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FIRST CHAPTER 
 

LAPLACE’S THEORY  
 
 

 1. Basis for the theory. – Laplace assumed that two molecules of a liquid exert an 
attraction upon each other that is directed along the line that connects them, is 
proportional to their masses, and depends upon the distance that separates them according 
to an unknown law. 
 That attraction will then have the expression: 
 

mm′ f (r), 
 
in which m and m′ are the masses of the molecules, r is the distance between them, and 

( )f r  is an unknown function of that distance. 
 However, those hypotheses are not sufficient.  Indeed, Clairaut stated them fifteen 
years before Laplace, but he could still not deduce the explanation for capillary 
phenomena from them.  Laplace also assumed that the attractive force decreases rapidly 
when the distance between the molecules increases, and that it will become negligible 
once that distance exceeds a very small value that one calls the radius of molecular 
activity.  In other words, Laplace supposed that the function: 
 

ϕ (r) = ( )
r

f r dr
∞

∫  

 
is roughly zero when r is greater than the radius of molecular activity. 
 As a result of the initial hypotheses, the molecular forces will admit a potential: 
 

V = ( )m rϕ∑ , 

 

so the partial derivatives 
V

x

∂
∂

, 
V

y

∂
∂

, 
V

z

∂
∂

 will represent the components along the three 

axes of the attractive force that is exerted upon a unit mass that is located at the point x, y, 
z and is due to the action of molecules of mass m. 
 If the set of those molecules forms a volume then the expression for the potential will 
become: 

V = ( )d rρ τ ϕ∫∫∫ , 

 
in which dτ denotes a volume element, ρ denotes the density of that element, and the 
integration is extended over the volume in question. 
 A new hypothesis by Laplace permits one to simplify that expression.  Indeed, 
Laplace assumed that the density was constant.  That hypothesis is not legitimate, 
because it is probable that the density at a point that is situated at a distance from the 
surface of the liquid that is less than the radius of molecular activity will not have the 
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same value that it has at another point whose distance to the surface is larger than that 
radius.  Despite its inaccuracy, that hypothesis will lead to the expression: 
 

V = ( )d rρ τ ϕ∫∫∫ , 

 
and if we take the density of the liquid considered to be unity then we will get: 
 

V = ( )d rτ ϕ∫∫∫ . 

 

O A 
θ 

M 

a P 

r 

 
Figure 1. 

 
 2. Potential of an infinitely-thin spherical shell. – Let ρ and ρ + dρ be the radii of 
the two spheres that bound the shell, and let a be the distance from the common center O 
(Fig. 1) of those spheres at the point P where we would like to know the value of the 
potential.  Take the plane of the figure to be an arbitrary plane that contains PO and draw 
two radii in that plane that make angles of θ and θ + dθ with OP.  The element M, thus-
determined, will have an area of ρ dθ dρ, and the volume that it generates when one 
rotates it around PO will have the value: 
 

2πρ sin θ ρ dθ dρ . 
 

 All of the elements of that volume are at the same distance r from the point P, so the 
potential at that point that is due to the volume will be: 
 

dV = 2πρ 2 sin θ ρ dθ dρ ϕ (r). 
 

 Consequently, the potential of the spherical shell will have the value: 
 

V = 2πρ 2 
0

( )
r

rϕ∫  sin θ ρ dθ dρ. 

  
 However, the triangle POM provides the relation: 
 

r2 = ρ 2 + a2 – 2aρ cos θ, 
so 

r dr = aρ sin θ dθ. 
 We can then write: 
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V = 
1

0

2 ( )
r

r
d r r dr

a

ρπ ρ ϕ∫ , 

 
in which r0 denotes the distance PA, and r1 denotes the distance PB. 
 Set: 

( )
r

r r drϕ
+∞

∫  = ψ (r) . 

 
The function ψ thus-defined will have a value that is roughly zero for any value of r that 
is greater than the radius of molecular activity, since the function ϕ (r) will be almost 
zero for those values, by hypothesis. 
 Introduce that function ψ into the expression for V.  We will have: 
 

1

0

( )
r

r
r r drϕ∫  = 

1

0

( ) ( )
r

r
r r dr r r drϕ ϕ

∞

∞
+∫ ∫  = ψ (r1) − ψ (r0). 

 
 However, if ρ is finite then the distance r1 will be necessarily greater than the radius 
of molecular activity.  Consequently, ψ (r1) will be negligible, and we will have simply: 
 

V = 2π 
a

ρ
dρ ψ (r0),     (1) 

 
and that quantity will itself become negligible when r0 becomes finite. 
 The figure was traced under the hypothesis that the point P was exterior to the 
spherical shell.  However, the argument applies just the same to the case in which the 
point P is interior.  The only difference is that r0 , whose value is a – ρ in the first case, 
will become ρ – a in the second. 
 
 
 3. Potential of a solid sphere. – First consider the case in which the point P is 
exterior to the sphere. 
 If the point is at a finite distance from the surface then the attractive forces that are 
exerted on a mass that is placed at that point by all of the molecules of the sphere will be 
negligible; consequently, the potential will be roughly zero. 
 Suppose that the point P is at a very small distance ε from the surface.  Decompose 
the sphere into concentric spherical shells of thickness dρ ; each of then will contribute a 
potential to P of: 

dV = 2π 
a

ρ
dρ ψ (a – ρ). 

 
 Consequently, the potential of the entire sphere will be: 
 

V = 
0

2
R

π∫ a

ρ
dρ ψ (a – ρ), 
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in which R is the radius of the sphere. 
 If we set: 

a – ρ = z 
then that potential will become: 
 

V = 
0

2 ( )
R x a

z dz
a

π ψ−
∫  = 

1
2 ( ) 2 ( )

a a
z dz z z dz

aε ε
π ψ π ψ−∫ ∫ . 

 
 However, since a is finite and the function ψ (z) is roughly zero for any finite value of 
the variable, one will have, approximately: 
 

2 ( )
a

z dzπψ
∞

∫  = 0, 2 ( )
a

z z dzπ ψ
∞

∫ = 0, 

and as a result: 
 

 2 ( )
a

z dz
ε

πψ∫ = 2 ( ) 2 ( )
a

z dz z dz
ε

π ψ π ψ
∞

∞
+∫ ∫ = 2 ( )z dz

ε
πψ

∞

∫  = θ (ε), 

 

 2 ( )
a

z z dz
ε

π ψ∫ = 2 ( ) 2 ( )
a

z z dz z z dz
ε

π ψ π ψ
∞

∞
+∫ ∫ = 2 ( )z z dz

ε
π ψ

∞

∫ = θ1 (ε). 

 
 We then have that the potential at P is: 
 

V = θ (ε) − 1

a
θ1 (ε). 

 
 We ignore the form of those functions θ and θ1, since ϕ and ψ are unknowns.  
Nonetheless, we see that θ and θ1 are roughly zero for any finite value of ε, since ψ 
enjoys that property.  We can add that θ1 is much smaller than θ, because for small values 
of z (which are the only ones to consider, from the preceding), the differential element 
2π z ψ (z) dz will be smaller than 2π z ψ (z) dz. 
 The latter property will permit one to modify the expression for V.  Indeed, when ε is 
very small, a will differ only slightly from R.  Since θ1 will be very small with respect to 
θ then, we would not change the value of V appreciably if we were to replace the 
coefficient 1 / a of θ1 with the factor 1 / R.  We would then have: 
 

V = θ (ε) − 
1

R
θ1 (ε).     (2) 

 
 
 4. – We now pass on to the case in which the point P is interior to the sphere. 
 When the distance from the point on the surface of the sphere is finite, the action that 
is exerted upon P by a molecule that is exterior to the sphere is negligible, since the 
distance from that molecule to the point P will then be greater than the radius of 
molecular activity.  We can then replace the sphere with another sphere of the same 
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material that has an infinite radius and a center at P without changing the value of the 
potential at P.  Decompose that sphere into concentric spherical shells of radius r and 
thickness dr.  The potential at P that is due to one of those shells will be: 
 

dV = 4π r2 dr ϕ (r). 
 
 As a result, the potential of the entire sphere will be: 
 

V = 2

0
4 ( )r dr rπ ϕ

∞

∫ . 

 
 That integral is a constant A.  The potential of solid sphere at an interior point that is 
situated at a finite distance from its surface will then be a constant. 
 Now suppose that the point is at an extremely small distance ε from the surface.  
Upon decomposing the sphere into infinitely-thin concentric shells, the point P will be 
exterior to one of them and interior to another.  The potential of each of them is 
represented by formula (1), in which r0 must be replaced with a – ρ or ρ – a, according to 
whether P is exterior or interior to the shell considered, resp.  The potential of the entire 
sphere will then be: 

V =
0

2
R

a

ε ρπ
−

∫ dρ ψ (a – ρ) + 2
R

R aε

ρπ
−∫ dρ ψ (ρ – a). 

 
 Consider the first integral.  Upon setting z = a – ρ, it will become: 
 

0
2 ( )

a

z a
z dz

a
π ψ−

∫  = 
0 0

1
2 ( ) 2 ( )

a a
z dz z dz

a
π ψ π ψ−∫ ∫ . 

 
 Since a is finite and the function ψ is roughly zero for any finite value of the variable, 
one can replace the upper limits a of the integrals in the right-hand side with infinity.  As 
a result, those integrals will be constants, and the same thing will be true for the 
expression for V. 
 When one sets ρ – a = z, the second integral in that expression will become: 
 

0
2 ( )

z a
z dz

a

ε
π ψ+

∫  = 
0 0

1
2 ( ) 2 ( )z dz z z dz

a

ε ε
π ψ π ψ+∫ ∫ . 

 
 The two integrals on the right-hand side are the ones that we considered in the case 
where P was exterior to the sphere.  Consequently, any two of them will be functions of 
ε.  If we introduce a constant that represents the value of the first integral into one of 
those functions of V then we can write the expression for that potential as: 
 

V = θ (ε) – 
1

a
θ1 (ε) . 
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 It is obvious that those functions are not identical to the ones that entered into the 
expression (2).  If we compare the preceding expression for V with the value V = A of the 
potential for an interior point at a finite distance from the surface then we will see that 

1( )θ ε  must tend to A, and θ1 (ε) will tend to zero when ε becomes finite. 

 The latter property of the function θ1 (ε) permits one to replace 1 / a with the factor 
1/ R , which differs from it only slightly when ε is small.  One will then come back to the 
expression for the potential that was obtained for an exterior point, but θ and θ1 will not 
denote the same functions in those two cases. 
 In summary: 
 
 1. If the point is exterior and at a finite distance then: 
 

V = 0. 
 

 2. If the point is at a very small distance from the surface then: 
 

V = θ (ε) – 
1

R
θ1 (ε) 

 
and the functions θ and θ1 will not be the same when the point is interior or exterior. 
 
 3. If the point is interior and at a finite distance then: 
 

V = A. 
 
 

 5. Potential of a volume of revolution. – Let us first show that the potential at a 
point P that is located on the axis at a very small distance from the surface that bounds 
the volume will increase or decrease with the radius of curvature of the neighboring 
summit. 

 

X C E A P Y 

B 
D 

 
Figure 2. 

 
 Let ABC (Fig. 2) be the meridian section of the volume considered.  Deform that 
curve in such a manner that the radius of curvature at A decreases, and let ADBE the new 
form.  The potential of the volume that is generated by the surface ADBE will be equal to 
the potential of the volume that is generated by ABC plus that of volume that is generated 
by ABD and minus that of the volume that is generated by BCE.  The point P is supposed 
to be at a very small distance from A, so it will have a finite distance from the molecules 
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of the latter volume, and as a result, the corresponding potential will be negligible.  The 
potential of the volume that is generated by BDA will be positive if one meanwhile 
supposes that the force between two molecules is attractive.  Consequently, the volume 
that is generated by the surface ADBE will contribute a potential at P that is greater than 
that of the original volume. 
 Having said that, trace out two spheres that are tangent at A to the volume considered 
and whose radii are R′ and R″.  Let V′ and V″ be the potentials of those spheres at the 
point P, while V is the potential of the volume considered at the same point, which can be 
interior or exterior to that volume.  If the radius of curvature at A of the surface generated 
by ABC is found between R′ and R″ then, from the preceding, one will have: 
 

V′ < V < V″ 
or 

θ (ε) – 
1

R′
θ1 (ε) < V < θ (ε) – 

1

R′′
θ1 (ε). 

 
 Upon making R′ and R″ tend to the radius of curvature R, one will have: 
 

V = θ (ε) – 
1

R
θ1 (ε),     (3) 

in the limit. 
 The potential then depends upon only the distance from the point on the surface to the 
volume considered and the radius of curvature at the summit. 
 We have assumed that the forces between two molecules are always attractive.  
Reality does not impose that restriction, and one will arrive at the same expression for the 
potential by supposing that those forces can be attractive or repulsive according to the 
situation.  Indeed, if the force is repulsive then the sign of ϕ must be changed; as a result, 
the most general expression for ϕ will be: 
 

ϕ (r) = ϕ1 (r) – ϕ2 (r), 
 
in which ϕ1 (r) and ϕ2 (r) are two functions that are always positive.  The potential at a 
point will then be: 

V = ( )r dϕ τ∫∫∫  = 1 2( ) ( )r d r dϕ τ ϕ τ−∫∫∫ ∫∫∫ . 

 
 However, the preceding arguments are still applicable to the integrals on the right-
hand side, since ϕ1 and ϕ2 are always positive.  Hence, each of them can be put into the 

form θ (ε) – 
1

R
θ1 (ε).  The same thing will be true for their difference – viz., V. 

 Take a spindle that is bounded by two planes that pass through the axis of the volume 
of revolution and define a certain angle between them.  Another spindle with the same 
angle will have the same potential at P because upon rotating the latter spindle through a 
convenient angle, one can make it coincide with the first one.  It results from this that the 
potential of a spindle is proportional to the dihedral angle that is formed by the planes 



8 Capillarity 

that bound it.  Consequently, the potential of a spindle of angle a will have the 
expression: 

V = 1

1
( ) ( )

2 R

α θ ε θ ε
π
 −  

.    (4) 

 
 
 6. Potential of an arbitrary volume. – We look for the potential of a volume that is 
bounded by an arbitrary surface Σ at a point P that is either interior or exterior, but very 
close to that surface. 
 Take the z-axis to be the normal to the surface that passes through P.  Take the x and 
y axes to be the axes of the indicatrix of the foot A of the normal.  The equation of the 
surface with respect to that system of axes will be: 
 

z = ax2 + by2 + …, 
 

and the radius of curvature at A of its intersection with a normal plane Π that makes an 
angle ϕ with the x-axis will be given by the relation: 
 

1

R
= 2 (a cos2 ϕ + b sin2 ϕ). 

 
 Consider the spindle F with an angle dϕ that is bounded by the plane Π and an 
infinitely-close plane.  That spindle will differ infinitely little from the spindle that makes 
the same angle with the surface of revolution that is generated by rotating the intersection 
of the surface Σ with the plane Π.  The potentials of those spindles can then coincide.  
Consequently, from formula (4), the potential of F will be: 
 

dV = 1

1
( ) ( )

2

d

R

ϕ θ ε θ ε
π
 −  

. 

 
The potential of the volume that is bounded by the surface Σ will then be: 
 

V = 
2

10

1
( ) ( )

2

d

R

π ϕ θ ε θ ε
π
 −  

∫ , 

 
or upon replacing 1 / R with its value: 
 

V = 
2 2 22 21 1

0 0 0

( ) ( )( )
cos sin

2

a b
d d d

π π πθ ε θ εθ ε ϕ ϕ ϕ ϕ ϕ
π π π

− −∫ ∫ ∫  , 

 
and upon performing the integrations: 
 

V = θ (ε) – a θ1 – b θ1 . 
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 However, if we set ϕ = 0 in the expression for 1 / R and then ϕ = π / 2 then we will 
get: 

1

1

R
= 2a, 

2

1

R
= 2b 

for the principal curvatures. 
 Consequently, we can write: 

V = θ (ε) − 1

1 2

( ) 1 1

2 R R

θ ε  
+ 

 
,    (3) 

 
which is a formula that shows that the potential at a point depends upon only the distance 
from that point to the surface and the mean curvature at the pole. 
 
 
 7. Equations of equilibrium for a fluid. – In order to find the laws of capillarity, all 
that remains is to apply the general principles of hydrostatics. 
 Recall that if one lets p denote the pressure at a point x, y, z, while X, Y, Z are the 
components of the external forces that are exerted upon a unit mass that is placed at that 
point then one will obtain the fundamental equations: 
 

dp

dx
= X, 

dp

dy
= Y, 

dp

dz
= Z, 

 
upon writing that a volume element is in equilibrium under the influence of the forces 
that act upon it. 
 In the particular case that we are concerned with, there are two types of external 
forces: capillary forces and forces that act at an appreciable distance.  We just saw that 
the first ones admit a potential V.  In general, the second ones likewise admit a potential, 
which we denote by W. 
 The preceding equations will then become: 
 

 
dp

dx
= 

dV dW

dx dx
+ , 

 

 
dp

dy
= 

dV dW

dy dy
+ , 

 

 
dp

dz
= 

dV dW

dz dz
+ . 

We deduce from this that: 
p = V + W + const., 

 
or upon replacing V with the value (5): 
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p =θ (ε) − 1

1 2

( ) 1 1

2 R R

θ ε  
+ 

 
 + W + const.    (6) 

 
 

 8. Equation of the free surface of a liquid. – That equation is deduced from the 
preceding one immediately. 
 One has ε = 0 for a point on the surface.  As a result, the pressure p0 at that point will 
be: 

p0 = θ (0) − 1

1 2

(0) 1 1

2 R R

θ  
+ 

 
 + W + const. 

 
 However, θ (0) is a constant, so p0 will also have the same value at any point on the 
free surface, and one will have simply: 
 

1

1 2

(0) 1 1

2 R R

θ  
+ 

 
= W + const.    (7) 

 
 When the forces that act at an appreciable distance reduce to gravity, one will have Y 
= X = 0, Z = g if one takes the z-axis to be vertical and directed downwards and the xy-
plane to be a horizontal plane.  As a result, one will then have: 
 

W = gz 
 
in that case, and the free-surface equation will become: 
 

1

1 2

(0) 1 1

2 R R

θ  
+ 

 
= gz + const.    (8) 

 
 
 9. Capillary ascension and depression. – When a capillary tube is submerged 
vertically in water, the liquid will go up in the tube until it is above its level in the vessel.  
When it is submerged in mercury, the free surface in the tube will be below the free 
surface in the vessel.  The preceding equation will permit us to find the form of the 
meniscus in both cases. 
 Take the xy-plane to be the horizontal plane that forms the free surface of the liquid 
outside the tube.  For a point of that plane, one will have R1 = R2 = ∞ and z = 0.  Hence, 
the constant in equation (8) will be equal to 0, and one will have simply: 
 

1

1 2

(0) 1 1

2 R R

θ  
+ 

 
= gz. 
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 If we suppose that the capillary tube is cylindrical then the free surface inside the tube 
will be one of revolution, and one will have R1 = R2 at the summit of that surface.  One 
will then have: 

1

1

(0)

R

θ
 = gz. 

 
 When there is ascension in the liquid, the z of the summit will be negative.  As a 
result, R1 must be negative, since θ1 is positive when the forces are attractive.  The center 
of curvature will then be on the negative side of the z-axis, and the meniscus will be 
concave. 
 When there is depression, the z of the summit will be positive.  The radius of 
curvature at that summit must be positive, and the meniscus will then be convex. 
 We then see how Laplace’s theory permits us to predict the form of the meniscus 
when one knows whether there is ascension or depression, or conversely, to predict 
whether there will be ascension or depression when one knows the form of the meniscus.  
Nonetheless, the problem is only half-solved because we have ignored the problem of 
explaining why certain liquids go up in a capillary tube, while other ones go down.  
Laplace attempted to give an explanation in two subsequent works.  In the first paper (1), 
he arrived at an explanation that was plausible, but based upon a hypothesis.  In another 
paper (2), the conclusions to which he arrived were rigorous only in the case where the 
tube was cylindrical, and the method was very complicated moreover.  We shall 
nevertheless summarize those two papers. 

 

 

B 

ϕ 

A 

P 

C 

Q 

 
Figure 3. 

 
 
 10. Contact angle. Its variation. – Consider the free surface of a liquid in the 
neighborhood of a wall.  Draw a plane through one of the points of the contact curve with 
the surface and the wall that is normal to that curve.  It will cut the surface and the wall 

                                                
 (1) Œuvres complètes de Laplace, t. IV, Supplement to Book X of his Traité de mécanique céleste, pp. 
394. 
 (2)  Œuvres complètes de Laplace, 2nd supplement to Book X, pp. 419. 
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along two lines whose tangents at the point of contact will form a certain angle ϕ.  That is 
the contact angle at the point considered. 
 In his first paper, Laplace assume without proof that this angle is constant, so it would 
have the same value at any point of the contact curve between the wall and the surface of 
the liquid.  In order to explain the variation of that angle with the nature of the liquid and 
that of the wall, Laplace supposed that the solid molecules were attracted to the liquid 
molecules and that this attraction differed from the one that two liquid molecules exerted 
upon each other by only a constant factor. 
 Let us apply that hypothesis to the search for the equilibrium condition for a liquid 
molecule P (Fig. 3) that is located on the contact curve of a vertical wall AB and the free 
surface PQ. 
 In order for that molecule to be in equilibrium, it is necessary that the resultant of the 
forces that act upon it must be normal to the free surface, because in the contrary case, 
the molecule would slide under the action of the tangential component. 
 Now, those forces are: 
 
 1. The attraction F that is due to the molecules of the wall, which is an attraction that 
will be perpendicular to AB and directed towards the interior of the wall, by reason of 
symmetry. 
 
 2. The attraction F′ that is due to the liquid molecules that are located in the 
dihedron BPC, which is an attraction that is obviously directed along the bisector of the 
angle BPC. 
 
 3. The attraction 1F ′  of the molecules that are found between the plane PC and the 

free surface, which is an attraction that must be added to F if the contact angle is acute 
and subtracted if the angle is obtuse. 
 
 4. The weight, whose value is g, since the mass of the attracted molecule is taken to 
be unity. 
 
Upon expressing the idea that the sum of the projections of those forces onto the tangent 
PC should be zero, one will get the relation: 
 

− F sin ϕ + F′ cos 
2

ϕ
 + Q + g cos ϕ = 0, 

 
in which Q denotes the projection of the force 1F ′ , which must be taken with the + sign in 

the case that is depicted in the figure and with the – sign when the angle ϕ is obtuse. 
 Let us calculate F and F′.  In order to do that, we decompose the dihedron BPC into 
infinitely-small dihedral angles dψ, in which ψ is the angle that one of the faces of that 
small dihedron makes with the bisecting plane of the dihedron BPC.  The attraction that 
two dihedra with the same angle exert upon the molecule P will be equal, because when 
we rotate one of them around its edge through a convenient angle, we will get the other 
one.  As a result, the attraction of each of the elementary dihedron will be proportional to 
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dψ ; with Laplace, denote it by ρ′ dψ.  The projection of that attraction onto the bisector 
of BPC will be ρ′ dψ cos ψ, and we will get the attraction of the dihedron BPC upon 
integrating between the limits of ψ – i.e.: 
 

−
2

ϕ
 and +

2

ϕ
; 

hence: 

F′ = 
/ 2

/ 2
cos d

ϕ

ϕ
ρ ψ ψ

+

−
′∫  = 2ρ′ sin

2

ϕ
. 

 
 In order to get F, it suffices to set ϕ = 2π in that expression and to replace ρ′ with the 
value ρ of that quantity that relates to the action of the solid on the liquid.  Consequently: 
 

F = 2ρ. 
 
 If we replace F′ and F with those values in the equilibrium relation then it will 
become: 

− 2π sin ϕ + 2ρ′ sin
2

ϕ
cos

2

ϕ
+ Q + g cos ϕ = 0, 

or 
(ρ′ – 2ρ) sin ϕ + Q + g cos ϕ = 0.    (9) 

 
 When the contact angle is acute, sin ϕ, cos ϕ, and Q will be positive; consequently, 
the latter equality can be satisfied only if: 
 

ρ′ – 2ρ  < 0 or  2ρ  > ρ′. 
 
 If the contact angle is obtuse then Q must be taken to be negative, as we have pointed 
out.  Since cos ϕ is negative then, while sin ϕ is positive, the condition (9) will lead to: 
 

ρ′ – 2ρ  > 0 or  2ρ  < ρ′. 
 
 Finally, if the contact angle is a right angle then one will have: 
 

sin ϕ = 1, Q = 0,  cos ϕ = 0, 
and as a result: 

ρ′ = 2ρ . 
 
 The value of the contact angle, and as a result, the depression and ascension of the 
liquid in capillary tubes will then depend upon the intensities ρ and ρ′  of the attractions 
that are exerted upon a liquid molecule by a dihedron on the solid that forms the wall and 
an equal dihedron on the liquid itself. 
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 11. – Laplace likewise considered two particular cases: viz., the one in which ρ = ρ′ 
and the one in which ρ = 0. 
 Supposing that ρ and ρ′ are equal amounts to assuming that the tube is composed of 
the liquid that it contains and the molecules are subjected to forces of cohesion that do 
not modify the capillary forces.  We shall show that under those conditions, the contact 
angle will be zero and that the separation surface in a cylindrical tube will be a 
hemisphere if one can nonetheless neglect the weight of the liquid. 
 Imagine that the weightless liquid fills up all of the space that is exterior to a sphere 
whose center is O (Fig. 4).  The liquid will then be in equilibrium because by reason of 
symmetry, the attractive forces that act upon a molecule will pass through the center O, 
and as a result they will be normal to the surface of the sphere. 
 Draw a cylinder that is tangent to the sphere and solidify the liquid that is exterior to 
that cylinder; i.e., introduce forces of cohesion between the molecules of the liquid that 
do not modify the attractive capillary forces.  Equilibrium will not be perturbed. 

 

G H 

B 
O 

E D 

C 

N M 

A 

L K 

 
Figure 4. 

 
 That will no longer be the case if we remove the liquid that occupies the space 
DACBE, because the action of that liquid on the liquid that occupies the space GANBH is 
negligible.  Indeed, the only molecules of the first volume that can react with the 
molecules of the second one are the ones that are situated at a distance from the circle AB 
that is less than the radius of molecular activity.  Those molecules are situated in the 
volume that is generated by the rotation of the curvilinear triangle KAL around the axis of 
the cylinder.  Now, that volume is a third-order infinitesimal, since AK is infinitely small.  
One can then neglect the action of that volume. 
 All that remains then is the liquid GANBH, which is in equilibrium and whose free 
surface is a hemisphere.  However, from the remark that was made previously, the liquid 
exists under the same conditions that are found in a tube that is composed of a material 
such that ρ = ρ′.  The contact angle will then be indeed zero in this case. 
 The case in which ρ = 0 (which does not correspond to anything in physical reality, 
moreover) leads to a value of π for the contact angle. 
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 Indeed, consider a sphere of weightless liquid; it is in equilibrium.  Draw a cylinder 
that is tangent to that sphere and fills up the space that is found outside of the cylinder, as 
well as the space DABCE of the material for which ρ = 0.  Equilibrium persists, since the 
matter that was added has no effect on the molecules of the liquid.  If we fill up the space 
GANBH with the liquid then we will not destroy the equilibrium, because the molecules 
of the added liquid that act upon the molecules of the sphere are solely the ones that are 
located in the small volume that is generated by the rotation of the curvilinear triangle 
MAN, and since that volume is a third-order infinitesimal, its action can be neglected. 
 We then see that when a liquid is in equilibrium in a cylindrical tube that is composed 
of a material that does not act upon its molecules, the free surface will take the form of a 
convex hemisphere ACB.  Consequently, the contact angle will be equal to π. 
 In summary, Laplace succeeded in explaining the various forms of the surface of the 
meniscus by an attraction of greater or lesser magnitude between the solid and liquid 
molecules, but he assumed that the contact angle was constant.  In his second paper, he 
returned to that explanation, but also adopted the latter hypothesis, whose exactness was 
proved only by Gauss.  Nevertheless, we shall analyze that paper, which contains some 
new results. 
 
 
 12. – Expression for the liquid volume that is raised in a cylindrical tube of 
arbitrary section. – Consider a cylindrical tube whose cross-section is arbitrary and is 
submerged in a liquid. 
 Take the xy-plane to be the horizontal plane of the free surface of the liquid outside of 
the tube, and take the z-axis to be normal to that plane and point downwards. 

 

A B 

C D 

 
Figure 5. 

 
 The volume U of the liquid ABCD (Fig. 5) that is found in the tube above the xy-plane 
has the expression: 

U = − z dx dy∫∫ , 

 
in which z is the ordinate of a point on the free surface and the integration extends over 
the cross-section of the tube. 
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 Now, we have found (9) that the equation of the free surface with respect to this 
system of axes is: 

gz = 1

1 2

(0) 1 1

2 R R

θ  
+ 

 
; 

consequently, we will get: 

gU = − 1

1 2

(0) 1 1

2 R R

θ  
+ 

 
∫∫  dx dy. 

 
 Let l, m be the direction cosines of the normal at a point on the free surface.  The radii 
of principal curvature that pass through that point satisfy the equations: 
 

 
dl dl

dx dy
dx dy

+  = − 1

R
dx, 

 

 
dm dm

dx dy
dx dy

+  = − 1

R
dy, 

 
in which dx, dy are proportional to the direction cosines of the tangent to the line of 
curvature.  One can write the latter equations as: 
 

 
1dl dl

dx dy
dx R dy
 − + 
 

 = 0, 

 

 
1dm dm

dx dy
dx dy R

 
+ − 
 

 = 0, 

resp., and one will deduce that: 
 

1 1dl dm dl dm

dx R dy R dy dx

  + + −  
  

 = 0, 

or 
2

1 1 dl dm dl dm dl dm

R R dx dy dx dy dy dx

   + + + −  
   

 = 0. 

 
 Consequently, we will have: 

1 2

1 1

R R
+ = − 

dl dm

dx dy

 
+ 

 
, 

 
and the expression for gU will become: 
 

gU = 1(0)

2

dl dm

dx dy

θ  
+ 

 
∫∫ dx dy, 
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or upon replacing the double integral in the right-hand side with a curvilinear integral that 
is taken over the cross-section of the tube: 
 

gU = 1(0)
( )

2
l dy m dx

θ −∫ . 

 
 The direction cosines of the tangent at a point on the cross-section of the tube are: 
 

dx

ds
, 

dy

ds
, 0, 

 
in which ds denotes an element of arc length of that cross-section, so those of the normal 
will be: 

 
dy

ds
, − dx

ds
 , 0. 

 
 Consequently, the angle that is defined by the normal to the free surface of the liquid 
at a point of the separation curve and the normal to the surface of the tube, which is 
nothing but the contact angle ϕ, will have the cosines: 
 

cos ϕ = 
dy dx

l m
ds ds

−  + n (0) . 

 
It will then result that the value of gU is: 
 

gU = 1(0)

2
ds

θ
∫  cos ϕ,     (10) 

 
which is a relation that Laplace wrote as: 
 

gU = 1(0)

2
s

θ
 cos ϕ,      (11) 

 
since he assumed that ϕ had the same value at any point of the contact curve. 
 
 
 13. Attraction of the matter that surrounds a cylindrical cavity to the liquid 
contained in the cavity. – Consider a volume T (Fig. 6) that is bounded by a cylindrical 
surface whose cross-section has an arbitrary form and an area of Ω, and at the same time, 
consider a material that occupies the volume T′ T″ whose cylindrical surface is a 
boundary surface.  We shall look for the component of the attraction that is exerted by the 
volume T′ T″ on the volume T along the direction of the generators of that surface, which 
is a direction that we suppose to be vertical. 
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 We first examine the case in which the upper part of the volume T′ T″  is above that 
of the volume T, while the lower part of the latter volume is below that of the volume 
T T′ ′′  (Fig. 6). 

 We decompose the volume T into elementary cylinders CD of section dω and cut 
those cylinders with horizontal planes that are very close to each other.  We will then get 
an infinitude of volume elements that have volume dω dz and whose mass will be 
represented by the same product if we take the material considered to have unit density. 

 

T′ T″ 

C 

T 

D 
 

Figure 6. 
 
 Let V be the potential of the volume T′ T″  at an exterior point.  The force per unit 
mass that results will have the vertical component dV / dz, and as a result, the vertical 
component of the action of the volume T′ T″ on the volume T will have the expression: 
 

dV
d dz

dz
ω∫∫∫  =

dV
d dz

dz
ω∫∫ ∫ = 1 0( )d V Vω −∫∫ , 

 
in which V1 is the potential at D and V0 is the potential at C. 
 Now, the points like D that belong to the surface inside of the volume T are at a finite 
distance from the molecules of the volume T′ T″.  As a result, the potential of the latter 
volume at those points will be roughly zero, and we can write V1 = 0.  The points – such 
as C – that belong to the upper surface that bounds the volume T, are not all at a finite 
distance from the molecules of the volume T′ T″ ; V0 will not always be zero then.  
Consequently, the desired vertical component will have the expression: 
 

− 0V dω∫∫ . 

 
 However, we have found that the potential at a point that is close to the surface that 
bounds an arbitrary volume is: 

V = θ (ε) − 1

1 2

( ) 1 1

2 R R

θ ε  
+ 

 
. 

 



Chapter I − Laplace’s theory. 19 

 The quantity θ1(ε) is always very small, so we can neglect the term that contains that 
quantity as a factor and take V0 = θ (ε) .  Under those conditions, we will have that the 
vertical component of the attraction is: 
 

− ( ) dθ ε ω∫∫ .      (12) 

 
 When the volume T exceeds the volume T′ T″  by its upper part, the potential V0 will 
be zero, but V1 will have the value θ (ε).  Consequently, the vertical component of the 
attraction will be given by the preceding integral, when it is taken with the + sign. 
 In the case where the volume T exceeds the volume above and below, the various 
points such as C and D are at finite distances from the volume T′ T″.  V1 and V0 are zero, 
and the vertical component of the action of T′ T″  on T is zero. 
 If the volume T′ T″  goes beyond the upper and lower boundary surface of the volume 
T then the potential of T′ at the various points of those surfaces will not be zero.  
However, the potentials V0 and V1 will be equal at the two points C and D, which belong 
to the same elementary cylinder.  Consequently, the vertical component of the action of 
T′ T″  on T will again be zero. 

 

T′ T″ 
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T 

D 

 
Figure 7. 

 
 We pass on to the case in which the two volumes T and T′ T″  are bounded above by 
the same horizontal plane (Fig. 7), while the lower part of the volume T′ T″  goes beyond 
that of the volume T. 
 Once more, we decompose the volume T into a cylinder CD of section dω, and we 
will get: 

1 0( )V V dω−∫∫  

 
for the vertical component of the attraction of T′ T″  to T. 
 The potential of the action of the volume T′ T″  for the points of the lower bounding 
surface of T is: 

V1 = θ (ε). 
 
 In order to find V1, we a take a volume 1 1T T′ ′′  that is symmetric to the volume T′ T″  
with respect to the horizontal plane.  As a result of that symmetry, the potential at C of 
the volume 1 1T T′ ′′  will be equal to the potential of the volume T′ T″.  If the latter is 
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denoted by V0 then the potential of the volume T′ T″ + 1 1T T′ ′′ will be 2V0 .  Now, the 

potential of T′ T″ + 1 1T T′ ′′ is approximately θ (ε).  Consequently: 

 
2V0 = θ (ε), 

 
and the vertical component of the attraction of T′ T″  to T will become: 
 

( )

2
d

θ ε ω∫∫ .     (13) 

 
 Hence, in the various cases that can present themselves, that component will be zero 
or equal to the integral (12) or to the integral (13), which is one-half of the preceding one. 
 
 
 14. – We then calculate the integral (12). 

 A 
B 

B″ 
A″ 

C′ 
C″ 

A′ 
B′ 

C 

 
Figure 8. 

 
 Let C (Fig. 8) be the cross-section of the cylinder that separates the two volumes.  
Draw normals to that curve at two infinitely-close points A and B and trace out two 
curves C′ and C″ that are parallel to C, the first of which is at a distance of ε, while the 
second one is at a distance of ε + dε.  We then form a surface element A′ B′ A″ B″ whose 
edge A′A″ has a length of dε and its side A′ B′ has a length that is roughly equal to the 
element of the curve AB = ds, since C and C′ are two parallel curves that are very close to 
each other.  Take that element to be the section dω of the elementary cylinder CD that 
was considered before.  We will then have: 
 

( ) dθ ε ω∫∫  = ( ) d dsθ ε ε∫∫  = ( )s dθ ε ε∫  

for the desired integral. 
 One of the limits of ε is 0; the other one is greater than the radius of molecular 
activity, since it is excessively small.  Since θ (ε) is roughly zero for distances that are 
greater than that radius, we can take 0 and ∞ to be limits of the latter integral. 
 We will then have: 

0
( )dθ ε ε

∞

∫  = [ ]0 0
( ) ( )dε θ ε ε θ ε ε

∞∞ ′− ∫  

 
for that integral.  However, the functions θ (ε) and θ1 (ε) are defined by (3) to be: 
 

θ (ε) = 2 ( )z dz
ε

πψ
∞

∫ ,  θ1 (ε) = 2 ( )z z dz
ε

π ψ
∞

∫ . 
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Consequently: 
θ′ (ε) = − 2π ψ (ε), 

and as a result: 

0
( )dε θ ε ε

∞
′∫  = 

0
2 ( )dπεψ ε ε

∞

∫ = − θ1 (0). 

 

 The quantity [ ]0
( )ε θ ε ∞

is zero, since the first factor is zero for the limit 0 and the 

second factor will be annulled at the other limit.  One will then have: 
 

0
( )dθ ε ε

∞

∫  = θ1 (0), 

and 

( ) dθ ε ω∫∫  = s θ1 (0).     (11) 

 
 
 15. New expression for the volume raised in a capillary tube. – We shall appeal to 
those quantities in order to find a new expression for the volume that is raised in a 
capillary tube. 
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Figure 9. 

 
 Along with the volume U (Fig. 9), consider the volume U′ that is bounded by the 
plane CD, the surface EF, and the prolongation of the cylindrical surface of the tube, and 
write down that the total volume U + U′ is in equilibrium under the action of the forces 
that act upon it. 
 Those forces are: 
 
 1. Its weight: 

g (U + U′ ), 
 
since the density of the liquid is taken to be unity. 
 
 2. The atmospheric pressure p0 Ω that is exerted upon the surface AB of the 
meniscus. 
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 3. The hydrostatic pressure H on the surface EF. 
 
 4. The attraction of the liquid T′ that surrounds the prolongation, which has a 
vertical component: 

( ) dθ ε ω∫∫ = s θ1 (0). 

 5. The attraction of the glass tube.  Since that tube exceeds the liquid volume U + U′ 
by the upper part, the vertical component of its attraction will be given by the preceding 
expression with the sign changed.  However, in order to distinguish the action of a liquid 
to a liquid from the attraction of a solid to a liquid, we let η (ε) denote the function of ε 
that corresponds to θ (ε), and we will get: 

− s η (0) 
 
for the vertical component of the attraction of the glass. 
 
 6. Finally, the attraction of the volume T″ that is situated below U′ and whose vertical 
component will be denoted by H′. 
 
 Since the liquid is supposed to be in equilibrium, the algebraic sum of the vertical 
components of those forces must be zero; as a result: 
 

g (U + U′ ) + p0 Ω – H + H′ − s η1 (0) + s θ1 (0) = 0. 
 
 In order to eliminate the quantities p0 Ω, H, and H′, we write down that the volume 

1U ′  of the liquid, which is equal to U, but situated at a sufficient distance from the tube 

for C1D1 to be horizontal, must be in equilibrium under the action of the forces that act 
upon it. 
 Those forces are: weight gU′, the atmospheric pressure p0 Ω, the hydrostatic pressure 
H, the attraction H′ of the volume 1T′′ , and finally, the attraction of the liquid 1T′ , whose 
vertical component will be: 

1
2 s θ1 (0), 

from (13) and (14). 
 One will then have: 

gU′  + p0 Ω – H + H′ + 
2

s θ1 (0) = 0, 

 
and the preceding relation will be written: 
 

gU = 1
1

(0)
(0)

2
s

θη −  
.    (15) 

 
 
 16. Jurin’s law. Laplace’s law. – Suppose that the tube is formed inside of a cylinder 
of revolution of very small diameter d.  The volume U that is raised in it is very roughly 
equal to that of a cylinder of the same diameter whose height is the distance z from the 
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lowest point of the meniscus to the horizontal plane that forms the free surface of the 
liquid outside of the tube.  As a result: 

U =
2

4

d
zπ . 

 
 Now, from the relation (13), gU will be equal to the perimeter s = π d of the tube 
times a constant k = η1 – θ1 / 2.  Consequently: 
 

2

4

d
g zπ = π dk, 

so 

z =
4 1k

g d
.     (16) 

 
 Laplace’s theory then leads to that conclusion that the height that a liquid in a tube of 
very small diameter is raised will be inverse to the diameter of the tube.  That law was 
stated for the first time by Borelli in 1670, then by Newton in 1704, and finally in 1708 
by the English physicist Jurin who it was named for. 
 Suppose that the cross-section of the tube is a rectangle that has sides a and b, and 
one of the two – say, a – is very small.  We will have: 
 

s = 2 (a + b), 
and roughly: 

U = abz. 
 The relation (15) will then give: 

gabz = 2k (a + b), 
so 

z = 
2k a b

g ab

+
. 

 
 If the side b becomes infinite, which will happen in practice when one considers the 
ascension of a liquid between two very close parallel layers, then one will have: 
 

z = 
2 1k

g a
. 

 
Upon comparing that expression to the expression (16), one will see that the height that 
the liquid rises in a cylindrical tube of revolution will be twice the height that it will rise 
between two parallel layers whose spacing is equal to the diameter of the tube.  That law 
is known by the name of Laplace’s law today, and its experimental proof was due to 
Newton. 
 Laplace’s theory then explains the two oldest known laws of capillary phenomena. 
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 17. On the contact angle. – A comparison of the expressions (10) and (15) that were 
found for gU will yield the equality: 
 

1( )
cos

2

o
ds

θ ϕ∫ = s [η1 (0) – θ1 (0)]. 

 If we set: 

cosds ϕ∫  = s cos ϕ0 

 
then ϕ0 will be the mean contact angle, and we will have: 
 

cos ϕ0 = 1 1

1

2η θ
θ
−

, 

 
in which η1 and θ1 are constants for the same liquid and the same solid.  We will see that 
the mean contact angle is a constant.  That is all that we can deduce logically from 
Laplace’s theory.  It would not be permissible then to suppose, as Laplace did, that the 
contact angle itself is constant.  It is true that in the special cases of a cylindrical tube of 
revolution and two very close parallel layers, that constancy will be obvious, by reason of 
symmetry. 
 Be that as it may, we assume, with Laplace, that the angle ϕ has the same value at 
every point of the contact curve.  We will then have: 
 

cos ϕ = 1 1

1

2η θ
θ
−

, 

 
in which θ1 and η1 are positive quantities, so that angle will be: 
 
 acute  if 2η1 > θ1 , 
 obtuse  if 2η1 < θ1 , 
 right  if 2η1 = θ1 , 
 zero  if   η1 = θ1 . 
 
 If η1 is greater than θ1 then the preceding formula will lead to a value for the cosine 
that is greater than 1, but that is absurd.  Laplace assumed that in that case, the liquid  
would wet the solid, and that it would be covered with a liquid sheath in such a way that 
everything would happen as if η1 and θ1 were equal. 
 Let us compare these results with the ones that Laplace obtained in his first paper.  It 
results from the conclusions that were reached in (10) and (11) that the angle is: 
 
 acute  if 2ρ > ρ′, 
 obtuse  if 2ρ < ρ′, 
 right  if 2ρ = ρ′, 
 zero  if   ρ = ρ′. 
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 Those results differ from the ones in his second paper only by the substitution of ρ for 
η1 and ρ′ for θ1.  They are identical if ρ and ρ′ are proportional to η1 and θ1, respectively.  
Now, that is what happens if one assumes, like Laplace, that the laws of attraction of 
solid molecules to liquid molecules are the same as the laws of attraction of liquid 
molecules to each other, so the intensities of the attractive forces will differ by only a 
constant factor. 
 
 
 18. New way of obtaining the equation of the free surface. – We have seen how 
Laplace obtained the equation of the free surface of a liquid in the neighborhood of a 
solid wall: 

gz = 
1 2

(0) 1 1

2 R R

θ  
+ 

 
.     (8) 

 
 Let us now say a few words about another method that Laplace employed in order to 
arrive at that equation. 
 In the equilibrium state, the forces that are exerted upon a molecule of the surface of 
the liquid have a resultant that is normal to that surface.  As a result, the virtual work that 
results from a displacement of a surface molecule in the tangent plane to the free surface 
must be zero.  The virtual work done by gravity is g δz .  If we let δJ denote the virtual 
work done by the capillary forces then we will have: 
 

g δz + δJ = 0, 
 
and in order to get δJ, it will suffice to consider the tangential component of the capillary 
forces, since the work done by the normal component will be zero under the virtual 
displacement in question. 
 Take a system of coordinate axes that has its origin at a point O on the free surface, in 
which Oz is normal to the surface, Ox and Oy are the tangents to the indicatrices at the 
point O.  The equation of the surface, when referred to those axes, will be: 
 

z = ax2 + by2 + cx3 + 3e x2y + 3f xy2 + hy3 + …, 
 
and that of the osculating paraboloid will be: 
 

z = ax2 + by2. 
 

 The attraction that is exerted by the liquid that is bounded by that paraboloid on a 
molecule that is situated at O is obviously (by reason of symmetry) directed normally to 
the surface.  In order to get the tangential component of the capillary forces that are 
exerted at O, it will then suffice to consider the liquid that found between the free surface 
and the osculating paraboloid. 
 Take a surface element ABCD (Fig. 10) in the xy-plane that is bounded on the one 
side by two arcs AB and CD of circles that have radii ρ and ρ + dρ, and on the other by 
two lines that pass through the origin and make angles of θ and θ + dθ with Ox. 
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Figure 10. 

 
 Take the contour of that element to be parallels to the normal at O.  We will get a 
cylinder that cuts out an element G on the free surface of the liquid and an element G′ on 
the surface S of the osculating paraboloid.  The portion of the cylinder that is found 
between G and G′ is a volume element for which we have to find the tangential 
component of its attraction at O.  Upon letting z and z′ denote the distances from the 
elements G and G′, resp., to the xy-plane, we will have: 
 

du = (z – z′) ρ dθ dρ 
 
for the volume of that element, in which z – z′ has the value: 
 

z – z′ = cx2 + 3e x2y + 3f xy2 + hy3 + … 
 
 In order for that value du to exert an appreciable effect on O, it is necessary that its 
distance from that point must be less than the radius of molecular activity.  If that radius 
is considered to be a first-order infinitesimal then x and y must be likewise of order one, 
and z and z′ must have order two.  One can then consider all of the points of the small 
cylinder FG to be the same distance from the point O; i.e., assume that all of the points of 
the element du are at the same distance ρ from O.  For the same reasons, one can regard 
all of the lines that join the point O to the various points of du as defining the same angle 
θ with the x-axis.  As a result, the component along that axis of the attraction that du 
exerts on the point O will have the expression: 
 

du f (ρ) cos θ, 
 
and the component along that axis of the attraction of the volume that is found between 
the free surface and the paraboloid will be: 
 

( ) cosdu f ρ θ∫  = ( ) ( ) cosz z f d dρ ρ θ θ ρ′−∫ , 
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in which θ varies from 0 to 2π and ρ, from 0 to the value of the radius of molecular 
activity, or what amounts to the same thing, from 0 to ∞. 

 Now, 3

z z

ρ
′−
depends upon only θ, because: 

x

ρ
= cos θ, 

y

ρ
= sin θ, 

and as a result: 

3

z z

ρ
′−
= c cos3 θ + 3e sin θ cos2 θ + 3f sin2 θ cos θ + h sin3 θ. 

 The preceding integral can then be written: 
 

2 4
30 0

cos ( )
z z

d f d
π

θ θ ρ ρ ρ
ρ

∞′−
∫ ∫ . 

 
 If we let B denote the value of the integral that is defined with respect to ρ and 
perform the integration with respect to θ then we will get: 
 

 
2 2 2 24 3 2 2 3

0 0 0 0
cos 3 cos sin 3 cos sin cos sinc d e d f d h d

π π π π
θ θ θ θ θ θ θ θ θ θ θ+ + +∫ ∫ ∫ ∫  

 

= 
3 3

4 4
c f

π π+ = 
3

4

π
(c + f), 

 
and the double integration will give: 

3

4

Bπ
(c + f). 

 
 In the same way, we will find that the component of the desired attraction along Oy 
is: 

3

4

Bπ
(e + h), 

and consequently, we will have: 
 

δJ = 
3

4

Bπ
[(c + f) δx + (e + h) δy] 

 
for the virtual work done by capillary forces. 
 It still remains to introduce the radii of curvature.  Now, one has: 
 

1 2

1 1

R R
+ = − dl dm

dx dy

 
+ 

 
, 

and 
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l = 
22

1

dz

dx

dz dz

dx dy

   + +   
   

, m = 
22

1

dz

dy

dz dz

dx dy

   + +   
   

. 

 
However, x and y are first-order infinitesimals, so the derivatives: 
 

 
dz

dx
= 2a x + 3c x2 + 6e xy + 3f y2, 

 

 
dz

dy
= 2b x + 3e x2 + 6f xy + 3h y2 

 
will also have order one.  As a result, their squares will be negligible in comparison to 
unity, and one will have approximately: 
 

l = 
dz

dx
, m = 

dz

dy
. 

 It will then result that: 

 
dl

dx
 = 2a + 6cx + 6ey, 

 

 
dl

dx
δ = 6 (c δx + e δy), 

 

 
dm

dy
= 2b + 6f x + 6h y, 

 

 
dm

dx
δ = 6 (f δx + h δy), 

 

 
dl dm

dx dy
δ  

+ 
 

= 6 [(e + f) δx + (e + h) δy], 

and consequently: 

δJ = − 
1 2

1 1

8

B

R R

π  
+ 

 
. 

 Finally, one will have: 

gz =
1 2

1 1

8

B

R R

π  
+ 

 
 

 
for the equation of the free surface, and its form does not differ from that of equation (8). 



CHAPTER II 
 

THEORIES OF GAUSS AND POISSON 
 
 

 19. Basis for Gauss’s theory. – Like Laplace, Gauss considered bodies that were 
composed of molecules that attracted each other along the lines that connected them with 
an intensity that was proportional to their masses and depended upon the distance 
between them. 
 From the principle of virtual work, the sum of the virtual works will be zero when 
one gives a virtual displacement to the system in equilibrium that is compatible with the 
constraints.  We shall look for those works for a ponderable liquid that is in contact with 
a solid wall. 
 If U is the volume of the liquid (whose density we continue to take to be unity) then 
the virtual work done by weight will be: 

g U δz, 
 
in which the z-axis is vertical and points downward. 
 Upon letting: 

mm′ f (r) 
 
represent the attraction of two liquid molecules, the work that corresponds to an 
increment δr in the distance will be: 
 

− mm′ f (r) δr = mm′ δϕ (r), 
 

in which the function ϕ is defined as it was in § 1. 
 The work that is done by a displacement of a solid molecule with respect to a solid 
molecule is: 

− mµ f1 (r) δr = mµ δϕ1 (r) . 
 
 Consequently, an application of the principle of virtual velocities will yield the 
equation: 

gU δz + 1( ) ( )mm r m rδϕ µ δϕ′ +∑ ∑ = 0. 

If one sets: 
 ( )mm rϕ′∑ = W, 

 1( )m rµ ϕ∑  = W1 , 

 
and if one supposes that the fluid is incompressible, which will permit one to write: 
 

gU δz = δ (g Uz), 
then that equation will become: 

δ (gUz + W + W1) = 0.    (1) 
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 That is the relation from which Gauss deduced the equation of the free surface and 
the value of the contact angle. 
 We remark that the function: 

− (gUz + W + W1) 
 

is nothing but the potential energy of the system.  It will then be easy, in general, to 
recognize whether the equilibrium is stable, because one knows that there will be stable 
equilibrium when the potential energy passes through a minimum.  That is one of the 
advantages of Gauss’s method over that of Laplace. 
 
 
 20. Calculating the work done by molecular forces. – Consider a liquid volume; 
one will then have: 

W = ( )mm rϕ′∑  = ( )r d dϕ τ τ ′∫∫ , 

 
in which the sextuple integral is taken in such a way that the two elements dτ and dτ′ are 
considered only once.  If one does not restrict oneself with that condition and one 
calculates the integral by taking all permutations of two elements then one will get: 
 

W = 1
2 ( )r d dϕ τ τ ′∫∫ . 

 
 Regard dτ as fixed; the corresponding integral will be: 
 

( )r dϕ τ ′∫ . 

 
 Now, that integral is the potential V of the entire volume at the center of gravity of the 
element dτ ; as a result: 

W = 1
2 V dτ∫ . 

 
 However, we have found (6) for the potential at an exterior point that is very close to 
the surface that bounds the attracting volume: 
 

V = θ (ε) − 1

1 2

( ) 1 1

2 R R

θ ε  
+ 

 
. 

 
 In the case that we are dealing with, in which the point considered is as interior point, 
we will have: 

V = θ (− ε) − 1

1 2

( ) 1 1

2 R R

θ ε  − + 
 

, 
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and since θ1 is very small with respect to θ, we can preserve the first term [which one 
cannot do in Laplace’s theory, since the term θ (ε) will disappear from the equations].  As 
a result: 

V = θ (− ε). 
 

 

S 

T 

T′ 
M 

 
Figure 11. 

 
 Furthermore, it is easy to express θ (− ε) as a function of θ (ε).  Indeed, let M be a 
point close to the separation surface S (Fig. 11) between two volumes T and T′ of the 
same liquid.  The potential at that point due to T is θ (− ε); the one that is due to T′ is 
θ (ε).  Consequently, the potential that is due to the volume T + T′ is θ (ε) + θ (− ε).  
Now, that point M is at a finite distance from the surface that bounds T + T′.  Hence, the 
resultant of the molecular forces that are exerted on it will be zero, and the potential of T 
+ T′ at that point will be a constant A.  One will then have: 
 

θ (− ε) = A − θ (ε), 
and: 

W = 1
2 [ ( )]A dθ ε τ−∫ = 1

2 ( )
2

AU
dθ ε τ− ∫ .    (2) 

 
 The work done by forces that are exerted between solid molecules and liquid 
molecules can, in an analogous fashion, be expressed with the aid of the function η (ε).  
We have: 

W1 = 1 1( )r d dϕ τ τ∫∫ , 

 
and since dτ and dτ1 refer to two different materials, we cannot introduce those two 
elements as we did in the expression W. 
 If we regard the element dτ as fixed then the portion of the corresponding integral 
will be: 

1 1( )r dϕ τ∫ , 

 
which is an integral that represents the potential V1 of the solid at a point of dτ.  Since 
that element is exterior to the solid, V1 will have a value η (ε) that is approximately 
constant, and we will have: 

W1 = ( )dη ε τ∫ .    (3) 

 
 We see that W and W1 are given by integrals of the same form.  Let us transform 
them. 
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Figure 12. 

 
 Let AB (Fig. 12) be an element of the surfaces of a fluid.  Draw normals to the surface 
at all points of its contour and cut the tube thus-obtained with two surfaces that are 
parallel to S, one of which is situated at a distance ε, while the other is at a distance ε + 
dε.  We have a volume element A′ B′ A″ B″ whose base A′B′ differs infinitely little from 
AB, since ε is very small.  Upon letting dω denote the area of the element AB, the volume 
of that element will be: 

dτ = dε dω , 
and that will give: 

( )dθ ε τ∫ = ( )d dθ ε ε ω∫∫ , 

 
in which the integration over ω is performed over the entire extent of the surface S that 
bounds the fluid, and the one over ε is performed from 0 up to the value of the radius of 
molecular activity, or what amounts to the same thing, from 0 to infinity.  That integral 
can then be written: 

0

( )d d
ε

ω θ ε ε
∞

∫ ∫ . 

 However, we have seen (14) that: 
 

0

( )dθ ε ε
∞

∫  = θ1 (0), 

so as a result: 

0

( )d d
ε

ω θ ε ε
∞

∫ ∫ = S θ1 (0), 

and from (2): 

W = 1(0)

2 2

SAU θ− . 

 
 Upon transforming the expression (2) in the same way, it will become: 
 

W1 = S η1 (0). 
 

 In those equalities, S denotes the entire surface that bounds the fluid, and S1 denotes 
the contact surface of the fluid and the solid. 
 We then have: 
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δW = − 1

2

θ δS,  δW1 = η1 δS1 

 
for the virtual work done by molecular forces. 
 
 
 21. Transformation of the equilibrium equation. – Substitute the preceding values 
for W and W1 in the relation (1) and neglect the term AU / 2, moreover, which will 
disappear when one takes the variations; it will become: 
 

1
1 12

gUz S S
θδ η − + 

 
= 0. 

 
 If we let Σ denote the portion of the surface S that is not in contact with the solid then 
we will have: 

S = S1 + Σ, 
 
and the preceding equation will become: 
 

1 1
1 12 2

gUz S
θ θδ η  − Σ + −  

  
= 0.    (4) 

 
 Let us calculate the variation of each of the terms of the quantity inside the brackets. 
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Figure 13. 

 
 Let AB be one of the surfaces that bound the fluid in its equilibrium position (Fig. 13) 
and let A1 B1 be its position after displacement.  Those two surfaces enclose a small 
volume between them that we decompose into volume elements by drawing normals 
MM′, NN′ to the surface AB through the contour of each element dσ of that surface.  
Upon letting λ denote MM′, the volume element will have the expression: 
 

dτ = λ dσ. 
 
 The term gU z is the moment of the weight of the liquid with respect to the xy-plane.  
Its variation will then be the moment of the volume that is found between the equilibrium 
surface of the fluid and its surface after displacement; consequently: 
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δ (gU z) = gz dλ σ∫ . 

 
 In order to get the variation of the second term, compare the areas Σ and Σ1 of the 
surfaces AB and A1B1 , resp., that are found between the lines of contact L and L1, resp., 
of those surfaces and the solid walls; one will have: 
 

δΣ = Σ1 – Σ . 
 
 If we draw normals AA′, BB′ to the surface AB through the points of L then those 
normals will cut the surface A1B1 along a line A′B′ that bounds an area Σ′ on that surface.  
Upon letting Σ″ denote the area that is found between A′B′ and A1B1 , we can write the 
variation of Σ as: 

δΣ = Σ′ + Σ″ – Σ  = Σ″ + d dσ σ′ −∫ ∫ . 
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Figure 14. 

 
 Compare the surfaces dσ and dσ′ of the elements MN and M′ N′.  In order to do that, 
suppose that the edges of the elements MN belong to two lines of curvature of the surface 
AB that passes through the point M.  The lines of curvature will intersect at a right angle, 
so we will have: 

dσ = MN × MP, 
 

in which MN and MP (Fig. 14) are the two sides of the element.  The normals that are 
drawn through the points of MN and MP will cut the surface Σ1 along two lines M′ N′ and 
M′ P′ that are roughly perpendicular; as a result: 
 

dσ′ = M′ N′ × M′ P′. 
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 The points M and N belong to the same line of curvature, so the normals at those 
points will intersect at a point C.  Upon letting R1 denote the radius of curvature MC, one 
will have: 

MN = α R1 , MN = α (R1 + λ), 
 

in which α is the angle between the normals M and N, because M′ N′ is roughly 
perpendicular to the two normals. 
 One infers from this that: 

M N

MN

′ ′
= 1 + 

1R

λ
. 

 Similarly, one has: 
M P

M N

′ ′
′ ′

= 1 + 
2R

λ
, 

and consequently: 

d

d

σ
σ

′
= 

1 2

1 1
R R

λ λ  
+ +  

  
, 

 
or, upon developing this and neglecting the term in λ2, which is a second-order 
infinitesimal, since λ has order one: 
 One deduces that: 

dσ′ – dσ = λ ds 
1 2

1 1

R R

 
+ 

 
 

and 

d dσ σ′ −∫ ∫ = 
1 2

1 1
d

R R
λ σ
 

+ 
 

∫ . 
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Figure 15. 

 
 Let us evaluate the annular area Σ″.  Let A and C be two points that are infinitely-
close to the contact curve L (Fig. 15).  Draw normal planes to that curve through those 
points.  They will cut out an element A′ C′ A1 C1 from the area Σ″ whose surface area is 
roughly: 

dω = ds × A1 A′, 
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in which ds denotes the element AC of the curve L.  If ϕ is the contact angle in the 
equilibrium state then the contact element AA1 A′ after the displacement can coincide with 
ϕ, and since the angle at A′ is roughly a right angle, since AA′ is normal to the surface Σ, 
one will have: 

A1 A′ = A A′ cot ϕ = 
cos

sin

ϕλ
ϕ

. 

 As a result: 

dω = 
cos

sin

ϕλ
ϕ

ds 

and 

Σ″ = dω∫  = 
cos

sinL
ds

ϕλ
ϕ∫ . 

 
 The variation of the second term is then: 
 

− 1

2

θ δΣ  = − 1

1 2

1 1 cos

2 sinL

d ds
R R

θ ϕλ σ λ
ϕ

  
+ +  

  
∫ ∫ . 

 
 The variation of the third term is easily obtained.  Indeed, since S1 is the contact 
surface of the liquid and the solid, δS1 will be the area that is found between the contact 
lines L and L1 .  An element of that area is AA1C1A (Fig. 15); consequently: 
 

δS1 = 1ds AA×∫ . 

 
 However, in the right triangle AA1 A′, one has: 
 

AA1 = 
sin

λ
ϕ

; 

hence: 

1
1 12

S
θη δ − 

 
 = 1

1 2 sinL
ds

θ λη
ϕ

 − 
 

∫ . 

 
 The condition (4) will then become: 
 

1 1 1
1

1 2

1 1 cos

2 2 sin 2 sinL L
gz d d ds ds

R R

θ θ θϕ λλ σ λ σ λ η
ϕ ϕ

   − + − + −   
  

∫ ∫ ∫ ∫  = 0, 

or 

1 1 1
1

1 2

1 1
cos

2 2 2 sinL
gz d ds

R R

θ θ θ λλ σ η ϕ
ϕ

    − + + − −    
   

∫ ∫  = 0.  (5) 
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 22. Equation of the free surface. Contact angle. – That equation must be satisfied 
no matter what value is given to λ, provided that it is compatible with the constraints.  
Now, the liquid was assumed to be incompressible.  Consequently, the algebraic sum of 
the variations of the volume that result from the virtual displacement of the bounding 
surfaces must be zero.  We saw in the preceding number that the volume of an element 
that is included between the equilibrium surface and the deformed surface is dτ = λ dσ.  
As a result, the incompressibility of the fluid will lead to the condition: 
 

dλ σ∫ = 0.     (6) 

 
 If we take that equality into account then the relation (5) will be satisfied for an 
arbitrary value of λ that is compatible with the constraints if: 
 

gz − 1

1 2

1 1

2 R R

θ  
+ 

 
 = K,    (7) 

η1 − 1 1

2 2

θ θ− cos ϕ = 0,     (8) 

in which K is a constant. 
 Indeed, those conditions are sufficient, because if they are fulfilled then the second 
term in (5) will be zero, and the first one will reduce to the product of a constant with the 
integral of λ ds, which is zero, from (6). 
 Let us show that they are necessary; i.e., if they are not fulfilled then we can arrange 
things so that the relation (6) is satisfied, while the relation (5) is not. 
 First assume that: 

gz − 1

1 2

1 1

2 R R

θ  
+ 

 
 

 
is not a constant.  It will then be a function of the coordinates that presents at least one 
maximum and one minimum, since it is applied to the bounding surface.  If one then 
takes K to be a value that is found between that maximum and minimum then the 
function: 

gz − 1

1 2

1 1

2 R R

θ  
+ 

 
 − K     (9) 

 
will be sometimes positive and sometimes negative.  Give a value to λ that is zero along 
the contact curve and has values with the same sign as the preceding difference at any 
other point of the surface.  Those values can always be chosen in such a way that the 
condition (6) is satisfied.  If that is true then one will have: 
 

K dλ σ∫ = 0, 

and as a result: 
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1

1 2

1 1

2
gz d

R R

θ λ σ
  

− +  
  

∫  = 1

1 2

1 1

2
gz K d

R R

θ λ σ
  

− + −  
  

∫ . 

 
 However, by hypothesis, λ always has the same sign as the difference (9).  
Consequently, the element of the latter integral will be positive, and that integral cannot 
be annulled.  On the contrary, the second integral in (5) is zero, since the value of λ is 
zero along the integration contour.  The relation (5) cannot be satisfied for all values of λ 
that are compatible with the constraints then under the conditions that we have imposed.  
The condition (7) is necessary then. 
 Suppose that it is fulfilled, but that (8) is not.  One can always take λ to have values 
that satisfy (6) in such a way that the sign of those values along the contact line L is the 
same at each point at that of the quantity: 
 

η1 − 1 1 cos
2 2

θ θ ϕ− . 

 
 The first integral in (5) will be zero then, while the second one will have a positive 
value since its element is positive; as a result, the relation (5) will not be satisfied. 
 The conditions (7) and (8), when combined with the condition (6), are necessary and 
sufficient then.  The condition (7) is nothing but the equation of the free surface of the 
liquid; it is identical to the one that Laplace found. 
 One deduces from the condition (8) that: 
 

cos ϕ = 1 1

1

2η θ
θ
−

, 

 
which shows that the contact angle is constant, which is a result that could not have been 
obtained by Laplace’s calculations. 
 
 
 23. Potential due to a liquid of variable density. – In 1831, the year that followed 
Gauss’s publication, Poisson published his Nouvelle Théorie de l’action capillaire, in 
which he reproached Laplace for supposing that the density of the liquid was constant.  
The same criticism applies to Gauss’s theory. 
 By some laborious calculations, Poisson succeeded in proving that it was impossible 
to imagine a system of liquid molecules in equilibrium under the action of their mutual 
attraction without any variation of their density, and that if one takes into account that 
variation of the density then one will nonetheless get back to Laplace’s equation for the 
free surface, with the only difference being that the two constants that enter into it will 
have a more complex significance. 
 Fortunately, it is not necessary to repeat Poisson’s analysis in order to arrive at that 
result.  We shall arrive at it much more simply here. 
 We seek the potential of a liquid of variable density at a point M that is very close to 
its free surface S1 (Fig. 16).  Drop a normal MP1 to the surface from that point.  If one 
displaces along that normal towards the interior of the liquid then the density will vary in 
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a continuous manner in the neighborhood of the free surface, and then take on a constant 
value. 
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Figure 16. 

 
 Draw surfaces of equal intensity S2, S3, S4 through the various points P2, P3, P4, resp., 
along that normal.  We suppose, for the moment, that the density varies in a 
discontinuous fashion when one crosses those surfaces and keeps a constant value in the 
space between the two of them. 
 Let ρ1, ρ2, ρ3 be the values of the density between S1 and S2 , between S2 and S3 , and 
between S1 and S2 , resp.; we assume that the density ρ4 is constant outside of S4 .  We can 
suppose that the shell of density ρ1 is bounded by S1 , on the one hand, and extends to 
infinity, on the other, with the condition that one must add a shell of uniform density ρ2 − 
ρ1 that is bounded by S2 and extends to infinity, a shell of uniform density ρ3 − ρ2  that 
goes from S3 to infinity, and finally, a shell of uniform density ρ4 − ρ3  that goes from S4 
to infinity.  The search for the potential at M will then be found to reduce to that of the 
potential due to various volumes of constant density. 
 Now, we know that the potential of a liquid of constant unit density is: 
 

V = θ (ε) – θ1 (ε) 
1 2

1 1

R R

 
+ 

 
. 

  
 Since θ1 is very small with respect to θ, we can neglect the second term, and we will 
have: 

V = ρ θ (ε) 
 
for the potential of a liquid of density ρ. 
 Set: 

MP1 = ε, P1 P2 = ζ1 , P1 P3 = ζ2 , P1 P4 = ζ3 ; 
 
we will then get: 
 

V = ρ1 θ (ε) + (ρ2 − ρ1) θ (ε + ζ1) + (ρ3 − ρ2) θ (ε + ζ2) + (ρ4 − ρ3) θ (ε + ζ4) 
 
for the potential at M, or upon setting: 
 

ρ0 = 0,  ζ0 = 0, 
we will get: 
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V = (ρ1 − ρ0) θ (ε + ζ0) + (ρ2 − ρ1) θ (ε + ζ1) + … 
or rather: 

V = 1 1( ) ( )i i iρ ρ θ ε ζ− −− +∑ . 

 
 Consequently, if we now suppose that the density varies in a continuous manner then: 
 

V = ( )dρ θ ε ζ+∫ .     (10) 

 
 We remark that the position of the foot P1 of the normal that is based at the point M 
can be determined on the surface S1 with the aid of the two coordinates α and β.  The 
position of a point such as P2 will depend upon the value of the density, in addition.  
Consequently, the quantity ζ1, which fixes the position of that point, will be a function of 
α, β, and the density ρ of the liquid. 
 
 
 24. Free surface and contact angle in the case of a variable density.  – Hydrostatics 
teaches us that in a fluid in equilibrium the surfaces of equal density will coincide with 
the surfaces of equal pressure.  Now, we have found (7) that the pressure at a point of a 
ponderable fluid is given by the equality: 
 

p = V + gz + const., 
 
without making any hypothesis on the density. 
 The surfaces of equal pressure, and as a result, the surfaces of equal density in a fluid 
in equilibrium will then have the equations: 
 

V + gz = const.      (11) 
 
 However, one can neglect gz with respect to V.  In order to see that, return to the case 
in which the density is constant; one will then have: 
 

V = θ (ε) − θ1 (ε) 
1 2

1 1

R R

 
+ 

 
, 

 
and the equation of the free surface will be: 
 

gz = 1

1 2

(0) 1 1

2 R R

θ  
+ 

 
. 

 
 Hence, for the free surface, gz has the same order as θ1(0), while V has the same order 
as θ.  The order of magnitude of V cannot change appreciably when one passes to the 
case of a variable density; similar statements will apply to the gz of the free surface.  
Since the density is variable only in the neighborhood of the free surface, moreover, the 
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gz of the surfaces of equal density will likewise have the same order of magnitude.  
Consequently, one can write equations (11): 
 

V = const. 
 

 We show that it is possible to satisfy that condition by supposing that the surfaces of 
equal density S1, S2, S3, S4 are mutually parallel. 
 Indeed, when the surfaces are parallel, ζ1, ζ2, … will have the same value at any point 
of those surfaces, and consequently they will not depend upon the coordinates α and β, 
but only upon ρ.  Therefore, if the point M belongs to one of those surfaces then ε will be 
constant, and θ (α + ζ) will depend upon only ρ.  As a result, one will obtain a constant 
upon performing the integration of (10) between the value ρ0 of the density at the point 
considered and its constant value of 1 at an appreciable distance from that point.  The 
potential will then be constant along surfaces of equal density, and the equilibrium 
condition will be satisfied. 
 We do not know the form of the functions θ, so it would be impossible for us to show 
that there is no other solution to the problem.  We shall assume that without proof. 
 However, if the potential V is a constant when ε is constant then that potential will 
generally be a function of only ε.  It will become zero when ε is finite, because in that 
case ε + ζ will be likewise finite, and the integral element θ (ε + ζ) dρ will be zero.  If the 
point is interior to the liquid and at an appreciable distance from the surface then ε will be 
negative and finite, and since ζ is always very small, ε + ζ will have a finite negative 
value.  Now, we have shown that θ (− ε) = A − θ (ε); consequently, θ (ε + ζ) will reduce 
to a constant, and the same thing will be true for the integral V.  In a word, the potential V 
will be a function of ε that enjoys the same properties as the function θ (ε) that represents 
the potential both Laplace’s and Gauss’s theories.  Since we make use of only the 
properties of that function in the latter theory, it is obvious that we will arrive at the same 
conclusions as the ones that we have found by replacing the function θ (ε) with the 
function V = θ′ (ε) everywhere.  The free surface and contact angle will then be given by 
the same equations. 
 We shall return much later to some other theories of capillarity that are entirely 
independent of the hypothesis of central forces.  We shall now apply the results that were 
found before. 
 For the moment, we observe only that the theory that is called the theory of surface 
tension will lead to the same identical result as Gauss’s theory, and consequently, that of 
Laplace. 
 Indeed, under an arbitrary virtual displacement, the work that is done by that tension 
will be proportional to δS ; i.e., it will have precisely the same expression as the work 
done by molecular attraction under the hypotheses of Laplace and Gauss. 
 Therefore, experiments cannot decide between the theory of attraction and that of 
tension, which is currently in favor.  All of the facts that are predicted by the one will be 
likewise predicted by the other. 
 

___________ 



CHAPTER III  
 

THIN FILMS 
 
 

 25. The equilibrium surface is minimal. – If we submerge a framework that is 
composed of flexible and rigid wires in a liquid then upon taking the framework back out 
of the liquid, we will get a system of thin films that are bounded by the wires.  Let us 
look for the equilibrium surfaces of those films. 
 The general condition for stable equilibrium is that: 
 

gUz − 1 1
1 12 2

S
θ θη Σ + − 

 
 

 
must be maximum.  The last term in that sum can be neglected in the case that we are 
concerned with, because the area of the contact surface S1 of the liquid and the solids will 
be proportional to the thickness of the film, which is always excessively small.  The 
volume U is likewise proportional to that thickness.  As a result, it will be likewise very 
small, and the first term can be neglected with respect to the second one, provided that 

1 / 2θ , which represents what one can call the surface tension of the liquid, is nonetheless 

very small. 
 The condition of equilibrium then reduces to this one: − (θ1 / 2) Σ must be a 
maximum, or rather, Σ must be a minimum.  Now, in the case of just one film, the free 
surface Σ is composed of the two faces of the film, and those surfaces will be roughly 
equal if the thickness is very small.  Consequently, in order for there to be stable 
equilibrium, it will suffice that the area Σ / 2 of one of those faces should be a minimum. 
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Figure 17. 

 
 That conclusion can be verified experimentally very easily by means of an 
experiment that is due to Van der Mensenbrugghe.  One submerges a metallic hoop ABC 
(Fig. 17) that is suspended by three wires in a liquid – for example, the glycerin that 
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Plateau used.  One withdraws the hoop and carefully places a ring of cotton thread that 
was previously moistened with the same liquid in the planar film that was obtained.  That 
thread will take on an arbitrary form, but if one would like to burst the film in the middle 
of the ring that it is included in then the thread will tense briefly and become circular.  
Now, of all the curves with the same perimeter, the circumference will be the one that 
bounds the largest area.  The area that is found between the circumference D and the 
contour of the metallic ring will then be minimal when the liquid is in equilibrium. 
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Figure 18. 

 
 26. The mean curvature of the surface must be zero in the equilibrium state. – 
Let AMB (Fig. 18) be one of faces of the liquid film.  Draw a surface A1M′ B1 that is very 
close and parallel to it.  If AMB is a minimal surface then the areas AMB and A1M′ B1 
must be equal, up to second-order infinitesimals.  Draw normals to that surface through 
the contour of AB.  Those normals will cut out an area of Σ′ from the surface A1M′ B1 , 
and if one lets Σ″ denote the annular area that is found between the line A′ B′ and the line 
A1B1 then the preceding condition will be expressed by: 
 

Σ′ + Σ″ = Σ. 
 

 Now, we have previously found (§ 21) that: 
 

Σ′ − Σ = 
1 2

1 1
d

R R
λ σ
 

+ 
 

∫ , 

 

Σ″ = cos

sin
ds

ϕλ
ϕ∫ , 

 
in which λ is the length of the normal, dσ is the area of an element MN of the surface AB, 
ds is the length of an element of the contact curve of AB, and ϕ is the contact angle.  
Consequently, we must have: 
 

1 2

1 1
cotd ds

R R
λ σ λ ϕ
 

+ + 
 

∫ ∫  = 0, 

 
and since that condition must be satisfied for any λ, we must have: 
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1 2

1 1

R R
+ = 0, 

cot ϕ = 0. 
 
 The two radii of principle curvature of the surface must be equal and have opposite 
signs.  The surfaces that enjoy that property have been given the general term of minimal 
surfaces. 
 The equality cot ϕ = 0 expresses the idea that the contact angle must be a right angle.  
However, since the direction of the tangent plane to a wire is arbitrary, that condition will 
amount to saying that the surface must pass through the wire. 
 In summary, the problem that we have posed consists of determining the minimal 
surface that passes through a given contour. 
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Figure 19. 
 
 
 27. The helicoid is an equilibrium surface. – Let OM (Fig. 19) be a line that is 
perpendicular to OZ and capable of moving while constantly being supported by OZ and 
a helix AB that is traced on a cylinder of revolution that has OZ for its axis.  The surface 
that is generated by OM is a helicoid.  In order to show that it is a minimal surface, it will 
suffice to show that there exist two mutually-perpendicular asymptotic lines at each 
point.  Now, one of the asymptotic lines at M is obviously OM itself, so any rectilinear 
generator of a surface will always be an asymptotic line.  The other one is the helix AB, 
because one can define the asymptotic lines by saying that their osculating plane agrees 
with the tangent plane to the surface.  Now, the osculating plane to a helix is always 
normal to the cylinder on which that helix is traced.  It will then pass through the line 
OM, and since it also passes through the tangent to the helix, it will coincide with the 
tangent plane to the helicoid.  Since those two lines are perpendicular, because the 
cylinder is one of revolution, the surface will indeed be a minimal surface. 
 Schwarz realized that equilibrium surface experimentally.  In order to do that, he 
stretched a wire along the axis AB (Fig. 20) of a glass cylinder by means of two metallic 
wires CD and EF that were supported by the bases of the cylinder.  Those two wires were 
parallel, so he formed a planar film by supporting it with the three wires AB, CD, EF.  
Upon rotating CD, the film deformed and generated a surface ECDF that passed through 
AB and cut the surface of the cylinder normally.  That surface was a helicoid. 
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Figure 20. 

 
 With a little care, one can then obtain a surface with several turns.  If one suppresses 
the vertical wire AB then the helicoid will nonetheless remain an equilibrium surface, but 
the equilibrium will no longer be stable, and it will be impossible to obtain a surface with 
several turns experimentally.  Schwarz has himself said that if one constructs such a 
surface with the aid of the central wire and then cuts that wire then the helicoidal film 
will disappear and be transformed into two planar films that close the bases of the glass 
cylinder. 
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Figure 21. 

 
 28. The catenoid is an equilibrium surface. – Let us look for the form of the 
equilibrium surface for a liquid film that is supported by two circumferences A and A′ 
(Fig. 21) whose planes are perpendicular to the line OO′ that joins their centers. 
 That surface must be one of revolution around OO′.  One of the radii of principal 
curvature at the point M will then be the radius MN of the circle of intersection of the 
surface with a plane that is perpendicular to the axis OO′.  The other one will be the 
radius of curvature MC of the meridian curve AMA′ of the surface.  The form of that 
curve must then be such that one has MN = MC, and upon expressing that condition, one 
will have the equation of that curve. 
 Indeed, let l be the length of the curve, and let GP be the distance from its center of 
gravity G to the axis OO′.  From Guldin’s theorem, the surface that is generated by that 
curve will be 2π l ⋅⋅⋅⋅ GP.  One must compare the meridian AMA′ of the equilibrium surface 
with the other curves that pass through the points A and A′, and for which, the product 
l GP⋅  must be greater than it is for the curve AMA′.  However, we can confine ourselves 
to comparing it with those of the curves that have the same length l as the curve AMA′.  
The minimum of our product will take place at the same time as that of GP for the curves 
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of the same length l.  Consequently, the desired curve will be the one for which the center 
of gravity is the point that is closest to OO′ − i.e., the lowest one possible if one supposes 
that the curve AMA′ is in a vertical plane.  Now, that is what will happen for a ponderous 
line under the action of gravity, and the form of that line will be a catenary.  Upon 
rotating it around OO′, that catenary will generate a surface that one calls a catenoid. 
 The catenoid is then an equilibrium surface for a thin film. 
 
 
 29. On the stability of equilibrium. – In order for equilibrium to be stable, it is 
necessary that the potential energy must pass through a relative minimum.  Consequently, 
the condition for the stability of equilibrium is that the area of the surface Σ must be a 
relative minimum.  Now, upon expressing the idea that the mean curvature of a surface is 
zero, we write only that the first-order variation must be zero.  In order for it to have a 
relative minimum, it is necessary, in addition, that the second variation must likewise be 
zero.  That subject requires a very delicate discussion, which was done in the most 
elegant fashion by Schwarz. 
 The consideration of geodesic lines will permit us to appeal to a simple example that 
will assist us in understanding the spirit of the method. 
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Figure 22. 

 
 Let AMB (Fig. 22) be a geodesic line on a surface.  If it is possible to draw a geodesic 
line A′M′ B′ that is very close to it and does not cut the latter then AMB will be a relative 
minimum. 
 Indeed, consider an arbitrary line AM′ B that is traced on the surface and ends at the 
points A and B.  That line will meet the geodesic line A′M′ B′ that is close to AB and a 
point M′.  Draw an orthogonal trajectory through M′ that cuts AB at the point M, and 
draw a second trajectory through a point N that is infinitely close to M.  That trajectory 
will meet the geodesic line A′M′ B′ at N′, and the two segments MN and M′ N′ will be 
equal.  The corresponding segment M′ N1 of the curve AM′ B will be larger than M′ N′, 
since the small triangle M′ N′ N1 is rectangular at N′.  Consequently, each element of the 
geodesic line AMB will correspond to an element of longer length on the line AM′ B, and 
that element will be larger than the first one.  The geodesic line will indeed be a relative 
minimum then. 
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Figure 23. 
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 Minimal surfaces exhibit an analogous property.  Before establishing it, we shall 
show that if one traces out a tube that cuts a series of minimal surfaces orthogonally then 
the areas of the sections of those surfaces by the tube will be equal to each other. 
 Indeed, if Σ and Σ′ are two close minimal surfaces that cut the same tube T (Fig. 23) 
then the difference between the areas Σ and Σ′ of the sections will be: 
 

Σ′ − Σ = 
1 2

1 1
cotd ds

R R
λ σ λ ϕ
 

+ + 
 

∫ ∫ , 

 
from a general argument that was made already. 
 Now, the first integral is zero, since the surface Σ is a minimal surface, and as a result, 
its mean radius of curvature will be constant.  The second one is likewise zero, because 
ϕ denotes the angle between the tangent to the surface Σ and the tangent to the surface of 
the tube.  Since those two surfaces cut orthogonally, that angle will be a right angle, and 
cot ϕ will then be zero.  As a result, the areas Σ and Σ′ will be equal. 
 We shall now show that if a minimal surface AMB (Fig. 22) is found in a region 
where the neighboring minimal surfaces do not intersect then the area of that surface will 
be smaller than that of any other surface AM′ B that is bounded by the same contour as 
AB. 
 In order to do that, draw a tube that cuts the surface AB orthogonally through an 
element MN of that surface.  It will cut out an element M′ N1 from the surface AM′ B and 
an element M′ N′ from a minimal surface A′M′ B′ that is close to AMB, and that area of 
the latter element will be equal to that of MN, from the preceding.  The volume M′ N′ N1 
can be considered to be a cylinder with parallel bases that has M′ N′ for a cross section.  
As a result, the area of M′ N1 will be larger than that of M′ N′ or the equal element MN.  
Since the minimal surfaces that are close to AMB do not intersect, by hypothesis, all of 
the elements of AMB will correspond to elements of AM′ B whose areas are larger.  
Consequently, the area of the surface AMB will be smaller than that of any other surface 
that is bounded by the same contour. 
 We thus reach the conclusion that a surface with zero mean curvature will be a stable 
equilibrium surface when one can construct surfaces of zero mean curvature that are 
infinitely close to that surface and do not intersect it. 
 
 
 30. Unstable equilibrium. – On the contrary, when the surfaces of mean curvature 
that are close to the equilibrium surface do cut them, the area will not be a minimum and 
the equilibrium will not be stable. 
 In order to prove that property, we begin, as before, with a consideration of geodesic 
lines. 
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Figure 24. 
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 Let AMB (Fig. 24) be a geodesic line that is cut by another geodesic line AM′ B at A 
and B.  Those two lines have different lengths, and the difference between those lengths 
will be a third-order infinitesimal, if one considers the distance between two points M and 
M of the two lines to be a first-order infinitesimal. 
 Indeed, we can characterize a geodesic line that passes through A by taking the 
parameter to be the angle that the line makes with an arbitrary line that is drawn through 
A.  The length of the line will then be a certain function of the parameter.  Upon letting α 
and α + dα denote the values of the parameter that correspond to the two lines AMB and 
AM′ B, resp., we will have: 

f (α) and f (α + dα) 
 
for the lengths of those lines, respectively. 
 The difference between those lengths is then: 
 

f (α + dα) − f (α) = f′ (α) dα +
2 3

( ) ( )
1 2 1 2 3

d d
f f

α αα α′′ ′′′+
⋅ ⋅ ⋅

+ … 

 
 However, since the curves considered are geodesic lines, one will have: 
 

f′ (α) = 0, f′ (α + dα) = 0, 
 
and one deduces from those two equalities that: 
 

f″ (α) = 0. 
 
 Consequently, the difference between the lengths of the geodesic lines that end at A 
and B will reduce to: 

f (α + dα) − f (α) =
3

( )
1 2 3

d
f

αα′′′
⋅ ⋅

+ … 

It will then have order three. 
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Figure 25. 

  
 We shall show that when a geodesic line AMB (Fig. 25) and the neighboring geodesic 
curves intersect, the line AMB will not be the shortest path that goes from A to B. 
 Indeed, if CM′ D is a geodesic curve that intersects AMB then the lengths CMD and 
CM′ D differ only by a third-order infinitesimal.  Upon neglecting that quantity, one will 
have: 

CMD = CM′ D 
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and 
ACMDB = ACM′ DB. 

 
 Join an arbitrary point E of the first path with an arbitrary point F on the second one 
by means of a geodesic line.  Its length will be shorter than the path ECF and will differ 
from it by a second-order infinitesimal quantity.  Consequently: 
 

ACM′ DB > AEFM′ DB, 
or, from the preceding equality: 

ACMDB > AEFM′ DB, 
 
which proves the stated proposition. 
 We now pass on to surfaces.  One can show that if two infinitely-close minimal 
surfaces are bounded by the same contour then the areas of those surfaces will differ by 
only a third-order infinitesimal by an argument that is analogous to the one that is 
employed for geodesic lines. 
 Assume that is true and consider a minimal surface S that is bounded by a curve L and 
is cut by another neighboring minimal surface S′ along L′ . (L′ is a closed contour that is 
interior to the contour L.)  From the preceding, the areas that are bounded by L′ and 
belong to S, in one case, and S′, in the other, can be considered to be equal if one neglects 
third-order infinitesimals.  As a result, the area S of the minimal surface S that is bounded 
by L will be equal to the area S″ that is found between L and L′, plus the area S′ that is 
bounded by L′ and belongs to S′.   Trace out a contour L1 on the surface S that is interior 
to L, but exterior to L′, and trace out a contour 1L′  in the surface S′ that is interior to L′.  
Pass a minimal surface Σ through the two curves L1 and 1L′  and also denote the area of 

that surface by Σ, which be annular and bounded by two contours L1 and 1L′ . 

 I will then let S1 denote the area of the portion of S that is found between L and L1, let 
S2 denote the area of the portion of S that is found between L1 and L′, and let S3 denote 
the area of the portion that is interior to L′. 
 I will let 1S′  denote the area of the portion of S′ that is found between L′ and 1L′ , and 

let 2S′  denote the area of the portion of S′ that is interior to 1L′ . 

 One will then have: 
S3 = 1 2S S′ ′+ ,  

up to third-order infinitesimals. 
 On the other hand: 

Σ < S2 + 1S′ . 

 Hence: 
S1 + S2 + S3 > S1 + Σ + 2S′ . 

 
 Hence, S1 + S2 + S3 (i.e., the total area of S) will be greater than the area S1 + Σ + 2S′ , 

which is also bounded the by the contour L.  The area of that surface will not be minimal 
then, and the equilibrium will not be stable. 
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 Consequently, an equilibrium surface corresponds to an unstable equilibrium when 
that minimal surface can be cut by a neighboring minimal surface. 
 
 
 31. The catenoid can correspond to either a stable or unstable equilibrium. – Let 
us see whether there exists a minimal surface that is infinitely close to the catenoid and 
cuts it.  As a minimal surface, we can take a catenoid that has the same axis, and the 
problem will come down to looking for a catenary that can be cut by an infinitely-close 
catenary at two points. 
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Figure 26. 

 
 If we can draw an arc of the catenary A′M′ B′ that is infinitely close to AMB and does 
not cut AMB then the revolution of those two arcs of the catenary will generate two 
catenoids – i.e., two minimal surfaces that are infinitely close and do not cut; the 
equilibrium will then be stable. 
 On the other hand, if we can draw an arc of the catenary A′M′ B′ that is infinitely 
close to AMB and does cut AMB at two points C and D (Fig. 26) then the two catenoids 
will cut along two circumferences that will be parallels to C and D.  The set of those two 
parallels will form a closed contour L′ that is interior to the contour L that bounds the 
catenoid AMB and is composed of parallels to A and B.  The equilibrium will then be 
unstable. 
 Let AMB be an arc of the catenary.  Take the infinitely-close catenary to be a 
homothetic catenary that has a point P on the axis for its pole and a homothety ratio of 1 
– ε.  If one can draw two tangents PC and PD to the catenary AMB through the point P 
then those lines will be likewise tangent to the homothetic catenary A′M′ B′, and those 
curves, which are infinitely close, will intersect at the contact points C and D.  
Conversely, if the two catenaries intersect then the point of intersection will be very close 
to the two contact points of a tangent PC that is common to the two curves.  The stability 
of equilibrium of a catenoid will then depend upon the possibility of finding a point on 
the axis where one can or cannot draw two tangents to the generating catenary. 
 If there exists a point P where one can draw two tangents to the arc AMB then the 
equilibrium will be unstable.  If there exists a point P where one cannot draw any tangent 
to the arc AMB then that arc will not meet its homothetic transforms with respect to the 
point P, and the equilibrium will be stable. 
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Figure 27.  Figure 28. 

 
 Two cases can present themselves: If the tangents to the extremities A and B of the 
catenary cut at a point C (Fig. 27) that is located between the axis and the catenary then it 
will not be possible to draw the tangent to the curve at a point that is taken between P and 
Q.  Consequently, there will exist infinitely-close catenaries that do not cut at AMB, and 
the equilibrium will be stable. 
 However, if the tangents at A and B cut beyond the axis (Fig. 28) then it will be 
possible to draw two tangents to AMB between P and Q, and the equilibrium will be 
unstable. 
 The passage from the stable equilibrium state to the unstable equilibrium state will 
take place when the tangents to the extremities of the catenary cut along the axis. 
 Schwarz, who worked with glycerin, could verify those conclusions experimentally.  
When the equilibrium ceases to be stable, the corresponding catenoid will disappear, and 
the liquid will form two circular planar films that pass through the contours of two rigid 
circumferences. 
 
 
 32. Riemann surfaces. – In an important paper, the geometer Riemann determined 
the minimal surfaces that pass through a given contour.  The better part of his paper was 
dedicated to the case in which the surface was bounded by a skew polygon whose edges 
were rectilinear.  Darboux presented Riemann’s method in his Leçons sur la théorie 
générale des surfaces, along with the results that he obtained in the case that we just 
pointed out (3). 
 However, there is a case that Riemann studied and Darboux only pointed out (4).  It is 
the one in which the contour is closed by two circles whose planes are parallel and not 
perpendicular to the line that joins their centers.  The consequences of Riemann’s study 
seem to be capable of being verified experimentally, so we shall present them. 
 Take the yz-plane to be a plane that is parallel to the planes of the two circles and take 
the xy-plane to be a plane that contains the line that joins their centers.  The equation of 
the surface will have the form: 

F (y + α)2 + z2 + β = 0 
 

which is obviously symmetric with respect to the xy-plane. 
 In order to express the idea that the surface is minimal, we seek the equation of the 
inverses of the radii of curvature. 

                                                
 (3) Book III, Chapter X; le Problème de Plateau.  
 (4) Note on page 426.  
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 Draw a normal MP through a point M (x, y, z) on the surface.  The direction cosines 
of that line are proportional to the derivatives: 
 

X = 
dF

dx
, Y =

dF

dy
, Z =

dF

dz
. 

 Consequently, if we set: 

u = 
2 2 2

MP

X Y Z+ +
 

 
then the coordinates of the point P will be: 
 

x + uX,  y + uY,  z + uZ. 
 
 Draw a normal M′ P′ at a point M that is infinitely close to M′.  The coordinates of the 
point P′ will be: 
 

x + uX + d (x + uX), y + uY + d (y + uY), z + uZ + d (z + uZ). 
 
 If one supposes that the points M and M′ are found on the same line of curvature of 
the surface and that P and P′ are the centers of curvature that correspond to M and M′, 
resp., then the coordinates of P and P′ will differ only by third-order quantities.  Upon 
neglecting them, one will get: 
 

d (x + uX) = d (y + uY) = d (z + uZ) = 0, 
 

in which u then denotes the radius of curvature at M, up to a factor 2 2 2X Y Z+ + . 

 Upon developing the first of those equations, we will have: 
 

dx + u dX + X du = 0 
or 

1 du
dx dX X

u u
+ + = 0. 

 Set: 

Xx = 
2

2

d F

dx
, Xy = 

2d F

dx dy
, Xz = 

2d F

dx dz
, … 

We will have: 
dX = Xx dx + Xy dy + Xz dz, 

 
and consequently the preceding equation will become: 
 

1
x y z

du
X dx X dy X dz X

u u
 + + + + 
 

= 0. 
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 In the same way, we will have: 
 

1
x y z

du
Y dx Y dy Y dz Y

u u
 + + + + 
 

= 0, 

 
1

x y z

du
Z dx Z dy Z dz Z

u u
 + + + + 
 

= 0 

for the other two equations. 
 We add the following equation: 
 

X dx + Y dy + Z dz = 0 
 
to those three, which expresses the idea that the two points M and M′ are on the surface F 
= 0. 
 In order for those equations to be satisfied for non-zero values of dx, dy, dz, du, it is 
necessary that their determinant must be zero; i.e., that one must have: 
 

1

1

1

0

x y z

x y z

x y z

X X X X
u

Y Y Y Y
u

Z Z Z Z
u

X Y Z

+

+

+

= 0. 

 
 That second-degree equation in 1 / u will determine the radii of curvature at M.  In 
order for the surface to minimal, it will be necessary that the sum of the roots of that 
equation must be zero, which will then give the condition: 
 

0 0 0

x y x z y z

x y x z y z

X X X X X X Y Y Y

Y Y Y Z Z Z Z Z Y

X Y X Z Y Z

+ +  = 0. 

 
 In the case that we address, we have: 
 
 X  = 2α′ (y + α) + β, Y   = 2 (y + α), Z  = 2z, 
 Xx = 2α″ (y + α) + 2a′ 2 + β″, Xy = 2α′, Xz = 0, 
 Yx = 2α′, Yy = 2, Yz = 0, Zx = 0, Zy = 0, Zz = 2, 
 
as a result of the form of the equation of the surface. 
 If we take those relations into account then the preceding equation will reduce to: 
 

2XYXy – X 2 Yy – Y 2 Xx – Z 2 Xx – X 2 Zz – Z 2 Zz – Z 2 Yy – Y 2 Zz = 0, 
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or 
4X (α′ Y – X) – (Y 2 + Z 2) (Xx + 2) = 0, 

or also to: 
4X (α′ Y – X) – 4[(y + α)2 + z2] (Xx + 2) = 0. 

 
 X has degree one in y.  The coefficient α′ Y – X does not contain that variable.  As a 
result, the first term in that equation will have degree one in y.  Xx + 2 has degree one in 
y.  The coefficient (y + α )2 + z2 has degree zero, because that coefficient will be equal to 
– β, from the equation of the surface F = 0.  Consequently, the preceding equation will 
have the form: 

Ay + B = 0, 
 

in which A and B are functions of only x. 
 In order for that to be satisfied for any point in question, it is necessary that one must 
have: 

A = 0,  B = 0, 
 

separately, which are differential equations that permit one to find α and β. 
 There indeed exists a minimal surface that passes through the two circles then, and 
from its equation, any section by a plane that is parallel to those of the circles will be a 
circumference; that is a consequence that is easily accessible to experiment. 
 Riemann calculated the functions α and β ; those calculations demanded the use of 
elliptic functions. 
 
 
 33. Remarks. – In order to show that the free surface of a thin film in equilibrium is a 
surface of zero mean curvature, we have expressed the idea that, from Gauss’s theory: 
 

gUz – 1 1
1 12 2

S
θ θη Σ + − 

 
 

 
must be a maximum.  We could have found that equilibrium condition just as simply by 
starting from the equation of the free surface that Laplace obtained: 
 

gz − 1

1 2

1 1

2 R R

θ  
+ 

 
= const. 

 
 Indeed, consider two points M and M1 (Fig. 29) that have the same z as the two faces 

of a thin film.  From the preceding equation, 
1 2

1 1

R R
+ must have the same value at those 

two points. 
 However, since M and M1 are very close (since the film is thin), the radii of principal 
curvature at those points must have roughly the same absolute values.  Since they have 
different signs (since one of the points is on the concave face and the other one is on the 
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convex face), it will result that when one passes from M to M1, the sum of the inverses of 
the radii of curvature must change sign without changing its absolute value appreciably. 

 

M1 
M 

M′ 

 
Figure 29. 

 
 That conclusion will be compatible with the preceding one only if the sum of the 
inverse of the radii of curvature is zero or very small. 
 Let us examine that analysis a bit closer.  On the convex side, we have: 
 

(1)     gz − 1

1 2

1 1

2 R R

θ  
+ 

 
= C, 

 
in which C is a constant, and on the concave side we have: 
 

(2)     gz′ − 1

1 2

1 1

2 R R

θ  
+ ′ 

= C′. 

 
 If we compare the values of the various quantities at the points M and M1 then we will 
see that z = z′, 1R′  = − R1,  2R′  = − R2, and that C = C′, moreover, since the pressure must 

be the same on both sides, in such a way that equation (2) will become: 
 

(3)     gz + 1

1 2

1 1

2 R R

θ  
+ ′ 

= C. 

 
Upon subtracting (1) from (3), what will remain is: 
 

(4)  1

1 2

1 1

2 R R

θ  
+ ′ 

= 0. 

 
 That is the condition that we reached previously.  However, it is only a combination 
of (1) and (3).  If we would like to satisfy both (1) and (3) then that would be impossible, 
in general.  We could achieve that approximately if θ1 were very large, because the terms 
gz and C would become negligible.  That would show us that a strong surface tension is a 
good condition for the preservation of thin films. 
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 34. – However, that is not the true explanation.  For example, suppose that a 
framework is planar and vertical.  The equilibrium form for a thin film will be bounded 
by two vertical and parallel planes.  If one imposes a very small displacement to the film 
in such a fashion that the two bounding surfaces remain two parallel surfaces then the 
work that is done by gravity will be negligible, as well as the capillary forces.  That is 
what we showed above, but we can imagine some other infinitely-small virtual 
displacements. 
 For example, imagine that after that displacement the liquid is bounded by two planes 
that make very small angles with the vertical, but in opposite senses, in such a fashion 
that the film becomes thinner above than it is below.  The virtual work that is done by 
weight will then be positive. 
 It then seems that equilibrium cannot be maintained.  However, in order for the film 
to be thinner on the upper part and thicker in the lower one, it is necessary that the 
various liquid layers should slide over each other.  Experiments show that with certain 
liquids, that sliding can be produced only extremely slowly.  The liquid would then seem 
to exhibit considerable resistance that is analogous to viscosity.  Nonetheless, it is not 
ordinary viscosity.  It is much larger and obeys other laws; one can call it the surface 
viscosity. 
 That surface viscosity, which was pointed out by Plateau, has been studied even less 
than the ordinary kind.  We shall see some other effects in Chapter V. 
  That resistance will come into play whenever shears are produced in the surface part 
of a liquid.  It opposes those shears, so it opposes the possibility that two surfaces that 
bound a thin film, which are supposed to be parallel to begin with, will cease to be that 
way, or more generally, it will oppose variations of the very small angle that those two 
tangent planes define at two corresponding points on those two surfaces. 
 The existence of that force will not change the preceding analysis, moreover.  In order 
for equilibrium to persist for a long time, it will suffice that the virtual work should be 
zero for all displacements that do not induce viscous resistance.  When that resistance is 
very large, it will then act like a constraint, and everything will happen as if the film were 
subject to remaining bounded by two parallel surfaces, and in order to get the conditions 
for stable equilibrium, it will suffice to express the idea that the potential energy is a 
minimum by taking that constraint into account.  That is what we did in this chapter. 
 Certain liquids, such as soapy water and Plateau’s glycerin, have a large surface 
viscosity. That explains the persistence of the films that are formed by those liquids. 
 
 
 35. – Before leaving the study of thin films, we shall explain why a film does not 
burst spontaneously and why it disappears completely when it does burst. 
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Figure 30. 
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 In order for the film ABCD (Fig. 30) to burst spontaneously, a very small hole EFGH 
must begin to form, and the free surface A will become AEFCBGHD.  Since that surface 
is larger than the original surface ABCD, and the potential energy is proportional to the 
area of the surface, that cannot happen without an expenditure of work; the hole cannot 
form in it. 
 However, once the hole is produced by an artificial cause, it will tend to enlarge, 
because the free surface: 

AE′ F′ C + BG′ H′ D 
 
that corresponds to a large hole (E′ F′ G′ H′ ) will be smaller than the free surface AEFC 
+ BGHD that corresponds to the small hole (EFGH). 
 

___________ 



CHAPTER IV 
 

PLATEAU’S EXPERIMENTS  
 
 

 36. Equilibrium condition for an oil drop.  – In his celebrated experiments, Plateau 
most frequently appealed to a mass of oil that was placed in diluted alcohol of the same 
density and held in place by two circular discs or two metallic rings of the same diameter. 
 In order to find the equilibrium condition for a mass of oil, from Gauss, it will suffice 
to write down that the potential energy of the system that is composed of the oil and 
alcohol is a minimum or a maximum. 
 Now, the forces that act upon that system are gravity and capillary action.  The center 
of gravity will not displace, not matter how the oil is deformed, since the liquid that 
surrounds it has the same density that it has.  As a result, the work done by gravity will be 
zero, and there will be no reason to take that force into account in the variation of the 
potential energy. 
 There are several types of capillary actions.  One has the attractions: 
 
 1. Of the discs or rings to the oil. 
 2. Of the oil to itself. 
 3. Of the diluted alcohol to itself. 
 4. Of the alcohol to the oil. 
 5. Of the alcohol to the surroundings. 
 
When one neglects the action of the matter that comprises the vessel on the liquid that it 
contains, that action will not enter into the variation of the potential energy that results 
from a deformation of the drop, provided that it is at an appreciable distance from the 
wall. 
 We introduce the notations: 
 
 Σ  the area of the contact surface between the oil and alcohol 
 S1  the area of the contact surface between the oil and the solid supports 
 S  the total area of the solid supports 
 θ1  the function that relates to the mutual attractions of the oil molecules 

η1 the function that relates to the attractions of the oil molecules to the solid 
molecules of the supports 

1θ ′  and 1η ′  the corresponding functions for the alcohol 

η2 the one that relates to the action of the oil on the alcohol 
 

 We have that the potential energy that results from the capillary actions that were 
previously enumerated are: 
 
 1.  − η1 S1 , 

 2.  1

2

θ
(S1 + Σ1), 
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 3.  1

2

θ ′
(S − S1 + Σ1), 

 4.  − η2 Σ, 
 5.  1η ′ (S − S1), 

 
resp., while neglecting constants, moreover. 
 Consequently, the total potential energy will be: 
 

1 1 1 1 1
1 2 1 1 12 2 2 2 2

S S
θ θ θ θ θη η η η

′ ′ ′     ′ ′− + + − Σ − − − +     
     

, 

up to a constant. 
 However, since the surroundings are solid, the area S will remain constant.  In order 
to get the equilibrium condition, it will then suffice to write down that the variation of the 
last two terms is zero; i.e.: 
 

1 1 1 1
2 1 1 12 2 2 2

S
θ θ θ θη δ η η δ

′ ′   ′+ − Σ − − − +   
   

 = 0. 

 
 If we compare that condition to the condition (4) that we have obtained for the 
equilibrium of a liquid in contact with air and the solid walls (§ 21) then we will see that 
they have the same form.  They differ only by the value of the coefficients of δΣ and δS1, 
and by the disappearance of the term that relates to gravity.  Now, upon transforming the 
equality (4), we will arrive at the following conditions: 
 

 gz = 1

1 2

1 1

2 R R

θ  
+ 

 
+ const. 

 ϕ = const. 
 
 It will then be obvious that the condition that we just established can be replaced 
with: 

 
1 2

1 1

R R
+  = const., 

 ϕ = const. 
 
 In other words, the separation surface of the oil and the alcohol must have constant 
mean curvature and must cut the solid support at a constant angle. 
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Figure 31. 
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 37. The meridians of equilibrium surfaces of revolution are given by the rolling 
of a conic. − In Plateau’s experiments, the planes of the two discs or rings that supported 
the oil were perpendicular to the line that joined their centers.  As a result, that line would 
be a symmetry axis of the mass of oil, and the separation surface of the oil and alcohol 
would be a surface of revolution around that axis.  In this case, if F is a point on the 
meridian and XY is the axis (Fig. 31) then one of the radii of principal curvature will be 
the length FI of the normal that is found between F and the axis, and the other radius will 
be the radius of curvature FC of meridian.  Consequently, in order for there to be 
equilibrium, the meridian must be such that one has: 
 

1 1

FI FC
+  = const. 

 
 We shall show that this condition is fulfilled by the curve that is generated by the 
focus of a conic when it rolls without slipping on a line. 
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Figure 32. 

 
 Consider an ellipse whose foci are F and F1 and roll it along a line XY (Fig. 32).  The 
contact point I will be the instantaneous center of rotation, and one will have: 
 

1

velocity of  

velocity of  

F

F
= 

1

IF

IF
. 

 
 Take the point G that is symmetric to the focus F1 with respect to XY.  That point will 
necessarily have the same velocity as F1 .  On the other hand, from the properties of the 
ellipse, G will be found on the prolongation of the radius vector FI, and one will have: 
 

IF1 = IG. 
 

 Consequently, the preceding equality can be written: 
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velocity of  

velocity of  

F

G
= 

IF

IG
. 

 
 Draw a normal to that curve through a point F′ that is infinitely close to F along the 
trajectory of that point.  It will meet FIG at C, and that point will be the center of 
curvature of the trajectory, since, as a result of the properties of the instantaneous center 
of rotation, FIG will also be normal to the trajectory. 
 The length FG is equal to the sum of the radius vectors FI + F1I.  It will then be 
constant, and the trajectory of G will be parallel to that of F.  As a result, the two 
infinitely-small triangles FCF′, GCG′ will be similar, and one will have: 
 

FF

GG

′
′
= 

CF

CG
. 

 
 Now, the first ratio in that equality is equal to the ratio of the velocities of F and G; 
consequently: 

velocity of  

velocity of  

F

G
= 

CF

CG
. 

 
 If we compare that value of the ratio of the velocities of F and G with the one that we 
obtained before then we will have: 

IF

IG
 = 

CF

CG
. 

 
 The four points F, I, G, and C are then harmonic conjugates.  Now, one knows that 
one can express the idea that those points are harmonic conjugates by writing that: 
 

1 1

FI FC
+ = 

2

FG
. 

 
 The right-hand side of that equality is constant, so the condition that the meridian 
section of an equilibrium surface of revolution must fulfill is then found to be fulfilled by 
the trajectory of the focus F. 
 One can show in the same way that the trajectory of the focus of a hyperbola that rolls 
along a line will enjoy that same property. 
 In the case of the parabola, the trajectory of the focus is such that one will have: 
 

1 1

FI FC
+  = 0, 

 
since FG is infinite, so the parabola can be preserved like an ellipse with one of its foci 
pushed out to infinity.  The surface of revolution that is generated by the trajectory will 
then be a surface of zero mean curvature in that case. 
 We already know of it: It is the catenoid. 
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 38. Unduloid. – Plateau gave the name of unduloid to the surface of revolution that is 
generated by rotating the trajectory of a focus of an ellipse. 

 B 
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A x y B′ 
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F′ 

M 

 
Figure 33. 

 
 In order to find its form, suppose that the generating ellipse is initially tangent to the 
line of rolling at the extremity A (Fig. 33) of its major axis.  It is obvious that no matter 
what sense in which one rotates that ellipse, the curve that is described by F will have 
equal ordinates for equal abscissas.  The curve will then be symmetric with respect to AB; 
we consider only the portion that is situated to the right of that axis. 
 If we draw a tangent to the ellipse and move its contact point from A to B then the 
distance from the focus F of that tangent will always increase.  Consequently, when the 
conic rolls on xy, the ordinates of the trajectory of F will constantly increase until the 
extremity B of the major axis makes contact with the line of rolling motion at B′. 
 The abscissas will likewise increase, because they can cease to cross only when the 
tangent to the curve that is described by F will be perpendicular to xy, and as a result, the 
normal that is parallel to that line.  Now, in that case, the instantaneous center of rotation 
would be found to have been pushed out to infinity, which is not true.  The trajectory of 
the point F will then be a curve of the form FMF′. 
 If one continues to roll the ellipse then the curve that its focus describes will 
obviously be symmetric with respect to A′B′ along the portion that was described above.  
It will then suffice to know the form of the curve FF′ that is found between the symmetry 
axes AB and A′B′ in order to be able to trace out the meridian of an unduloid completely. 
 In the particular case where the ellipse becomes a circumference, the two foci of the 
ellipse coincide with the center of the circumference.  Under the rolling of that curve 
along xy, its center will describe a line that is parallel to xy.  In that case, the unduloid 
will then reduce to a cylinder of revolution around xy. 
 If the ellipse is flattened indefinitely then the foci will gradually approach the 
summits, and the meridian of the unduloid will have points that are very close to the axis 
of rotation.  In the limit, the ellipse will reduce to a line that has its two extremities for 
the foci, and the trajectory of one of the foci will be formed by a series of semi-
circumferences that have their centers along the line xy.  Consequently, the unduloid will 
then reduce to a series of mutually-tangent spheres. 
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 39. Nodoid. – That is the name that Plateau gave to the surface that has the trajectory 
of a focus of a hyperbola for its meridian. 
 Consider the hyperbola in the position for which its summit is A (Fig. 34), which is in 
contact with the line xy.  The axis AB of the conic in that position is a symmetry axis for 
the trajectory of the focus F. 
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Figure 34. 

 
 Roll the hyperbola until the asymptote CD coincides with the line xy.  The ordinate of 
the trajectory of F will always increase, because the distance from the focus of one 
hyperbola to a tangent whose contact point displaces from A to C will always be 
increasing. 
 When the asymptote CD coincides with xy, we must roll another branch of the 
hyperbola, and the contact will displace along the branch DB initially.  The distance from 
the focus F to the tangent to that branch will constantly increase when the contact point 
of that tangent displaces from D to B, so the same thing will be true of the ordinate of the 
trajectory of F during the rolling. 
 Consequently, the ordinate will increase continuously from F to the point F′, which 
corresponds to the position of the hyperbola for which the contact with xy happens at B′, 
which is the second summit of the conic. 
 However, the abscissa will begin to decrease during the motion.  When the asymptote 
CD coincides with xy, the instantaneous center of rotation will be found to have been 
pushed out to infinity.  As a result, the normal to the trajectory of F at that instant will be 
parallel to xy, and the tangent will be perpendicular to that line.  The abscissa will then 
cease to decrease, and it will then increase up to F′.  Consequently, one will have a curve 
between F and F′ that has the indicated form FMF′. 
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x y 
 

Figure 35. 
 

 The line A′B′ is obviously a symmetry axis like AB, so the meridian of the nodoid 
must have the form that is indicated in Fig. 35. 
 
 
 40. Experimental realization of those surfaces. – Plateau succeeded in realizing 
those different surfaces experimentally, as we have said. 
 When one employs two planar discs as rigid supports, one can succeed in obtaining a 
cylinder of revolution whose generators are supported by the boundaries of the discs by 
adding or subtracting from the oil with a pipette. 
 Upon gradually bringing these discs closer together, one will obtain a convex portion 
of the unduloid, and then a portion of the sphere, and then finally, a convex portion of the 
nodoid. 
 On the contrary, upon discarding the two discs, one will see a concave portion of the 
unduloid form that will gradually get thinner through the medium and finally separate 
into two pieces.  The rupture must correspond to the moment at which (the ellipse being 
infinitely flattened) the unduloid gives rise to two spheres, if it does not have solid 
supports. 
 If one employs two rings of the same diameter as rigid supports then one will see the 
same surface reproduced in the same manner between the rings.  However, at the same 
time, the surfaces that bound the mass of oil above the rings will deform, and conforming 
to the theory, the mean curvature of those surfaces will be equal to that of the surface that 
is found between the rings. 
 Hence, when the latter is a cylinder of revolution, the other two will be spherical caps 
whose radii are equal to twice that of the rings.  Now, one of the radii of curvature for the 
cylinder of revolution will be infinite, while the other one will be equal to the common 
radius R of the rings; its mean curvature will then be 1 / R.  That of a spherical cap is 

1 1

2 2R R
+  or 

1

R
; i.e., it is equal to the preceding value. 

 
 
 41. On the stability of equilibrium for a cylinder of revolution. – In his 
experimental studies, Plateau recognized that the cylinder of revolution is a stable 
equilibrium surface when the height of the cylinder is smaller that the circumference of 
the base, while the equilibrium will be unstable in the opposite case. 
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 In order to look for the stability conditions for a cylinder of revolution theoretically, 
one must compare that surface with the equilibrium surfaces that are very close to it and 
find the cases in which the area of the surface of the cylinder is a relative minimum. 
 Plateau applied that method, but instead of comparing the surface of the cylinder to 
the surface of the unduloid (which is the equilibrium surface that results from a small 
deformation of the cylinder), he compared it to the surface of revolution that is generated 
by the rotation of a sinusoid. 
 That process is not entirely correct.  Nevertheless, since the meridian of an unduloid 
differs only slightly from a sinusoid and that process will lead to the conclusion that is 
found in experiments, we shall present it anyway. 
 Take the axes of a rectangular coordinate system to have the line that joins the centers 
of two discs or rings for the x-axis; i.e., the axis of rotation of the equilibrium surface. 
 The equations of the planes of the cylinder bases are: 
 

x = x0,  x = x1, 
 
and one of the generators of that cylinder that is situated in the xy-plane will have the 
equation: 

y = a, 
 
in which a is the radius of the discs or rings. 
 We can take the equation of the sinusoid that generates the surface to which are 
comparing the cylinder to be: 

y = a – µ + β sin x.     (1) 
 
 Indeed, we can express the idea that this sinusoid is supported by the boundaries of 
the discs or rings by writing that: 
 

µ = β sin x0 , µ = β sin x1 . 
 

 In order for those two equations to be satisfied simultaneously, it would be sufficient 
for x1 – x0 to be equal to an integer multiple of 2π.  We then set: 
 

x1 = x0 + 2π, 
 
which amounts to taking a unit of length such that height of the cylinder is represented by 
2π, which is always possible. 
 Since µ and β are coupled by one of the preceding equalities, in order to succeed in 
determining the equation of the sinusoid, it will suffice to find a new relation between µ, 
β, and a.  In order to do that, we express the idea that the mass of the oil must remain the 
same; i.e., that the volume that is generated by the rotation of the sinusoid must be equal 
to the volume of the cylinder. 
 The volume that is generated by the sinusoid is: 
 

1

0

2x

x
y dxπ∫  = 

1 1 1

0 0 0

2 2 2 2( 2 ) 2 ( ) sin sin
x x x

x x x
a a dx a x xπ µ µ π µ β π β− + + − +∫ ∫ ∫ , 
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or since the second integral on the right-hand side is zero: 
 

π [2π (a2 – 2aµ + m2) + β 2π]. 
 
 Since the volume of the cylinder is: 

π a2 × 2π, 
 
it will then be necessary that one must have: 
 

− 4aµ + 2µ 2 + β 2 = 0. 
 
 Now, µ and β are infinitely-small quantities, since the sinusoid must differ only 
slightly from a straight line.  Consequently, the preceding condition will be satisfied if: 
 

4aµ = β 2,     (2) 
 
because µ is a second-order infinitesimal then, β has order one, and the term 2µ 2 is 
negligible. 
 Now, compare the surface that is generated by the sinusoid with the lateral surface of 
the cylinder. 
 An element ds of the sinusoid can be written: 
 

ds = 2 2dx dy+ = 21dx y′+ = 2 21 cosdx xβ+ . 
 

 That element will generate a surface when one rotates it: 
 

2π y ds = 2π (a – µ + β sin x) 2 21 cos xβ+ dx, 

 
and the surface that is generated by the sinusoid will be the integral of that expression, 
when it is taken between x0 and x1 .  However, β 2 has order two, so we can write: 
 

2 21 cos xβ+  = 1 + 
2 2cos

2

xβ
 

and 

(a – µ + β sin x) 2 21 cos xβ+  = a – µ + β sin x + 
2

2

αβ
cos2 x, 

 
upon neglecting the infinitesimals of order higher than two.  As a result, the desired 
surface area will be: 
 

1 1 1

0 0 0

2
22 ( ) 2 sin 2 cos

2

x x x

x x x
a dx x dx x dx

αβπ µ π β π− + +∫ ∫ ∫  

or 
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2

2 ( )2
2

a
αβ ππ µ π 

− + 
 

. 

 
 The surface area of the cylinder will be: 
 

2π a + 2π, 
 
so it will be smaller or larger than the area of the surface that is generated by the sinusoid 
according to whether: 

− 2µ + 
2

2

αβ
 

 
is negative or positive.  If one takes the equality (2) into account then that condition will 
amount to: 

− β 2 + αβ 2 ≠ 0 
or 

2π a + 2π ≠ 0. 
 
There will then be stable equilibrium if 2π a < 2π, and unstable equilibrium in the 
contrary case.  Since 2π a is the circumference of the base of the cylinder and 2π is its 
height (due to the unit of length adopted), one will indeed arrive at the conclusion that is 
deduced from experiment. 
 That will suffice to establish that equilibrium is unstable when the height is greater 
than the circumference of the base, but not to prove the converse, since one has compared 
the cylinder to only one of the possible surfaces that are infinitely-close. 
 
 
 42. – Mathieu revisited Plateau’s analysis in his Théorie de la capillarité.  Upon 
comparing (5) the surface area of a cylinder whose height is less than the circumference 
of its bases to the area of an infinitely-close surface that is generated by a sinusoid whose 
step is equal to the circumference of the bases, one will find that the area of the cylinder 
is less than that of the other surface, which is a result that is consistent with Plateau’s. 
 However, since it was the experiments that first provided Plateau with the result that 
he then attempted to recover by theory, how does one explain the disaccord between that 
result and the result of Mathieu’s calculations? One tries to do that in the following way: 
 

“The very small displacements that one ordinarily communicates to 
the liquid column – for example, by giving a vibratory motion to the 
vessel – are not absolutely arbitrary.  One then agrees that the liquid 
column has a tendency to pass through figures of equilibrium.  Indeed, that 
is what Plateau recognized.  The meridian of the surface must then be a 
sinusoid whose step is equal to 2π a, and the area of the form must be 

                                                
 (5) See pp. 73, et seq. of the cited work.  
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greater than that of the cylinder if the height of the figure is less than 2π 
a.” 

 
 That explanation is obviously insufficient.  The true cause of the disaccord between 
Plateau’s results and those of Mathieu is that the latter supposed that the radius of the 
circumference of intersection of the surface of revolution and one of the plates could 
suffer an infinitely-small variation, while the former supposed that this radius was 
constant.  That fact did not escape Mathieu completely, because he remarked that “the 
liquid can be maintained by the discs somewhat as a result of its adherence and friction,” 
but he considered that be only a secondary consideration. 
 The resolution of the debate then amounts to knowing whether the base 
circumferences do or do not vary under deformation. 

 

A B 

 
Figure 36. 

 
 In the experiments that were made with rings of fine wire, the answer was immediate:  
The surface of revolution must pass through those rings, so the radii of the base 
circumferences must keep the same value – viz., the common radius of the rings. 
 In the case where plates are employed, the constancy of the radii is not as obvious, 
because if the cylinder cuts the plates at points like A and B (Fig. 36) that are situated at a 
certain distance from the boundaries then the circumferences can vary under a small 
deformation.  However, if we remark that the contact angle of the liquid surface and the 
surface of the plate must have a constant value along the intersection curve (which is not 
generally a right angle) then we will deduce that the contact can take place only along the 
boundary of the disc, where the contact angle can take a suitable value, since the edge is 
always more or less blunt.  Under those conditions, the radius of the base circumferences 
will again preserve a constant value. 
 
 
 43. – Under that hypothesis, we shall prove, in full rigor, that the cylinder of 
revolution is a relative minimum under the conditions that were pointed out by Plateau. 
 We shall first show that it is suffices to compare that cylinder with a surface of 
revolution with the same axis. 
 Let Σ be an arbitrary solid that has the same volume as the cylinder, but a smaller 
area.  I say that there exists a solid of revolution Σ′ with the same volume and a smaller 
area than the solid Σ. 
 Cut Σ with a series of planes that are parallel to the bases.  If Q is the area of one of 
those sections then Q dx will be the very close volume that is included between two 
infinitely-close sections.  We can imagine a solid of revolution Σ′ whose circular sections 
have an area that is equal to the corresponding sections of Σ.  The volume that is bounded 
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by two infinitely-close sections of Σ′ will be Q dx then; i.e., the elementary volumes of 
the solids Σ′ and Σ are pair-wise equal.  Consequently, Σ′ and Σ will have the same 
volume. 
 Consider the areas.  Let C and C′ (Fig. 37) be the sections of Σ by two parallel planes 
that are separated by dx.  If we project the curve C onto the plane of C′ then we will get a 
curve C″, and the annular area that is found between C′ and C″ will be equal to dQ.  
Draw normal planes to the curve A at two neighboring points A and B on it.  They will 
intersect C′ at A′ and B′, and intersect C″ at A″ and B″, and we can consider the solid 
AA′A″BB′B″ to be a right triangular prism. 
 Upon letting ds denote the element of arc length AB of the curve C, the areas of the 
faces of that prism will be: 
 
 dω = ds AA′ (for AA′BB′), 
 dω1 = ds AA′ (for AA″BB″), 
 dω2 = ds AA′ (for A′A″B′B″), 
 
and since the triangle AA′A″, which is perpendicular at A″, gives: 
 

2
AA′ = 

2 2
AA A A′′ ′ ′′+ , 

one will have: 
dω2 = 2 2

1 2d dω ω+ . 

 
 However, dω is an element of the surface of the solid Σ; as a result, the area of that 
solid will be: 

dω∫  = 2 2
1 2d dω ω+∫ . 

 Now, one has: 

2 2
1 2d dω ω+∫ > ( ) ( )2 2

1 2d dω ω+∫ ∫ , 

 
because if, for the moment, we regard dω1 and dω2 as the variations of the coordinates of 
a point on a planar curve then the left-hand side of the inequality will represent the length 
of a finite arc along that curve, while the right-hand side will be the square root of the 
sum of the squares of the differences between the ordinates of the extreme points of the 
curve and the squares of the differences between their abscissas; i.e., the length of the 
straight line that joins those points.  Since the straight line is the shortest distance 
between two points, the inequality will indeed be exact. 
 One will then have: 

dω∫  > ( ) ( )2 2

1 2d dω ω+∫ ∫ . 

 
 The solid of revolution is an exception.  Indeed, in that case, the elementary areas dω, 
dω1, dω2 will have constant ratios; it will then result that the inequality must be replaced 
with an equality, so: 
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 dω∫  = ( ) ( )2 2

1 2d dω ω+∫ ∫ . 

 

 However, 2dω∫  is the area that is included between the curves C′ and C″, i.e., dQ. 

 On the other hand, since AA″ is the distance between the two sections that are parallel 
to the bases and infinitely-close to each other, one will have: 
 

dω1 = ds AA″ = ds dx 
and 

1dω∫  = s dx, 

 
in which s is the length of the curve C.  Hence, the area S of portion of the solid Σ that is 
included between our two infinitely-close planes that are parallel to the yz-plane will be: 
 

S = dω∫  > 2 2 2s dx dQ+ . 

 

 If the curve C is a circle of area Q then its perimeter will be equal to 4 Qπ .  Since 

the circle has the property that among all figures with the same area, it has the smallest 
perimeter, one must have: 

s > 4 Qπ  

 
for a solid section Σ that is not a solid of revolution, and consequently: 
 

S > 2 24 Q dx dQπ + . 
 
 For the solid of revolution Σ′, the preceding inequalities must be replaced with 
equalities, and we will have: 

s = 4 Qπ , 

and consequently: 

S′ = 2 24 Q dx dQπ + . 
 
 The area of the solid of revolution Σ′ is then smaller than that of the solid Σ.  As a 
result, if we succeed in proving that the area of the right cylinder is smaller than the solid 
of revolution with the same volume and the same bases then, by that fact itself, we will 
have proved that it is also smaller than that of an arbitrary solid of the same volume and 
bases, and the area of the cylinder will indeed be a relative minimum.  In order to arrive 
at that goal, we must prove two lemmas.  
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 44. –  
 
 Lemma I. – Suppose two arcs AMB, AM′ B′ of the meridians of two unduloids with 
the same infinitely-close axes (Fig. 38) have a common extremity A, and that their 
extremities B and B″ lie along a normal BB′ to AM′ B′.  If those arcs intersect at a point 
C such that the volumes that are generated by AMCM′A and CB′B are equal then the 
areas of the surfaces that are generated by rotating those arcs will be equal. 

 

A B1 

A 

C M 

M′ 
B 

D B′ 

 
Figure 38. 

 
 Let S be area of the surface that is generated by AMB, while S + δS is the area of the 
surface that is generated by AM′ B′.  Let V be the volume that is generated by A1AMBB1, 
so V + δV will be the volume that is generated by A1AM′ CB′ BB1 . 
 By hypothesis, those two volumes are equal, so δV will be zero; I propose to show 
that δS is zero. 
 Indeed, let dσ be an element of the surface AMB.  Draw a normal to that element and 
prolong it until it meets the surface AM′ B′; let λ be the length of that normal. 
 Let dS be an element of the circumference that is generated by the point B, and let 
ϕ be the contact angle – i.e., the angle that the surface AMB makes with BB′. 
 A formula that we have applied many times will give us: 
 

δV = dλ σ∫ , 

 

δS = 
1 2

1 1
cotd ds

R R
λ σ λ ϕ
 

+ + 
 

∫ ∫ . 

 
 Since the angle ϕ is equal to π / 2, by hypothesis, the integral will be zero.  However, 

the mean curvature of the unduloid is constant, so I can take 
1 2

1 1

R R
+  out of the ∫ sign, 

and the first integral will reduce to: 
 

1 2

1 1
d

R R
λ σ

 
+ 

 
∫  = 

1 2

1 1
V

R R
δ

 
+ 

 
 = 0. 

 One will then have: 
δS = 0. 



72 Capillarity 

 The two areas AMB, A′M′ B′ are equal then, if one neglects second-order 
infinitesimals. 
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Figure 39. 

 
 45. – 
 
 Lemma II.  – If AMC (Fig. 39) is an arc of the meridian of a solid of revolution that 
results from the deformation of a cylinder of revolution whose height is smaller than the 
circumference of the bases then there will exist an arc of the unduloid APC that ends at 
the same extremities and generates a volume that is equal to that of the solid that is 
generated by AMC, and there will be only one of them. 
 
 It is clear that one can always find at least one unduloid with the given volume that 
admits the two given circles as its bases. 
 Indeed, one can consider an oil drop whose volume is the given volume and which is 
supported by two solid discs that have the form of two given circles.  That drop will have 
at least one equilibrium position.  In other words, if one considers several solids of 
revolution that have the same volume and the same bases then the lateral surface area of 
those surfaces cannot decrease beyond all bounds.  There will then be one of those solids 
for which that surface area is smaller than it is for all of the other ones and which must be 
an unduloid. 
 All of this is almost obvious.  However, what I propose to show is that if the two 
bases (which are the circles of radii AA1 and CC1) have slightly different radii then 
among the unduloids that satisfy that question, there will be one and only one of them, in 
general, that differs only slightly from a cylinder. 
 Let: 

y = f (x) 
 

be the equation of the curve AMC.  If x0 and x2 are the abscissas of the points A and C 
then if one lets a denote the radius AA1, one will have: 
 

f (x1) = a, f (x2) = a + ε, 
 
in which ε must be very small, because A′MCB is the meridian of the solid that is 
obtained by an infinitely-small deformation of the cylinder.  The volume that is generated 
by the trapezoid A1AMCC1 is given by the integral: 
 

1

0

2( )
x

x
f x dxπ ∫ . 
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 Since f (x) differs only slightly from a, that integral will be equal to: 
 

π [a2 (x2 – x0) + ε′ ], 
 
in which ε′  is a very small quantity. 
 Consider the unduloids with axis Ox.  Their meridians depend upon the dimensions of 
the generating ellipse, as well as the position of the point of the line that is found in 
contact with a well-defined point on the conic (a summit, for example) during the rolling 
of that conic.  Now, the ellipse is determined when one knows those two axes, and the 
position of the contact point of one of its summits with the line Ox with the abscissa of 
that point.  The equations of the meridians of the unduloids with axis Ox will then contain 
three arbitrary parameters.  One can eliminate one of those parameters by expressing the 
idea that those meridians pass through the point A, and the general equation of the 
meridians of the unduloid with axis Ox that passes through A will become: 
 

y = ϕ (x, α, β), 
with the condition that: 

a = ϕ0 (x0, α, β). 
 

 Suppose that the parameters are chosen in such a way that the unduloid reduces to the 
cylinder for α = β = 0.  For those values of the parameters, one will have: 
 

a = ϕ (x2, 0, 0). 
 
 The arc APC of the meridian of an unduloid will differ only slightly from the arc 
AMC, and since it differs only slightly from the straight line AB, the arc APC will differ 
only slightly from that straight line.  As a result, the values of the parameters that 
correspond to that arc will be exceedingly small, and one can write: 
 

 ϕ (x, α, β) = ϕ (x2, 0, 0) + 
d d

d d

ϕ ϕα β
α β

+  

  = a + 
d d

d d

ϕ ϕα β
α β

+  

for that arc. 
 In order to express the idea that the arc of the unduloid passes through the extremity 
C of the arc AMC, it will suffice for us to write: 
 

f (x2) = ϕ (x2 , α, β), 
which will give us the condition: 

d d

d d

ϕ ϕα β
α β

+  = ε.     (1) 

 Set: 
2

0

2( , , )
x

x
x dxπ ϕ α β∫  = π ψ (α, β). 
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 Since the arc of the unduloid reduces to the line AB for α = β = 0, the preceding 
integral (which represents the volume of the unduloid) will then become: 
 

π ψ (0, 0) = πa2 (x2 – x0), 
 

and since α and β are very small for the arc APC, we can write: 
 

π ψ (α, β) = 2
2 0( )

d d
a x x

d d

ϕ ϕπ α β
α β

 − + + 
 

. 

 
 Since we desire that this volume should be equal to that of the solid that is generated 
by the arc AMC, we must have: 

d d

d d

ψ ψα β
α β

+  = ε′.     (2) 

 
 It is always possible to satisfy the conditions (1) and (2) with well-defined values of α 
and β if the determinant: 

d d d d

d d d d

ϕ ψ ψ ϕ
α α α β

−       (3) 

 
is non-zero, and one can then show that there indeed exists an arc of the unduloid that 
satisfies the stated conditions.  Let us see the significance of that condition. 
 If the preceding determinant is zero then one can satisfy the equations: 
 

 
d d

d d

ϕ ϕα β
α β

+ = 0, 

 
d d

d d

ψ ψα β
α β

+  = 0 

 
with non-zero values of α and β, which amounts to saying that there will be an arc of the 
unduloid that has its extremities on the straight line AB and generates a volume that is 
equal to that of the cylinder that is generated by the segment of the line that is found 
between the extremities of the arc of the unduloid. 
 Now it will be impossible for that to be true for a length of that segment that is less 
than AB if that length it itself smaller than 2π a, as the statement supposed. 
 Indeed, we have seen that the meridian of the unduloid is the trajectory of the focus of 
an ellipse that rolls along a line. 
 When the ellipse reduces to a circle of radius a, the unduloid will reduce to a cylinder 
of radius a that has a line AB for a meridian. 
 Consider the intersections of that line AB with a meridian of the unduloid that differs 
from it slightly; i.e., it is generated by an ellipse that differs slightly from a circle of 
radius a. 
 A line such as AB that is parallel to the line along which the generating ellipse of a 
meridian of the unduloid rolls will cut that meridian at a series of points D, E, F (Fig. 40). 
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 A D 

D1 A1 

E 
F 

x O  
Figure 40. 

 
 The extremity C of the arc of the unduloid APC considered cannot coincide with the 
point of intersection D, because it is obvious that the volume of the unduloid that is 
bounded by planes that are perpendicular to Ox and pass through A and D is larger than 
the volume of the cylinder that is generated by the rectangle A1ADP1 .  As a result, the 
point C must be one of the following points of intersection E, F, …  Now, the points A 
and E of the meridian of the unduloid correspond to positions on the ellipse such that the 
same point of the ellipse is in contact with Ox in those two positions.  Consequently, the 
difference between the abscissas of those points will be equal to the length of the ellipse.  
However, that length differs only slightly from 2π a, because in order to obtain the line 
AB itself, the ellipse must reduce to a circle of radius a, and by hypothesis, the unduloid 
ADEF will differ only slightly from the line. 
 It will then result from this that it will be possible to have an unduloid that is bounded 
by equal circles that have the same volume as the cylinder with the same bases only if the 
height of the unduloid is at least equal to the circumference of those bases.  The 
determinant can be annulled only if that height is not smaller than that circumference. (I 
would even like to add, if it is a multiple of that circumference.) 
 Now, in the statement of the lemma, I have supposed that the distance between the 
two planes AA1, BB1, and a fortiori, that of the two planes AA1, CC1, was smaller than 
that circumference. 
 Our determinant cannot be annulled then, and the lemma is proved. 
 
 Here is how we can make use of that fact: 
 
 
 46. – Consider the solid AMCBB1A1 (Fig. 39) and a moving plane CC1 that is parallel 
to the two bases; now construct the unduloid APC that was defined above. 
 When the plane CC1 displaces continuously, that unduloid will deform in a 
continuous manner. 
 When C is very close to A, that unduloid will differ only slightly from the cylinder.  
Will it also differ only slightly when the point C goes to B? 
 In order to address that, here is how we shall argue: 
 Put the equation of the curve AMB into the form: 
 

y = ξ f1 (x), 
 

in which ξ is infinitely small and f1 is finite. 
 The functions ϕ and ψ that were defined above also depend upon ξ and the abscissa 
x2 of the point C, so the equations that define α and β can be put into the form: 
 
 ϕ (α, β, ξ, x2) = 0, 
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 ψ (α, β, ξ, x2) = 0. 
 
 If we eliminate β from those two equations then we will have: 
 

Θ (α, ξ, x2) = 0. 
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Figure 41. 

 
 If we regard α, ξ, and x2 as the rectangular coordinates of a point in space, for the 
moment, then that equation will represent a surface.  That surface passes through the line 
α = 0, ξ = 0, which is the line RST in Fig. 41.  The determinant: 
 

d d d d

d d d d

ϕ ψ ψ ϕ
α α α β

−  

 
is annulled for α = ξ = 0, x2 = 2π a, which must say that the plane ξ = 0 is tangent to the 
surface at the point S that has the coordinates 0, 0, and 2π a.  That plane will then cut the 
surface along a curve that presents a double point at S and which will, consequently, 
decompose into the line RST and a curve USV that passes through S. 
 If we now cut the surface with a plane ξ = ξ0 (ξ0 being very small) then we will get 
two branches of the curve R′ S′ V′, U′ T′ that are denoted with dashed lines in the figure. 
 When the point C displaces continuously, the point (α, ξ, x2) will describe the branch 
R′ S′ V′ of a continuous motion.  One sees that as long as x2 is smaller than 2π a, the point 
that describes R′ S′ will stay very close to the line RST, and the unduloid will correspond 
very closely to the cylinder.  When x2 becomes larger than 2π a, our point will describe S′ 
T′, and it will move away from the line RST; i.e., the corresponding unduloid will not 
remain only slightly different from the cylinder. 
 Hence, if AB is smaller than 2π a then the continuous deformation of the unduloid 
will reduce it to the cylinder (which it will never be far from) when the point C goes to B. 
 However, the same thing will no longer be true if AB is larger than 2π a. 
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 47. –  
 
 Theorem. – If the height of a right circular cylinder is smaller than the 
circumference of its bases then the lateral surface area of that cylinder will be smaller 
than that of any solid of revolution that has the same volume and the same bases. 
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Figure 42. 
 
 Let AB (Fig. 42) be the generator of the cylinder, and let AMB be the meridian of the 
surface of revolution.  Take an arbitrary point C on that meridian.  From the preceding 
lemma, we can trace out an arc of the unduloid APC such that the volume that is 
generated by A1PCC1 will be equal to the volume that is generated by A1AMCC1.  
Suppose that we have shown that the surface area of that unduloid is smaller than that of 
the latter volume and that if we consider a point C′ of AMC′ B that is infinitely close to C 
then the unduloid that is supported by the circles of radii AA1 and 1C C′ ′  (and which has 

the same volume as the solid that is generated by 1 1AM MC C′ ′ ) will also have an area that 

is less than the latter solid. 
 Indeed, let AQC′ be the arc of the second unduloid.  If we draw the normal CC″ to 
that arc at C then we will have two arcs of the unduloids APC and AQC″ that have a 
common extremity A and are, on the other hand, bounded by a normal to one of them.  
Moreover, the volumes that are bounded by the surfaces that generate those arcs will be 
equal, since one has: 

volume 1 1A AMC C′ ′  = volume 1 1A AQC C′ ′ , 
 
and since the area of the triangle CC′ C″ is a second-order infinitesimal, upon neglecting 
the volumes that are infinitely-small of that order, one will have: 
 

volume A1AMCC1 = volume 1 1A AQC C′′ ′′ , 
or rather: 

volume A1APCC1 = volume 1 1A AQC C′′ ′′ , 
 
in which the volumes of the solids that are generated by A1AMCC1 and A1APCC1 are 
equal, by hypothesis. 
 The two arcs of the unduloids APC and AQC″ then fulfill the conditions of the 
statement of Lemma I.  As a result, the areas of the surfaces that they generate will be 
equal up to second-order infinitesimals (CC′ being of first order): 
 

area APC = area AQC″. 
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 If, as we have assumed, we have: 
 

area APC < area AMC 
then we will have: 

area AQC″ < area AMC. 
 
 We add the following inequality: 
 

area C″ C′ < area CC′ 
 

(which results from the fact that the line CC″ is normal to the arc AQC′ at C″, so the 
element of the arc C′ C″ will be smaller than the element CC′ ) to the two sides of the last 
inequality and get: 

area AQC′ < area AMC′. 
 

 Hence, if it is true that the arc of the unduloid that joins A to an arbitrary point C on 
the curve AMCB generates a surface whose area is smaller than that arc then that property 
will still be exact when one passes from C to a neighboring point C′, since the volumes 
that are bounded by those respective surfaces are equal. 
 The theorem is obviously true for an unduloid of infinitely-small height.  Upon 
displacing the point C little-by-little, one will arrive at B.  Now, the unduloid that passes 
through A and B and has the same volume as the solid that is generated by the curve 
AMCB will reduce to the cylinder of revolution.  Consequently, the area of the surface of 
that cylinder will be smaller than that of an arbitrary volume of revolution that has the 
same bases and the volume. 
 I would like to say that when the point C goes to B, the unduloid will reduce to the 
cylinder. 
 By virtue of Lemma II, that will be true when AMB differs only slightly from the line 
AB and if the height AB of the cylinder is smaller than 2π a (viz., the circumference of the 
base). 
 Therefore, the cylinder of revolution whose height is smaller than that circumference 
will be a stable figure of equilibrium. 
 If the height of the cylinder grows larger then the conditions of the statement of the 
second Lemma will no longer be satisfied.  Plateau’s analysis will then teach us that the 
equilibrium of the cylinder is unstable. 
 
 
 48. Rotating oil drops. – When an oil drop is suspended in a liquid with the same 
density without being in contact with solid supports, the equilibrium condition of that 
drop will be obtained by setting S = S1 = 0 in the equilibrium equation that was found in § 
36.  One will then have: 

1 1
22 2

θ θ η
′ + − 

 
δ Σ = 0, 

 
which expresses the idea that the contact surface of the oil and the alcohol must be as 
small as possible. 
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 Among the solids with the same volume, the sphere satisfies that condition, and 
experience has shown that an oil drop that is equilibrium inside of a liquid of the same 
density will indeed affect a spherical form. 
 If one rotates the drop around an axis that passes through its center then the sphere 
will deform and transform into solids of revolution that are more or less flattened, and to 
which one gives the name of spheroids.  We shall look for the form of the new 
equilibrium surfaces. 
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Figure 43. 

 
 Let S (Fig. 43) be one of those surfaces, and let S′ be the one that results from an 
infinitely-small deformation of S.  Upon passing from one of those surfaces to the other, 
the work done by forces that act upon the drop must be zero, since S is an equilibrium 
surface.  Now, from what we saw in § 36, the work done by capillary forces is equal to: 
 

− 1 1
22 2

θ θ η
′ + − 

 
δ S. 

 
 On the other hand, the rotation of the drop will develop a centrifugal force whose 
work is: 

2

2

ω δI, 

 
in which ω is the angular velocity of rotation, and I is the moment of inertia of the drop 
with respect to the axis of rotation. 
 Consequently, the equilibrium condition for the drop is: 
 

2
1 1

22 2 2
I

θ θω δ η
′ − + − 

 
δ S = 0 

or 
δS = α δI, 

 
in which α denotes a quantity that is proportional to the square of the angular velocity 
and becomes constant when that velocity does. 
 As a result of the deformation of S, an element ab = dσ of that surface will 
correspond to an element a′b′ = dσ′ of the surface S′ that is obtained by drawing normals 
to S through the contour of ab.  The variation of the surface S can then be written: 
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δS = d dσ σ′ −∫ ∫ . 

 
 However, we saw in § 21 that if we let λ denote the length of the normal aa′ then we 
will have: 

dσ′  − dσ = λ ds 
1 2

1 1

R R

 
+ 

 
. 

 Consequently: 

δS =
1 2

1 1
d

R R
λ σ

 
+ 

 
∫ . 

 
 The variation δI of the moment of inertia is equal to the sum of the moments of 
inertia of the volume elements, such as ab a′b′.  Upon letting r denote the distance from 
the center of gravity of that element to the rotational axis Ox, one will get: 
 

δI = 2r dλ σ∫ . 

 
 One will then have that the equilibrium condition is: 
 

3

1 2

1 1
d r

R R
λ σ α

 
+ − 

 
∫  = 0, 

 
to which one must add the condition: 

dλ σ∫ = 0, 

 
which expresses the idea that the volume of the drop does not change. 
 In order for those two conditions to be satisfied simultaneously, it is necessary that: 
 

1 2

1 1

R R
+ − α r2 = β, 

in which β is a constant. 
 The surface that is defined by that equation is one of revolution, so one of the radii of 
curvature at M will be the radius of curvature MC of the meridian curvature; the other one 
MN will be bounded by the rotational axis.  Upon letting ϕ denote the angle between the 
normal at M and the perpendicular MP to the rotational axis and letting ds denote an 
element of arc length, measured to be positive in the sense of increasing ϕ (i.e., in the 
sense MA), one will have: 
 

R2 = MC = 
ds

dϕ
,  R1 = MN = 

cos

r

ϕ
, 

 
and the equation of the surface will become: 
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cosd

ds r

ϕ ϕ+ = α r2 + β, 

which will give: 
cosd

ds y

ϕ ϕ+  = α y2 + β 

 
for the equation of its meridian that is located in the xy-plane. 
 Since one has: 

dy = − ds sin ϕ, 
that equation can be written: 

sin cosd

dy y

ϕ ϕ ϕ− + = α y2 + β, 

or 
cos cosd

dy y

ϕ ϕ+ = α y2 + β . 

 
 In order to integrate, we remark that if the right-hand side is zero then the solution 
will be: 

cos ϕ = 
C

y
, 

 
in which C is a constant.  We now apply the method of variation of constants.  We get: 
 

1 dC

y dy
 = α y2 + β, 

so 

C = 4 2

4 2
y y

α β γ+ + ,      (1) 

and consequently: 

cos ϕ = 
C

y
 = 3

4 2
y y

y

α β γ+ + . 

 However, one has: 
dx = dy cot ϕ. 

 
 Upon eliminating ϕ from those two relations, one will get the equation of the 
meridian curve in rectangular coordinates.  One deduces from the first one that: 
 

sin ϕ = 
2

21
C

y
− , 

and as a result: 

cot ϕ = 
2 2

C

y C−
, 
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so one will have: 

x = 
2 2

C dy

y C−∫ ,     (2) 

 
in which C is the function of y that is defined by the equality. 

 x 

O 
  

 x 

O 
 

Figure 44.    Figure 45. 
 

 The curve that this equation represents can be either a flattened closed curve in the 
neighborhood of the rotational axis or two closed curves that are symmetric with respect 
to the rotational axis according to the values of the constants that enter into that equation.  
The former case (Fig. 44) corresponds to a weak angular velocity, and the volume that is 
generated will be a spheroid, while the latter (Fig. 45) has a considerable angular 
velocity, and the mass of oil will form a ring. 
 The curve obviously admits the x-axis as a symmetry axis, but it likewise admits 
another symmetry axis that is perpendicular to the first one and which one can take to be 
the y-axis. 
 The points where the curve cuts the y-axis are the roots of the equation: 
 
(3)       y2 – C2 = 0. 
 
 That remark will suffice to allow us to discuss the problem.  Plateau observed that 
when one increases the angular velocity, the mass, which is initially unique, will 
decompose into a central mass and an annular one.  The split will come about at the 
moment where equation (3) has two equal roots. 
 When the curve is unique and cuts the axis, the determination of the integration 
constants in the equality (2) will always be possible.  The same thing will not be true 
when the rotational axis does not meet the curve. 
 
 
 49. – Plateau succeeded in establishing the spheroidal and annular forms 
experimentally.  He stated that the latter is a stable equilibrium form.  The theoretical 
proof of the stability of equilibrium of the ring presents some serious mathematical 
difficulties, since the integral in equation (2) is hyperelliptic. 
 We also point out that in the case of a body that is animated with a rotational motion, 
it is not necessary for the potential energy of the system to pass through a minimum in 
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order for the equilibrium to be stable.  Indeed, Dirichlet’s theorem supposes that the axes 
to which the points of the body are referred are at rest. 
 When those axes are rotating ones, one must introduce the composite force that is 
defined by Coriolis’s theorem, and Dirichlet’s equilibrium condition, which is always 
sufficient, will no longer be necessary for stability. 
 We likewise observe that the equilibrium figures of an oil drop in rotation are not by 
any means comparable to those of the planets, although that opinion is very widespread.  
In order for that to be the case, it would be necessary that the Newtonian attraction should 
obey the same laws as the capillary force, which is not true.  It even seems probable that 
the annular figures, which are stable for the capillary phenomena of Plateau’s 
experiments, might become unstable in the case of Newtonian attraction. 
 
 
 50. Closed systems of thin films. – Upon submerging a metallic wire framework in a 
liquid, one can, in certain cases, obtain a system of thin films that bound all parts of a 
certain mass of air.  As we shall show, the equilibrium surfaces of those films, which 
Plateau has studied experimentally, do not differ from the equilibrium surfaces of an oil 
drop that is placed in the diluted alcohol of the same density. 
 Indeed, consider a system that is composed of some films and the air mass that they 
enclose and give it an infinitely-small virtual deformation when one starts from an 
equilibrium position. 
 The work done by gravity gU δz can be neglected, because, on the one hand, the 
liquid mass that defines the films is very small, since those films are very thin, and on the 
other hand, since the air mass that they enclose is also small, the air will have a very 
weak density.  As a result, U will be very small. 
 Upon letting Σ denote the total area of the faces of the films that are in contact with 
the outside air, the area of the faces that are in contact with the interior air will be very 
roughly Σ, since the two faces of the same film are very close and can be regarded as 
parallel.  The work done by capillary forces that result from a variation dΣ of that area 
will then be: 

12
2

d
θ − Σ 

 
, 

 
in which θ1 is the function that relates to the action of the liquid molecules on themselves. 
 If, at the same time, the contact surface of the liquid and the framework varies then 
we will have to take into account the work done by capillary forces that result from that 
variation.  However, since that surface area is proportional to the thickness of the film, it 
will be small, and its variation can be neglected. 
 All that will remain then is the work – θ1 dΣ.  One must add the work done by 
pressure to that work.  If one lets p0 denote the outside air pressure and lets p denote the 
internal air pressure then the work done by internal pressure will be p dV′ and the work 
done by external pressure will be – p0 dV, in which dV′  is the variation of the volume 
that is bounded by the internal faces of the films, and dV is the variation of the volume 
that is bounded by the external faces.  Those faces are parallel and very close to each 
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other, so dV and dV′ will differ infinitely little, and one will have that the total work done 
by the pressures is: 

(p – p0) dV. 
 

 The equilibrium condition of the system is then: 
 

− θ1 dΣ + (p – p0) dV = 0. 
 
 However, we have found (21) that: 
 

dΣ = 
1 2

1 1
cotd ds

R R
λ σ λ ϕ
 

+ + 
 

∫ ∫ , 

 
and on the other hand, that the variation of the volume that is bounded by the external 
faces is: 

dV = dσ∫ . 

 One will then have: 
 

0 1 1
1 2

1 1
cotp p d ds

R R
λ θ σ θ λ ϕ
  

− − + −  
  

∫ ∫ = 0, 

 
and since that relation must be satisfied for any deformation, it will be necessary that one 
must have: 

p – p0 = 1
1 2

1 1

R R
θ
 

+ 
 

,  cot ϕ = 0, so ϕ = 
2

π
, 

separately. 
 The internal and external pressures are uniform, since the weight of the air is 
negligible, so the first of those conditions expresses the idea that the mean curvature of 
the surfaces of films must be constant.  That is one of the conditions that was found in § 
36 for the equilibrium of an oil drop of the same density. 
 The condition ϕ = π / 2 seems more restrictive than the condition ϕ = const. that was 
found in the latter case.  However, in reality, they will become identical if one remarks 
that, by definition, they reduce to the statement that the surfaces of the oil drop or the 
films must pass through the metallic wires of the frame or the boundaries of the discs. 
 The equilibrium surfaces of the films that form a system that is closed on all sides 
will then be those of an oil drop that is placed in a liquid of the density. 
 In particular, if one forms a soap bubble that passes through the contours of two 
parallel rings of metal wires with the same radius then one must get equilibrium figures 
in the form of the unduloid, the right cylinder, the nodoid, and the catenoid. 
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 51. Soap bubbles. – Among the surfaces with constant mean curvature, the simplest 
one is the sphere.  Experiments have shown that it is the form that a closed film will take 
when it does not touch any solid wall. 
 There are possibly other equilibrium surfaces that pertain to this case, because the 
equilibrium condition: 

− θ1 dΣ + (p – p0) dV = 0 
 

does not say that the area of the surface must be a minimum, as in the case of an oil drop 
that is suspended freely in a liquid of the same density.  There have been attempts to 
prove that there is no other possibility, but the proofs that have been proposed leave much 
to be desired. 
 Be that as it may, in the case of a sphere of radius R, we must have: 
 

p – p0 = 12

R

θ
 

 
for the difference between the internal and external air pressures. 
 That difference is positive, and it will become larger when the bubble becomes 
smaller.  That has been verified quite sensitively by measuring that pressure difference 
with a manometer. 
 Consider two adjoining bubbles.  They intersect along a circumference through which 
the liquid film that separates the two bubbles passes.  Assume that this film is spherical 
and look for the relation that exists between the radii R, R′, R″ of the three spherical 
surfaces when there is equilibrium. 
 Upon letting p and p0 denote the air pressures that are internal to the first and second 
bubbles, resp., we will have: 

 p − p0 = 12

R

θ
, 

 

 p′ − p0 = 12

R

θ
′

, 

 

 p′ − p = 12

R

θ
′′

, 

from which, we will deduce that: 
1 1

R R
−

′
=

1

R′′
. 

 
 

C″ C C′ P 

M 

 
Figure 46. 
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 One can believe that this equilibrium condition is not sufficient and that there is good 
reason to say, in addition, that the surface tensions that are exerted upon a point of the 
line of intersection of the three spheres must be in equilibrium.  We shall show that this 
new condition amounts to the same thing as the preceding one. 
 Indeed, since the three spheres are composed of the same liquid, the surface tensions 
will be equal, and as a result, the spheres must intersect at angles of 120o in order for 
those tensions to produce equilibrium.  Let C, C′, C″ (Fig. 46) be the respective centers of 
those spheres, which are in a straight line since they all pass through the same 
circumference.  Drop a perpendicular to that line of centers from a point M in the 
intersection, and let α, α′, α″, resp., denote the angles between that perpendicular and the 
radii MC, MC′, MC″, resp.  Upon letting h denote the length of the perpendicular MP, we 
will have: 

 
1

R
 = 

1

h
cos α, 

 
1

R′
 = 

1

h
cos α′, 

 
1

R′′
 = 

1

h
cos α″. 

 One deduces from this that: 
 

1 1 1

R R R
− −

′ ′′
 = 

1

h
(cos α − cos α′ − cos α″). 

 Now, one has: 
α + α′ = 180o – 120o = 60o,  α + α″ = 120o, 

 
and consequently: 
 

cos α − cos α′ − cos α″ = cos α − cos (60o − α) − cos (120o − α) = 0, 
 

and that will give: 
1 1 1

R R R
− −

′ ′′
= 0. 

 
 One will indeed recover the same condition that appeared in the consideration of 
pressures. 
 The case of a larger number of bubbles that are joined to each other reverts 
immediately to the preceding one.  Indeed, Plateau asserted that there are never more than 
three liquid surfaces that intersect along the same line.  Since the three surfaces are 
spherical, their radii must satisfy the preceding condition. 
 
 
 52. Films that intersect along the same edge. – The property of the bubbles that 
they always intersect in such a way that there are never any more than three surfaces that 
pass through the same edge is likewise observed when the films are planar. 
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Figure 47.    Figure 48. 

 
 Upon submerging a tetrahedral frame abcd (Fig. 47) in glycerin, Plateau obtained a 
system of thin films that was composed of ten planar films, four of which constituted the 
faces of the tetrahedron, while the other six were supported by the edges of that 
tetrahedron and intersected in such a way that each of the lines oa, ob, oc, od belonged to 
three films.  The dihedral angles that are defined by the films that intersect along one of 
those edges will be necessarily equal to each other and to 120o in order for the surface 
tensions to equilibrate. 
 With a framework whose wires form the edges of a cube, one will get the liquid films 
that are represented in Fig. 48, and which intersect three-by-three along the liquid edges 
abcd and along the edges of the cube. 
 That system of thin films is much more complicated than the one that is formed by 
the four faces of the cube and its diagonal planes, and which seems to be formed as a 
result of the symmetry of the cube.  However, it is easy to see that such a system can 
exist only in a stable equilibrium state. 
 Take some frames that are simpler than Plateau’s, and are formed from two parallel 
wooden planks that are linked by metal wires that are normal to those planks.  Upon 
submerging those frames in a liquid, one will get a system of planar films that are 
supported by the metal wires and are normal to the planks.  If there are three wires a, b, c 
(Fig. 49) then we will have six films, three of which form the faces of a triangular prism, 
while the other three, which are represented by oa, ob, oc, will intersect along the same 
edges o and make dihedral angles of 120o between them. 
 If we take a plank that has four wires that form the edges of a right prism with a 
square base then we can never obtain the system of thin films that is represented in Fig. 
50 and which includes the diagonal planes of the prism. 
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Figure 49.   Figure 50. 

 
 That impossibility is due to the fact that such a system is not in stable equilibrium.  
Let us show that. 
 Since the films are planar, the radii of curvature will be infinite, and the difference 
between the pressures of the two sides of a film will be zero.  Consequently, under an 
infinitely-small displacement, the works done will reduce to the works done by capillary 
forces, namely, 1 dθ− Σ .  In order to have equilibrium, it is necessary that this expression 

should be zero, and in order for that equilibrium to be stable, it is necessary that θ1 Σ 
must pass through a maximum; i.e., that Σ must be a minimum. 
 Now, if one supposes that the preceding system is deformed in such a way that the 
two films ao and do become ao′ and do′, resp., and such that a new film will form from o 
to o′, then the sum of the areas of those three films will be smaller than the sum of the 
areas of the original two films.  Indeed, if one drops the perpendicular o′f from o′ to oa 
then one will have: 

fo = oo′ cos foo′ 
or 

fo > 
2

oo′
, 

 
since the angle foo′ is close to 45o.  On the other hand, the angle fao′ is infinitely small, 
so one will have, roughly: 

af = ao′, 
and as a result: 

af + fo > ao′ +
2

oo′
 

or 

ao > ao′ +
2

oo′
. 

 One will likewise find that: 

do > do′ +
2

oo′
, 

and one will obtain: 
ao + do > ao′ + do′ + oo′. 
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 It will then result that the sum of the areas of the films will not be a minimum for the 
system of thin films that contains the diagonal planes of the prism.  That system cannot 
correspond to a stable equilibrium state then. 

 
____________ 

 
  
 



CHAPTER V 
 

PROBLEMS IN WHICH GRAVITY INTERVENES 
 

 In the preceding two chapters, the work done by gravity disappeared from the 
equilibrium equations, either because it was negligible in comparison to the work done by 
capillary forces or because it was zero.  We shall now move on to the study of some 
problems in which the action of gravity intervenes in the equilibrium equations.  The 
most important ones are the problems that relate to equilibrium in superposed fluids, the 
equilibrium figure of a drop that is placed on a horizontal plane, and the attraction or 
repulsion of two vertical walls that are submerged in a liquid. 
 

 
A 

B 
C 

D  
Figure 51. 

 
 
 53. Equilibrium of a liquid drop that rests upon a denser liquid.  – Let ABCD be 
the drop (Fig. 51).  Let S be its free surface ABC, and let S′ be its contact surface ADC 
with the denser liquid upon which it rests, let S″ be the free surface of the latter liquid, 

and let 1

2

θ
, 1

2

θ ′
, 1

2

θ ′′
 be the surface tensions on the those surfaces.  The work done by 

capillary forces that result from a virtual deformation of the drop has the expression: 
 

− 1

2

θ δS − 1

2

θ ′ δS′ − 1

2

θ ′′ δS″. 

 
 Up to now, we have considered only one fluid, and we took the density of that fluid to 
be unity.  In the case that we presently address, we call the density of the lower liquid ρ 
and that of the liquid that forms the drop ρ1 .  If we let U and U1 be the respective 
volumes of those liquids, and let Z and Z1 be the distances from their centers of gravity to 
the xy-plane then we will have: 

gρ U δZ + gρ1 U1 δZ1 
 
for the work done by gravity, in which the z-axis is assumed to be directed downward. 
 Consequently, the equilibrium condition is: 
 

gρ U δZ + gρ1 U1 δZ1 − 1

2

θ δS − 1

2

θ ′ δS′ − 1

2

θ ′′ δS″ = 0,   (1) 

 
to which one can add the two constraint equations: 
 

δU = 0, δU1 = 0,    (2) 
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which express the idea that the volumes of the liquids do not change. 
 

S′ 

Σ′ 

Σ 

S 

C S″ 

Σ″ H F 

 
Figure 52. 

 
 In order to transform these equations, consider the new positions Σ, Σ′, Σ″ of the 
surfaces S, S′, S″, resp. (Fig. 52).  If we draw normals to the former surfaces through each 
of the points of the original surfaces then the lengths λ of the normals between the 
original surfaces and the ones that result from their deformation will determine the latter 
surfaces.  Upon letting dσ denote the area of an element of S, we will have: 
 

δS = 
1

1 1
cotd ds

R R
λ σ λ ϕ
 

+ + 
 

∫ ∫  

 
for the variation of that area (no. 21), in which ds is an element of the contact curve, and 
ϕ is the angle between the line CF that joins two positions of a point on that curve and 
the tangent to the deformed surface at F.  On the other hand, the triangle CHF, in which 
CH is the normal to S, is roughly a right triangle at H, and we will have the relation: 
 

CH = CF sin HFC 
or 

λ = µ sin ϕ, 
 
in which µ denotes the length CF.  Consequently, we can write: 
 

 δS = 
1

1 1
cosd ds

R R
λ σ µ ϕ
 

+ + 
 

∫ ∫ . 

 
 We find similar expressions for the other variations: 
 

 δS′  = 
1

1 1
cosd ds

R R
λ σ µ ϕ
  ′ ′+ + ′ ′ 

∫ ∫ , 

 

 δS″ = 
1

1 1
cosd ds

R R
λ σ µ ϕ
  ′′ ′′+ + ′′ ′′ 

∫ ∫ . 
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 In order to calculate δU1, we remark that if only the surface S deforms then we will 
have: 

dλ σ∫  

for the variation of the volume. 
 However, since the surface S′ deforms along with it, one will have: 
  

δU1 = d dλ σ λ σ ′−∫ ∫ . 

 Similarly, one will get: 

δU = d dλ σ λ σ′ ′′+∫ ∫ . 

 
 Since the volumes are invariable, one can write: 
 

 U1 δZ1 = δU1 Z1 = z d z dλ σ λ σ ′−∫ ∫ , 

 

 U δZ = δU Z  = z d z dλ σ λ σ′ ′′+∫ ∫ , 

 
in which the right-hand sides of those equalities express the idea that the variations of the 
moments of the weights of the liquid with respect to the xy-plane are equal to the sums of 
the moments of the weights of their elements with respect to that plane. 
 The equilibrium equation will then become: 
 

1 1
1 1

1 1

1 1 1 1

2 2
d g z d g z g z

R R R R

θ θλ σ ρ λ σ ρ ρ
      ′′− + + − − +      ′ ′      

∫ ∫  

(3) 

+ 1 1 1 1

1

1 1
cos cos cos

2 2 2 2
d g z ds

R R

θ θ θ θλ σ ρ µ ϕ ϕ ϕ
  ′′ ′ ′′ ′′ ′ ′′− + − + +    ′′ ′′    

∫ ∫  = 0, 

 
and the constraint conditions will become: 
 

0,

0.

d d

d d

λ σ λ σ

λ σ λ σ

′− = 


′ ′′+ = 

∫ ∫

∫ ∫
    (4) 

 
 
 54. – Equation (3) must be true for any λ, provided that λ satisfies (4).  In particular, 
it must be true when one has: 
 

dλ σ∫  = 0, dλ σ ′∫  = 0, dλ σ ′′∫  = 0,   (5) 

 
which demands that one must have: 
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 gρ1 z = 1

1

1 1

2 R R

θ  
+ 

 
+ β, 

 

 g (ρ – ρ1) z = 1

1

1 1

2 R R

θ  ′
+ ′ ′ 

+ β′, 

(6) 

 gρ z = 1

1

1 1

2 R R

θ  ′′
+ ′′ ′′ 

+ β″, 

 

 1 1 1cos cos cos
2 2 2

θ θ θϕ ϕ ϕ′ ′′′ ′′+ + = 0, 

 
in which β, β′, β″ are constants. 
 However, in order for there to be equilibrium, equation (3) must be satisfied for any 
displacement, provided that it is compatible with the constraints.  It must then be satisfied 
even when the conditions (5) are satisfied, provided that the equalities (4) are. 
 However, if we take the conditions (6) into account then equation (3) will reduce to: 
 

d d dβ λ σ β λ σ β λ σ′ ′ ′′ ′′+ +∫ ∫ ∫ = 0, 

 
or, upon taking the constraint equations (4) into account: 
 

(β + β′ − β″) dλ σ∫  = 0. 

 
 In order for it to be satisfied for non-zero values of the integral, it is necessary and 
sufficient that one must have: 

β + β′ − β″ = 0. 
 
That is the new condition that one must append to the conditions (6) in order to have 
equilibrium. 
 The first three of equations (6) are the equations of the surfaces S, S′, S″, resp.  The 
fourth one expresses the idea that the projection of the tensions at the point C onto the 
line CF is zero, since ϕ, ϕ′, ϕ″  are the angles between that line and the tangents that are 
drawn through F in the normal plane to the intersection curve at that point.  Since the 
direction of CF is arbitrary, that equation will express the idea that the three tensions at C 
must be in equilibrium. 
 That condition permits one to find the contact angles of the three surfaces when one 
knows the values of the tensions.  In order to do that, it will suffice to construct a triangle 
whose edges are equal to the tensions.  One of the angles of that triangle and the 
supplements of the other two will be the contact angles. 
 It can happen that the values of the tensions are such that the construction of the 
triangle will become impossible.  In that case, there will be no equilibrium, since one of 
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the equilibrium conditions is not satisfied, and the floating liquid will extend indefinitely 
on the surface of the denser liquid. 
 That is what happens for a drop of olive oil that is placed on the free surface of water.  
The surface tension of oil in contact with air is equal to 37 dynes, that of oil in contact 
with water is 21 dynes, and finally that of water in contact with air has the value 81, so 
one of the edges of the triangle will be greater than the sum of the other two, because: 
 

81 > 37 + 21, 
and equilibrium cannot be produced. 
 Meanwhile, if the oil drop has a small volume and the surface of the water is 
sufficiently large then one can confirm that the oil drop will cease to spread out before it 
reaches the walls of the vessel.  There will then be an equilibrium state.  However, that 
fact does not invalidate the theory, because it supposes that the distance between the 
surfaces S and S′ that bound the oil is greater than the radius of molecular activity, which 
will cease to be true when the oil drop has spread out sufficiently. 

 

S″ S″ 

S 

S1 

S′ 
1S′  

 
Figure 53. 

 
 
 55. Superposed liquids in a capillary tube. – As before, let S (Fig. 53) be the area of 
the free surface of the less dense liquid, S′, the area of its contact surface with the lower 

liquid, and let S″ be the area of the free surface of the latter liquid.  Let 1

2

θ
, 1

2

θ ′
, 1

2

θ ′′
 be 

the surface tensions on those surfaces.  In addition, introduce the areas of the contact 
surfaces S1 and 1S′  of the tube with the upper liquid and the lower liquid, resp., as well as 

the coefficients that I called: 

η1 − 1

2

θ
, 2

1 2

θη ′′ −  

 
in Chapters I and II, but which I will call η1 and 1η ′  from now on, in order to abbreviate 

the writing, and thereby change the meanings of the notations that were employed up to 
now. 
 For a virtual displacement of the liquid inside the tube, the work done by capillary 
forces is: 
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− 1 1
1 1 1 12 2

S S S S
θ θδ δ η δ η δ′ ′ ′ ′− + + . 

 One will again have: 

δS = 
1

1 1
cotd ds

R R
λ σ λ ϕ
 

+ + 
 

∫ ∫ , 

 

δS′ = 
1

1 1
cotd ds

R R
λ σ λ ϕ
  ′ ′+ + ′ ′ 

∫ ∫ , 

 
in which ϕ and ϕ′ are the contact angles of the liquid with the tube. 
 If only the surface S deforms then, from a formula that was found before, the 
variation of S1 will be: 

sin

dsλ
ϕ∫ ; 

 
however, since S′ deforms at the same time, one will have: 
 

δS1 = 
sin sin

ds dsλ λ
ϕ ϕ

−∫ ∫  

and 

1Sδ ′ =
sin

dsλ
ϕ

′
′∫ . 

 
 Substitute those values of δS, δS′, δS1 , 1Sδ ′  in the expression for the work done by 

capillary forces.  It will become: 
 

− 1 1 1 1

1 1

1 1 1 1
cot

2 2 sin 2
d d ds

R R R R

θ θ η θλ σ λ σ λ ϕ
ϕ

   ′  + − + + −     ′ ′     
∫ ∫ ∫  

 

+ 1 1 1 cot
sin sin 2

ds
η η θλ ϕ

ϕ ϕ
′ ′ ′ ′− − ′ 

∫ . 

 
 The work done by weight is: 
 

gρ U dZ + gρ1U1 δZ1 = 1 1g z d g z d g z dρ λ σ ρ λ σ ρ λ σ′ ′ ′+ −∫ ∫ ∫ , 

 
which is easy to see, from what was said in no. 53. 
 Upon writing out that the sum of those works must be zero, we will obtain the 
equilibrium condition: 
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1 1
1 1

1 1

1 1 1 1
( )

2 2
g z d g z d

R R R R

θ θλ ρ σ λ ρ ρ σ
      ′

− + − − − +      ′ ′      
∫ ∫  

(7) 

+ 1 1 1 1 1cot cot
sin 2 sin sin 2

ds ds
η θ η η θλ ϕ λ ϕ

ϕ ϕ ϕ
′ ′   ′ ′− + − −   ′   

∫ ∫ . 

 
For the free S, one has: 

U + U1 = −
S
z dx dy∫ . 

 
 If we take into account equations (8), which give the values of z for the two surfaces S 
and S′, then we will get: 

 g (ρ – ρ1) U = − 1

1

1 1

2S
dxdy

R R

θ β
′

  ′ ′+ +  ′ ′  
∫ , 

 

 g ρ1 (U + U1) = − 1

1

1 1

2S
dx dy

R R

θ β
  

+ +  
  

∫ . 

Now one has: 
g (ρ – ρ1) U + gρ1 (U + U1) = gρ U + gρ1U1 . 

 
 The right-hand side of that equality is precisely the weight of the liquids that are 
contained in the capillary tube above the xy-plane.  We will then have: 
 

P = − 1 1

1 1

1 1 1 1

2 2S S
dxdy dx dy

R R R R

θ θβ β
′

      ′ ′+ + − + +      ′ ′      
∫ ∫  

 
for that weight, but in no. 12 we showed that: 
 

1

1 1

R R
+ = − 

dl dm

dx dy

 
+ 

 
, 

 
in which l and m are the cosines of the normal to the free surface with the x and y-axes, 
and that one has: 

dl dm
dx dy

dx dy

 
+ 

 
∫∫  = s cos ϕ, 

 
in which s is the length of the intersection curve of the interior surface of the tube with a 
planar cross-section.  Consequently: 
 

P = 1

2

θ
s cos ϕ + β Ω + 1

2

θ ′
s cos ϕ′ + β′ Ω, 
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in which Ω is the cross-section of the tube.  As a result of the relation (10) between β and 
β′, that expression will reduce to: 
 

P = 1

2

θ
s cos ϕ + 1

2

θ ′
s cos ϕ′, 

which one can write: 

P = 1

2

θ ′′
s cos ϕ″, 

due to the relation (11). 
 Now, the latter expression is that of the weight of the liquid that was raised in a 
vertical capillary tube that is submerged in the denser liquid, since the liquid in the tube is 
in contact with air.  We will then arrive at the conclusion that the weight of the liquid that 
is raised in a capillary tube that contains two superposed liquids will depend upon only 
the lower liquid. 

 

C′ B′ 

A′ 

L 

A 

B C 

 
Figure 54. 

 
 
 57. Surface of a liquid in the neighborhood of a vertical planar film.  – If that film 
L (Fig. 54) is sufficiently large then we can regard the surfaces ABC, A′B′C′ of the liquid 
on either side of the film as being cylindrical.  The general equation of the surface ABC: 
 

gρ z = 1

1

1 1

2 R R

θ  
+ 

 
 + β 

will then reduce to: 

gρ z = 1 1

2 R

θ
 + β, 

 
since of the radius of curvature R1 will become infinite. 
 Take the xy-plane to be the horizontal plane that passes through the free surface of the 
liquid at a considerable distance from the film.  One must have z = 0 for R = ∞; as a 
result, β will be zero.  If we set: 

1

2

θ
= µ gρ,     (12) 

 
to simplify, then the equation of the surface ABC will become: 
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z = 
R

µ
.      (13) 

 
O P x 

M 

α 

C 

z 
 

Figure 55. 
 

 Consider a point M on that surface (Fig. 55) and draw the parallel PM to the z-axis 
that passes through that point, as well as the normal MC.  Since the angle between those 
two directions is α, we will have: 

1

R
= 

d

ds

α
 

 
for the value of the radius of curvature MC, in which the arc length s is measured 
positively in the sense of the arrow.  In addition, we have: 
 

dz = ds sin α. 
 

 Consequently, equation (13) can be written: 
 

z = 
sin d

dz

α αµ , 

or 

d cos α = − z dz

µ
. 

 One will then deduce that: 

cos α = − 
2

2

z

µ
+ γ. 

 
 If we suppose that the origin O of the coordinate axes is sufficiently far from the film 
then we will have: 

α = 0,  cos α = 1, z = 0. 
 
As a result, the integration constant γ must have the value 1, and we will have: 
 



Chapter V – Problems in which gravity intervenes  99 

2

2

z

µ
= 1 – cos α = 2 sin2

2

α
; 

hence: 

z = 2 sin
2

αµ .    (14) 

 In order to get x, we remark that: 
 

dx = − ds cos α = − dz cot α ; 
 

consequently, x is given by the elliptic integral: 
 

x = − cotdz α∫ . 

 
 However, one does not need to consider that integral in order to discuss the curve; 
equation (14) will suffice. 
 By way of example, we propose to calculate the ordinate of a point on the contact 
line.  Upon letting ϕ denote the contact angle, we will have: 
 

ϕ = 90o + α ; 
 
as a result, the desired ordinate will be: 
 

z1 = 
90

2 sin
2

oϕµ −
 = 

1 sin
2

2

ϕµ −
, 

 
or, upon replacing µ with its value that one deduces from (12): 
 

z1 = 1 (1 sin )
g

θ ϕ
ρ

− , 

 
in which the radical is taken with the + sign when the contact angle is acute, as it is in the 
case of mercury and glass, and with the – sign when the contact angle is obtuse. 
 
 
 58. Drops of large dimensions that rest upon a denser liquid. – In no. 54, we saw 
that the angles that are formed between the tangent planes to the surfaces S, S′, S″ that are 
drawn through a point on the line of contact can be determined by the construction of a 
triangle that has its edges proportional to the three surface tensions.  In addition, when the 
drop has large dimensions, it is easy to fix the position of those planes in space.  
 The equations of the surfaces S, S′, S″ are the first three equations of the group (6).  
When the drop is very large, one can equate those surfaces to cylindrical surfaces, and as 
a result, regard one of the radii of curvature as excessively large.  Those equations will 
then become: 
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 g ρ1 z = 1 1

2 R

θ
 + β, 

 

 g (ρ – ρ1) z = 1 1

2 R

θ ′
′
 + β′, 

 

 g ρ z = 1 1

2 R

θ ′′
′′

 + β″. 

 
 We remark that at a point of the surface S that is sufficiently far from the contact 
curve, the radius of curvature will be infinite, so the surface will coincide with a 
horizontal plane.  Consequently, if z0 is the distance from that plane to the xy-plane then β 
will be equal to gρ1 z0 .  If we set: 

1

2

θ
= µ gρ1 

 
then the first of the preceding equations will become: 
 

z – z0 = 
R

µ
, 

 
and by a transformation that is analogous to the one that we applied to equation (13) in 
the preceding paragraph, we will get: 

  z – z0 = 2 sin
2

αµ . 

 
 We have similar expressions for the other two surfaces: 
 

  z – 0z′ = 2 sin
2

αµ ′′ , 

 

 z – 0z′′  = 2 sin
2

αµ ′′′′ . 

 
 However, we have seen that the constants β, β′, β″ of the equations of the surface are 
coupled by the relation: 

β + β′ − β″  = 0. 
 Here, one will then have: 
 

gρ1 z0 + g(ρ – ρ1) 0 0z g zρ′ ′′−  = 0. 

 
 Now, if we multiply z – z0, z – 0z′ , z – 0z′′  by gρ1 , g(ρ – ρ1), − gρ, respectively, then 

we will get: 
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gρ1 (z – z0) + g(ρ – ρ1)( z – 0z′ ) − gρ (z – 0z′′ ) 

= − gρ1 z0 − g (ρ – ρ1) 0z′ + gρ 0z′′ , 

additionally. 
 That sum of products is zero then, from the preceding relation. 
 Consequently, we will have: 
 

gρ1 sin
2

αµ + g (ρ – ρ1) sin
2

αµ ′′  + gρ sin
2

αµ ′′′′  = 0. 

 
One can add two other relations to the relation between α, α′, and α″ that express the 
ideas that the tangent planes define angles ϕ, ϕ′, ϕ″ between them that are determined 
from the triangle of tensions, as we have recalled.  Now, one has three relations then that 
determine the angles α, α′, α″ between the normals to those tangent planes and the z-axis.  
The positions of those planes are fixed in space then (at least approximately), since the 
argument supposed that the drop was infinitely large. 
 
 
 59. Drop resting upon a horizontal plane. – The free surface of the drop is always 
given by the equation: 

gρ z = 1

1

1 1

2 R R

θ  
+ 

 
 + β. 

 
 Let us look for its volume U.  The plane upon which the drop rests is taken to be the 
xy-plane, so that volume will be given by: 
 

U = z dx dy∫∫ . 

 As a result: 

gρ U = 1

1

1 1

2
dx dy dxdy

R R

θ β
 

+ + 
 

∫∫ ∫∫ . 

 

ϕ α 
x 

O 

z 
 

Figure 56. 
 
 If the drop is one of revolution and r is the radius of the circumference of contact AB 
(Fig. 56) then one will have: 

dx dy∫∫  = π r2. 

 
 On the other hand, we have seen (§ 12) that one has: 
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1

1 1

R R

 
+ 

 
∫∫ = s cos α, 

 
in which s is the perimeter of the contact curve, and α is the angle between the tangent 
plane to the surface at a point of that curve and the vertical.  Upon calling the contact 
angle ϕ, one will have cos α = sin ϕ.  Consequently, one will have: 
 

gρ U = 1

2

θ
2π r sin ϕ + β π r2. 

 
 The constant β can be deduced from the height h of the drop, when that drop is large. 
 Indeed, since the drop is one of revolution, the two radii of curvature will be equal at 
the highest point, for which z = h.  Consequently, one will have: 
 

− gρ h = 1 2

2 R

θ
+ β, 

 
which is a relation that determines β as a function of R and h.  In the case where the drop 
is large, one will have roughly R = ∞, and the relation will become: 
 

β = − gρ h. 
 
 Observe that we have assumed that the drop is one of revolution.  That hypothesis is 
legitimate, because if the drop were not one of revolution then we could always find a 
drop of revolution whose sections by the horizontal planes had areas that were equal to 
the sections of the drop considered by the same planes.  The volumes of the two drops 
would be equal then, and we could regard one of them as the result of a deformation of 
the other one, while the contact surface with the plane would remain the same.  Now, it is 
easy to show, as we did in the context of Plateau’s experiments (§ 43), that the surface of 
the drop of revolution is smaller than that of a drop that is not one of revolution.  
Consequently, when one passes from the former to the latter, the work done by capillary 
forces, which reduces to 1 Sθ δ− , will be positive since the contact surface with the plane 

does not change.  The work done by weight has the expression: 
 

g dzδ ρ Ω∫ , 

 
in which Ω is the area of the section of the drop by a horizontal point.  Since Ω has the 
same value for the two drops, that variation will be zero. 
 The sum of those works will then be positive, when one passes from the form that is 
not one of revolution to the one that is.  Consequently, the energy of a drop that is not one 
of revolution will not be an absolute minimum.  Such a drop cannot be in stable 
equilibrium then, and there is good reason to consider only the drops of revolution. 
 Meanwhile, experiments show that one can obtain drops on a planar surface that are 
not ones of revolution.  In that case, equilibrium can be explained only by the viscosity of 
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the liquid.  Furthermore, one intends that word to mean a surface viscosity that is much 
larger than the ordinary viscosity, or resistance to internal motions. 
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D′ 

 
Figure 57. 

 
 
 60. Suspension of an index liquid in a capillary tube. – Consider a conical tube of 
revolution, and let AB and A′ B′ (Fig. 57) be the free index surfaces in its equilibrium 
position.  Take the x-axis to be a horizontal that passes through the summit O of the cone 
and the z-axis to be the axis of the tube, which we assume to be vertical. 
 If Z is the ordinate of the center of gravity of the index then the moment of the weight 
with respect to the xy-plane will be gρUZ.  That moment will also be equal to the moment 
of the volume O′ A′M′ B′, minus the moment of the volume OAMB.  If we neglect the 
moments of the volumes AMBD, A′M′ B′D′ and let z and z′ denote from the summit O to 
the planes AB, A′B′, resp., that pass through the contact curves then we will have: 
 

moment of OAB = az4, 
 
in which a is a constant that is equal to the product of π with the square of the tangent of 
the angle that the generators form with the axis.  The moment of OA′B′ is given by an 
analogous expression, so we obtain: 
 

gρ UZ = az′4 – az4. 
 
 If we neglect the variations of the surfaces AMB and A′M′ B′ then the term that is 
provided by the capillary actions will be – η S1.  Since S1 is the area of the contact surface 
of the liquid and the tube, that surface will be the lateral surface of a frustum of the cone 
of height z′ – z; it will then be equal to: 

b′ (z′2 – z2), 
 
in which b′ is a constant.  We can then write down the potential energy of the two 
capillary actions: 

– η S1 = b′ (z′2 – z2). 
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 In order for there to be equilibrium, the total potential energy: 
 

a (z4 – z′4) + b (z2 – z′2) 
 
must be a  minimum.  As a result, one must have: 
 

 (2a z3 + bz) dz – (2a z′3 + bz′) dz′ = 0. 
 
 However, the volume of the drop remains constant, so one has: 
 

z′3 – z3 = const., 
and as a result: 

2z2 dz – 2 z′2 dz′ = 0. 
 
 Upon eliminating dz and dz′ from the two equations that contain those differentials, 
one will get: 

(1)  
22az b

z

+
=

22az b

z

′ +
′

. 

 
 It will then be necessary that the function 2at + b / t must take on two equal values for 
two different values of t that have the same sign.  Now, that condition can be fulfilled, 
because the left-hand side of (1) admits a minimum for a certain value of z, and thus 
explains the possibility of equilibrium for an index in a conical tube. 
 We can argue in the same manner for a cylindrical tube, and it will be easy, 
moreover, to account for the situation in a tube in which one does not have equilibrium.  
Indeed, if one gives a downward displacement to the index then the work done by 
capillary forces will be zero, since the index does not deform, while the work done by 
gravity will diminish.  The potential energy of the index in its original position is not a 
minimum then, and as a result, the index will not be in equilibrium. 
 Meanwhile, experiments show that there is equilibrium in a cylindrical tube.  One 
often says that this fact comes from the fact that, in practice, a cylindrical tube is always a 
conical tube to a greater or lesser extent.  However, that reason is not sufficient, and the 
equilibrium that is observed can be explained only by the existence of surface viscosity. 
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Figure 58. 
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 61. Attraction or repulsion between two vertical films. – Let L and L1 be two films 
(Fig. 58), and let X be the normal force that one must apply to the film L in order to 
maintain equilibrium.  Give a virtual displacement to that film that takes it to L′ in a 
parallel position, and write down that the sum of the works that are done by all forces in 
the system during the displacement is equal to zero.  The equation thus-obtained will 
determine X. 
 In general, the form of the free surface of the liquid is modified by the displacement.  
However, since the sum of the work done by forces must be zero for an arbitrary virtual 
displacement, we can take the virtual displacement to be the one that corresponds to the 
free surfaces that are identical before and after that displacement. 
 Under that hypothesis, the work done by capillary forces is zero.  Indeed, that work 
will have the expression: 

Tc = − 1

2

θ δS + η1 δS1 , 

 
in which S is the area of the free surface, and S1 is that of the contact surface of the liquid 
and the film.  Upon calling the length of the film that is perpendicular to the figures, one 
will have: 

δS = l × CC′ – l DD′, 
 
and upon denoting the displacement AA′ of the film by ε and the contact angle by ϕ : 
 

CC′  = 
sin

ε
ϕ

,  DD′ = 
sin

ε
ϕ

, 

so 

δS = 
sin sin

l
ε ε

ϕ ϕ
 − 
 

 = 0. 

 On the other hand: 
δS1 = l (C′ C″ – D′ D″ ), 

or 
δS1 = l (ε cot ϕ – ε cot ϕ) = 0. 

 
 The work done by capillary forces is indeed zero then. 
 Let us evaluate the work done by gravity: It is equal to the variation of the sum of the 
moments of the forces that are due to gravity with respect to a horizontal plane; for 
example, the plane HH1 that passes through the free surface of the liquid far from the 
film.  Since the film is displaced parallel to itself, the submerged portions ABEF, A′B′ E′ 
F′ will remain the same, and the center of gravity of everything that is situated below the 
plane HH1 will remain in the same horizontal plane.  The moment of the weight for that 
entire portion of the system will not vary then.  For the portion that is situated above that 
plane, the sum of the moments of the forces due to weight will reduce to the difference 
between the moments of the volumes of the sections ACA′C′, BDB′D′, because by 
hypothesis, the displacement is such that the form of the free surfaces does not change.  
Now, those sections can coincide with the rectangles, ACA′C″, BDB′D″, since the 
triangles CC′C″, DD′D″ have areas that are second-order infinitesimals.  Hence, one has: 
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Tp = moment of the vol. ACA′C″ – moment of the vol. ADA′D″ 
 

for the work done by weight, or: 
 

 Tp = − gρ l ε CA ⋅⋅⋅⋅
2

CA
+ gρ l ε  DB ⋅⋅⋅⋅

2

DB
 

 

 = − gρ l ε 
2 2

2

CA DB −
 
 
 

. 

 
 The work done by the force X has the value – ε′ X, where the force is measured to be 
positive from right to left, so the equation of equilibrium will be: 
 

− εX − gρ l ε 
2 2

2

CA DB−
 = 0, 

and one can write: 

X = − gρ l ε 
2 2

2

CA DB− . 

 
 In order for X to be positive, or what amounts to the same thing, in order for the film 
considered to be attracted to the other one, it is necessary that one must have: 
 

2
DB  > 

2
CA . 

 
 That condition can also be satisfied in the case where the liquid is raised in the 
neighborhood of the film (e.g., glass in water), as well as in the case where the liquid is 
lowered (e.g., glass in mercury).  In the former case, it is necessary that the liquid must be 
raised more along the face BD than it is along the face AC.  In the latter case, it is 
necessary that the liquid must be lowered more along BD than it is along AC. 
 
 
 62. – That condition can be expressed differently. 
 We previously saw (§ 57) that in the neighborhood of a planar film, the surface of a 
liquid will satisfy the equation: 

cos α = −
2

2

z

µ
+ γ, 

 
in which γ is a constant, α is the angle between the interior normal to the surface and the 
positive direction of the z-axis, and µ is defined by the relation: 
 

1

2

θ
= µgρ . 
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 If we consider the portion of the surface HC that is situated outside of the film then 
we must have: 

α = 0  and  z = 0 
 

for a point that is sufficiently far from the film; as a result, γ = 1 for that portion of the 
surface. 
 For the surface that is found between the two films, γ can have an arbitrary value that 
depends upon the spacing of the films; let C be that value. 
 At the point C, we will have: 
 

z = CA,  cos α = sin ϕ ; 
hence: 

sin ϕ = − 
2

2

CA

µ
+ 1. 

 For the point D: 
z = DB, cos α = sin ϕ, 

and as a result: 

sin ϕ = − 
2

2

DB

µ
+ C. 

 One will then have: 
2 2

DB CA−  = 2µ (C − 1), 
and consequently: 

X = gρ l µ (C – 1) = 1

2

θ
l (C – 1). 

 
 The sign of X depends upon the value of C.  One sees that there will be attraction 
when C is greater than 1 and repulsion in the opposite case.  Furthermore, it is almost 
obvious that if one seeks the force X that must be applied to the second film in order to 
keep it in equilibrium then one will find that same expression.  One can then say that X 
represents the mutual attraction or repulsion of the two films. 
 
 
 63. – Let us look for the sign of X in the various cases that can present themselves.  
We shall not suppose that the two films are composed of the same substance. 
 First, suppose that the contact angles between the surfaces of the films and the 
surfaces of the liquid are all acute.  The angle α will be negative at the point D and 
positive at the point D1 .  There will then exist a point on the surface DD1 for which α is 
zero.  One will have: 

1 = C – 
2

2

z

µ
 

 
for that point, and since z2 / 2µ is an essentially-positive quantity, it will be necessary that 
one must have: 
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C > 1. 
The films will then attract each other. 

 L L1 

C1 D1 
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Figure 59. 

 
 If we suppose that the contact angles are obtuse then α will be positive at the point D 
and negative at the point D1 .  Consequently, there will exist a point for which α is zero, 
and one will once more reach the preceding conclusion. 
 When the contact angles with one of the films are acute and the contact angles with 
the other one are obtuse, the surface DD1 will generally intersect the xy-plane (Fig. 59).  
As a result, z will change sign when one passes from D to D1 , and since one has: 
 

z = 
R

µ
, 

 
the radius of curvature would likewise change sign.  That change of sign can be produced 
only if R becomes infinite.  The curve DD1 will then possess an inflection point.  Now, if 
one constructs the curves that are represented by the equation: 
 

cos α = C − 
2

2

z

µ
, 

 
while giving values to C that are, in turn, less than unity, equal to unity, and greater than 
unity, then one will find that the curves that correspond to values that are smaller than 1 
will be the only ones that can have inflection points at a finite distance.  It will then be 
necessary that one must have C < 1 in the case considered, and there will be repulsion 
then. 
 However, the contact angles can be acute for one of the films and obtuse for the other 
without the liquid surface that is included between the films having to intersect the xy-
plane.  The intersection curve of that surface with the plane in the figure will not present 
an inflection point then, and C will have to be greater than or equal to unity.  In the latter 
case, the films will necessarily attract each other; when C = 1, there will be equilibrium.  
Let us see what kind of forms for the liquid surfaces will correspond to that equilibrium. 
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Figure 60. 

 
 Since C = 1, the section of the free surface of the liquid belongs to the curve: 
 

cos α = 1 − 
2

2

z

µ
. 

 
 If one constructs that curve by giving all of the values between – α and + α to α then 
one will get Fig. 60.  However, when one is dealing with vertical films, one cannot obtain 
all of the portions of that curve, because α can vary only between – π / 2 and + π / 2 since 
ϕ is always found between 0 and π and one has α = 90o – ϕ.  The portions of the curve 
that correspond to those values of α extend from infinity to the points where the tangent 
to the curve is vertical.  They are the arcs ab, a′b′, a1b1, 1 1a b′ ′  then.  Moreover, since the 

free surface of the liquid will become planar at a sufficiently large distance from the 
films, the section of the liquid surface that is situated to the left of film L will necessarily 
be a portion of ab or a′b′.  For the same reason, the section of the liquid surface that is 
situated to the right of the film L1 must be a portion of b1a1 or 1 1b a′ ′ . 
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Figure 61. 

 
 Suppose that the contact angle with L is acute and the contact angle with L1 is obtuse.  
The only portions of the curve that can then coincide outside of the films will be ab for 
the one on the left and a1b1 for the one on the right.  Between the two films, one can have 
a curve that is symmetric to either the portion of ab that was used or the portion of a1b1 
that was used, because it is obvious that the contact angles of the free surface that is 
interior to the films with the films will be equal to the respective exterior contact angles 
in those two cases.  Figures 61 and 62 represent the sections of the three free surfaces in 
the two cases.  One easily sees that in the first figure, the sum ϕ + ϕ1 of the contact angles 
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is less than two right angles, while, on the contrary, that sum will be greater than two 
right angles in the second case. 
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Figure 62. 

 
 It remains for us to see whether the equilibrium state that corresponds to those forms 
for the free surfaces is stable or unstable.  If we move the films together then the lengths 
of the arcs DD1 will diminish, but the angle DOD1 that is defined by the tangent at D and 
D1 will remain constant, since the contact angles do not vary.  Consequently, the absolute 
value of the radii of curvature at a point of those arcs will diminish, and since z = µ / R, 
the absolute value of z will increase.  It will then result that the equation: 
 

cos α = C − 
2

2

z

µ
, 

 
which was satisfied by C = 1 originally, can be maintained further only for values of C 
that are greater than unity.  The films will then attract each other as long as one displaces 
them towards their equilibrium position. 
 By an analogous argument, one will see that if one moves the films apart then a 
repulsive force will be produced.  Equilibrium will then be unstable. 
 In summary, when the contact angles with the films are both acute or both obtuse, 
there will always be attraction.  When the contact angle with one of the films is acute and 
the contact angle for the other film is obtuse then there will generally be repulsion, but in 
that case, one can have attraction, or even find the films in an unstable equilibrium state. 
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Figure 63. 
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 64. Buoyancy experienced by a partially-submerged body of revolution. – Let 
CAD (Fig. 63) be body of revolution around an axis CD that we suppose to be vertical.  
Calculate the buoyancy X that the body experiences when it is in equilibrium after being 
partially submerged in a liquid of density ρ. 
 In order to do that, we give a vertical displacement ε to the body such that the form of 
the free surface MA is unchanged, but merely extended up to the contact point with the 
body in the new position C′ B′ D′, and write down that the sum of the works done by all 
forces in the system during that displacement is zero. 
 The work done by capillary forces has the value: 
 

Tc = η1 δS1 – 1

2

θ δS, 

 
in which δS1 is the variation of the area of the contact surface of the solid and the liquid, 
and δS is that of the free surface.  Upon denoting the radius of the parallel that passes 
through the contact curve A by r, one will have: 
 
 δS1 = 2π r AB, 
 δS  = 2π r AB′, 
 
and since the constants η1 and θ1 / 2 are coupled by the relation: 
 

η1 = 1

2

θ
cos ϕ, 

 
in which ϕ is the contact angle MAE, one will have: 
 

Tc = 1

2

θ
2π r (AB cos ϕ – AB′). 

 
 However, the angle BAB′ is opposite to the summit of the angle ϕ, so it will be equal 
to the latter, and the quantity in parentheses will represent the projection of the contour 
B′AB onto the direction AB′.  That quantity will then be equal to the projection of the 
vertical BB′ that closes the contour.  Now, BB′ is equal to CC′, and as a result, to ε.  As 
for the angle between BB′ and AB′, it is the angle that is defined by the tangent plane to 
the free surface at the point A and the vertical.  Upon calling that angle α, one will have: 
 

Tc = 1

2

θ
2π r ε cos α. 

 
 Let us now evaluate the work done by weight. 
 Since the body is in equilibrium, its weight is equal and directly opposite to the 
buoyancy that it receives on the part of the liquid.  Since that was denoted by X, the work 
done by weight that is exerted on the body will be: 
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Xε 
for the displacement considered. 
 The work done by forces that are due to weight and exerted upon the liquid is equal to 
the variation of the moment of those forces with respect to a horizontal plane – for 
example, the plane that passes through the free surface of the liquid far from the body.  
Since we have supposed that the free surface extends only up to its contact with the body 
under the given virtual displacement of the system, that variation will reduce to: 
 

Tp = − mom. of GDD′ + mom. of ELG + mom. of AB′EL, 
or 

Tp = − mom. of LHGD′ + mom. of EHGD + mom. of AB′EL. 
 
 Now, one can write: 
 

mom. of LHGD′ = mom. of E′H′ G′D′ + mom. of LE′HH′, 
 
in which EE′ is a vertical that is drawn through the contact point E of the xy-plane with 
the meridian of the body.  The volume LE′HH′ differs slightly from that of a right 
cylinder of height HH′ = ε .  It will then be a first-order infinitesimal, and its moment 
with respect to the xy-plane will have order two.  As a result, one can neglect that 
moment, and get: 
 

Tp = − (mom. of E′H′ G′D′ − mom. of EHGD) + mom. of AB′EL. 
 
 However, E′H′ G′D′ is nothing but the displaced volume EHGD; as a result, the 
difference between their moments will be equal to the product of the vertical 
displacement ε by the weights of one of those volumes; one will then have: 
 

Tp = − ε gρ vol. EHGD + mom. of AB′EL. 
 
 It remains for us to evaluate the moment of the liquid volume AB′EL.  The surface of 
the triangle AA′B′ is a second-order infinitesimal, so the volume generated by the rotation 
of that triangle can be neglected with respect to the volume that is generated by AA′EL, in 
such a way that one will have, approximately: 
 

mom. of AB′EL = mom. of AA′EL, 
or rather: 

mom. of AB′EL = mom. of AEF – mom. of A′LF, 
 
in which F is the contact point of the vertical AA′ with the xy-plane.  If we prolong that 
vertical by a length FF′ that is equal to ε then we will obtain a triangle A′E′F′ that 
generates a volume whose moment differs from the moment of the volume A′LF only by 
a second-order infinitesimal.  As a result: 
 

mom. of AB′EL = mom. of AEF – mom. of A′E′F′, 
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The volumes that are generated by AEF and A′E′F′ are equal, so the difference between 
their moments with respect to the same horizontal plane will be equal to the product of 
the weight of that volume with the quantity ε upon which one bases the center of gravity.  
One will finally have: 

mom. of AB′EL = ε gρ vol. AEF, 
and as a result: 

Tp = − ε gρ vol. EHGD + ε gρ annular vol. AEF. 
 
 If we now write out that the sum of those various works will be zero then we will get: 
 

Tc + Xε + Tp = 2πr ε cos α + Xε – ε gρ (vol. EHGD − vol. AEF) = 0 ; 
 hence: 

X = = − 1

2

θ
2πr ε cos α + gρ (vol. EHGD − vol. AEF). 

 
 That is the expression for the buoyancy that the floating body experiences. 
 If the free surface of the liquid is planar then the buoyancy will have the value: 
 

gρ  × vol. EHGD. 
 
 One will then see that if α is acute, as in the case of Fig. 63, then the capillary 
phenomena will have the effect of diminishing the buoyancy.  However, if the contact 
angle is obtuse then the angle α will generally be likewise obtuse.  Moreover, it will be 
easy to assure oneself that the term gρ vol. AEF must be taken with the + sign when the 
point A is below the xy-plane.  Consequently, the capillary phenomena can sometimes 
have the effect of the increasing the buoyancy, and as a result, of permitting a body that is 
placed upon the surface of a less-dense liquid to be in equilibrium. 
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Figure 64. 
 
 
 65. – Let us exhibit that situation for a cylinder with vertical generators ABCD (Fig. 
64).  Give that cylinder a vertical virtual displacement that does not change the free 
surface of the liquid.  The work done by capillary forces will reduce to: 

 
η1 ε l, 
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in which ε is the displacement and l is the perimeter of the cross-section of the cylinder.  
The work done by the weight P of the cylinder is Pε.  The work done by the weight on 
the liquid will result from suppressing the cylinder ABA′B′.  It will then be: 
 

gρ Ω ε z, 
 

in which Ω denotes the area of the cross-section of the cylinder, and z denotes the 
ordinate of a point on the base AB.  The equilibrium condition will then be: 
 

Pε − gρ Ω ε z + η1 ε l = 0, 
so 

P = gρ Ω z − η1 l. 
 
 However, η1 is a negative quantity here, since one has η1 = (θ1 / 2) cos ϕ, θ1 / 2 is the 
surface tension of the liquid, which is an essentially positive quantity, and ϕ is the contact 
angle, which is obtuse, by hypothesis.  Upon letting a denote the absolute value of η1, 
one will get: 

P = gρ Ω z + a l 
or 

gρ1 Ω h = gρ Ω z + a l, 
 
in which ρ1 is the density of the cylinder and h is its height, so one can deduce that: 
 

h =
1 1

a l
z

g

ρ
ρ ρ

+
Ω

. 

 
 In order for the cylinder to float, it is necessary that h must be larger than z.  That 
condition will not be incompatible with the preceding one, even if ρ1 > ρ, provided that 

the second term 
1

a l

gρ Ω
 is sufficiently large.  A body can float on the surface of a less-

dense liquid if the contact angle is obtuse then. 
 

____________ 



CHAPTER VI 
 

APPLICATIONS OF THERMODYNAMICS TO 
CAPILLARY PHENOMENA  

 
 

 66. The thermodynamic potential. – In all of the preceding, we obtained the 
equilibrium conditions for fluids by writing out that the sum of all of the virtual works 
that are done by a deformation that starts from the equilibrium state is zero.  In other 
words, we have assumed, with Gauss, that the principle of virtual velocities is applicable 
to capillary phenomena. 
 The legitimacy of that application was contested by various authors, and most 
recently by Duhem (6).  The principle of virtual velocities will break down for 
phenomena in which changes in the state of the body considered are produced; for 
example, in the phenomena of fusion and evaporation.  Now, when one deforms a liquid 
in equilibrium in contact with other liquids or solid walls, certain parts of the liquid that 
were originally in the immediate neighborhood of the wall or other liquids will then be 
found at an appreciable distance from the contact surfaces.  Their densities will vary then; 
some parts of the liquids will have experienced a change of state.  There is therefore no 
reason a priori to suppose that the principle of virtual velocities, which generally does 
not apply to systems that are capable of changing state, can be legitimately applied in the 
particular case of the study of the theory of capillary phenomena. 
 The application of the principles of thermodynamics to capillary phenomena, from 
which Lord Kelvin (viz., Sir W. Thomson), Moutier, Van der Mensenbrugghe have 
already deduced some interesting consequences, can be put into an elegant form by the 
introduction of the function that Duhem called the “thermodynamic potential,” and whose 
definition I would like to recall. 
 Let U be the internal energy of a system, S, its entropy, V, its volume, T, its 
temperature, P, its pressure (which is assumed to be uniform), W, the external force 
function, and E, the mechanical equivalent of the heat.  The function: 
 

Φ = E (U – TS) + PV + W    (1) 
 
is what Duhem called the thermodynamic potential of the system of bodies. 
 Under an infinitely-small transformation at constant temperature, the variation of that 
function will be: 

dΦ = E dU – ET dS + P dV + dW. 
 
 However, the equivalence principle provides us with the relation: 
 

E dQ = E dU + P dV + dW, 
 
in which dQ is the heat that is supplied to the body during the transformation; as a result: 

                                                
 (6) “Applications de la thermodynamique aux phénomènes capillaires,” Ann. sci. Ec. norm. sup. (3) 2 
(1885), pp. 207.  
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dΦ = E (dQ – T dS). 
 

 On the other hand, Clausius’s theorem teaches us that under an irreversible 
transformation, one will have: 

dQ < T dS 
 
and that under a reversible transformation: 
 

dQ = T dS . 
 
 It will then result from this that any transformation at constant temperature will be 
accompanied by a negative variation in the thermodynamic potential, so that variation 
will become zero in the special case where the transformation is reversible.  Thus, if the 
thermodynamic potential is a minimum in a certain state of the system then no 
transformation at constant temperature can be produced that begins from that state, since 
the variation of Φ would be positive then.  As a result, the state considered will be an 
equilibrium state, and we will obtain the equilibrium conditions by writing out that the 
thermodynamic potential is a minimum. 
 
 
 67. – Let us look for the expression for that potential for a system of solids and 
liquids in contact. 
 First suppose that the bodies are homogeneous.  Let M1, M2, … be their masses, let 
σ1, σ2, …, respectively, be their specific volumes, let u1, u2, …, resp., be their internal 
energies per unit volume, and let s1, s2, …, resp., be their entropies per unit volume.  We 
will then have that the volume V of the system will be: 
 

V = Mσ∑ , 

the internal energy will be: 
U = Mu∑ , 

and the entropy will be: 
S = Ms∑ . 

 
 Consequently, the thermodynamic potential of the system will have the expression: 
 

Φ = ( )E Mu T Ms P Mσ− +∑ ∑ ∑ + V. 
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Figure 65. 
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 However, as a result of the variation of the densities of the liquids in the immediate 
vicinity of the contact surface, the systems that one considers in capillarity are not 
composed of homogeneous bodies, and the preceding expression will be only 
approximate.  Let us show that in order to account for the variation of the density, it will 
suffice to add terms that depend upon only the contact surfaces. 
 Let AMB (Fig. 65) be the contact surface of two bodies APB and AQB.  If we 
transport one of the bodies to infinity then the capillary forces will do work.  As a result, 
the internal energy V in the system that is composed of the two bodies will vary with the 
displacement.  However, no matter what hypotheses one imposes upon their basic nature, 
the capillary forces will be exerted at only exceedingly small distances.  Consequently, 
the variation of the internal energy that results from the transport to infinity of one of the 
two bodies AP′ B, AQ′ B, which have the same contact surfaces as the preceding ones, 
will be equal to the internal energy of the system of bodies APB, AQB.  In other words, 
that variation will not depend upon the volumes of the bodies considered, provided that 
the contact surfaces are the same and that the other surfaces that bound the bodies are at 
finite distances from them. 
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Figure 66. 

  
 Therefore, suppose that the two surfaces APB and AQB become surfaces AP0 B, AQ0B 
(Fig. 66) that are parallel to AMB and distant from it by a length that is equal to the radius 
of molecular activity.  Under those conditions the area of the section of the system by a 
surface P0 MQ0 that is normal to the surface AMB will be infinitely small, and the work 
that results from the separation of the system into two parts AP0 MQ0 , BP0 MQ0 will be 
infinitely small.  Upon transporting the portion AQ0M of one of the bodies to infinity, the 
capillary forces will do a certain amount of work T0 ; upon transporting the portion BQ0M 
of the same body to infinity, the corresponding work done will be 0T′ .  If we put APM 

and BPM, on the one hand, and AQM and BQM, on the other, back into contact with each 
other after that operation then the work done by capillary forces will be infinitely small.  
However, by definition, that series of operations will amount to the transport of the 
bodies AP0 B, AQ0 B to infinity.  Consequently, if one calls the corresponding work done 
T then one will have: 

T = T0 + 0T′ , 
up to infinitesimals. 
 The work that relates to a contact surface AMB will then be equal to the sum of the 
works that relate to the partial surfaces into which one can decompose it; as a result, it 
will be proportional to the area of the surface. 
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 It results immediately from this that the internal energy of a system that is composed 
of two bodies in contact with each other will contain a term that is proportional to that 
contact surface.  An analogous argument will show that the entropy likewise contains a 
term of the same type.  Consequently, the thermodynamic potential of a system of bodies 
in contact will have the general expression: 
 

Φ = ( )E Mu T Ms A P Mθ σ− + +∑ ∑ ∑ ∑  + W,    (2) 

 
in which θ denotes the area of any of the contact surfaces, and A denotes a coefficient 
that depends upon T, σ, and even other variables, such as the ones that define the electric 
state of the system. 
 
 
 68. The equilibrium conditions. – As we have seen, in order to find the equilibrium 
conditions, it will suffice to express the idea that Φ is a minimum. 
 One must then have: 

d Φ = 0 
 
for any virtual deformation.  Suppose that deformation is such that σ remains constant.  
However, T and σ do not vary, so the functions u and s, which depend upon only those 
quantities, will themselves remain invariable.  On the other hand, the masses M of each of 
the bodies do not change.  As a result, the equilibrium equation reduces to: 
 

d Φ = Adθ∑  + dW = 0. 

 
 We have thus recovered the equation to which the Laplace and Gauss hypotheses led 
us.  The coefficient A, which is represented by θ1 / 2 in mechanical theories, is once more 
the surface tension in the contact surface. 
 Having recovered the fundamental equation of capillary phenomena, it is obvious that 
all of the consequences that we have deduced from the molecular theories of Laplace and 
Gauss will persist in Duhem’s thermodynamic theory.  By way of exercise, we shall look 
for the pressure difference between the sides of the contact surface of two fluids in 
equilibrium. 
 Let πp and πq be those pressures, and affect the quantities that were introduced before 
with the indices p and q when they pertain to the two respective fluids.  Deform the 
contact surface in such a fashion that the volume of one of the bodies increases by dv and 
the volume of the other one diminishes by the same quantity; we then have: 
 

dv = Mp dσp = − Mq dσq .    (3) 
 
 The specific volumes vary, so the same thing will be true for the internal energy and 
entropy of each of the bodies.  If we set: 
 

πp = E (up – T sp) + P dσp 
then we will have: 
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dϕp = E (dup – T dsp). 
 
However, from the equivalence principle, upon letting dq denote the quantity of heat per 
unit mass that is provided to the body p, one will have: 
 

E dq = E dup – πp dσp , 
 
when one neglects the work done by weight.  As a result: 
 

dϕp = E (dq – T dsp) + P dσp – πp dσp . 
 
 Now, we can suppose that the virtual deformation of the system is reversible.  In that 
case: 

dq = T dsp , 
and we will get: 

dϕp = P dσp – πp dσp , 
 
or, upon replacing dσp with the value that we infers from the first of the equalities (3): 
 

dϕp = p

p

P
dv

M

π−
. 

 We will likewise find that: 

dϕq = − q

q

P
dv

M

π−
, 

and as a result: 
Mp dϕp + Mq dϕq = (πq − πp) dv. 

 
 However, from the general expression (2) for the thermodynamic potential and from 
the expressions that define ϕp and ϕq , one will have: 
 

Φ = Mp dϕp + Mq dϕq + Aθ∑  

 
for the thermodynamic potential of the system that is composed of the bodies p and q, 
upon neglecting the weight.  Consequently, the equilibrium condition d Φ = 0 will give: 
 

(πq − πp) dv + Adθ∑  = 0, 

 
if one nonetheless assumes that A is constant, which is not entirely rigorous, because that 
coefficient depends upon σ, and the latter quantity can vary, by hypothesis.  Upon 
supposing, in addition, that only the contact surface θpq of the two bodies p and q varies, 
one will have: 

(πq − πp) dv + A dθpq = 0. 
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 Now, we have seen that the variation of the area of the contact surface of the two 
bodies has the value: 

dθ = 
1 1

d
R R

λ ω + ′ 
∫  = 

1 2

1 1
dv

R R

 
+ 

 
; 

as a result: 

πq − πp = − 
1 2

1 1
A

R R

 
+ 

 
. 

 
 That is indeed the expression to which we arrived in the molecular theories. 
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Figure 67.  Figure 68. 

 
 
 69. Influence of the curvature of a liquid surface on the value of its maximum 
vapor pressure. – Consider a closed vessel V (Fig. 67) that contains a liquid and another 
larger vessel that contains the same liquid.  Empty out V and suppose that the temperature 
of the system is uniform.  The maximum tension in the two liquid masses will be equal 
then.  If the two levels AB and CD are not on the same horizontal plane then the pressure 
that is exerted upon those surfaces will not have the same value; if it is equal to the 
maximum tension for the temperature of the system on the surface CD then it will be 
much less than that tension on the surface AB.  Consequently, the latter surface will emit 
vapors that will condense upon the exterior surface of the liquid.  The level CD will then 
go up at the same time that the level AB goes down, and there will be equilibrium in the 
system, just as when those two levels are found on the same horizontal plane. 
 The conclusion would not be the same if we had supposed that the level AB is 
originally lower than the level CD. 
 In the case where the interior vessel is a capillary tube (Fig. 68), there will necessarily 
be an equilibrium state again, but in that state the two free surfaces will no longer have 
the same height.  Lord Kelvin assumed that it was obvious that those two surfaces would 
be the same, as if the capillary vessel communicated with the other one.  Indeed, if that 
were not true then when one established that communication, the equilibrium that had 
been attained would be destroyed, and it could never be reestablished.  It would produce 
a continual circulation of the liquid that evaporates from one of the surfaces, condenses 
on the other one, and returns to the first one by crossing the orifice of communication.  
That motion would be perpetual.  Consequently, in the case where the contact angle of 
the liquid and the wall of the tube is acute, the surface AB would have to be found to be 
higher than the surface CD in the equilibrium state.  However, when there is equilibrium, 
the surface AB will no longer emit vapor.  The pressure that is exerted upon it will then 
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be equal to the maximum tension in the liquid, and similarly for the surface CD.  Now, 
the pressure on the latter surface is larger than it is on AB.  Consequently, the maximum 
tension on the surface AB will be smaller than the maximum tension on the surface CD 
for the same temperature.  The difference between those two values will be proportional 

to the mean curvature 
1 2

1 1

R R
+  of the meniscus, since the difference between the 

pressures AB and CD will be proportional to the vertical distance that separates those 
surfaces. 
 If we had supposed that the contact angle was obtuse then the meniscus AB would be 
lower than the surface CD in the equilibrium state.  We would have then found that the 
surface of the concave meniscus of the maximum tension of the vapor was larger than the 
maximum tension for a planar surface and that the difference between those tensions was 
proportional to the curvature. 
 
 
 70. Delay in boiling. – If one carefully heats a liquid that has no gas in it then one 
can bring it to a higher temperature than that of normal boiling.  Lord Kelvin deduced a 
very simple explanation for that superheating from the preceding considerations. 
 Consider a bubble of vapor at the moment of its formation.  It will then be very small, 
and its curvature will be very large.  As a result, the maximum vapor tension at the 
surface of the bubble will differ noticeably from the tension in a planar surface; i.e., on 
the maximum normal tension.  Since the bubble is convex on the liquid side, the former 
of those tensions will be smaller than the latter.  Consequently, at the normal boiling 
temperature, the vapor tension in the bubble will be smaller than the pressure that the 
surrounding liquid exerts, and the bubble cannot develop.  There will be no boiling then. 
 However, if one introduces a gaseous bubble inside of the liquid then the curvature of 
that bubble will be finite; as a result, the maximum vapor tension at the surface of that 
bubble will differ only slightly from the normal tension.  When that becomes equal to the 
pressure in the gaseous atmosphere that is in contact with the free surface of the liquid, 
the vapor tension in the bubble will once more be a little less than the pressure that is 
exerted by the ambient liquid.  However, for a very slight increase in temperature, the 
difference between those quantities will change sign, so the vapor bubble will develop 
and rise in the liquid.  In that case, there will be only an inappreciable slowing in the 
boiling phenomena. 
 Lord Kelvin’s conclusions can be recovered in an analytical form by considering the 
thermodynamic potential.  Indeed, when a vapor bubble develops within a liquid, the area 
of the contact surface with the liquid will increase.  For the same variation dv in the 
volume, the variation dθ in the surface area will become larger as the volume v gets 
smaller.  Consequently, when the bubble is also excessively small, an increase in its 
volume will produce a variation of the term ∑ A θ that will be very large in comparison 
to the variations that the other terms in the expression for the thermodynamic potential 
will experience, and it is that variation that will give the sign of dΦ.  Since θ increases, 
dΦ will be positive.  Now, one must have dΦ < 0 under any possible transformation.  As 
a result, an increase in the volume of the bubble cannot be produced, and there must be a 
delay in boiling. 
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 That application of the thermodynamic potential to the study of the vaporization was 
the subject of lengthy developments in the paper by Duhem that we cited.  We refer the 
reader to that paper for those developments, as well as for their applications to the 
phenomenon of supercooling. 
 

___________ 


