lxz2 R% 2 Sz
d=H-Exz+ Kxy- LY+ Myz Ny Px Uz
e=G- Dyz KX+ Lxy+ Mxz Ox Sy Tz

f =C+ Dy’ + EX -2 Mxy- 2 Ty 2 Ux

(168)

In order to express the idea that the cone thatpsesented by equation (167)
resolves into a system of two planes, we get the faligwondition from numbet86:

(169) acf+ 2bde—ae —cd® —fb* = 0.

We will obtain the desired equation for the surfacemive substitute the values afb,

c, d, e f from equation (168) into this equation; it will obviously edegree six. When
one actually carries out the suggested multiplicatiori$68), the terms of order five and
six will then drop out.

316. We obtain the equation of the surface that is envelbpete singular planes of
the complex in plane coordinates when we exchange:

X, ¥,z with t,u,Vv

in the present equations (168), using the exchange rules dfen@&3, and reciprocally
exchange:

A B, C, G, H,I, P,QR
with

D, E F, K, L, M, ST,U,

respectively. The constants:
N, O

will remain unchanged by this. If we wrigéin place ofa, b’ in place ob, etc., after the
exchange then we will get:
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a=D+BV+CU-2Guw2 Sy 2 Tu

b'=M -Ctu+ Gtv+ Huw IW+( N- Q v T+ UL
¢ =E+ AV + CE-2 Htv-2Ut 2 Py

d' = L-Btv+ Gtu- HF+ luv Nu St Rv

€ = K- Auv- Gt + Htu+ It Ot P4+ Qv
f'=F +Au’+ B -2 Itu- 2Qu+ 2Rt

(170)

and we will get the equation of the surface in the valg form:
(171) acf+dde-ae’-cd?-fh?=0.

The analogous statement from the previous number regahgingduction of the present
equation, which is clearly of degree sixtjn, v, to degree four in those variables is still
valid.

If we make the expressions (170) far, b, ¢, d, €, f” homogeneous by the
introduction of a fourth variabley, and then substitute into equation (171) then it will
generally be of degree six, and will reduce to degree foyrwhén a factor of has
been separated from it. When interpreted geometricadlyation (171) says not so much
that the complex curve in a given plane, v, w resolves into a system of two points as
much as that those cones of class two that can bendtaaugh the complex curve in
guestion with the coordinate origin as their centetsdgcompose into a system of two
enveloped axes. That will then be true for any plaag¢ gloes through the coordinate
origin, and therefore, when the facigT represents the coordinate origin when it is set to
zero.

317. An arbitrarily-chosen straight line cuts the surfatéhe singular points at four
points, in general, and one can, in general, draw fowetatial planes to the surface of
singular planes. If the chosen straight line isngwiar line of the complex, in particular,
then two of the four singular points will coalesceitite corresponding point and two of
the four singular planes will coalesce into the cqoesling plane (cf., no306). A
singular line will then contact the surface of singuaints, as well as the surface of
singular planes. The contact point with the forreerface will be the corresponding
singular point, while the contact plane with the lagerface will be the corresponding
singular plane.

For singular lines that lie in a double plane of the glemy two of the four
intersection points with the surface of singular pomtscoincide pair-wise. Such lines
will then be double tangents of the surface of singular poimtsthe sense that they
contact two distinct points of this surface.

Likewise, two of the four tangential planes that canegelly be drawn through a
given straight line on the surface of singular plandsasalesce pair-wise into one, as
long as the given straight line is one of the singuteslithat goes through a double point
of the complex. These lines will then beuble tangents to the surface of singular
planes in the sense that they will contact that surfadevatdistinct planes.
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318. The four singular lines of the complex that lie mabitrary plane contact the
curve in that plane that is enveloped by lines of the ¢emip the singular points that
correspond to them. The same straight lines are icedtan the fourth-order surface of
singular points at the same points. The fourth-ordarsettion curve of this surface
with an arbitrary plane then contacts the complex ctine¢ lies in this plane at four
points. Of the eight intersection points that the turves must have, in any event, two
of them will coalesce into one contact point.

Likewise, those complex cones that have an arbifpamgt of space for their vertex
will contact the cone of class four that can be drévwm the arbitrarily-chosen point to
the surface of class four that is enveloped by the singldanes at four straight lines,
which are the four singular lines that go through therne Gommon tangential planes to
the two cones along these four straight lines will leecttrresponding singular planes.

We would like to choose a singular plane to be an ariytehosen plane, in
particular. The locus in it that is enveloped by lineshef complex will be, as before,
contacted by the intersection curve of the singulargsamith the surface of singular
points at four points; the contact points of the siaglines will be the corresponding
singular lines, respectively. For a singular plane, &dvthe four singular lines that will
generally lie in a given plane will coalesce into #egular line that corresponds to it.
The other two will each go through one of the two imith which the complex curve
resolved in arbitrary directions. Two of the four @mttpoints of the intersection curve
of the surface of singular points with the locus tlsaemveloped by the lines of the
complex will then coalesce into the two points imtlaich the complex curve has resolved
in the singular planes, while the other two will coincidiéh the singular points that are
associated with the given singular planes.

The fourth-order intersection curve of the surface of singular poinktsamitarbitrary
singular plane has a double point at the singular points that are associated with that
plane.

In the same way, we can prove the theorem:

The conic surface of class four that can be drawn from an arbitrary singolat to
the surface of singular planes has the singular plane that is associdtethat point for
its double plane.

319. We derive the analytic statement of these geometsalts from equations
(169) and (171), which represent the surface of singular pamctshe surface of singular
planes, respectively, in point and plane coordinatepeotisely. If we assume that the
XZ-plane is a singular plane and that the correspondinglamiine coincides wittOX,
while the associated singular point coincides withthen we will get the following
determination of the constants from numi®8s and306:

A=0,H=0,1=0, P=0.



278 Chapter Two, Part II: Discussion of the general equatioa second-degree complex.

In that way, when we let all of thg' in them vanish, the expressioasb, c, d, e f in
(168) will take on the following values:

a=EZ,

b=Kxz— MZ+( N- Q = Qx
c=B+DZ+ FX-2Lxz2 R%2 S
d =-Exz- Uz

e=G- KX+ Mxz Ox Tz

f =C+ EX +2Ux

(172)

If we neglectx andz in them compared to constants, as well as the squowdrs ofx
andz compared to the first, then we will obtain:

a=EZ,
b=(N-0) z- Qx
c=B,

d =-Uz

e=G,

f =C.

(173)

When we substitute these values into equation (169):
acf + 2bde—a€® —cdf —fb? = 0,
we will find the following equation:
(174) BCEZ-2GU#( N- QO z Q¢ EG’z2 BU’z (C N)Gz X&=0

for the representation of singular points that lie i singular plan&Z in the vicinity of
the associated singular pof@t This equation includes only terms of second degree in
andz The intersection curve of the surface of singulangsowith thexXZ-plane then
possesses a double point at the coordinate origin, in agneemitt the concluding
remarks of the previous number.

We may further remark that this double point will be aapof regression when then
constantQ vanishes, in addition to the constasH, |, P. From the discussions in
number307, theOX-axis will be a double line of the complex.

In the same way, we can prove that the cone o$ ¢tag that can be drawn from an
arbitrary singular point to the surface of singular plahas the singular plane that is
associated with the chosen singular point for a doubleep
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320. From the foregoing, any singular plane is a tangeplaade of the fourth-order
surface that is defined by the singular points; its corgattt is the associated singular
point. Conversely, any singular point is a point of thefaze of class four that is
enveloped by the singular planes. The tangential planeisothe associated singular
plane.

The fourth-order surface that is defined by the singular points of the errapt the
surface of class four that is enveloped by its singular planes are identic

Any singular line of the complex contacts the fourtdesrsurface of singular points
and the surface of class four of singular planes. cbimact point with the surface is the
corresponding singular point, and the contact plane t® the corresponding singular
plane. The two remaining intersection points of tlmgwlar line with the surface are
those two points with which the complex curve resolmethe corresponding singular
planes. Likewise, the two remaining tangential plamas tan be drawn through the
singular lines to the surface are those two planes wiitich the complex cone whose
vertex is the associated point decomposes. The dinectithe one singular plane and
the singular line that corresponds to its associated laingaint are still not given for the
surfaces of singular points and singular planes, resp. stitiace depends upon fewer
arbitrary constants then the second-degree compledébartmines it.

321. The surface that is defined by the singular points ofctimplex and the one
that is enveloped by its singular planes are of orderdadrclass four, respectively. It
will then have sixteen double points and sixteen doubleeglain general. The
possibility that the surface possesses further singeksritin particular, a double ray and
a double axis that coincides with—tby which, the number of double points and double
planes will be reduced, remains excluded as long as the& geplex is not itself
specialized.

The tangential planes to the surface at a double poiittenvelop a cone of class two
and the contact points of it with its double planed delfine a curve of order two. In
number312, we proved that the singular planes that go through a elqudnt of the
complex also envelop a cone of class two and thatitigellar points that lie in a double
plane of the complex define a curve of order two.

The double points and double planes of the complex coincide with the double points
and double planes of the surfaces that are defined by the singular points and ehvelope
by the singular planes, respectively.

From this:

In any second-degree complex there are, in general, sixteen doublegralrgteen
double planes.

Which point in a double plane is enveloped by the lineh@fcomplex and which
plane is defined at a double point by the lines of the texgre still not determined for
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the surface of singular points and the surface of singudares, respectively. The point
can be an arbitrary point of the contact curve, whitgepglane can be an arbitrary plane of
the contact cone.

322. We return to the equation for the surface of singotants and planes in plane
coordinates (171):
acf+2dée-ae’-cd?-f'h*=0.

We would like make this homogeneous through the introductiarf@urth variablev. It
will then come to pass that we will make the express{d70) that were found fef, b,
¢, d’, €, f’ homogeneous by the introduction of these variables, ajidatéhe facton?
that will arise after replacing these expressions in eguét71).

We would like to write the equation for the surfacehm following way:

(175) f=0.

According to numbel96, we will then obtain the following equation for the polea
given planef(, u', v, w) relative to this surface:

(cﬁj (cﬁj (ﬁj (cﬁj B
— t+| — |u+| — |V+| — |Ww=0.
ot ou oV ow

[ he reCtangU|ar COOI’diI 1ates Of tl e p0|eS are the| 1.
5\/

(cffj (cffj

,_\ot) _\adu

o) “Srery Y ey fTyary
ow ow ow

If we substitute the expressiods b', ¢, d’, €, ', which have been made homogeneous,

in equation (171) then we will obtain the equation:

Z =

a77) F=0,
and from the foregoing, one will have:
(178) F=wT.

It is then permissible to replace the differential ¢geras of the functior with respect to
t, u, v, win formulas (176) with the following functions:

3 T o A e
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respectively.

323. We would like to choose the plane at infinity, in parar. For the sake of
simplicity, we set- as is always permissible — the constafits, M equal to zero in the
equation of the given complex. We then obtain the iatig values for the expressions
a,b,c,d’é€,f, which have been made homogeneous:

a=DwW+BvV+ Cl-2Guwv2 Svw2 Tuw
b'=-Ctu+ Gtv+ Huw IV+( N- Q vw Ttw Uu)
c' = EW + AV + Cf-2 Htv- 2 Utw+ 2 Pvwy
d'=-Btv+ Gtu— Hd + luv Nuw Stw Ryw

€ =— Auv- Gt + Htw Itw Otw Puw Quw
f' = Fw” + AU’ + Bt -2 ltu— 2Quwt+ 2 Rtw

(179)

If we substitute the coordinates of the plane at infinit
t=0,u=0,v=0wW=wW

in these expressions and their differential quotients wspect td, u, v, w then we will
get:

(180) a=Dw2 b=0 c¢=Ew? d'=0, €=0, f'’=Fw?’
and

9 _g 9 _yw . [2F )= orw

ot ot ot

), ()0 ()
(181) o o o

98 1= osw, [ 25 |=2pPw, |2 ]|=0,

ov oV ov

(5—6‘ - 2DW, (@ - 2EW, (ﬁ - 2FW.

oW ow ow

It is unnecessary for what follows to write dowe thfferential quotients df', d’, €.
From the foregoing equations, the four expressions
(2 o),
ow W

5 & (&)

Fzacf+2bde—-ad?-cd?-f'b?

where:
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in which, just the one term:
acf’

comes under consideration for the plane at infinityl, take on the following values:

(5—': = 2DW* (ER- FU),
o

(5': =2EW°(FT- DQ),

(182) gﬁ
(— =2FwW*(DP- EY9),
ov
(5—':—25) = 6DEFW® - 2DEFW° = 4DEFW’ .
ow w

The coordinates of the pole of the plane at infimith respect to the surface — or, as we
can say, the coordinates of the center of the sarawill then become:
- - -E
(183) X':M, y’:—M, Z’:&S
2EF 2DF 2DE
These are the same expressions that we found ilen##0 for the coordinates of the
center of the complex. With that, we have the tago

The center of a second-degree complex coinciddstié centers of the surfaces of
its singular points and planes.

In agreement with that, the center of the compglegs to infinity when the plane at
infinity is a singular plane, in particular, and#e points at which it contacts the surfaces
of singular points and planes (cf., 1®89) coincide with its associated singular points at
infinity.

If the plane at infinity is a double plane of tbemplex then its center will become
undetermined. Its geometric locus will be a seeorder curve that lies in the plane at
infinity. That curve will be the contact curve thie double plane with the surface of
singular points and planes (cf., r289).

§ 6.

Pole of a given plane and polar plane of a given point that are associated relativeto
the complex.

324. We now return to the considerations of the tinsee — and especially the third —
sections of this Part of this Chapter. In them,imeestigated the relationship between
the given second-degree complex and the plandiaityn We next concerned ourselves
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with the totality of alldiametersof the complex — viz., straight lines that are asdedi
with the straight lines in the plane at infinity asgyelrelative to the complex — then the
totality of all cylindersof the complex — viz., complex cones whose midpo&s &n the
plane at infinity — and the axes of the these cylindev&., their polar lines relative to
the plane at infinity that goes through their midpointe Whien considered the curves that
were enveloped by lines of the complex in the plane atitwfand in planes that were
infinitely close to it and represented them by a compleexceptional simplicity and a
characteristic with respect to the coordinate systeamety, theasymptotic complerf
the given one.

We can carry over all of these considerations, andrim @ll of the results that we
found, from the plane at infinity to aarbitrary plane in space using known rules that
already find their expression in the foregoing. The basighis convertibility lies in the
identity of the analytic operations that corresponthtogeometric considerations in the
one case, as in the other.

In particular, we would like to let an arbitrarilj@@sen plane coincide with one of the
three coordinate planes. The exchange of the planenfiaityy with one of the
corresponding coordinate planes gives us an exchangfee dfne coordinates among
themselves, and therefore a reciprocal exchange ofasdasn the equation of the given
complex. In what follows, we will pose the rules tbese exchanges, and then we will
be spared any further analytic development in any codedplane, since it will suffice
to switch the variables, as well as the constantslliprevious formulas according to
these rules.

With the conversion of the theorems that were posedht plane at infinity to an
arbitrary plane, we will extend the previously-obtaimesults, to the extent that we are
allowed by the foregoing two paragraphs to introduce theegltsrof complexes — viz.,
their singular points, lines, and planes — into the geder&insiderations in a way that is
more intuitive that was previously possible.

325. We would like to use equation (V) for the second-degreaptax as the basis
for what follows, which we make homogeneous by the duction of a sixth variablg,
and make symmetric by the addition of a tevinZ The equation is then:

Ar? +BS + CHt + DA + EAf + Frf
+ 2Gsh+ 2Hrh + 2rs + 2Kpn — 2.on — 2Mpo
—2Nro+ 2050 + 2Vhn
+ 2Prp+ 2Qrn + 2Rs) — 2S0— ZTho + 2Uhp = 0. V)

In number 10, we obtained the following six proportioegpressions for the ray
coordinates:
r,s,h-apn,
namely:
Xt =X, Yy =y, (2 - 21, (YZ —-Y2), (XZ—X2), (XY —Xy).
The ratios:
Xy

1! [

r 17 7T

Z’

!

and

~ | x
N <
NN
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then denote the coordinates of two points that areechasitrarily on the straight line.
The exchange of the plane at infinity with the coor@indaneYZ will correspond to
the exchange of:
xwith 7 and x with 7', resp.
Corresponding to that, the six line coordinates:
rs,h-ogpn
will be replaced with the following ones:

-r,—-nr,—-oh, -s

resp. This exchange will not affect the coefficients:

A D, R U,
while

B,C I,M
and

FE QT

respectively, will not change their signs, and:

G HL,O
and
K,P,SV,

resp., will be reciprocally exchanged with a simultanechsnge of sign, andll will
change its sign.
Two of the plane coordinates:
t,u, v, w,

namely,t andw, will be exchanged reciprocally.
In particular, the equation for the curve that is evpedl by lines in the plane at
infinity is:
Dt 2+ EW + FV? + 2Kuv + 2Ltv + 2Mtu = 0,

and we will obtain the following equation from it ftve complex curve iYZ by using
the foregoing rules of exchange:

DW + CU” + BV — 2Guv— 2Svw+ 2Tuw= 0,
in agreement with numbés6.

We will get completely analogous rules of exchange ¢batespond to an exchange
of the plane at infinity with one of the other two odioate planesXZ or XY. We shall
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not write them down here, since we shall refer badkecexchange rules of numhbkss,
which correspond to an exchange of the three plédexZ, XY among themselves.

326. Let an arbitrary plan be given. A curv& will be enveloped by lines of the
complex in it. The polar that corresponds to an abif-chosen straight lina in P with
respect to the complex, and which we would like to dehgtie will cut the planeP in
the pole of the line relative to the curv&. The polar of a straight line relative to the
complex will then be the geometric locus of its palektive to the curves that are
enveloped by lines of the complex in the plane that gwesigh it. Consistent with that,
in number236, we have constructed the direction of the diametetiseofomplex that are
associated with a given system of parallel planes nmef the complex curve that lies
in the plane at infinity.

Let a, &, @’ be three straight lines in the plaRe which define a self-conjugate
triangle with respect to the curte call the three associated pol&axd', b”, resp. b, b,

b" will then go through the intersections @fanda’, a’ anda, a anda’, respectively.
We would like to calb, b', b" three mutually-conjugate polars relative to the pRaner
also, more brieflythree mutually-conjugate polarsince the plan® remains fixed. In
the case of an arbitrarily-chosen plane, the systethree conjugate polars substitutes
for the system of three conjugate diameters in the cdghe plane that is shifted to
infinity.

The intersection points( a"), (@', a), and &, &) are the vertices of three complex
conesA, A, A". If we consider the plane to be fixed, as before, then we will refer to
them as the three complex cones that are assouwdtethe straight lineg, &', a“, resp.

This plane is associated with a straight line redativ any complex cone whose
vertex is chosen to be iR. This line is the intersection of the tangentian@s that
contact the complex cone along the two edges, alonghwihiis intersected by the plane
P. If the planeP is shifted to infinity, in particular, then the compleone will become a
complex cylinder, and the straight line in question wikkdme the cylinder axis. We
would like to refer to this straight line as the “polar lwfethe complex cone relative to
the planeP, or more briefly, as itpolar ling, in order to distinguish it from the “polar,”
which is the term that we used in order to refer tosth@ght line that is associated with
the given one relative to complex.

Let the polar lines of the three complex coAed\', A" bec, ¢, ¢c'. We call these
three polar lines mutually-conjugate and the three striiggga, a', a’, like their polars
b, b', b", resp., associated. Each polar line cuts the polanttistissociated with at a
point of the plané.

327. The polars of an arbitrary straight line will be eopeld by its polar planes with
respect to all complex cones whose vertices liegalbnFor exampleb will then be the
intersection of the two polar planes of the strailyint a relative to the two complex
conesA’ andA”". However, one will also find the polar lines of thenesA’ andA”,
which we have previously denoted ¢yandc’, in the same two plane. will thus cutc’
andc”.
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Each of three mutually-conjugate polars cuts the polar lines that are iasdavith
the other two.

Thus, each of three conjugate polar lines will also leetpolars that are associated
with the other two.

If the three polar$, b', b" are given then the three polar lings’, ¢”, resp., can be
constructed in a linear way. Each of them will thertlgough the point of intersection
of one of the three polars with the plaReand cut the other twob, b', b" will be
determined in the same way whert', ¢" are given.

Three arbitrary straight lines in particular, the three polals b’, b" — determine a
hyperboloid as lines of one generator. All of them thattice three given straight lines
will belong to the second generators as lines. The poé&sc, ¢', ¢’ will then be lines of
the second generator of the hyperboloid that is deteay the polarb, b', b" as lines
of it. The six straight lineb, b’, b", ¢, ¢, ¢" determine a hexanglacb’cb'c” (cf., no.
109) that is drawn in the hyperboloid. For an arbitrary obodd the planeP, this
hexangle will substitute for the central paralleledipghat is determined by three
conjugate diameters and the cylinder axes that are pacailedm in the case of the plane
at infinity.

The three planesb( c), (o', ¢), (b", c'), which are the tangential planes to the
hyperboloid that we speak of at the three poiatsq’), (@', @), (a, &) that lie inP,
intersect at a poirD, which is the pole of the plarierelative to the hyperboloid. We
can determine this point in yet another way. The plane) cuts the plan® in a lined.
The fourth harmonic tb, ¢, andd, which we would like to denote &y will go through
the desired point. The three diagonals to the hexdr@j¥cbc” will intersect at the
same point.

When the plan® is shifted to infinity, the poin© will become the midpoint of the
central parallelepiped. We can define the midpoint of suphrallelepiped to be either
the point of intersection of the three planes thathgough a diameter and the cylinder
axis that is parallel to it or finally as the commimtersection of the diagonals of the
central parallelepiped.

328. Precisely the same calculations and considerati@tsallowed us to prove, in
numbers245 and 246, that all central parallelepipeds of a given comgiaxe the same
center (which we referred to as ttenter of the complgxwill show that the pol® of
the planeP relative to the hyperboloid that is determinedobly’, b” will be independent
of the choice of those three conjugate polars.

The pole of the plane P relative to a hyperboloid that is determinechriege t
conjugate polars is independent of the choice of these polars.

The pointO is then associated with the plalR¢hat goes through the given complex.
We would like to call it thgpole of the plan® relative to the complex.

For a second-degree complex, one point is associated with a given plane gue uni
way, in general.
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In number323, we proved that the center of the complex coincidés thie center of
the surface that is determined by its singular points aadepl We then have the
theorem:

The pole of a given plane relative to a second-degree complex coindid&seapole
of the same plane with respect to the surface that is defined Binthaar points of the
complex and enveloped by its singular planes.

329. Let an arbitrary line in the plane® be given. Let the polar that is associated
with it beb and let the polar line be We then construct the straight lia¢hat connects
the pole of the planP with the point of intersection of the two straigimtelsb andc in
such a way that we draw a plane throbgindc and determine the fourth harmoniclto
¢, and the line of intersectioth of that plane with the plane. We next examine the
extent to which this construction will maintain its idétly when the chosen straight lime
belongs to the complex; in particular, when it is slagiine of it.

Let a be a line of the given complex. The padtathen coincides with it. However,
the polar linec is also no different frora andb. The pole of the straight lireerelative to
the complex curve that lies s its contact point with that curve, and the comulene
whose vertex is that point will contact the pl&halong the tangent at that point; that is,
along the chosen lire Thus,b andc, and therefore, alsdy will coincide with the linea.
The geometric construction of the connecting lines ef pble of the straight lina
relative to the complex curve that liesPnwith the pole of the planE relative to the
complex will become illusory.

If the straight linea, in particular, coincides with one of the four singlilaes that lie
in P then its polab will next be determined. It can be chosen arbitrdrdyn the straight
lines that go through the associated singular point iraskeciated singular plane. This
point is the contact point of the singular lme&vith the complex curve that liesih The
complex cone that has it for its vertex will decompinse two planes that intersect along
the singular linea. The polar line, like the polaib, will then be undetermined, and will
be subject to the single condition that the plané th&armonic to the aforementioned
two and the plan® must go through the contact point that lies alangrhe desired line
e will be contained in the fourth harmonic plane to gireen planeP and the two planes
in whichb andc lie, respectively, but it will not be determined contelg inside of them
by the general construction.

330. When the straight lina does not belong to the given complex, the associated
polarb and the associated polar lioavill generally be different. That corresponds to the
fact that three conjugate polars will not intersectgémeral. From the discussion in
number251, there is a system of three associated diametargththrough the center of
the complex. They coincide with the cylinder axes thgrallel to them.
Correspondingly, there are three mutually-associaté&dtor any plane that go through
the pole of the plane, and thus coincide with the polasithat are associated with it.

If we refer the complex to the three diameters iht@rsect in its center as coordinate
axes, as in numb@sl, then its equation will be the following one:
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Ar’ +Bs + Clt + D& + EZ? + FrP?
+ 2Gsh+ 2Hrh + 2rs
—-2Nro+ 2050+ 2Vhn=Q = 0. (184)
We will then get:
D +EWF +FV =0 (185)

for the curve that is enveloped by its lines in the plinmfinity. For the curve of the
complex in the same plane whose equation is theafwllp one:

SRR DD DD
or oo JOs oo oh on
we will find:

DNE + EOU + FW = 0. (187)

The variables enter into the two equations (185) and (18ify, as squares. The two
curves that are represented by these equations wilbthehclass two when referred to a
coordinate system that is self-conjugate with respettetant

We have determined the singular lines of the given cowipjemeans of equation
(186), along with the equation of that complex. They téwe four singular lines of the
common tangents to the two conic sections that gnesented by equations (185) and
(187) in the plane at infinity. The three points at \hice coordinate axe&3X, OY, OZ
cut the plane at infinity are thehe three points at which the diagonals of the detep
tetragon that is defined by the four singular lingst lie in that plane. Its three
diagonals are the straight lines that lie in the @laninfinity, and whose associated polar
and polar line coincide without themselves belonging tatmplex.

The foregoing considerations carry over immediatedynfthe plane at infinity to an
arbitrarily-chosen one.

331. For a given plane, there is, in general amgsystem of three associated polars
that intersect in the pole of the plane: It is time dhat we constructed in the foregoing
number. The construction will be undetermined when the $mgular lines coincide
pair-wise in the chosen plarig which would require a two-fold specialization of the
relationship between the given complex and it. A pofnhirsectiono and a straight
line p, which is the polar ob relative to the complex curve that lies iy will be
determined by the two straight lines in which the four semglihes coincide. The polars
of p relative to the complex will go through the pomtand the pole of the plare
relative to the complex. Conversely, the polar to givwen line that can be drawn
throughO in P will go through a point of the straight lingand pole of the plan
relative to the complex. There are thefinitely many polarghat intersect in the pole of
the planeP. One of them will be distinguished, while the resttleem will all be
conjugate to that one and will lie in a plane that ghesugh the pole.

If all polars of the straight lines that lie fhare to go through the pole Bfthen, from
the geometric construction that we consider, all lofethe complex that lie iR must be
singular lines of that complex. As long as the giplame is not a singular plane, this will
require a five-fold specialization of the relationshiptioé given plane to the complex.
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That will then demand that either the curve that is lepesl by lines of the complex
(186) in the given curv® is no different from the curve of the given compiexhat
plane, or that every line in the plaRebelongs to the complex. Whether the one or the
other case is pertinent will depend upon the choiceeoéxitra term in the equation of the
given complex.

If the given second-degree complex is of the partictype for which itslines
envelop a second-degree surfaben the polars of all such straight lines thatiriean
arbitrary plane will intersect at the pole of this ndarelative to the complex that
coincides with its pole relative to the surface, and gdiyespeaking all lines of such a
complex will be regarded as singular lines. The surfaaeishdefined by the singular
points of the general second-degree complex and is envdbyptsisingular planes is no
different from the latter in the case of the spec@ahplex that represents a second-degree
surface.

332. If the given planeP is asingular plane then, from what was explained in
numbers279 and 323, its pole relative to the complex will coincide withe singular
point that is associated with it. That point will thee contact point of the given singular
plane with the surface of the singular points and planes

We easily convince ourselves of the validity of thisute Corresponding to the
assumption, the complex curve in the given pBries resolved into the system of two
pointsK; andK, . Their connecting linek(, K) is the singular line that is associated
with the given singular plane. The associated singudamt O that is the pole of the
planeP is similarly arranged.

Let an arbitrary straight line be given in the planB. Its polarb cuts the plan® at a
point of the singular lineK;, K;). The complex cone whose vertex is that point of
intersection contacts the given plad@long Ki, K2). The polar linec that is associated
with the arbitrarily-chosen straight lirrethen coincides withK;, K,). This is expressed
by saying that we seek the pole of the pl&nen the singular lineKi, Kz). The plane
that is drawn through andc must then cut the plarfe again alonge, and the fourth
harmonic tob, ¢, and this line of intersection must coincide wgtrsinceb andc do not
themselves coincide.

In order to determine the pole on the singular likg K2), we let the arbitrarily-
chosen straight lin@a coincide with Ki, K3). Infinitely many straight lines will then
correspond to it as polarsnamely, all of the ones that go through the assegtisingular
point O in the given pland®. The proof is complete with that. The fourth harmaoi
such a polar, the polar line to a complex cone whogewer chosen arbitrarily on it, and
the line of intersection of the plane that is deteediby the polar and the polar line with
the given ond will coincide with the chosen polar itself.

333. If the given pland® is adouble planeof the complex then the position of its
pole will be undetermined. The geometric locus of thathbe the second-order curve
along which the double plane contacts the surface of singulints and planes. The
complex curve in the double plane will resolve into stesy of two points that coincide
in one point of the second-order contact curve. Thectdon of the connecting line of
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the two points will be undetermined. Each lindPithat goes through the point at which
the two coincide will be a singular line. The singylaint that corresponds to each of
them can be regarded as the pole of the pRarsative to the complex. If the singular
line in P rotates around the fixed point then the corresponding lsingaint will describe
the second-order curve along which the double plane centiagtsurface of singular
points and planes.

We still have to mention the case in whalhof the lines that lie in a given plaife
belong to the complex. One can say nothing furtheutadavell-defined pole in such a
plane with respect to the complex. That correspamdiset fact that the plane is separated
from the surface of singular points as an isolated plahi&h will reduce to order three.

334. We have represented the lines at infinity of the gin@mplex by means of an
especially simple complex whose equation was then mansgarent when we put it into
a close relationship with the coordinate system, mamhbe asymptotic complex.We
obtained the equation of the asymptotic complex in thergénase when we let the three
variablesr, s, h vanish in the equation of the given one. It then ssreed a conic
surface of class two whose vertex fell upon the coorelinaigin, and which cut out a
curve that was enveloped by lines of the complex fromplhee at infinity. If the
relationship of the plane at infinity to the given coexpls specialized in that way then
further terms beyond those of second ordew, ior, 7 must be selected from the equation
of the given complex for inclusion in the equatiortted asymptotic complex in order for
it to represent the lines of the complex at infinityhathe same degree of approximation
as in the general case. The degree of approximationeodgiimptotic complex with
respect to the given complex is the first in all sagbat is, the relationship of the
asymptotic complex to the given complex will remain umgjeal when we displace them
with respect to each other parallel to themselves thraugtite line segment.

Similar considerations can be posed for an arbitraageylin particular, for each of
the three coordinate planes. We say “asymptotic congdléixe given complex relative
to a coordinate plane” to mean the complex that hasmmumm with the given complex
all lines that lie in this plane and, up to higher-order ttia@s, in all planes that differ
infinitely little from the coordinate plane, and whichthe simplest of the complexes that
are endowed with that property, in and of themselves, &k ag in relation to the
coordinate system.

335. In order to exhibit the equation of the asymptotic complext s associated
with a coordinate plane, we proceed as before in the caghe plane at infinity. In
particular, if we select th¥Z plane then we will next get:

BS + Ch + D& + 2Gsh— So7— ZTho= 0, (188)

since we let, p, n vanish in the equation of the given complex, for wghwould like
to take equation (V). This equation represents a comphese lines envelop a cylinder
surface of class two whose sides are paralléXpand which will cut out the complex
curve that lies in th&Z plane from that plane.
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By a suitable choice of coordinate ax@¥ andOZ in the fixedYZ plane, we can, in
general, bring the foregoing equation into the followingrfor

BS + CH + D = 0. (189)

If the complex curve inYZ resolves into a system of two points whéais a singular
plane then one of the three const@it€, andD will vanish. IfD vanishes then we must
add terms from the equation of the given complex thatagotiie variableo in the first
power to equation (189), which represents the asymptotic exmpthe general case. In
this way, the equation of the asymptotic complex widdyae:

BS +CH -2 (Ln+Mp)s=0. (190)
A term inrodoes not enter into this. One then has:

-Nro+0s0+Vhn=(0O-Nsp+(V-Nhzp.

If the two points into which the complex curveYZ has resolved, corresponding to the
assumption tha¥Z is a double plane of the given complex, coincide in atgben two
of the three constant®, C, D will vanish in equation (189). IB andC are the two
vanishing constants then when we add the terms of filstr ams andh to equation (189)
the equation of the asymptotic complex will become:

D +2(r+Rhs+2Hr +Ur)h+2©O-Nso+2%—-Nhn=0. (191)

Finally, if the three constan® C, D vanish together in equation (189), corresponding to
the assumption that every straight line in ¥iéplane belongs to the given complex,
when we select the terms of first ordesjr, s from the equation of the given complex,
we will get:

(Ir+Rp) s+ Hr +Up h—(Ln+Mp) c—Nro+0so+Vhn=0 (192)

for the equation of the asymptotic complex.

We will pursue these considerations no further hererdfer to the developments of
the third paragraph, and in particular, we will go no fartinto a more detailed
discussion of the complexes that are represented byi@mmét90), (191), (192).

336. A line complex represents a self-reciprocal structimethe sense that its
equation has a double interpretation, according to wheiheonsider the straight line to
be a ray or an axis. An exchange of the two viewpauitscorrespond to an exchange
of the coordinates of the straight line among themseMée form of the equation of the
complex will then remain unchanged. In this fact, ondsfthe justification for carrying
over all of the considerations and results that amgasned in the foregoing from an
arbitraryplaneto an arbitraryoint using the rules of the principle of reciprocity.
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In particular, we would like to let the arbitrary pbicoincide with the coordinate
origin. All analytic developments and relationships tha have posed for the plane at
infinity will carry over to it, when we exchange pband plane coordinates, and ray and
axial coordinates everywhere, corresponding to which, flerules in numbel53, the
following constants in the complex equation:

A B, C, G H, I, P,QR
will mutually switch with the constants:

D, EF, K, L, M, ST U,
respectively.
In particular, we have obtained the equation:

D? + ELP + PV + 2Kuv+ 2Atv+ 2Mtu=0

for the complex curve that lies in the plane at infinifjhe equation that is derived from
it according to the foregoing exchange rules:

AX + By + CZ + 2Gyz+ 2Hxz+ 2xy = 0

represents the complex cone whose vertex is the cabedimigin.

If we shift the arbitrarily-chosen point that we havedma&oincide with coordinate
origin to infinity then we can choose it to be anytlté three points at which the plane at
infinity is cut by the coordinate ax€xX, OY, OZ respectively. The exchange rules that
correspond to such an assumption are derived immediabehythe foregoing ones when
we next replace the plane at infinity with the conadie planeXZ, YZ XY, respectively,
from the discussions of numb&25.

337. In what follows, we will restrict ourselves to e&psing, with no further proof,
the essential results that we previously derived foaudiitrary plane for an arbitrary
point.

Let O be the chosen point, and &ta’, a" be three arbitrary lines that go through it
that are conjugate to each other relative to the &mndose vertex falls upo®. The
polars of these three straight lines relative to abmplex— which we would like to
denote byb, b', b” — will lie in the three planes(, a"), (@’, @), (a, &), respectively. We
call the three polars mutually conjugate. The polar lifethe pointO relative to the
complex curves that lie in the three plargsd’), (@", @), (a, @) — which might be called
C, C, C", respectively- are said to be associated with the three polars anthtée given
linesa, &, a’. We refer to them as three mutually-conjugate polaslinEhe following
theorem is then true:

Any of three conjugate polars is cut by any of the polar lines that areiasbavith
the other two.
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Thus, any of three polar lines will also cut each effblars that are associated with
the other two. When the poit and three conjugate polars or polar lines are given, th
associated polar lines (polars, respectively) can bestiearted linearly using this
theorem.

Three conjugate polars determine a hyperboloid, as linesi@fgenerator, and the
associated polar lines will determine it as lines ofatheer generator. The polar plane of
the pointO relative to that hyperboloid will be the plaRehat contains the three points
of intersection of any of the three conjugate lines whiir associated polar line. This
plane will not change when we replace the chosem ttwejugate planes with any other
three.

The polar plane of the point O relative to a hyperboloid that is deterntipetiree
conjugate polars is independent of the choice of these polars.

The planeP is then associated with the poi@tthrough the given complex. We
would like to call it thepolar plane of the point O relative to the complex.

In a second-degree complex, a given point will be in one-to-one correspendiinc
a plane, in general.

We construct this plane as thelar plane of the given point relative to the surface
that is defined by the singular points of the complex and enveloped by sipignies of
it.

338. If the chosen three straight linasa’, a’ do not themselves belong to the
complex then their associated polars will not interrsen general. In general, there is
only onesystem of associated polars that do intersect, anchwhitthen coincide with
their associated polar lines in the polar plane of thergpoint. The corresponding three
straight linesa, &', a" are easy to construct.

Four singular lines of the complex go through the gpeimt O. The three lines of
intersection of any two planes that collectively camthe four singular points will be the
desired one.

Corresponding to a double specialization of the eigtip between the second-
degree complex and the given point, we can let thedmgular lines that go through it
coincide pair-wise. The polars of all straight lirtbat go througtO in the plane that
contains the two singular lines will then interseca ipoint inside the polar plamfeof the
point O, namely, the point at which the polar pldn&vill be cut by the polar line of the
aforementioned plane relative to the complex conesehertex falls upo®@P, and the
polar of this latter line will also fall in the plar® It is the line of intersection with the
plane that is drawn through the two singular lines.

A five-fold specialization is required when all polars & be contained in the polar
planeP. Each polar will then coincide with its associatethpbne. This would demand
that all of the complex lines that go through the p@mhust be singular lines of it. This
condition is fulfilled, in particular, in the case @dmplex whose lines envel@second-
degree surfaceAll lines of such a complex are to be regarded as sin@inés of it. The
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polar plane of an arbitrary point relative to such a derwill coincide with its polar
plane relative to the surface that it envelops. [&kter will make the surface be one of
order and class four, which will be determined by the sinqudarts and planes of the
complex in the general case.

339. If the given pointO is asingular point, in particular, then its polar plane will
coincide with the associated singular plane. The shimg will be true for the tangential
planes to the surface at the singular point and theeglat the given singular point.

If the given pointO is adouble pointof the complex then its polar plane will be
undetermined. It can be selected arbitrarily from the lepireg planes of a cone of class
two that has the chosen point for its vertex. Thetp@iwill then be a double point of
the surface of singular points and planes. The conic surddcclass two that is
enveloped by its polar planes will be the tangential cdnéheo surface at the double
point.

Finally, all of the straight lines that go through gwent O can belong to the complex.
One could then no longer speak of a well-defined polaneptalative to the complex.
That would correspond to the fact that the polar wasrsépd from the surface of
singular planes as an isolated point, which would reduoeciass three.

In conclusion, let it be remarked that in the casethef general second-degree
complex, the correspondence between the polar pladetlt@n given point is not
reciprocal, as it is for second-degree surfaces. Iptie of the polar plane relative to the
complex should once more coincide with the initialiye;m point then a three-fold
specialization of the position of the plane in the ptam would be necessary. There are
then, in general, only &inite numberof points and planes in a given complex that
correspond reciprocally relative to the complex.

340. We have represented the lines of the complex that Begiven plane or in the
neighborhood of it by itsasymptotic complexelative to the given plane. We can
determine the straight lines in the complex that goutinoa given point and all of its
neighboring points in a similar way.

Let the given point be the origin of the coordinatés will then get:

Ar? + BS + Ch + 2Gsh+ 2Hrh + 2rs = 0 (193)

for the asymptotic complex of the given complex re&ativ that point when we neglect
the variableso, g, 77, as well as first powers of s, h in the equation of the latter. This
equation representscarveof second order in the plane at infinity. The stnaimes that
go through the coordinate origin and cut that curve will gk the given complex.

By an appropriate choice of directions for the coondinaxes, we can bring the
foregoing equation (193) into the form:

Ar’ +B& + Cht = 0. (194)
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When the coordinate origin issangular point of the complex, in particular, one of the
three constantd, B, C will vanish; letA be the vanishing constant. In order to represent
the lines of the given complex in the neighborhood ofcberdinate origin to the same
degree of approximation as before, we must then keegitims of first order im, along
with the terms of second orderdgmndh, in the equation of the asymptotic complex. We
then find:

BS +CH+ 2 Pp+Qn)r=0. (195)
No term inr gwill enter in, since:

-Nro+0s0+Vhnp=(0O-Nso+ (V-N hn.

The simultaneous vanishing of two of the three cons®@riss C — say,B andC — would
correspond to the case in which the coordinate origindsudble pointof the complex,
and we would get the following equation for the asymptotroplex:

Arr+2 Rh—=Sps+2 (-Ts+Ur)h+2©O-Nsp+2(V-Nhn=0, (196)

since we must consider first powerssdndh, along with second powers of Finally,
when all of the straight lines that go through thegiaribelong to the complex, and
correspondinghA, B, C vanish at the same time, the equation of the asymjiotiplex
will become:

Po+Onr+Rn—0)s+(-To+Up) h—Nro+Oso+Vhn =0 (197)

This is the same equation that we found in nun®92rin order to represent the lines at
infinity of the given complex in the case in which temfissecond order in the variables
P, 0, N were missing from its equation.

We can impose considerations that are similar tooties that we made for the
coordinate origin for any of three points that are shiftednfinity along the three
coordinate axe®X, OY, OZ

341. Here, we suspend our foregoing developments, whose iwbjestis the
discussion of the general equation of the second-degredecqmporder to once more
turn to the investigation of complex surfaces. In paldic we emphasize the great
analogy that prevails between the theory of thoseptexas and the theory of second-
degree surfaces, an analogy that that finds its exfpdanin the fact that the latter can be
regarded as second-degree complexes of a special kindota@litg of all conditions that
must be fulfilled in order for a given complex to repreésesurface of that degree can be
summarized in the statement th#itlines of such a complex are singular lines of it.




Chapter Three.

Classfication of the surfaces of a general second-degree
complex. Construction and discussion of the equatorial
surfaces.

342. We have understood the terencomplex surfaceto mean a surface that is the
geometric locus of the curves that are determined byrtbe bf a given complex that lie
in a plane that is drawn through a fixed straight lime; what amounts to the same thing
— a surface that will be enveloped by all cones of a ge@nplex whose vertices lie
along a fixed straight line. We can say that a compleface represents the totality of
all lines of a given complex that cut a fixed line. To@sideration of these surfaces has
the same meaning for the investigation of the complexestach we have regarded the
straight line as space element that the considerafitite plane curves of intersection or
enveloping cones has for the investigation of surfaces.

In the case of second-degree complexes, a complexswrill be of order and class
four, in general. The fixed straight line that determimesdomplex surface, along with
the given complex, is double lineof the surface, in the two-fold sense that it appears a
double rayand adouble axisof it. For four distinguished positions of the planatth
rotates around the double line, the curve that is envelopéueldines of the complex in
it, and which generates the surface, will resolve angystem of two points. These points
will be double points of the surface. We have calledpla@e asingular planeof the
surface and the connecting line of the two double pomts, ia singular ray. The
singular rays lie completely on the surface, in #wss that any point of the ray will be a
point of the surface. The surface will be contactedhieysingular planes when they are
extended. Four of the points that lie along the doubledreedistinguished by the fact
that they are the vertices of complex cones that heselved into two planes. These
planes will be double planes of the surface. We havedcalich a point aingular point
and the line of intersection of the two double planesitigetermines aingular axisof
the surface. The singular axis will belong to the sgrfantirely, insofar as each of the
planes that is drawn through it will be a plane ofshgace. The common contact point
of these planes will be the singular point.

343. These definitions take on an immediate clarity wiwerthink of introducing the
surfaces of order and class four that are defined by thelaingpints of the complex and
enveloped by its singular planes. The four singular plah@scomplex surface are the
four tangential planes to that surface that can berdtarugh its double line; the four
singular points are the four points of intersectiothefdouble line with that surface. The
four singular rays and four singular axes are the sindmlas of the complex that are
associated with the four singular planes and four singuamts, respectively.
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In what follows, for the sake of brevity, we wouiklel to denote the surface of order
and class four that is determined by the singular pointpkmes of the given second-
degree complex by the symb®l and denote the fixed straight line that generates the
complex surface that we are considering, along witlgiten complex, byl.

We immediately obtain a classification of the céempsurfaces, and in particular,
those of the given complex, when we successivelyiloligs the straight lined over all
different positions with respect to the surfae The analysis in the fifth section of the
previous chapter gives us enough material to proceed withasdiscussion.

If we ignore the relationship of the complex surfé@ehe given complex then the
selected classification principle will emerge that \aflous to decide how the singular
elements of such a surface are grouped with respectho#asr, and how many of them
coincide, in particular. Here, we especially empleasiat the order and class of the
complex surface are gradually reduced by the coincidensm@dlar elements until the
surface is finally of order and class two.

For the sake of a further classification of the claxpsurfaces, we can decide
whether the fixed straight lind does or does not belong to the given complex, and
furthermore, whether the singularities that the comarface possesses — viz., its
singular planes and points, its double points and double faee real or imaginary.
This is not the place to go into the classificatidrcomplex surfaces in greater detail.
We will restrict ourselves to just the first, and messential, classification principle: viz.,
to examine the relationship of the fixed lichéo the surface.

344. We thus obtaip the classification below of the sag$aof a given second-degree
complex inseven way¢ ). These ways are not coordinated with each other.edder,
each of the foregoing can be subsumed as a limitingaddake following one.

l.
Thestraight lined ischosen arbitrarily.

In section six of the last chapter, we subjected the tast we referred to as the
general case to a thorough discussion and examined the mutualopositi the
singularities of the surface. There, under the assompfi real singularities, we found,
in particular, a linear construction for the surfad@att must be replaced with a
construction of second degree only when the given strhiggd is itself a complex line.
As the object of consideration, we first emphasiz¢ tina straight lined is a double ray
and a double axis of the surface, and then that the fourlaingys and four singular
axes of the surface are simple rays, null axes aiidays, and simple axes of it. The
order and class of the surface are both four. The nuoibarbitrary constants upon
which such a surface dependseventeen

() Itis easy to derive even more sub-classificativos the same principle, although we shall not go
into that here.
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.
The straight line d contacts the surface ®.

Two of the four singular points coincide with the cantpoint, and two of the four
singular planes coincide with the respective tangemtiahes. The two associated
singular rays and singular axes will coincide in the satraght line: viz., the singular
line that is associated in the complex with the cdnpamt of the surface&b with the
straight lined and the tangential plane to it. This line will be aleuine of the surface,
in the sense that it is a double ray, as well as a daatide The complex surface
possessetvo intersecting double linesThe relationship between the two double lines
and the surface is not the same. The surface wdlb®y a plane that goes througjim
a curve of class two, and a point that is chosen adomiyj be the vertex of an enveloping
cone of order two. For the second double line, one lsest¢he words “order” and
“class.”

The complex surfaces that we consider are of orderckss four as in the general
case. The number of arbitrary constants upon which deegnd has been reduced to
sixteen

[11.
Thestraight lined isa double tangent to the surface @.

The four singular planes and four singular points ofdbeplex surface coincide
pair-wise. Two double lines of the surface appear in pdéd¢be four singular rays and
four singular axes. The surface contdimee double lingsone of which @) cuts the
other two. If we lay a plane through one of the tast lines then it will cut the complex
surface in a curve of order two that will have a doubletpminthe other one, and which
will have then resolved into a system of two straitymts. The complex surface has
become auled surface.lIts order and class remain four. Its constant cafifteen.

V.
Thestraight lined liesin a double plane of the surface @.

Of the four singular planes of the complex surface, afvthem will coincide in the
double plane, while the other two have an arbitraryctioa. The four singular points
coincide pair-wise in the two points of intersectiortloé straight lined with the conic
section, along which, the surfageis contacted by the given double plane. Like the line
d, they will be double lines of the surface. Since thmmlex surface is cut by the double
plane in three double lines, the double line will belontheosurface when it is extended.
Of the four singular rays of the complex surface, tvidhem will have an arbitrary
position. The other two will be contained in the douldéne and will be undetermined
in it. They can be chosen arbitrarily among the cemjfihes that lie in that plane. We
thus obtain the following result: If we regard the coempdurface as being enveloped by
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planes then it will remain of clagsur. It will possesghree double axes that lie in a
plane. If we consider the surface as being defined by points timt will separate an
isolated plane from it. In that way, the order of sheface will be reduced tbree. The
separated plane will be contacted triply, since it ttssurface along three simple rays.
After removing that plane, the surfaeél have lost its double ray.

V.
The straight line d goesthrough a double point of the surface ®.

While one can derive no new kinds of complex suddoem the first three using the
principle of reciprocity, but one will only arrive ata same kinds all over again, this
principle will lead from the aforementioned kind to avnene that is coordinated with it.
We obtain it when we do not choose the straight dite be in a double plane of the
surface®, but to go through one of its double points. We wilintied a surfaceof
order four and class three that has three double rays that intersect ant gul are
simple axe®f the surface’]. The reduction of the class from four to three coatssut
because one point of the surface — viz., the point afsettion of the three double rays —
is separated as a disjoint locus of class one. Thwlex surface then loses its double
axes.

The surface, like the foregoing one, depends tifi@enarbitrary constants.

VI.

The straight lined in a double plane of the surface ® goesthrough one of itsdouble
points.

This assumes that a number of double points lie in anlgldglane of the surface,
which is easy to prove. Two contact curves of order lizvan two arbitrary double
planes of the surfac®. The line of intersection of the two double plang$ be cut by
these curves in the same two points. These twospamtdouble points of the surface.

Corresponding to the assumption that the straigi® diin a double plane of the
surface goes through one of its double points, we willinlztgind of complex surface
that has the same relationship to the last two kinalswkre posed and is again reciprocal
to itself. The surface is a@rder three and class thredt will possess @ouble raythat
cuts the straight lind and is assimple axisalong with adouble axighat likewise cuts the
straight lined and is asimple ray. The straight linel is then a simple line of the surface.
As a surface of order three, or — what amounts toadheghing — a surface of class three
with a double axis, the complex surface will beied surface( ). The constant number
has been reduced ftourteen

() We encountered such a surface in nun#r It was the geometric locus of the midpoints of all
complex curves whose planes were drawn through the adritex complex.

(") We have already encountered such surfaces seveeal fiom completely different viewpoints. The
axes of the complexes of a linear congruence define ssetface whose double axis is shifted to infinity
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VII.

The straight lined isthe line of intersection of two double planes of the surface ®
and the connecting line of two of itsdouble points.

From the remark that was made just now, the linatefsection of two double planes
is also always the connecting line of two double poiftee complex surface will then
reduce toorder two and class tw@), due to the fact that two isolated planes (viz., the
two double planes of the surfadg or two isolated points (viz., the two double points of
the surface) will be separated from it, according to thdrewe think of it as being
determined in point or plane coordinates, resp. Itlbstsall of its singularities In
particular, the linel has become a null line of the surface.

Since there are 16 double planes (points, resp.) in a givmplex, in general, the
line d can assume a position in which its associated congplg#ce is of order and class
two 160015/ 2 = 120 times.

We find thirteen for the number of arbitrary constants upon which suchmptex
surface dependsNine of them come from the second-degree surface f@ndof them
come from the latter straight lire which is still in no way determined.

345. A reduction in the order or class of a complex surfatecome about when
one separates isolated planes (points, resp.) from tfecasubr special choices of the
straight lined. We remark here incidentally that a reduction in ordeclass can come
about in yet another way. Let the given complex beiafeed in such a way that all
straight lines that go through a fixed point that is enoglong the straight ling belong
to it. The complex curve in an arbitrary plane thaggthroughd will then resolve into a
system of two points, one of which will coincide witle given fixed point, and the other
of which will have an arbitrary position. If we detemnm that curve in point coordinates
then the doubly-counted connecting line of the two pomits enter in place of the
system of those two points. The complex surfacéth@n be cut by a plane that goes
through the straight lind in two coincident straight lines, along withitself, that go
through a fixed point that is given alomy The complex surface will have then
degenerated inta cone of order twg ). The reduction of order from four to two will
result when the surface resolves into a system oftwiaces of order two that coincide.

346. We have called complex surfaces that are defined bplearaurves in parallel
planesequatorial surfaces.We now go on to a discussion of these equatorial ssfa
and first consider a restricted family of them. It \guide us to the double insight that,
first of all, we will find a confirmation of the redalup to now in simple and easily-

and is perpendicular to the double ray 8. We found an entirely similar surface in the gehtéreory
of second-degree complexes as the geometric locus of aykixds that cut a diameter or the diameters
that cut a cylinder axis (n@43, 246).

() We have already considered this kind of reduction inramé class of a complex surface in number
258.

(") We represented a complex surface of this specialikimixed coordinates in numb282.
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constructible surfaces. Then, however, we will arateperhaps, amtuition into the
multifaceted character of complex surfaces, to begf,\and with that, the distribution
of straight lines in a second-degree complex using thedaces. In what follows, we
will thus observe not just the number and positionghefsingularities of the surface, as
in the foregoing, but especially tHerm of the surface componentshich define a
transition between the singularities, and steictural character of that transition.In
these investigations, we will not consider equatorialas@d in full generality, at first,
but subject them to a number of simplifying conditionshe Ppossibilities that we thus
exclude are of minor significance for our purposes, aed ttonsideration would only
complicate the argument unnecessarily. We will gisss over the generation of
equatorial surfaces by enveloping cylinders, and considertbailyemergence from the
advance of complex curves in parallel planes. This waletermining a surface will lie
incomparably closer to our intuition that the other Wwgyenveloping cylinders.

347. In number273, when we assumed that the straight lines at infinithe breadth
planes did not themselves belong to the complex, waarada the following equation for
the general equation of such a surface:

DW + (FX* — Rx+ B) V¥ — 2 Ox + G) uv + (EX + 2Ux + C) 1> = 0. (1)

The coordinate planéZis then chosen to be parallel to the breadth plah#® complex
surface. TheOX axis coincides with the diameter of the given comphekich is
associated with the system of breadth plane, and wh&have referred to as the
diameter of the equatorial surfacd=inally, OY andOZ have the directions iMZ of two
diameters of the complex that are conjugate to eaci atigetoOX.

Equation (1) containsight mutually-independent constants, and along withsehen
that specialize the coordinate system, that will dgiteen constants upon which an
equatorial surface will depend. The coordinate origir0dn(’) and the angle between
the OY andOZ coordinate axes can be chosen arbitrarily.

In what follows, for the sake of simplicity and irtiueness, we would like to assume
that the coordinate system that equation (1) is based poectangular, which will
require atwo-fold specialization of the equatorial surface. The diametehe surface
will then be perpendicular to the direction of thegtlal planes that are associated with it
in the complex, and will thus coincide with one of theeéh principal axes of the
complex.

() In the cited number, we determined the origirOdtby the following condition:
ER=FU,

which says that the plan& goes through the midpoint of the complex. We can drop ¢imditton here as
being inessential for the following considerations.
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348. We next link our further developments with the assumnpthat the two
constantsG and O in equation (1) vanish. The equation of the surfaceyhich we
would like to seD = 1, with no loss of generality)( will then be the following one:

W+ (B¢ — Rx+B) VV + EX + 2Ux +C) > = 0. (2)

The complex curve that lies in an arbitrary breadth plameferred to the two coordinate
axesOYandOZ just as it is to its own axes. Corresponding tovdr@shing oiG andO,

the equatorial surface (2) has been specialized in sudy @ahatthe axes of its breadth
curves point in the same directioithus, these equatorial surfaces will approach the typ
of second-order surfaces and will come closer our intuitiTwo of the four singular
rays of the surface will be pair-wise parallel. Wen ey that the surfaces that we
consider are distinguished by the fact ttieir singular rays cut two of their double
lines.

Equation (2) containsix mutually-independent constants. The rectangular cooedinat
system to which it is referred is determined completefyto the position of the origin,
which can still be chosen arbitrarily alor@X. Thus, equatorial surfaces that are
represented by equation (2) will depend ugtevenconstants, while this number will
amount tdfifteen in general.

We immediately obtain the equation for the surfacepaint coordinates from
equation (1):

2 2

Yy z

+ +1=0. 3
EX+2Ux+C FX-2Rx E 3

The surface remains of order four. It will be bytthe coordinate planesy, XZ in two
second-order curves, since two singular rays ofstidace will lie in that plane, along
with the second-order intersection curve.

349. We would like to refer to the second-order curasg which the equatorial
surface is cut by the two coordinate plaXesandXZ as the twacharacteristics. If we
let z andy vanish in the foregoing equation, in successib@ntwe will get the following
two equations for them:

2+ EX*+2Ux+ C=0,
y } (4)

ZZ+FX-2Rx+ B=0.

Of the two axes of these two conic sections, orlefali along theOX coordinate axis,
while the other will be parallel t0Y andOZ, respectively.

In numberl185, we obtained the following two equations in orderrepresent the
complex cylinder whose sides are parallel to & and OY coordinate axes,
respectively:

() The assumptio® = 0 corresponds to the parabolic equatorial surfaceshwiill remain excluded
here.
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Fx’-2Lxz+ DZ+2S#2 Rx BO, } 5)

Ex’ —2Mxy+ DY +2Ux- 2Ty C= 0.

If we letL, M, S andT vanish in these two equations, andBetqual to unity then they
will coincide with the two equations (4). As is alsmgetrically clear, the equatorial
surface that is represented by equation (4) will be ctedduy the two complex cylinders
whose sides are parallel @Z andQOY, respectively, along the two characteristics that lie
in XY andXZ, resp.

If the two characteristics are given then the equatsurface will be determined
uniquely and its geometric construction will be given. Tih® equations of the
characteristics will then collectively contain piesly the same number of independent
constants as the equation of the surface itsEfie classification principle for equatorial
surfaces of this kind is then borrowed from the differing natures aativelpositions of
the two characteristics.

350. We would like to rotate th&XZ plane, along with the characteristic that it
contains, aroun®Xin such a way that it coincides wikY. If we then draw a parallel to
OY through an arbitrary point of th@X then the four pair-wise equal line segments that
are cut out of these straight lines by the two charstics will give the magnitudes of
the two semi-axes of the complex curve that lieshen lireadth plane that goes through
this straight line.

If the breadth curve is a hyperbola or an imaginalipsel, and we would like to
construct its imaginary axes as a real straight lnthé same way, then we must add
second curve of order two each characteristic that has a midpoint and an lzediddlls
uponOX in common, while the second axis equal to the seconcbéxe characteristic
in absolute magnitude, but will be imaginary or real adiogrto whether the latter is real
or imaginary, respectively. Once the two charasties are extended in that way, the
construction of the surface will be given in all cases

We have brought the two characteristics into the galen@e by rotating them around
OX. Their four points of intersection in it will deteine the two breadth planes by which
the equatorial surface will be intersected in realle®.c Imaginary circles, as curves of
intersection with the surface, will lie in the twaebdth planes that are given by the four
points of intersection of the two second-order curvest twe have affected the
characteristics with. Finally, the four points ofergection of a characteristic with the
other associated extension curve will each time debertwo breadth planes that will cut
the equatorial surface in equilateral hyperbolas.

351. In particular, if we give the breadth plane one @& tbur positions that are
determined by the four points of intersection of the tlaracteristics with th®X axis
then the magnitude of the one axis of the breadth cuiti/eamish, and as a result of that,
it will reduce to two straight lines that coincide ineoof them. These straight lines will
be the singular rays of the equatorial surface.
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Consistent with that, equation (77) of numi®3s, by which the breadth planes of the
four singular rays were determined in the general case ofa@laurfaces, such thit,
G, O vanished, will decompose into the two equations:

(6)

Ex® +2Ux+ C=0,
Fx*-2Rx+ B=0,

and these two equations will determine the points of theneter of the equatorial
surface at which it will be cut by the two characters(4).

The two singular rays that lie in the plane of onarabteristic perpendicular to the
diameter will go through the intersection of the ottlearacteristic with the diameter.

If the diameter of the surface is not cut by thaegitof two characteristics at any real
point then the four singular raysill all be imaginary and the equatorial surface will
define an undivided whole.

If the diameter is cut by one characteristic in q@aihts, but not by the other one,
thentwo of the four singular rays will be real, and two of them will bagmary. When
we consider the two external parts of the surface, lwhierge together at infinity into
the complex curve at infinity, to be a single surfacengonent, then that surface will
decompose into two components, one of which is fintee the other of which is at
infinity, and between which the two singular rays wdint to the transition.

If the diameter intersects both characteristiagal points thethe four singular rays
will all be real, and the surface will decompose into four parts thaseparated by the
singular rays when we once more consider the two readteurface components to be a
single one.

352. We can distinguish two kinds of singular rays (cf., 188). Singular rays of
the first kindare the connecting lines of two real double points ofthigace, and define
the transition between real complex ellipses and ¢empyperbolas. Singular rays of
the second kin@re the connecting lines of two imaginary double poiftth® surface,
and define the transition from complex hyperbolas to inag complex ellipses.

The surface component between two successive singylsrwil be defined by
curves of the same kind. One can then find no parabotasg the breadth curves as
transitions between curves of different kind, sindeentise the lines at infinity in the
breadth planes would belong to the complex, which waeoldradict the assumption.
According to whether the breadth curves between twoesso/e singular rays are real
ellipses, hyperbolas, or imaginary ellipses, we would likerefer to the surface
component aslliptic, hyperbolic orimaginary, respectively.

If an elliptic and a hyperbolic surface component follovsuccession then they will
merely merge into two points of the singular ray s$eparates them. These two points
(viz., the two into which the complex curve degeneratgbe relevant singular plane)
will divide the ray into a middle, finite segment amnotexternal, infinite segments,
which are to be regarded as one. The middle segmdritelding to the elliptic surface
component, and should be regarded as an ellipse whesexas vanishes. The two
external segments will belong to the hyperbolic surfaoenponent and should be
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regarded as a hyperbola whose auxiliary axis vanishes, d¢rat-amounts to the same
thing — and whose asymptotic angle has become equal to zero.

If an imaginary surface component follows a hyperbotie then the former will end
up as an unbounded straight line along sides of the laffbrs straight line is to be
regarded as a hyperbola whose principal axis vanishes, ort-awloaints to the same
thing — whose asymptotic angle has become equal to

353. An elliptic surface component is bounded by two singudgs of the first kind
(). They can be parallel or perpendicular to each other.

The ratio of the two axes of the generating ellipgeich is equal to zero in the two
limiting positions, will be a maximum in the formersea When this maximum is smaller
than one, if one starts from one of the two limitingipons then the generating ellipse
will approach a circle up to the maximum, and will thenvenaway from it without
having reached it, until it once more goes to a straigatdt the other limit. The major
axis of the ellipse will always remain in the sameection. When the maximum is
greater than one, the generating ellipse will go throtwgh circles between the two
limiting positions. Under this transition, the directs will switch their major and minor
axes. The major axis is directed perpendicular tawbelimiting singular rays. Finally,
when the maximum is equal to one, there is a circlergnthe generating ellipses that
should be regarded as two coincident ones. There anealtvays two ellipses that are
similar to the given one.

In the second case, the generating ellipse will goutfin a single circle on its way
from one limiting position to the other. Under the triams through the circle, the major
and minor axes of the generating ellipse will switahirtldirections reciprocally. There
are two ellipses that are similar to a given ellipmea crossed direction of their major
axes.

We will get an equal classification into two differdmds for the imaginary surface
components. They are bounded by either two parallel shyse second kind or two
mutually-perpendicular rays of the second kind.

We must distinguish two cases for hyperbolic surfacepaments, as well, according
to whether the two limiting singular rays are paralletmss. In the former case, the two
rays will have the same kind, while in the latter, tinely have different kinds. If the two
rays are parallel then for all complex hyperbolas ofsiidace piece, either the principal
axis or the auxiliary axis will have a finite magnitudehis will depend upon whether the
two rays are of the first or second kind, resp. Undén besumptions, there will be two
real or imaginary or coincident breadth planes, whidhaut the surface component in
equilateral hyperbolas. By contrast, of the two singtdgs that bound the hyperbolic
surface piece, there will then be one, but also ong; equilateral hyperbola among the
generating complex hyperbolas. Whereas, in the fist, dle asymptotic angle of the
complex hyperbola will start from Oz resp.) and will once more return to its initial
value, in the second case, it will increase continuofrsiy;n one of these values to the
other one.

() Inthe text, we exclude the assumption that the equatarfake consists of an undivided whole.
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354. We would like to explain the foregoing with an exampleat the two ellipses
ABCD andA'B'C'D’ be the two characteristics in the figure, which weehlanought into
a plane by rotation aroun@X. We extend the two ellipses, in the sense that was
established above (n850), two hyperbolas; the two hyperbolas aeCFandA'E'C'F'.
In order to suggest that the breadth curves will be detedniup to magnitude, by the
imaginary axes, we have not removed them, but dotted them

If we now draw a perpendicular @X in the picture, corresponding to an arbitrary
then the two sections of it, which are determined by W ¢haracteristics and their
extension curves, will represent the axes of the cexnplirve in the breadth plane that
goes througkx.

Corresponding to the vertex tangent&atA, C, C', we will get the four singular rays
of the equatorial surface. The rays that go thraQigh, resp.) are of the first kind, while
the other two are of the second kind.

Between A and C, the
breadth curves will be ellipses.
Among them, one finds two
circles, corresponding to the
points of intersectiolK. The
elliptical surface piece is of
the first kind. Two hyperbolic ~~.
surface pieces of the second )
kind will close up on it that
reach fromA to A’ (C to C,
resp.). The two breadth planes
that contain equilateral
hyperbolas are the ones that
are determined by the
intersection of the ellipse
AB'CD' with the hyperbola -
AECE Imaginary breadth
curves will ensue fromd\' (C',
resp.) onward. The equatorial
surface is included completely
between the breadth planes X
that are given b’ andC'.

355. In what follows, we would like to denote an ellipticatface component by, a
hyperbolic one byH, and an imaginary one by and let the applied numerals 1, 2
distinguish whether a surface component is bounded by glarafl mutually-
perpendicular singular rays, resp. The hyperbolic sudaogonent of the first kingi;
can be bounded by singular rays of either the first kinth@second; we correspondingly
denote them byH; and H;, resp. In all cases in which surface components are n

longer bounded on both sides by singular rays of a detimgetion, we will use simply
the symbol<E, H, I.
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We will get asymbolfor any equatorial surface when combine the symbols tasg w
introduced for the individual surface components in suglay that we begin with the
surface component that extends to infinity and also adealith it, as well. Thus:

It HE1 Ho 11

represents the surface that was considered in the premiwuaber. Such a symbol
suggests, not only the type of the individual surface comppbenh also the type and
position of the singular rays of the surface, such tiiiy will succeed in characterizing
an equatorial surface, as we have considered it here.

356. One deduces the present enumeratiosevénteen coordinates typesat once
from the equatorial surfaces that are represented by egu@jowhen one decides
whether the two characteristics are imaginary elfipseal ellipses, or hyperbolas)(
and likewise directs one’s attention to the relapesitions of their points of intersection
with the diameters of the surface. Each time, wdl ghge the type and position of the
characteristics and the sequence of surface componeatswould require. The
seve?*t*een types are arranged into three groups accordihg teality of their singular
rays ().

First group: The singular rays are all imaginary.

1. Two imaginary ellipses.

2. An imaginary ellipse and a hyperbola whose auxiliaxis dalls upon the
diameter H.

3. Two hyperbolas whose auxiliary axes fall upon the dianiet

Second group: Two of the four singular rays are real, and two of them areniangagi

4. Animaginary ellipse and a real ellipdeH/ |1 .

5. Animaginary ellipse and a hyperbola whose principad éadéupon the diameter.
H' 11H] .

6. A real ellipse and a hyperbola whose auxiliary aaits fupon the diameter.
H,E H;.

7. A hyperbola whose principal axis and a hyperbola whoséay axis falls upon
the diameterEsH, E;.

()  [Pliicker has made models of most of the surfaces thatiscussed in what follows, which eases
the imagination of them considerably. F. K/]

(") Here, we might emphasize incidentally that thatthraplex that determines the equatorial surface
will necessarily be &iyperboloidalone, as long as one finds a hyperbola among the chasticgedf the
surface.

(") Among the presently-enumerated surfaces, the oresencharacteristics possess the same
midpoint are distinguished by their symmetry. Such surfaaesspond to the assumption that all of the
diameters that are associated with @ axis in the complex that determines the equatorial suxféte

intersect at the center of the complex (cf.,252).
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Third group: The singular rays are all real.
A. Two real ellipses.

8. The two points of intersection of the diamet@hvone ellipse follow from the
two points of intersection of it with the other orleH; [, H/ I> .

9. The intersection with the one ellipse with theface lies between the two
intersections with the other ellipse on the diamet¢h@surfacej. 11 Hz E; Ha 11

10. The points of intersection of one and the othapsell with the surface lie
alternately on its diametet, H, E1 Hz 15

B. Areal ellipse and a hyperbola whose principal ais tgon the diameter of the
surface.

11. The diameter of the surface is cut by the ellipgevanpoints that lie between the
two points of intersection with the hyperbola.

12. The intersection of the surface with the ellijise on the diameter of the surface
inside of its branch of the hyperbol&l; 1, H, E; Hs.

13. The vertex of the hyperbola lies between the set#ions of the ellipse with the
diameter of the surfaceH; E;H; E> H; .

14. Of the two vertices of the hyperbola, one of thies outside of the ellipse and
the other one lies inside of i, I, Hz E; Ha.

C. Two hyperbolas whose principal axes fall upon the dianwdtthe surface.

15. The two vertices of the one hyperbola lie on tl@ndter between the two
vertices of the otherE; Ha 11 Hz E; .

16. The vertex of the one hyperbola follows the vedExhe other one along the
diameter.E; H, E; H, E> .

17. One vertex of each of the two hyperbolas lies betwleenwo vertices of the
other one along the diametés H; 1, H, E;.

357. In our next discussion, we would like to emphasizeptmticular case in which
two of the singular rays of the equatorial surfde# in its breadth plane. The
corresponding surfaces should be regardedrassitional formsbetween two of the
previously-enumerated seventeen types. They will depend ap@ress constant than
the surfaces that were considered up to now, and thustempoonstants. Due to the fact
that two singular rays of the surface fall in the sémeadth plane, the surface component
that is included between them will vanish. The breadtheplaill no longer refer to the
transition between a hyperbolic and an elliptic or aagmary surface component, as
before.

The singular rays can fall pair-wise into the sangadith plane; three of them can lie
in the same plane, etc. All such surfaces are dgaimd among the various kinds of

() The surface that was considered in nun@sdr
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complex surfaces that we obtained in numB&t by a general classification when we
assume that the relationship of the straight tinghat determines the complex surface,
along with the given complex, to the surfadeof singular points and planes of the
complex is specialized in some way.

We next obtain two specializations of the kind in questsimce we can assume that
either two parallel or two crossed singular rays fallrugee same breadth plane, so the
equatorial surface will lose a surface component ofitsieor second kind, resp.

358. Two parallel singular rays of the equatorial surfacédk amincide when we
assume that one of the two characteridtas resolved into a system of two straight lines.
The two coincident singular rays will then appear adoable rayof the equatorial
surface. When separated by the double line, two elliptiéwar imaginary or two
hyperbolic surface components that open in the same sdhsemmect with each other.
In general, the double ray does not lie on a real comparfghe surface for its entire
extent, but moves across it as an isolated straight If the two coincident singular rays
are of the first kind then a bounded piece of the doublemitydefine the transition
between two elliptic or two hyperbolic surface composentf they are of the second
kind then the (always real) double ray will define thexg¢ridon between two successive
hyperbolic or imaginary surface components. In therlatise, the double ray will be an
isolated straight line.

The surfaces that we consider here should be regasdgdreition forms between
ones that belong to either the first and second grouggoéatorial surfaces that were
enumerated in numb@&66 or to the second and third group. In the general Gilzasson
of the complex surfaces that we gave in nund4dr they will be found there among the
type that was denoted by II.

When we decide whether the line-pair into which the draacteristic decomposes
is real or imaginary, and furthermore, whether thesdcaharacteristic is an imaginary
ellipse or a hyperbola or a real ellipse, and whenixveur attention upon the position of
the (always real) intersection of the two straifyis into which the one characteristic
has resolved with respect to the second charactensacwill obtain the following
classification of such surfaces intwelvetypes. We denote them by the numbk3<9,
in turn, and give the sequence of surface components dorafdghem and those two of
the seventeen types that were enumerated up to nowlehae the transition between
them. We denote the double ray into which two paralgdar rays coincide by one or
two vertical lines according to whether it is of thestfior second kind, respectively. We
will then get the following table:

18. Iy ||ls. ,
19. H!||H!. ,
20. H!| H., ,
21. Ei|E;.

22. |l H! 1,
23. IyHaHa |ly.
24. H!ly||I2 H! .

O BMWOWN NP
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25. HaliHz|Hz. 5,11
26. Ho||H2E1Hz. 6, 12.
27. H!E;|E;H.. 6,13,
28. EiH.||H2E. 7, 15.
29. E;H.E,|E.. 7,16

359. Both characteristics can degenerate into systems of tea ¢r imaginary)
straight lines. Since the parallel singular rays cdmcthe surface will then obtain two
crossed double rays and will be a ruled surface. Itshilldepend upomine constants.
Such surfaces belong to the third of the types that we&hebited by the general
classification of complex surfaces. They should bgamded as transitional cases
between the twelve previously-enumerated cases. Weaglishthree types of them,
according to the reality of the two line-pairs into whibb characteristics decompose:

30. Iz ({112 18, 22.
31. Ha||H2|H2. 19, 25; 20, 26.
32. B |E|E2. 21, 29.

360. Two mutually-perpendicular singular rays of the equateuaface will fall in
the same breadth plane when we assume thigattwo characteristics of the surface
intersect. It emerges from this that the two characteristioatact at a point of the
diameter after one brings them into the same plana rotation around the diameter.
The lines of the complex will envelop a system of tpmints that coincide on the
diameter of the surface in the breadth plane thatterméned by that contact point. The
breadth plane will then be a double plane of the coxmpléne equatorial surfaces that we
consider here belong to the fourth of the types of cerplirfaces that were exhibited in
number344. They still depend upoten constants. When the double plane is separated
from the equatorial surface as an isolated plane, thrédce will become one of order
three and will lose its double ray at infinity. The doytlene will cut the surface along
three simple rays, one of which will lie at infinitynca the other two of which will
intersect in the diameter.

We will obtain the analytical confirmation of thissult immediately from equations
(6), by which we have determined the four points of thendiar of the equatorial surface
at which it is cut by the four singular rays of the stefa When they possess a common
rootx, we can write them in the following form:

E(x=X)(x=x) =0, @
F(x=X)(x— %) =0.

Equation (9), by which we have represented the equatorialcsuinh point coordinates,
will then go to the following one:
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y* z ) =
(x—x’)(E(X_ >S)+ e >§)+(X X)j =0. (8)

The linear factor:
X-X =0 9)

corresponds to the plane that is separated from the e@liatoface, and the equation:

y? z o
fo  Foos (x—X) =0, (10)

which represents the surface itself, will be of ordezeh
If we setx equal tox, in particular, then the foregoing equation will go he t

following one:
2 2

E(x=%) F(x= %)

(11)

which is an equation that represents the real or imaglma-pair according to whether
the surface is or is not cut by the plane that isrdeteed by equation (9) in its plane at
infinity, in addition, respectively. The plane (9) cacts the surface (10) at the three
points of intersection of these three lines.

The equatorial surface has lost two of its singulas aythe separation of an isolated
plane. This plane defines the boundary of two succesdlipéic and imaginary surface
components or between hyperbolic surface components wigserbolas open in
different senses. The second-order surfaces will giventuitive example of both kinds
of transition, when we think of them as being generatedubyes in the plane that is
moved parallel to itself.

The two characteristics of an equatorial surfacewatonsider here can be only real
ellipses or hyperbolas whose principal axis falls upordiameter. We then obtain the
following enumeration osevencoordinate types, which characterize, in the previous
way, by the givens of their surface component and thoseedfirst seventeen surfaces
between which the transition is defined. We have thdgated the separated breadth
planes by a cross:

33. I, HxHI,. 8, 10.

34. | XEHI. 9, 10.

35. HI;HxH. 11, 14.
36. HoIXEHy. 12, 14.
37. HxHEH. 13, 14.
38. EH:I xE. 15, 17.
39. EEHxHE,. 16, 17.

361. If the characteristics intersect the surface at paints then the surfaaill go
to a second-order surfacesince it will have lost all of its singularities. mdng the
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breadth planes, there will then tveo of them that are double planes of the complex that
determines the surface and that contact the second-ardaces These planes will
themselves be given by the second-order surface, inssfdaryaassumption, they are
perpendicular to one of the three principal axes of shaface. The equatorial surface
will then depend upon just as many constants as a gerecaidsdegree surface. In fact,
we find that its number of constants will bme which is one less than in the case that
was treated in the previous number. If we have fahirteen constants for a complex
surface that degenerates into a second-degree surface lgertbeal classification of
complex surfaces then four of the thirteen constanlisbeiong to the straight lind,
which has no particularly distinguished relationship egbrface, at all.

Here and in what follows, we shall not go further itite equatorial surfaces that
degenerate into second-order surfaces.

362. We will find further types of the equatorial surfaceasttivere considered here
when we assuméhat one of the two intersecting characteristics has resolved into a
system of two straight linesSuch equatorial surfaces depend upime constants. They
do not correspond to any special kind that was describec igetheral classification of
complex surface, although we shall not go into greatexildgiout that. We will obtain
one when we assume that the straight dineat determines the complex surface, along
with the given complex, is contained in a double plahthe complex and contacts the
conic section that this plane has in common withsindace® of singular points and
planes of the complex.

In particular, we emphasize the singularity that segpimatorial planes possess in their
breadth plane that goes through the point of interseofitime two characteristics. Three
singular rays will fall in these breadth planes. Trealth plane will then separate from
the surface as an isolated plane, by which the ordéredsurface will become three, and
the surface will lose two of its singular rays. The ¢gual surface will have then lost
two of its surface components since three of its sargays will have been shifted into
the same breadth plane. One of the two remaining wilesecessarily be hyperbolic,
while the other one will be elliptic or imaginary, aodiog to whether the line-pair into
which the one characteristic has resolved is reamaginary, resp. In both cases, the
hyperbolic part will be contacted along the entire extdrthe remaining three singular
rays by the separated breadth plane. The point at whishsingular ray cuts the
diameter of the surface will bedmuble pointof it. The tangents to the surface at them
will lie in two separate, real or imaginary, planesnedy, the planes that go through the
singular ray and the two straight lines into which tharacteristic has resolved. The
surface will be contacted by the two planes after thensidn of these two straight lines.
Every plane that contains the singular ray that goesugh the equatorial surface at the
double point can be regarded as a tangential plane to tfatesunWhereas the cone of
order two that is defined by the tangents to a surfagedatuble point, in general, will
resolve into a system of two planes, in our casectme of class two that is enveloped
by the tangential planes of a surface at a double poiggneral, will degenerate into the
system of two enveloped axes that coincide in the Engay, in our case.

Next, let the line-pair into which a characteristis hasolved be real. An elliptic part
of the surface will then follow a hyperbolic one. Wheéw® moving breadth plane
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approaches the distinguished position from the sidéeh@fhyperbolic component, the
real, as well as the imaginary, axis of the hyperbadda i contained in it will always
decrease in such a way that the asymptotic angle wiys become larger and take on
the value ofr in the limit. Once the moving breadth plane has eced the
distinguished position, it will contain an infinitely-sthallipse whose axes are to be
regarded as infinitely different. It is the largertlod axes whose direction coincides with
that of the singular ray.

If the line-pair into which the one characteristics hasolved is imaginary then an
imaginary surface component will follow a hyperboliceonOne has to think of the
transition as being such that the principal and auxiliagsaof the hyperbola that is
moving to the boundary both decrease, although the fornledeviso faster than the
latter. The hyperbolic part will then conclude in a hygodat whose asymptotic angle is
equal to zero against the imaginary one.

If we consider whether the line-pair into which thes @haracteristic has resolved is
imaginary or real and whether the second charaaterssta real ellipse or a hyperbola
whose principal axis falls along the diameter of thefaser then we will get the
enumeration ofour types below. In it, we denote the distinguished breatine by a
horizontal line. The equatorial surfaces that we cemsliere can be regarded as
transitional forms between two surfaces whose oneactexistic is a line-pair that does
not cut the second characteristic, as well as oaesden surfaces whose characteristics
intersect without one of them resolving into a line-paile then obtain the following
table:

40. lo—Hzl5. 22, 23; 33, 24.
41. H,—-1>H,. 24, 25; 35, 36.
42. H,—-E>H,. 26, 27; 36, 37.
43. E,—HE;. 28, 29; 38, 39.

It might finally be remarked that when both of thiemsecting characteristics become
line-pairs, the equatorial surface will reduce to orderaen it isconic surface.

363. It still remains for us to discuss the case in wldok or more of the singular
rays of the surface are shifteditdinity ().

If we assume that one of the two characterissicgiarabolathen one of the singular
rays will be moved to infinity. When a singular raymsved to infinity, the surface will
be divided into two parts by the plane at infinity. Asdoas no further singularities
occur, one of these parts will be hyperbolic, while thieer one will be elliptic or
imaginary. Such a surface should be regarded as a waasiftorm between two of the
types that were enumerated up to now that have a corohavacteristic, while the other
one is a real ellipse and a hyperbola whose princigal fall along the diameter,
respectively. It depends upon on less constant than ddaitie two surfaces between

() Such a surface will give one an intuition into theribistion of the lines in complexes for which the
plane at infinity is a singular plane or a double plane; iinto hyperbolic, elliptic and parabolic
complexes.
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which the transition is defined. We immediately obthm following enumeration of the
cases that are possible here, although we shall rextiatd a deeper discussion of them:

44. 11H!. 4, 5.

45. H! E;. 6, 7.

46. 1, H!l, H!. 8, 11.

A47. I1HyExH,. 9, 12.
48. IH,ExH,. 10, 14.
49. Hzl H,E;. 12,15
50. H!E, H.E,. 13, 16.
51. HyloHE,. 14,17
52. IiHy|H2. 23,24
53. IyHy|H.. 23,25
54. H||HE.. 26, 28.
55. H! E;|E,. 27,29

56. I HxH. 33, 35.
57. I XxEH>. 34, 36.
58. Hz I xE. 36, 38.
59. HxHE;. 37, 39.
60. l,—H.. 40, 41.
61. H-E>. 42, 43.

In the foregoing, the parabolic characteristic canrdq@aced everywhere with a
system oftwo parallel, real or imaginary, straight linesThe surface will then obtain a
second double ray at infinity. Such surfaces can takeotine &f limiting cases of the
previously-enumerated surfaces whose one characterisSc avline-pair. They will
accordingly depend upon one less constant. We combinbftéeent types that we have
encountered here into the following table, in which we dertbé double ray of the
surface in the previous way, also once it is moved toiigfiand in which we cite the
previously-named type of equatorial surface from whichntéwe one is derived.

62. ||l |- 18.
63. |[H; . 19.
64. |H; | 20.
65. |E1|. 21.
66. [l H! 12].  22.
67. |HzliHal. 25.
68. |H2EiH2]|. 26
69. |E2E:]. 29.
70. Iz (|12 |- 30.
71. |Hz2||Hz]l. 31
72. |Hz|Ha|. 31.

73. |E2|Ez|. 32.
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Both characteristics of the equatorial surface can be p&sb The plane at infinity
will then be a double plane of the complex that deteedhithe equatorial surface. A
plane is separated from the surface as isolated, athétiway the surface will become
one of order three. We obtain the following enumenatwhich is understandable with
no further explanation:

74. x|IHEx. 34, 38; 47, 48, 49, 51.
75. xHI;HXx, 35; 46, 51.
76. xHE;Hx. 37; 48, 50.

Finally, of the two characteristicene of them can be a parabola and the other one, a
real or imaginary pair of parallel straight linesWe will then obtain the following two
surfaces:

77. —1,H; - 40, 41; 66, 67; 74, 75.
78. —H>E>-. 42, 43; 68, 69; 74, 76.

Corresponding to the assumption thath characteristics decompose into pairs of real or
imaginary, parallel straight lines, the equatorial stefavill be of order two and will
degenerate into eylinder surface.

364. The various cases of equatorial surfaces that aresesppesl by equation (3) will
be exhausted by this classification im® types, provided that their order does not drop
below two. All of these equatorial surfaces will bejao thefirst four of the types that
were exhibited in numbe344 for the classification of complex surfaces. Sitioey are
distinguished from the general types of surfaces thangelo it by structural simplicity
and clarity, they can certainly be used as represerdativliem. For equatorial surfaces
that belong to the fifth or sixth of the types thatres exhibited in numbe344, we will
have to include an addendum.

Here, our first problem is to examine what valueghameration of the 78 types that
we gave here will have in the general discussion okthetorial surfaces. The single
specializing condition that we subjected the equatoriabsarfo in the foregoing was
that we assumed that the axes of its breadth curvesegerlly-directed. In the general
case, the sequence of surface components, the type olasingys, etc., remained the
same as it was under that special assumptidMe will get an intuition for the general
equatorial surface when we think of the breadth curves of one of tleeesithat were
considered up to now as being rotated with respect to the other one ipldness.

We can think of the equatorial surfaceswistedwhen their breadth curves possess
fixed axis directions that are generaibfatedwith respect to each other.

This determination of a general equatorial surface is oblicaanly an approximate
one. When the breadth curves rotate in their platiesy dimensions must change
accordingly if the surface that arises is to be an egaaturface. Meanwhile, these
changes are only of order two when the magnitude ofdtaion is of order one. We
would like to use equation (2) as a basis:
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W+ (B¢ — Rx+B) VV + EX + 2Ux +C) > = 0.

If we rotate the breadth curves in their plane, whecdatermined by, from XZ to XY
through an angle then the equation of the surface that is defined byiliabe:

W + (P — Rx+ B) (usina +v cosa)®
+ (EX + 2Ux + C) (ucosa - vsina)? = 0. (12)

We would like to determine the angieby the equation:

sina= ax+ b (13)

J(FX2 =2Rx+ B - (ER+2Ux Q

Equation (12) will then go to the following one:

W + (FX° — Rx+ B — (ax+ b)) V2
+ 2 (ax+ b) Q/1- (ax+ b)* CLv
+ (EX + 2Ux +C— (@x+b)?) u*=0. (14)

Up to quantities that are of second orderaix+ b), we can set the square root that occurs
in the latter equation equal to unity. The equatibthe surface will then become:

W+ (B — Rx+ B — (ax+ b)?) V2
+ 2 (@x+ b) uv
+ (EX + 2Ux+C— (@x+b)?) u?*=0, (15)

and will agree in form completely with the genesmjuation (1) for the equatorial
surfaces. In this equation, it is obvious thatmuest assume that either the two recently-
introduced constants b are infinitely-small or that the consideratiorc@upled to only
those breadth curves of the equatorial surface &/p&mes are close to the plane that is
determined by the equation:

ax+b=0.

365. In general, an equatorial surface whose equatiomixed coordinates is, in
turn, the following one:
W+ (B¢ — Rx+ B) VV — 2 Ox + G) uv
+(EX+ 2Ux+C) U = 0, (1)

will be cut by the two coordinate plan¥Z, XY in two curves of order four. These
curves determine the four breadth planes in whiod $ingular rays lie by their
intersection with the diameter of the surface.

However, the two cylinders that project the swfatongOY and OZ, respectively,
will remain of degree two, as before. We thinkledm as being given by their bases in
XZ and XY, respectively. If we direct our attention to thiipe and relative positions
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then we will obtain precisely the same enumeratiori8different cases as we did under
the assumption that was used up to now that the bafsdstb cylinders were
characteristics of the surface. The two projectiglinders will no longer have the
exclusive relationship to the surface that they didteef The planes of the singular rays
will not be determined by their intersection with thamdeter of the equatorial surface,
but by breadth planes in which hyperbolas will be envelopdaéy of the complex that
possess an asymptote that is paralléD¥or OZ, respectively. For an arbitrary breadth
curve, the two cylinders give only four pair-wise paraeigents’). A new condition
must be added in order to determined the breadth curve celyplet

As such a condition, we can tatke directions of its axes or their magnitude ratio

366. If we let ¢ denote the angle that one of the axes of the br&amm*}hat is
determined by defines with th€dZ coordinate axis then we will get, as is knowi: (

tan = —, 20X+ 6) . (16)
(FX*-2Rx+ B-(EX+2Ux Q
For any point on one of the two axes, this willegiv
tan¢:1, tan%:%.
z y -z
With that, one will get:
yz Ox+G (17)

V' —7  (FX-2Rxt B-(EX+2Ux Q

The fourth-order surface that is represented ly/e¢ljuation is the geometric locus of the
axes of the breadth curves of the equatorial serflaat is determined by equation (1). It
is a ruled surface with two mutually-perpendicudauble lines, one of which coincides
with the diameter of the equatorial surface, wiiile other one lies at infinity in the
breadth plane of the line.

Here, we must distinguish two essentially différeases according to whether the
constaniO in equation (16) does or does not vanish.

In the first case, the rotation of the axes wilivee at a maximum or minimum that
corresponds immediately to the minimum or maximurthe denominator, respectively.
Starting fromx = — o, where, in general, the axes of the breadth cargearallel to the
coordinate axe®Y, OZ the system of two axes will be rotated to a @ertaniting
position, and from that position, for= + o the initial position will again be assumed.
Whether the maximum of the rotation is larger oaken than 45 will depend upon the
reality of the roots of the following quadratic edjon:

() One must especially emphasize the case in which #es lud the two projection cylinders have two
points of intersection in common with the diametethaf surface. The four planes in which the singular
rays lie will then be determined by equations of degnee tWhen we, in turn, leB andO vanish, the
equatorial surface will generate into a surface of devee

(") Analytischgeometrische Entwicklungen Ho.501.
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(FE — Rx+B) — EX + 2Ux+C) = 0. (18)

The direction of the axes will be the same at eqiséhdces from a breadth plane to the
ones that correspond to the maximal rotation of the. axes
In the second case, there ame breadth planes for which the rotation of the axes is a
maximum or a minimum. These breadth planes can beinarggor real. In the latter
case, they will lie at equal distances from both safdke plane that is represented by the
equation:
Ox+G=0. (19)

If the two maximal values are imaginary then the askethe breadth curves will
rotate through 180whenx increases from « to + . In the plane that is given by
equation (19), the rotation will amount t0°90

If the two maximal values are real then the axab@breadth curves will rotate up to
a certain limiting position whexiincreases from «, and then reverse in their path until
they again arrive at their initial position in the @al9), then continue their rotation
until they reach another limiting position, then turoward, and once more assume their
origin directions forx = + . The magnitude of the rotation will be the same for two
values ofx that correspond to breadth planes that lie harmdyieath the two limiting
positions. When equation (18) has real roots in thetbaseve are considering, they will
determine two breadth planes that lie harmonically tdithi#ing positions and contain
complex curves whose axes are rotated Bya4éundOY, OZ. The one will then exceed
the maximum rotation of £5but not the other one.

The construction of a breadth curve whose axes argiven, as far as position is
concerned, and that is inscribed in the right angleishé¢termined by the two cylinders
that are projected alon@Y and OZ requires no further explanation here. We merely
remark that in the case where the sides of the rigdieaare all real, a second tetrangle
will be obtained at once that contacts the breadthecwhen we describe a circle around
the given right angle and connect the four pointshicivthe two axes cut the circle with
four new straight lines. If two or four of the siddstloe circumscribed right angle are
imaginary then we can extend the corresponding profecttinder in a manner that is
similar to the way that did in numb850 with the two characteristics.

367. For the determination of the two asymptotes of adtheaeurve that is given by
X, we get:
(FE— Rx+B) V-2 Ox+G)uv+ (EX + 2Ux+C) >’ =0

from equation (1) when we lgt vanish. If we set:

cl<
I
N <

then that will give:

(FE — Rx+B) "+ 2 Ox+G) yz+ (EX + 2Ux+C) Z = 0. (19.b)
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This equation represents a ruled surface of order foungtiae geometric locus of the
asymptotes of the breadth curves.

If we denote the asymptotic angles {yand 77— ¢, and the angles that are defined by
the same associated diametersdvgnd 77— wthen when we consider a given (real or
imaginary) ellipse to be a hyperbola or a given hypertmlz an ellipse, we will get)(

tarf ¢ = - sirf w.
We then find ():
tarf ¢/ = - sirf w=
_ 4[(Ox+ G*—(FX-2Rw B( Ex+2 Ux (]
- (FX’ -2Rx+ B- (EX+2Ux Q '

(20)

This equation shows that, in general, there are dbthe breadth curves of an equatorial
surface that are similar to a given conic section.
For the complete determination of the breadth euwe get the square of its semi-
axis (7):
r? = - 1[(FX* — Rx+B) + (EX + 2Ux + C)]

+1 J[(FX* -2Rx+ B-( E#+2 Ux Q?+4( Ox (¥ (21)

The foregoing expression will serve as the modlal mtated equatorial surface in the
calculations.

368. We now turn to the consideration of those equetsurfaceswhose breadth
planes contain a double point of the complex anityf that is, the equatorial surfaces
that belong to the fifth and sixth types of compdexfaces that were presented in number
344.

If the equatorial surface belongs to the fifthayas we would like to first assume,
then it will possess three double rays that int#rgea point that are simple axes. The
other two will be parallel to each other and to tmeadth curves. The order of the
surface will be four and its class will be thréEhe number of independent constants that
enter into the equation of the surface willthigteen

What distinguishes such equatorial surfaces idabethattheir breadth curves are
all hyperbolas whose one asymptote has a fixedctine It will likewise be the
direction of the two mutually-parallel double ragtthe surface. This direction will
point to the double point at infinity of the compla the breadth plane.

The general linear construction of such equatauafaces is given by the foregoing
remark. Here, as in the general case, the twaeegtion cylinders alongY and OZ
determine four tangents to such a breadth curveliftiAtangent is given by the fixed
direction of an asymptote. Of the thirteen constaqpon which the surface depends, six
of them will enter this construction for the deteration of the breadth plane and the

()  System der analyt. Geomefri®.33.
(")  Analytisch geometrie Entwicklungeh no.490.
(") Ibidem no.512.



320 Chapter Three: Classification of the surfaces of argesecond-degree complex.

diameter, while six more will determine the two projestcylinders that are parallel to
QY, OZ, and finally, one will determine the fixed direction b&étone asymptote.

We can put the equation of such a surface into a sirfgria by letting theXZ plane
coincide with the plane that refers to the fixed dicatbf the one asymptote. The term
in u? will then vanish in the equation of the equatorial surfatés only then, in general,
that it is not permitted to assume ti@Y andOZ have the directions of two associated
diameters of the complex, and thus, that the condfaméinishes in equation (3) of
numberl63. We thus obtain the following equation for the equatibthe surface:

W+ (B¢ — Rx+ B) V¥ + 2 (K¢ —Ox—G) uv= 0. (22)

The two points at which the diameter is cut by the taobde rays that are parallel @z
are determined by the equation:
Kx? —Ox — G= 0. (23)

369. In the general case of equatorial surfaces, the asyaspof the breadth curve
will define a ruled surface of order and class four forclwhihe diameter of the surface
and the line at infinity in its breadth plane will be doulrkes. When one of the two
asymptotes of each breadth curve has a fixed directiotgre phat goes through the
diameter will separate from this ruled surface, alongp &ipoint that lies on the line at
infinity. When we ignore those elements, the ruledaser will be of order and class
three. Thus, the diameter will remain a double axishefdurface, while it will be a
simple ray of it. Each point of it will be cut by aategenerator of the ruled surface.
Every plane that goes through it will contain two getwsaof the surface that will be
real an imaginary, resp., and can also coincide. Inrgkrtbere will be two planes in
which the two generators coincide; they can be reahaginary {). Correspondingly,
there will or will not be not two maximum rotations ftre asymptotes of the breadth
curves, resp.

The two generators along which the ruled surface is cuthbytotality of the
asymptotes of a certain surface that point in the saraetin are the two double rays of
the equatorial surface. In the case where therenmamum for the rotation of the
second asymptote, it can be real or imaginary or coindidéere is no maximum for the
second asymptote then the double rays will always be real.

Thus, when we first exclude the special assumptiorthieatwo double rays coincide,
we will havethree essentially different forms to distinguish for the equal surface that
they belong to.

If the two double rays are imaginatpen the equatorial surface will consist of an
undivided whole. Among the breadth curves, there wik bgperbola whose asymptotic
angle is a maximum, and another one whose asymptotie srg minimum.

If the two double rays are redéhen the equatorial surface will decompose into two
parts, one of which will extend to infinity along both sideHere, as in numb&68, we
must next distinguish between double rays of the firstseednd kind. Double rays of
the first kind should be regarded as hyperbolas whoseinarggaxis is equal to zero.

() A coincidence of the two either assumes a deconiposif the ruled surface or demands that the
diameter of the surface be moved to infinity. Bothsgmhties remain excluded here.
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They are divided into two segments: an internal, fioihe and an external, infinite one.
Now, the latter lies on real shells of the surfagedouble ray of the second kind is to be
regarded as a hyperbola whose principal axis is equal to #srentire extent will lie on
a real component of the surface. Under the transdgfothe breadth plane through the
plane of a double ray, the second asymptote of the hypetmilas contained in it will
go to the first, fixed asymptote on the other side. Tthesasymptotic angle will arrive
at the value of zero or 180according to whether the double ray is of the firssemrond
kind, resp.

The two parallel double rays of the surface can bthefsameor different types.
There is a maximum and a minimum of the rotation efsacond asymptote in the first
case, but not in the second case. The ruled surfateighdefined by the second
asymptote still does determine whether the two double raysfdhe first or second kind
in the first case and which of the two double rays lgekanthe first kind and which of
them belong to the second kind, in the second casat Wil leave us with one arbitrary
assumption.

A surface component that is bounded by two double rattseofirst kind consists of
hyperbolas whose asymptotic angles increase from zero apcewtain maximum and
then decrease until they vanish again.

A surface component that is bounded by two double rayseotdkond kind will
consist of hyperbolas whose asymptotic angle will ireezontinually up to the limiting
value iz

In all cases, one of the two double rays can shifbfioity. The surface will then
decompose into two parts that come together, once & finints and once at infinity.

We deduce the analytical confirmation of the foregoing ngedc statements
immediately from equation (22). In particular, the cmsehich one of the two parallel
double rays shifts to infinity will be characterized by vaaishing oK.

370. We now turn to the consideration of the cesahich the two parallel double
rays of the surface coincidesSuch a surface is reciprocally coordinated with thel kihat
was treated in numb@&62. It is distinguished by the fact that the straighe lihat lies at
infinity in its breadth plane will go through a double paifithe complex and contact the
cone of class two that is defined by the singular plahatsdre associated with double
points of the complex.

If the two double rays coincide in a straight line thiegy will contact two shells of
the surface when they are extended. The common taaigelane at all of its points is
the plane that can be laid through it and the diametédre tangents in that plane will
envelop two points that lie along the straight line, Whwill be real or imaginary
according to whether the two coincident rays are effitst or second kind, resp. The
two points are contact points of all planes that loa laid through two such straight lines
and connect the vertices of the hyperbolas that ar@ioed in neighboring planes. An
arbitrary plane that goes through the straight line irctviihe two double rays coincide
will contact the equatorial surface at the double pointhefcomplex that lies at infinity
onit.
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371. It remains for us to discuss one last case, in whiehedqguatorial surface
degenerates inta ruled surface of order and class threk.seems unnecessary to enter
into a deeper discussion of that surface, which wasdine@ntioned several times in the
foregoing (nos344, 369). Here, we shall only stress that in this casesthiéace that is
defined by the asymptotes of the breadth curves will be arlyjoe paraboloid. It is
derived from the surface of asymptotes that was consideradmber369 when one
separates a plane that is parallel to the breadtle itam the latter as an isolated plane.
Correspondingly, the equatorial surfaces in questionb&ilcharacterized by the fact that
when we represent them by an equation of the form (2@),two second-degree
expressions:

Fx — Rx+B, K —Ox — G

will possess a common factor.
Among these surfaces, one can distinguish the one&ghioh:

K2 —Ox -G

is the square of a linear expression, and thus the doaupbthat such a surface possesses
will coincide with its double axis. The straight linassinfinity in the breadth planes of
such an equatorial surface that go through a double pointdauble plane of the
complex will then contact the second-order curve thakefined by the singular points
that are associated with the double plane, or — whatiat®ido the same thing — it is a
side of the cone of class two that is enveloped by tigukr planes that are associated
with the double point. The ruled surface of order andsdlasee whose double ray and
double axis coincide can then be regarded as transitionas foetween the types of
equatorial surfaces that were exhibited in numBé2sand370.

372. We have thus exhausted the different cases of equatariaces whose breadth
curve possess a midpoint. It remains for us to discussnd® whose breadth curves are
parabolas, and which we have correspondingly referred parabolic Here, we must
speak briefly and settle for few explanations. The ge#ngassification of complex
surfaces that we gave in numt3g4 will also retain its validity here. When we linketh
generation of the surface to a given second-degree conthbéespecial character of the
surface— and thus, the grouping of its singularitiesvill, in all cases, be determined by
the fact that the straight line at infinity in the &déh planes is a line of the complex.

We single out only two forms that we have encountereadyr in the foregoing.

We have discussed how the singularities arrange tisswith respect to each
other for thegeneral caseof the parabolic equatorial surface in the sixth and shven
paragraphs of the first chapter (nd@88, 199; no.231). According to whether the four
singular rays that such a surface possesses are notaadl imaginary, the surface will
define an undivided whole or decompose into several pdiis.singular rays define the
transition between parabolas that open in differemese

In particular, the straight line at infinity in theeladth plane can besangular lineof
the complex. The equatorial surface is then distinguiblgetie fact that the axes of its
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breadth curves point in the same direction T'wo of its four singular rays will coincide
with the straight line at infinity in the breadth plane.

In conclusion, we will summarize the formulas tlsatve to determine a parabola
from its equation in line coordinatey.( We then start with the general equation of the
parabolic equatorial surface, as we would deduce from egu&jan numbel63 when
we let the constarid vanish in it. It is the following one:

2 (Lx — §vw+ (P — Rx+B) V
+2 Mx+T)uw+ 2 K —-0x— QG uv
+(EX+ 2Ux+C) U = 0, (24)

which we would like to write in the form below, for teake of brevity:
2bvw+ ¢ + 2duw+ 2euv+ fu? = 0. (25)

When we leta denote the angle that the axis of the parabola malids the OZ
coordinate axis, we will get:

d
tana =— 26
5 (26)

for the direction of that axis. The coordinates offtwal point are {):

_2be-d(c- f)
T 2%+ d?)

S = 2de+ b(c- f)
2(b* + d?)

(27)

and the parameter will become:
d’c-2bde+ b f
N= s (28)

373. The foregoing numbers were dedicated to the deration of equatorial
surfaces. We can discuss the various kindearidian surface exactly the same way.
Here, let us emphasize just one point: Among thepdex curves that generate such a
curve, one will find two parabolas, in general (f#1), whose planes are real or
imaginary and can also coincide. These paraboilasiefine the transition between real
ellipses and hyperbolas. We will get an intuitfon the type of such a transition, when
we consider the succession of intersection curfesgoven one-shelled hyperboloid with
a plane that rotates around a fixed straight Ina intersects the hyperboloid at two real

() We have considered such an equatorial surface in nu2@ber
() Analytisch geometrische Entwicklungennd. 480, 506.
(") In particular, we can assume:

e=0,c=f.

The focal point of the parabola will then move aldng®X axis.
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points. Whereas, for equatorial surfaces, a surfacega@oemt that is bounded by two
singular rays will necessarily be defined by complex esirof the same kind, amongst
the components into which a meridian surface is decordpmgéts singular rays, there
can be two of them that are generated by the variows kaf complex curves. This is the
basis for the fact that there is a larger manifoldoofs for meridian surfaces than the
one that is defined by equatorial surfaces. We ascendthierdiscussion of equatorial
surfaces to a discussion of meridian surfaces whemwvake the two planes that contain
the parabolas arbitrarily from among the breadth plarigbe equatorial surface. We
shall then pursue the viewpoint that is suggested by that th@futf has sufficed for the
purpose of showing us how easy it is to arrive at a geometric understaoitinge
variegated surfaces of the second-degree complexes.




