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FIRST CHAPTER

LAPLACE’S THEORY

1. Basis for the theory.— Laplace assumed that two molecules of a liquid exert
attraction upon each other that is directed along the that connects them, is
proportional to their masses, and depends upon the digtetceparates them according
to an unknown law.

That attraction will then have the expression:

mmi f (r),

in whichm andm’ are the masses of the moleculess the distance between them, and
f (r) is an unknown function of that distance.

However, those hypotheses are not sufficient. Ind€&draut stated them fifteen
years before Laplace, but he could still not deduce ekglanation for capillary
phenomena from them. Laplace also assumed thattithetae force decreases rapidly
when the distance between the molecules increaséghanit will become negligible
once that distance exceeds a very small value thatcalfe theradius of molecular
activity. In other words, Laplace supposed that the functio

()= [ f(r)dr

is roughly zero when s greater than the radius of molecular activity.
As a result of the initial hypotheses, the molactfibrces will admit a potential:

V= mg(r),
so the partial derivativegax, %—V %—V will represent the components along the three
X 0y 0z

axes of the attractive force that is exerted upaniamass that is located at the podny,
zand is due to the action of molecules of nrass

If the set of those molecules forms a volume tinenexpression for the potential will
become:

v=[[[pdren),

in which dr denotes a volume element,denotes the density of that element, and the
integration is extended over the volume in question

A new hypothesis by Laplace permits one to simpthlat expression. Indeed,
Laplace assumed that the density was constant.t Ay@othesis is not legitimate,
because it is probable that the density at a gbett is situated at a distance from the
surface of the liquid that is less than the raditisnolecular activity will not have the
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same value that it has at another point whose distant®e surface is larger than that
radius. Despite its inaccuracy, that hypothesis witl ksethe expression:

V= pfffdren),
and if we take the density of the liquid considei@tbe unity then we will get:

V= [[[dre(r).

Figure 1.

2. Potential of an infinitely-thin spherical shell.— Let p andp + dp be the radii of
the two spheres that bound the shell, ana le¢ the distance from the common ce@er
(Fig. 1) of those spheres at the pdhtvhere we would like to know the value of the
potential. Take the plane of the figure to be doitiaary plane that contairf20 and draw
two radii in that plane that make anglesédnd 8 + d6 with OP. The elemenM, thus-

determined, will have an area pfd@ dp, and the volume that it generates when one
rotates it aroun@®O will have the value:

2mpsin@pdfbdp.

All of the elements of that volume are at the saseance from the pointP, so the
potential at that point that is due to the volumk lve:

dv=2m?sin 8pdddo ¢ (r).

Consequently, the potential of the spherical shillhave the value:
V=2mp? jor #(r) sin 8pdédp.

However, the triangl®OM provides the relation:

r’=p?+a’—2apcosf
so

rdr =apsin&dé.
We can then write:
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v=2n2dp[ rp(r)dr,
a o

in whichrg denotes the distan&®\, andr; denotes the distan&B.
Set:

[Tromdr =w ).

The functiony thus-defined will have a value that is roughlycz@r any value of that
is greater than the radius of molecular activiipce the functiong (r) will be almost
zero for those values, by hypothesis.

Introduce that functiog into the expression fof. We will have:

[iremdr = ["r@dr+ [t g6 )dr =gy - @ (ro).

However, ifp is finite then the distanag will be necessarily greater than the radius
of molecular activity. Consequently, (r1) will be negligible, and we will have simply:

V:2ﬂ§dpw0d, (1)

and that quantity will itself become negligible wirg becomes finite.

The figure was traced under the hypothesis thatphint P was exterior to the
spherical shell. However, the argument applies fjus same to the case in which the
point P is interior. The only difference is that, whose value is — p in the first case,
will becomep — ain the second.

3. Potential of a solid sphere— First consider the case in which the pdhis
exterior to the sphere.

If the point is at a finite distance from the swd then the attractive forces that are
exerted on a mass that is placed at that pointllmf the molecules of the sphere will be
negligible; consequently, the potential will be gbly zero.

Suppose that the poiftis at a very small distaneefrom the surface. Decompose
the sphere into concentric spherical shells okitessdp ; each of then will contribute a
potential toP of:

dv = 277§ do w(a—p).

Consequently, the potential of the entire sphelidoe:.

v=["2nfdpy(a-p)
0 a
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in whichR is the radius of the sphere.
If we set:

a-p=z
then that potential will become:

V= J.RZITX;az//(z) dz= J.aZm//(z) dZ—EIaZITZ/I( 2 d.
0 a £ a‘é

However, sinca is finite and the functio () is roughly zero for any finite value of
the variable, one will have, approximately:

j:zzw(z) dz =0, j:anz//(z) dz= 0,

and as a result:

| jzzw(z) dz= | 21y (2) dz+ j 2my (3 di=| £°° 271 (2) dz = 8(8),

La2nzw(z) dz= j:"znzw(z) dajjzn w(} d= j:"znzw(z) dz= 6, (o).

We then have that the potentialais:
1
V=28( 3 & (&).

We ignore the form of those functiorsand &, since ¢ and ¢ are unknowns.
Nonetheless, we see th@tand & are roughly zero for any finite value ef since ¢
enjoys that property. We can add tlats much smaller tha#, because for small values
of z (which are the only ones to consider, from thecgdéng), the differential element
2z i (2) dzwill be smaller than 2z ¢ (2) dz

The latter property will permit one to modify tegpression foV. Indeed, wheis is
very small,a will differ only slightly fromR. Since& will be very small with respect to
@ then, we would not change the value\bfappreciably if we were to replace the
coefficient 1 /a of & with the factor 1 R. We would then have:

v:e(s)—%el(s. @)

4. - We now pass on to the case in which the g@istinterior to the sphere.

When the distance from the point on the surfadd@fsphere is finite, the action that
is exerted uporP by a molecule that is exterior to the sphere gligible, since the
distance from that molecule to the poitwill then be greater than the radius of
molecular activity. We can then replace the splhveith another sphere of the same
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material that has an infinite radius and a centd? atithout changing the value of the
potential atP. Decompose that sphere into concentric sphericdlssbf radiusr and
thicknesddr. The potential alP that is due to one of those shells will be:

dV = 4r?dr ¢ (r).

As a result, the potential of the entire spheré el
—[° 2
V= jo Arr’dr ¢(r).

That integral is a constaAt The potential of solid sphere at an interiompdinat is
situated at a finite distance from its surface tén be a constant.

Now suppose that the point is at an extremely Istialance& from the surface.
Upon decomposing the sphere into infinitely-thimecentric shells, the poiR® will be
exterior to one of them and interior to anotherheTpotential of each of them is
represented by formula (1), in whichmust be replaced withh— or p— a according to
whetherP is exterior or interior to the shell consideregsp. The potential of the entire
sphere will then be:

v=[, el doya-p [ 2n2dpy(o-a.
Consider the first integral. Upon setting a — p, it will become:
j omt” 8 w(z)dz_j 2y (z) dz-= j 2y (2 d.

Sincea is finite and the functiow is roughly zero for any finite value of the vail@&b
one can replace the upper limat®f the integrals in the right-hand side with intfin As
a result, those integrals will be constants, anel $ame thing will be true for the
expression foW.

When one sete—a =z, the second integral in that expression will beeom
j 7Y, sl w(z) dz = j 27y (2) dz+ = j 2ray (3 d.

The two integrals on the right-hand side are thesahat we considered in the case
whereP was exterior to the sphere. Consequently, anyaintbem will be functions of

& If we introduce a constant that represents tiaevof the first integral into one of
those functions o¥ then we can write the expression for that poteata

V:€(£)—§6&(£).
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It is obvious that those functions are not identicathte ones that entered into the
expression (2). If we compare the preceding expressiovivioth the valuev = A of the
potential for an interior point at a finite distancenf the surface then we will see that
6 (&) must tend t&\, andé, (&) will tend to zero whew becomes finite.

The latter property of the functiofy (£€) permits one to replace la/with the factor
1/R, which differs from it only slightly whew is small. One will then come back to the
expression for the potential that was obtained foexerior point, but? and 8, will not
denote the same functions in those two cases.

In summary:

1. If the point is exterior and at a finite distamicen:

V=0.

2. Ifthe point is at a very small distance from sheface then:
1
V= 9(8)——R6'1(£)

and the functiong and & will not be the same when the point is interior aeegr.
3. Ifthe point is interior and at a finite distancerth
V=A.
5. Potential of a volume of revolution.— Let us first show that the potential at a
point P that is located on the axis at a very small distdrm® the surface that bounds

the volume will increase or decrease with the radiusuovature of the neighboring
summit.

Figure 2.

Let ABC (Fig. 2) be the meridian section of the volume consalerBeform that
curve in such a manner that the radius of curvatufedsicreases, and IBDBEthe new
form. The potential of the volume that is generatethleysurfaceADBE will be equal to
the potential of the volume that is generated\BY plus that of volume that is generated
by ABD and minus that of the volume that is generateB®FE. The pointP is supposed
to be at a very small distance frainso it will have a finite distance from the molezsil
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of the latter volume, and as a result, the corresporattential will be negligible. The
potential of the volume that is generated BRA will be positive if one meanwhile
supposes that the force between two molecules is tateacConsequently, the volume
that is generated by the surfa®BBE will contribute a potential & that is greater than
that of the original volume.

Having said that, trace out two spheres that are taagério the volume considered
and whose radii ar® andR’. LetV’andV" be the potentials of those spheres at the
point P, whileV is the potential of the volume considered at the sanm, pehich can be
interior or exterior to that volume. If the radioscurvature af of the surface generated
by ABCis found betweeR andR" then, from the preceding, one will have:

V'<V<V'

or

1 1

(-6 (9<V<b()-— (9.
R R
Upon makingR' andR" tend to the radius of curvatuRe one will have:
1
V= H(S)——Re_l.(f), (3

in the limit.

The potential then depends upon only the distance frempdimt on the surface to the
volume considered and the radius of curvature at the summi

We have assumed that the forces between two moleameslways attractive.
Reality does not impose that restriction, and oneanmiive at the same expression for the
potential by supposing that those forces can be attrastivepulsive according to the
situation. Indeed, if the force is repulsive then tly@ sif  must be changed; as a result,
the most general expression fwill be:

P(r)=¢1(r)—g2(n),

in which ¢, (r) and ¢, (r) are two functions that are always positive. The paikatia
point will then be:

V= mqp(r)dr = jjj¢l(r)dr—jjj¢2(r)dr.

However, the preceding arguments are still applicéo the integrals on the right-
hand side, since; and ¢, are always positive. Hence, each of them can benputhe

form @(¢) ——; 6 (¢). The same thing will be true for their differene viz.,V.

Take a spindle that is bounded by two planesghas through the axis of the volume
of revolution and define a certain angle betweesmth Another spindle with the same
angle will have the same potentialFabecause upon rotating the latter spindle through a
convenient angle, one can make it coincide withfilse one. It results from this that the
potential of a spindle is proportional to the direcangle that is formed by the planes
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that bound it. Consequently, the potential of a spirafleangle a will have the
expression:

_a 21
V_E[e(s) Rel(g)}. 4)

6. Potential of an arbitrary volume. — We look for the potential of a volume that is
bounded by an arbitrary surfakeat a pointP that is either interior or exterior, but very
close to that surface.

Take thez-axis to be the normal to the surface that passesighP. Take thex and
y axes to be the axes of the indicatrix of the faaif the normal. The equation of the
surface with respect to that system of axes will be

z=al +hy + ...,

and the radius of curvature Atof its intersection with a normal plahkthat makes an
angleg with thex-axis will be given by the relation:

%:Z(aco§¢+bsinz 9.

Consider the spindl& with an angled¢ that is bounded by the plamé and an
infinitely-close plane. That spindle will diffenfinitely little from the spindle that makes
the same angle with the surface of revolution thgenerated by rotating the intersection
of the surface& with the pland1. The potentials of those spindles can then cdeci
Consequently, from formula (4), the potentiaFodvill be:

T
dv= Zﬂ[e(s) Rel(g)]

The potential of the volume that is bounded bysindace> will then be:

2m

_ (99| g -1
v= [0 oo -2ace |
or upon replacing 1R with its value:
v =28 [dg _24() [cog pap _ba() [7sitpap
27T 90 mJo moJo

and upon performing the integrations:

V=60(-ab—-béb.
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However, if we setp = 0 in the expression for 1R and theng = 77/ 2 then we will
get:

i: , i =2b
R R,
for the principal curvatures.
Consequently, we can write:
V:g(g)_@(i+ij, (3)
2 (R R

which is a formula that shows that the potentia abint depends upon only the distance
from that point to the surface and the mean cureadtithe pole.

7. Equations of equilibrium for a fluid. — In order to find the laws of capillarity, all
that remains is to apply the general principlebyafrostatics.

Recall that if one letp denote the pressure at a point, z, while X, Y, Z are the
components of the external forces that are exemee a unit mass that is placed at that
point then one will obtain the fundamental equagion

— =X, %: Y, —=7,
dx dy dz

upon writing that a volume element is in equiliniwnder the influence of the forces
that act upon it.

In the particular case that we are concerned witbre are two types of external
forces: capillary forces and forces that act abppreciable distance. We just saw that
the first ones admit a potentil In general, the second ones likewise admit am@t,
which we denote bW.

The preceding equations will then become:

dp_ dv , dw
dx dx dx’
dp_ dv, dw
dy dy dy’
dp_ dv, dw
dz dz dz

We deduce from this that:
p=V+W+ const.,

or upon replaciny with the value (5):
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p=6(y - &)

(—+—j + W + const. (6)
R R

8. Equation of the free surface of a liquid— That equation is deduced from the
preceding one immediately.

One has = 0 for a point on the surface. As a result, thsgreep, at that point will
be:
6,(0)

Po=6(0)~ =5

(i+—1j + W + const.
R R

However,d (0) is a constant, sa will also have the same value at any point on the
free surface, and one will have simply:

b (O)( W + const. (7)

Rhaf

When the forces that act at an appreciable distadceedo gravity, one will havg
=X =0,Z =g if one takes the-axis to be vertical and directed downwards andxihe
plane to be a horizontal plane. As a result, orlitlvéin have:

W=9z

in that case, and the free-surface equation will become

9(0)(

5 —+Ej gz+ const. (8)

R

9. Capillary ascension and depression— When a capillary tube is submerged
vertically in water, the liquid will go up in the tube untils above its level in the vessel.
When it is submerged in mercury, the free surface in dbe will be below the free
surface in the vessel. The preceding equation will peusiito find the form of the
meniscus in both cases.

Take thexy-plane to be the horizontal plane that forms the &erface of the liquid
outside the tube. For a point of that plane, onehailleR; = R, = andz= 0. Hence,
the constant in equation (8) will be equal to 0, andvaiidhave simply:

6, (0)[ -

Rhaf
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If we suppose that the capillary tube is cylindrical tthenfree surface inside the tube
will be one of revolution, and one will ha\g = R, at the summit of that surface. One
will then have:

6,0) _

z
R g

When there is ascension in the liquid, thef the summit will be negative. As a
result,R; must be negative, sinég is positive when the forces are attractive. Téweter
of curvature will then be on the negative side laf 2-axis, and the meniscus will be
concave.

When there is depression, tkeof the summit will be positive. The radius of
curvature at that summit must be positive, anchibaiscus will then be convex.

We then see how Laplace’s theory permits us tdipréhe form of the meniscus
when one knows whether there is ascension or dapresor conversely, to predict
whether there will be ascension or depression vamenknows the form of the meniscus.
Nonetheless, the problem is only half-solved beeaus have ignored the problem of
explaining why certain liquids go up in a capillamybe, while other ones go down.
Laplace attempted to give an explanation in twassghent works. In the first papey, (
he arrived at an explanation that was plausiblé based upon a hypothesis. In another
paper ), the conclusions to which he arrived were rigsrouly in the case where the
tube was cylindrical, and the method was very carapdd moreover. We shall

nevertheless summarize those two papers.
A

7

Figure 3.

10. Contact angle. Its variation.— Consider the free surface of a liquid in the
neighborhood of a wall. Draw a plane through of#he points of the contact curve with
the surface and the wall that is normal to thaveurlt will cut the surface and the wall

() Euvres complétes de LapladelV, Supplement to Book X of hiFraité de mécanique célestEp.
394.
() Euvres complétes de Lapla@® supplement to Book X, pp. 419.
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along two lines whose tangents at the point of comtdcform a certain anglgp. That is
the contact angleat the point considered.

In his first paper, Laplace assume without proof thatahgle is constant, so it would
have the same value at any point of the contact caetgeen the wall and the surface of
the liquid. In order to explain the variation of tlaigle with the nature of the liquid and
that of the wall, Laplace supposed that the solid médscwere attracted to the liquid
molecules and that this attraction differed from the tirat two liquid molecules exerted
upon each other by only a constant factor.

Let us apply that hypothesis to the search for theliequm condition for a liquid
moleculeP (Fig. 3) that is located on the contact curve of aicadrwall AB and the free
surfacePQ.

In order for that molecule to be in equilibrium,stnecessary that the resultant of the
forces that act upon it must be normal to the freéaser because in the contrary case,
the molecule would slide under the action of the tanglecdmponent.

Now, those forces are:

1. The attractiofr that is due to the molecules of the wall, which igtiraction that
will be perpendicular tAB and directed towards the interior of the wall, by osasf
symmetry.

2. The attractiorF’ that is due to the liquid molecules that are locatedha
dihedronBPC, which is an attraction that is obviously directed gltime bisector of the
angleBPC.

3. The attractiorF; of the molecules that are found between the pR@end the

free surface, which is an attraction that must be adl€dif the contact angle is acute
and subtracted if the angle is obtuse.

4. The weight, whose valuegs since the mass of the attracted molecule is taken to
be unity.

Upon expressing the idea that the sum of the projectibti®ee forces onto the tangent
PC should be zero, one will get the relation:

4

—Fsin¢+F'cosE +Q+gcos¢g=0,

in which Q denotes the projection of the forég, which must be taken with the + sign in

the case that is depicted in the figure and with thgrwhen the anglg is obtuse.

Let us calculaté& andF”. In order to do that, we decompose the dihe®@Bg into
infinitely-small dihedral angled¢, in which ¢ is the angle that one of the faces of that
small dihedron makes with the bisecting plane of thedtitnBPC. The attraction that
two dihedra with the same angle exert upon the moldewdl be equal, because when
we rotate one of them around its edge through a convesmgie, we will get the other
one. As a result, the attraction of each of teeneintary dihedron will be proportional to
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dy ; with Laplace, denote it by’ dy. The projection of that attraction onto the bisecto
of BPC will be p” d¢ cos ¢, and we will get the attraction of the dihedi8RC upon
integrating between the limits gf— i.e.:

4 4

-— and +-;
2 2

hence:

4

F’— , +¢/2 d _ ,
= 'Oj—wz cosydy =2p smE.

In order to gef, it suffices to sep = 2r7in that expression and to replagéwith the
value p of that quantity that relates to the action ofsbéd on the liquid. Consequently:

F=2p

If we replaceF’ and F with those values in the equilibrium relation therwill
become:
- 2msing + Zp’sing cosg+ Q+gcos¢g=0,
or

(0'—20) sing +Q +gcosg = 0. 9)

When the contact angle is acute, gincos@, andQ will be positive; consequently,
the latter equality can be satisfied only if:

p'=20<0 or P>p.

If the contact angle is obtuse th@mmust be taken to be negative, as we have pointed
out. Since co® is negative then, while sigiis positive, the condition (9) will lead to:

p'—20>0 or  P<p.
Finally, if the contact angle is a right anglertlmne will have:

sing=1, Q=0, cosp =0,
and as a result:

p'=2p.

The value of the contact angle, and as a reqdtdepression and ascension of the
liquid in capillary tubes will then depend upon th&ensitiesp andp’ of the attractions
that are exerted upon a liquid molecule by a dibedm the solid that forms the wall and
an equal dihedron on the liquid itself.
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11. - Laplace likewise considered two particular cases: tie.pne in whichp = p’
and the one in whicp= 0.

Supposing thap and p” are equal amounts to assuming that the tube is compbsed o
the liquid that it contains and the molecules are stdxeto forces of cohesion that do
not modify the capillary forces. We shall showttbader those conditions, the contact
angle will be zero and that the separation surface inylindrical tube will be a
hemisphere if one can nonetheless neglect the weighe liquid.

Imagine that the weightless liquid fills up all of tsgace that is exterior to a sphere
whose center i© (Fig. 4). The liquid will then be in equilibrium becauserbgson of
symmetry, the attractive forces that act upon a mddewill pass through the centé,
and as a result they will be normal to the surfadh@ftphere.

Draw a cylinder that is tangent to the sphere andifptihe liquid that is exterior to
that cylinder; i.e., introduce forces of cohesion betwthe molecules of the liquid that
do not modify the attractive capillary forces. Equiliioni will not be perturbed.

D E
C
K L
[ ]
A 5 B
M N
G H
Figure 4.

That will no longer be the case if we remove tliil that occupies the space
DACBE because the action of that liquid on the liquid thaup@s the spacB ANBHIis
negligible. Indeed, the only molecules of the firglume that can react with the
molecules of the second one are the ones that areesitataa distance from the cird\&
that is less than the radius of molecular activitjhose molecules are situated in the
volume that is generated by the rotation of the curviliteangleKAL around the axis of
the cylinder. Now, that volume is a third-order infasiimal, sincK is infinitely small.
One can then neglect the action of that volume.

All that remains then is the liqu@ANBH which is in equilibrium and whose free
surface is a hemisphere. However, from the remakvias made previously, the liquid
exists under the same conditions that are found inethdt is composed of a material
such thajp= p’. The contact angle will then be indeed zero in thgec

The case in whiclp = 0 (which does not correspond to anything in physical yealit
moreover) leads to a value gfor the contact angle.
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Indeed, consider a sphere of weightless liquid; ih isquilibrium. Draw a cylinder
that is tangent to that sphere and fills up the sgsateid found outside of the cylinder, as
well as the spacBABCEof the material for whiclp= 0. Equilibrium persists, since the
matter that was added has no effect on the molectitbe ¢iquid. If we fill up the space
GANBHwith the liquid then we will not destroy the equiliom, because the molecules
of the added liquid that act upon the molecules of therspare solely the ones that are
located in the small volume that is generated by theioataf the curvilinear triangle
MAN, and since that volume is a third-order infinitesintalaction can be neglected.

We then see that when a liquid is in equilibrium irylndrical tube that is composed
of a material that does not act upon its moleculesfree surface will take the form of a
convex hemispher@CB. Consequently, the contact angle will be equatto

In summary, Laplace succeeded in explaining the varmumssfof the surface of the
meniscus by an attraction of greater or lesser magnitudeedetthe solid and liquid
molecules, but he assumed that the contact angleavestant. In his second paper, he
returned to that explanation, but also adopted therlaitpothesis, whose exactness was
proved only by Gauss. Nevertheless, we shall analyzepépeer, which contains some
new results.

12. — Expression for the liquid volume that is raised in awindrical tube of
arbitrary section. — Consider a cylindrical tube whose cross-sectionhgrary and is
submerged in a liquid.

Take thexy-plane to be the horizontal plane of the free suréddbe liquid outside of
the tube, and take thzeaxis to be normal to that plane and point downwards.

A B

N
/ .

Figure 5.

The volumeU of the liquidABCD (Fig. 5) that is found in the tube above Xyelane
has the expression:

U :—szxdy,

in which z is the ordinate of a point on the free surface aedritegration extends over
the cross-section of the tube.
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Now, we have found (9) that the equation of the freéasarwith respect to this
system of axes is:
gz= 9(0)[

)
R R

ﬂe(O)[Rl RJ o

Letl, mbe the direction cosines of the normal at a pamnthe free surface. The radii
of principal curvature that pass through that point satisf equations:

consequently, we will get:

dl dl
—dx+—d ———d
dx dy y %
dm dm
—dx+—d —d ,
dx dy Y= y

in which dx, dy are proportional to the direction cosines of the tahdge the line of
curvature. One can write the latter equations as:

(ﬂ 1jd +ﬂdy 0,
dx R dy

dmd dm 1 dy =0,
dx dy R

resp., and one will deduce that:

(dl jd_fm_l_ﬂ@:o
dx R/l dy R dyd

(1)2 di, dm), didm_ didn
|+ =+ —|+———-——"1=0
R dx dy dx dy dyd

Consequently, we will have:

or

and the expression fgU will become:

H(O)H(— —jdx dy
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or upon replacing the double integral in the right-hand wittea curvilinear integral that
is taken over the cross-section of the tube:

_6(0)
gu _Tj(ldy—md».

The direction cosines of the tangent at a poirthercross-section of the tube are:

dx - dy
ds’ ds’
in whichds denotes an element of arc length of that cross-sec®mthose of the normal
will be:

dy _dx

ds’ ds’

Consequently, the angle that is defined by the normiddetdree surface of the liquid
at a point of the separation curve and the normahé¢osurface of the tube, which is
nothing but the contact ange will have the cosines:

dy dx
cosp=1—--m— +n(0).
¢ ds ds ©

It will then result that the value glJ is:

b

©) I ds cosg, (10)

U=
J 2

which is a relation that Laplace wrote as:
gu :@s Cos g, (11)

since he assumed thathad the same value at any point of the contact curve.

13. Attraction of the matter that surrounds a cylindrical cavity to the liquid
contained in the cavity.— Consider a volume& (Fig. 6) that is bounded by a cylindrical
surface whose cross-section has an arbitrary fornraaratea of2, and at the same time,
consider a material that occupies the volufeT” whose cylindrical surface is a
boundary surface. We shall look for the component@#gtiraction that is exerted by the
volumeT’T”on the volumel along the direction of the generators of that surfatéch
is a direction that we suppose to be vertical.
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We first examine the case in which the upper part of theme T’ T” is above that
of the volumeT, while the lower part of the latter volume is beltvat of the volume
T'T" (Fig. 6).

We decompose the volunteinto elementary cylinder€D of sectiondw and cut
those cylinders with horizontal planes that are \®@oge to each other. We will then get
an infinitude of volume elements that have voludwe dz and whose mass will be
represented by the same product if we take the matensidsred to have unit density.

\ /

I
D
Figure 6.

Let V be the potential of the volun® T” at an exterior point. The force per unit
mass that results will have the vertical compor®ht dz and as a result, the vertical
component of the action of the volurméT “on the volumér will have the expression:

1] S deodz = [ deof L 2= [[ deov - 5),

in whichV; is the potential aD andV, is the potential at.

Now, the points likéd that belong to the surface inside of the voluiheae at a finite
distance from the molecules of the voluiiel”. As a result, the potential of the latter
volume at those points will be roughly zero, andoaa writeV;, = 0. The points — such
asC — that belong to the upper surface that boundsdhemeT, are not all at a finite
distance from the molecules of the voluméT”; V, will not always be zero then.
Consequently, the desired vertical component vaillehthe expression:

~[[V, dw.

However, we have found that the potential at atpthiat is close to the surface that
bounds an arbitrary volume is:

V=6( —@(%+éj.
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The quantityéi(¢) is always very small, so we can neglect the tivah contains that
guantity as a factor and takg = @ (¢) . Under those conditions, we will have that the
vertical component of the attraction is:

- j j 8(¢) dw. (12)

When the volumé& exceeds the volum&’ T” by its upper part, the potentidd will
be zero, bul; will have the valued (). Consequently, the vertical component of the
attraction will be given by the preceding integrahen it is taken with the + sign.

In the case where the voluriieexceeds the volume above and below, the various
points such a€ andD are at finite distances from the voluméeT”. V; andV, are zero,
and the vertical component of the actioW6T” onT is zero.

If the volumeT’T” goes beyond the upper and lower boundary surfaite wvolume
T then the potential of” at the various points of those surfaces will notzeeo.
However, the potentiald, andV; will be equal at the two points andD, which belong
to the same elementary cylinder. Consequentlyyéngcal component of the action of
T’T” onT will again be zero.

T

Figure 7.

We pass on to the case in which the two volumaadT’T” are bounded above by
the same horizontal plane (Fig. 7), while the loweart of the volum& ' T” goes beyond
that of the volumé'.

Once more, we decompose the volummto a cylinderCD of sectiondawy and we
will get:

'U M — V) dw

for the vertical component of the attractionTéfT” to T.
The potential of the action of the volumeT” for the points of the lower bounding
surface ofT is:

V= 8(8).

In order to findV,, we a take a volum&'T" that is symmetric to the volunie T”

with respect to the horizontal plane. As a resfilthat symmetry, the potential &t of
the volumeT,T will be equal to the potential of the voluriié T”. If the latter is
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denoted by, then the potential of the volun& T” + T,T" will be 2Vp . Now, the
potential of T’ T”+ T/T" is approximatelyd(&). Consequently:

2Vp=8(9),

and the vertical component of the attractiof 6T” to T will become:
j j @dw. (13)

Hence, in the various cases that can present themselaesomponent will be zero
or equal to the integral (12) or to the integral (13), whiadnis-half of the preceding one.

14.— We then calculate the integral (12).

Figure 8.

Let C (Fig. 8) be the cross-section of the cylinder that rs¢pa the two volumes.
Draw normals to that curve at two infinitely-close mqgsiA and B and trace out two
curvesC’”andC” that are parallel t&€, the first of which is at a distance gfwhile the
second one is at a distancesof ds. We then form a surface elemeéitB’ A" B" whose
edgeA'A" has a length ofle and its sideA’ B’ has a length that is roughly equal to the
element of the curvAB =ds sinceC andC"’are two parallel curves that are very close to
each other. Take that element to be the sedionf the elementary cylindeZD that
was considered before. We will then have:

jje(a)dw = jje(a)da ds = sje(a) de

for the desired integral.

One of the limits ofe is 0; the other one is greater than the radiusnolecular
activity, since it is excessively small. Sin@é¢) is roughly zero for distances that are
greater than that radius, we can take Ocad be limits of the latter integral.

We will then have:

jo‘”e(,s)ds =[£6(9)]; —j:ser(e)ds
for that integral. However, the functiofige) and 6, (&) are defined by (3) to be:

6(e) = L‘”zw(z) dz, & (&) = L‘”znzw(z) dz.
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Consequently:

(& =-2my (9,
and as a result:

j:ser(s)de = j:znw(e)ds: - 6 (0).

The quantity[£6()].is zero, since the first factor is zero for theiti® and the
second factor will be annulled at the other limit. @nikthen have:

|, be)de = 6.(0),
and
j j 8(¢)dw =s 6 (0). (11)

15. New expression for the volume raised in a capillary tube- We shall appeal to
those quantities in order to find a new expresdmnthe volume that is raised in a
capillary tube.

N,
U
J .
C D C:. D:
U Ul'
T T T T
E E E - F1
T T
Figure 9.

Along with the volumeU (Fig. 9), consider the volumid’ that is bounded by the
planeCD, the surfac&F, and the prolongation of the cylindrical surfa¢ehe tube, and
write down that the total volumg + U’ is in equilibrium under the action of the forces
that act upon it.

Those forces are:

1. Its weight:
g (U +U’),

since the density of the liquid is taken to beynit

2. The atmospheric pressupg Q that is exerted upon the surfaédd of the
meniscus.
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3. The hydrostatic pressureon the surfac&F.

4. The attraction of the liquid’ that surrounds the prolongation, which has a
vertical component:

j j 8(¢)dw=s & (0).

5. The attraction of the glass tube. Since thia¢ xceeds the liquid volurae+ U’
by the upper part, the vertical component of iteaation will be given by the preceding
expression with the sign changed. However, inmtalelistinguish the action of a liquid
to a liquid from the attraction of a solid to auid, we lets (¢§) denote the function of
that corresponds t8(¢), and we will get:

-sn(0)
for the vertical component of the attraction of ¢tess.

6. Finally, the attraction of the volurmée that is situated below “and whose vertical
component will be denoted by

Since the liquid is supposed to be in equilibrithe algebraic sum of the vertical
components of those forces must be zero; as a:resul

gU+U")+ppQ-H+H'-sn (0) +s & (0) =0.

In order to eliminate the quantitips Q, H, andH’, we write down that the volume
U, of the liquid, which is equal t, but situated at a sufficient distance from theetu
for Ci:D; to be horizontal, must be in equilibrium under #mion of the forces that act
upon it.

i Those forces are: weigbt)’, the atmospheric pressyrgQ, the hydrostatic pressure
H, the attractiorH of the volumeT,", and finally, the attraction of the liquig', whose
vertical component will be:

156 (0),
from (13) and (14).
One will then have:

gU’+pOQ—H+H’+§6!L(O):0,

and the preceding relation will be written:

gU= s[m(@—@} . (15)

16. Jurin’s law. Laplace’s law.— Suppose that the tube is formed inside of andgh
of revolution of very small diametet The volumeU that is raised in it is very roughly
equal to that of a cylinder of the same diameteosghheight is the distanedrom the
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lowest point of the meniscus to the horizontal plare forms the free surface of the
liquid outside of the tube. As a result:

2
U:ﬂd—z.
4

Now, from the relation (13)gU will be equal to the perimeter= 77d of the tube
times a constark = 7. — 6,/ 2. Consequently:

2
gﬂ% z= mrdk

so
z=——. (16)

Laplace’s theory then leads to that conclusion titra height that a liquid in a tube of
very small diameter is raised will be inverse te thameter of the tube. That law was
stated for the first time by Borelli in 1670, thbyp Newton in 1704, and finally in 1708
by the English physicist Jurin who it was named for

Suppose that the cross-section of the tube ictangle that has sidesandb, and
one of the two — say — is very small. We will have:

s=2@+bh),

and roughly:
U =abz
The relation (15) will then give:
gabz= X (a + b),
SO
2k a+b
z=—

g ab

If the sideb becomes infinite, which will happen in practiceemhone considers the
ascension of a liquid between two very close paré&llyers, then one will have:

Upon comparing that expression to the expressiéh @ne will see that the height that
the liquid rises in a cylindrical tube of revolutiovill be twice the height that it will rise
between two parallel layers whose spacing is efqutdle diameter of the tube. That law
is known by the name dfaplace’s lawtoday, and its experimental proof was due to
Newton.

Laplace’s theory then explains the two oldest kmdaws of capillary phenomena.
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17. On the contact angle—~ A comparison of the expressions (10) and (15) that were
found forgU will yield the equality:

@I dscosg = s [ (0) — & (0)].
If we set:
[dscosp =s cosgo

then g, will be the mean contact angle, and we will have:

— 27,-6
Po g

COos

in which 77, and 6, are constants for the same liquid and the sanié s@le will see that
the mean contact angle is a constant. That ishatl we can deduce logically from
Laplace’s theory. It would not be permissible thersuppose, as Laplace did, that the
contact angle itself is constant. It is true tinathe special cases of a cylindrical tube of
revolution and two very close parallel layers, tt@atstancy will be obvious, by reason of
symmetry.

Be that as it may, we assume, with Laplace, thatangleg has the same value at
every point of the contact curve. We will then éav

2’71_81

cosg = ,
’ )

in which 8 andz; are positive quantities, so that angle will be:

acute if 2> 6,
obtuse if <6,
right if 2m =6,
zero if m=6.

If 71 is greater tha, then the preceding formula will lead to a valuetfee cosine
that is greater than 1, but that is absurd. LapEssumed that in that case, the liquid
would wet the solid, and that it would be coverdathwa liquid sheath in such a way that
everything would happen asnii and 8 were equal.

Let us compare these results with the ones thalata obtained in his first paper. It
results from the conclusions that were reachedOn &nd (11) that the angle is:

acute if D>p
obtuse if P<p,
right if 20=p),

zero if p=p"
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Those results differ from the ones in his second paplgrby the substitution gb for
n andp’for 6. They are identical ib andp’are proportional t@y; and &, respectively.
Now, that is what happens if one assumes, like Lapkhet the laws of attraction of
solid molecules to liquid molecules are the same aslatvs of attraction of liquid
molecules to each other, so the intensities ofattwactive forces will differ by only a
constant factor.

18. New way of obtaining the equation of the free surface. We have seen how
Laplace obtained the equation of the free surface afuadlin the neighborhood of a

solid wall:
_ 601 1
gz= T(E+Ej (8)

Let us now say a few words about another method thaate@ employed in order to
arrive at that equation.

In the equilibrium state, the forces that are exedigon a molecule of the surface of
the liquid have a resultant that is normal to thafaxe. As a result, the virtual work that
results from a displacement of a surface molecuteartangent plane to the free surface
must be zero. The virtual work done by gravitgiéz . If we let & denote the virtual
work done by the capillary forces then we will have:

ga+d=0,

and in order to gedJ, it will suffice to consider the tangential componehthe capillary
forces, since the work done by the normal component wveillzero under the virtual
displacement in question.

Take a system of coordinate axes that has its catganpointO on the free surface, in
which Oz is normal to the surfac€x andOy are the tangents to the indicatrices at the
point O. The equation of the surface, when referred to thaes, will be:

z=al +hy+cd+3eXy+Fxy +hyP + ...,
and that of the osculating paraboloid will be:
z=ax + by

The attraction that is exerted by the liquid thatasirimled by that paraboloid on a
molecule that is situated @xis obviously (by reason of symmetry) directed normatly t
the surface. In order to get the tangential componenhefcapillary forces that are
exerted al, it will then suffice to consider the liquid thatund between the free surface
and the osculating paraboloid.

Take a surface elemeABCD (Fig. 10) in thexy-plane that is bounded on the one
side by two arc&\B andCD of circles that have radp andp + dp, and on the other by
two lines that pass through the origin and make angléanél & + d&with Ox.
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Take the contour of that element to be paralleldhéonormal alD. We will get a
cylinder that cuts out an elemeaton the free surface of the liquid and an elent&hdn
the surfaceS of the osculating paraboloid. The portion of the cylnttet is found
betweenG and G’ is a volume element for which we have to find thagemtial
component of its attraction &. Upon lettingz andZ denote the distances from the
elementss andG’, resp., to they-plane, we will have:

du=(z-2 pdfdp
for the volume of that element, in whigh- Z has the value:
z—2=cX+3eXy+3Ixyf+hy@+ ...

In order for that valuelu to exert an appreciable effect @n it is necessary that its
distance from that point must be less than the raafimsolecular activity. If that radius
is considered to be a first-order infinitesimal theandy must be likewise of order one,
andz andZ must have order two. One can then consider all of tispof the small
cylinder FG to be the same distance from the p@nt.e., assume that all of the points of
the elementu are at the same distanodrom O. For the same reasons, one can regard
all of the lines that join the poif to the various points afu as defining the same angle
6@ with the x-axis. As a result, the component along that axihefdttraction thatlu
exerts on the poir® will have the expression:

du f (o) cosé,

and the component along that axis of the attractiath@folume that is found between
the free surface and the paraboloid will be:

jdu f(p)cosd = j(z— 2)p f(o)cod & oo,
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in which & varies from 0 to Zrand p, from O to the value of the radius of molecular
activity, or what amounts to the same thing, from &1o

Now, 2_3 depends upon onlg, because:
X< cosé, Y- sin g,
Y Y

and as a result:
Z_
3

Yo,
The preceding integral can then be written:

Z_ ccoS G+ 3esinfcog 9+ I sirf dcos+hsir’ 4

LGz— Z cos#dd [~ p*f (0)dp.

3

Yo,

If we let B denote the value of the integral that is defingth wespect top and
perform the integration with respect&hen we will get:

cr”cos“HdH+ 3ej2” co36 sid B+ a‘jz” 39 she B+ |jz” c6s St @
0 0 0 0

:%0+%f:%(c+f)’
4 4 4

and the double integration will give:

3BT
——(c+f).
2 (c+f)

In the same way, we will find that the componehthe desired attraction alori@y
is:
3B
—— (e+h),
2 (e+h)

and consequently, we will have:

8= [c+h &+ @+ 5]

for the virtual work done by capillary forces.
It still remains to introduce the radii of curvegu Now, one has:

1. 1_ (dl dmj
—t—==| —+—,
R R dx dy

and
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dz dz
| = dx dy

e (-

However,x andy are first-order infinitesimals, so the derivatives

%ZZax+3cx2+6exy+3fy2,
X

3—2223x+%>3+a‘xy+3hy2
y

will also have order one. As a result, their sggawill be negligible in comparison to
unity, and one will have approximately:

dz dz
| = —, m=—.
dx dy
It will then result that:
a = 2Za + 6CX + ey,
dx

5ﬂ:6(cd<+ed/),
dx

dm

—=2+6&x+6hy,
dy

59M_ 6 ¢ 5 +h ),
dx

5(ﬂ+d_mj: 6 [(e+f) X+ (e+h) oy,
dx dy

d]:—B_n-(i.i._lj_
8\(R R

and consequently:

Finally, one will have:

for the equation of the free surface, and its fdioas not differ from that of equation (8).



CHAPTER I

THEORIES OF GAUSS AND POISSON

19. Basis for Gauss’s theory— Like Laplace, Gauss considered bodies that were
composed of molecules that attracted each other alengés that connected them with
an intensity that was proportional to their massed depended upon the distance
between them.

From the principle of virtual work, the sum of the viftwaorks will be zero when
one gives a virtual displacement to the system in dguifn that is compatible with the
constraints. We shall look for those works for a poable liquid that is in contact with
a solid wall.

If U is the volume of the liquid (whose density we corgino take to be unity) then
the virtual work done by weight will be:

gUo,

in which thez-axis is vertical and points downward.
Upon letting:
mmi f (r)

represent the attraction of two liquid molecules, therk that corresponds to an
incrementdr in the distance will be:

-mnif(r) & =mm o¢ (r),

in which the functiory is defined as it was inB
The work that is done by a displacement of a solidemdé with respect to a solid
molecule is:

—mufi(r) o =muogy (r) .

Consequently, an application of the principle of virtualocities will yield the
equation:

gU &+ Y mmidp(n+ 3 mudg,(1)=0.
If one sets:
> mmig(n=Ww,
Zm:u¢1(r) =W,

and if one supposes that the fluid is incompressible,hwkitt permit one to write:
guU & =9(g U2,

then that equation will become:
o(guUz+W+W) =0. (1)
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That is the relation from which Gauss deduced the equafithe free surface and
the value of the contact angle.
We remark that the function:
- (QUz+ W+ W)

is nothing but the potential energy of the systemwiltthen be easy, in general, to
recognize whether the equilibrium is stable, because&knoes that there will be stable

equilibrium when the potential energy passes throughnamum. That is one of the
advantages of Gauss’s method over that of Laplace.

20. Calculating the work done by molecular forces— Consider a liquid volume;
one will then have:

W=>" mmig(r) :jj¢(r)drdr’,

in which the sextuple integral is taken in suchaywhat the two elements andd7r’ are
considered only once. If one does not restrictselfiewith that condition and one
calculates the integral by taking all permutatiohsvo elements then one will get:

W= %”¢(r)drdr’.
Regarddr as fixed; the corresponding integral will be:
[e(rdr.
Now, that integral is the potentidlof the entire volume at the center of gravitylwd t
elementdr ; as a result:

wW=1[Vdr.

However, we have found (6) for the potential ateaterior point that is very close to
the surface that bounds the attracting volume:

y=eas Hgg)(Rl sz

In the case that we are dealing with, in whichgbet considered is as interior point,

we will have:
v=ota- 6(28)[3 RJ
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and sinceé, is very small with respect t6 we can preserve the first term [which one
cannot do in Laplace’s theory, since the tét(a) will disappear from the equations]. As

a result:
V=60(-¢.

TI
T

Figure 11.

Furthermore, it is easy to expre@¢- &) as a function o¥ (¢). Indeed, letM be a
point close to the separation surfeggé€Fig. 11) between two volumeésand T’ of the
same liquid. The potential at that point dueTtes @ (- £); the one that is due ©’ is
d(¢). Consequently, the potential that is due to the veliim T’ is & (&) + 6 (- &).
Now, that pointM is at a finite distance from the surface that boundsT’ Hence, the
resultant of the molecular forces that are exerted wiil be zero, and the potential @f
+ T’at that point will be a constaAt One will then have:

6(-9=A-6(9,
and:

W= 1[[A-6(e)] dr = A—;—%je(s)dr. 2)

The work done by forces that are exerted betwesdid snolecules and liquid
molecules can, in an analogous fashion, be exgtesith the aid of the functiown (¢).
We have:

Wi = [[g,(r)drdr,,

and sincedr anddr; refer to two different materials, we cannot inuiod those two
elements as we did in the expressidn

If we regard the elememnir as fixed then the portion of the correspondinggnal
will be:

[#.(n)dz,,

which is an integral that represents the poteMiabf the solid at a point alz. Since
that element is exterior to the solid; will have a valuern (&) that is approximately
constant, and we will have:

Wi = [(e)dr . (3)

We see tha¥w andW; are given by integrals of the same form. Letramdform
them.
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Figure 12.

Let AB (Fig. 12) be an element of the surfaces of a fluidawbmormals to the surface
at all points of its contour and cut the tube thus-okthiwith two surfaces that are
parallel toS one of which is situated at a distargavhile the other is at a distaneet
de. We have a volume elemeist B’ A" B” whose basé@'B’ differs infinitely little from
AB, sincec¢is very small. Upon lettindawdenote the area of the elemé&, the volume
of that element will be:

dr=dedw,
and that will give:

je(a)dr: jje(a)dadw,

in which the integration ovew is performed over the entire extent of the surfatleat
bounds the fluid, and the one oweis performed from O up to the value of the radifis
molecular activity, or what amounts to the samaghifrom 0 to infinity. That integral
can then be written:

j me () de .

However, we have seen (14) that:

Ja(e)de = 4 (0).
SO as a result:
jdwje(g) de=S6 (0),

and from (2):
_AU_S6(0)
2 2

w

Upon transforming the expression (2) in the sarag, uw will become:
W, =S m (0)
In those equalitiess denotes the entire surface that bounds the fand,S, denotes

the contact surface of the fluid and the solid.
We then have:
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a
M:—Elﬁ Wy =m &

for the virtual work done by molecular forces.

21. Transformation of the equilibrium equation. — Substitute the preceding values
for W and W, in the relation (1) and neglect the teA / 2, moreover, which will
disappear when one takes the variations; it will become

5(9Uz—% S+n, $j: 0.

If we letZ> denote the portion of the surfaS¢hat is not in contact with the solid then
we will have:
S=5+2,

and the preceding equation will become:
o gUz—iZ{/]l—ij S|=0. 4)
2 2
Let us calculate the variation of each of the teafiithe quantity inside the brackets.
Al A BB

M/N/
A B

M N

Figure 13.

Let AB be one of the surfaces that bound the fluid irdfsilibrium position (Fig. 13)
and letA; B; be its position after displacement. Those twdases enclose a small
volume between them that we decompose into volulements by drawing normals
MM’ NN’ to the surfacéAB through the contour of each elemelat of that surface.
Upon lettingA denoteMM’, the volume element will have the expression:

dr=Adao
The termgU zis the moment of the weight of the liquid withpest to thexy-plane.

Its variation will then be the moment of the voluthat is found between the equilibrium
surface of the fluid and its surface after disphaest; consequently:
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5(gUz):jng d.

In order to get the variation of the second term, coenplde areag and; of the
surfacesAB andA;B; , resp., that are found between the lines of comtastdL,, resp.,
of those surfaces and the solid walls; one will have:

éZzzl—Z.

If we draw normalAA, BB to the surfacéAB through the points of then those
normals will cut the surfac&;B; along a lineA’B’ that bounds an ar@a on that surface.
Upon lettingZ" denote the area that is found betw@&® andA;B; , we can write the
variation ofZ as:

D=3 +3" -3 =3" +jdd—jda.

Ql

N’ P
N| >/p
| /
| ' M //
[ /
| I
| /.
| I
| 1/
| / /
L
| /a//
L
Lt
]
\a,’
1/C
Ly
7
C

Figure 14.

Compare the surfaceler anddo’ of the element®N andM " N’. In order to do that,
suppose that the edges of the elembfitisbelong to two lines of curvature of the surface
AB that passes through the polvit The lines of curvature will intersect at a righglen
so we will have:

do=MN x MP,

in which MN andMP (Fig. 14) are the two sides of the element. The atgrhat are
drawn through the points MN andMP will cut the surface; along two linesv’N’and
M’P’that are roughly perpendicular; as a result:

do’=M’'N’xM’"P".



Chapter Il — Theories of Gauss and Poisson. 35

The pointsM and N belong to the same line of curvature, so the nornathcse
points will intersect at a poir@. Upon lettingR; denote the radius of curvatuC, one
will have:

MN=aR, MN=a(R;+A),

in which a is the angle between the normas and N, becauseM’ N’ is roughly
perpendicular to the two normals.
One infers from this that:

M'N' A
— =1+,
MN R
Similarly, one has:
M'P A
M'N’ R’

and consequently:

or, upon developing this and neglecting the termAfn which is a second-order
infinitesimal, sincel has order one:
One deduces that:

do’— do= A ds [i +_1j
R R
and

[do [ dor= .[)I[%Tijda.

Figure 15.

Let us evaluate the annular ai¥a Let A andC be two points that are infinitely-
close to the contact curte(Fig. 15). Draw normal planes to that curve througlse¢ho
points. They will cut out an elemeaAt C' A; C, from the are&"” whose surface area is
roughly:

dw=dsx A A,
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in which ds denotes the eleme®C of the curveL. If ¢ is the contact angle in the
equilibrium state then the contact elem@i A" after the displacement can coincide with
@, and since the angle At is roughly a right angle, sind®A' is normal to the surfacg,
one will have:

ALA = AA cotg= 122
sing

As a result:
dw= ﬂds
sing
and

cos¢
2 =[dw= [ A== -

|n

The variation of the second term is then:
by - j)l I o|a+j/1‘:°37j .
2 R R sing

The variation of the third term is easily obtainethdeed, sinces is the contact
surface of the liquid and the solidy will be the area that is found between the contact
linesL andL; . An element of that areaAs\«C,A (Fig. 15); consequently:

cBl:deXAA

However, in the right triangldA; A', one has:

AA = L ;
sing

blos =[-8 A
(’71_3}581—(’71 2} Lsin¢ds

The condition (4) will then become:
cosﬁ o, A
Ado—-—=1|A - -2l — d =0,
.[gz I ( j I sing ( T ZJIL sing

(1. 1 8Os )| A ge=
J{gz—z[ﬁ+€ﬂ)l d0+J'L(/7l 2cos¢j Z_ds=0. (5)

hence:

or
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22. Equation of the free surface. Contact angle- That equation must be satisfied
no matter what value is given ¥y provided that it is compatible with the constraints.
Now, the liquid was assumed to be incompressible. Qoestly, the algebraic sum of
the variations of the volume that result from thaudl displacement of the bounding
surfaces must be zero. We saw in the preceding numétethih volume of an element
that is included between the equilibrium surface and tfemed surface isit = A do.

As a result, the incompressibility of the fluid wiélad to the condition:

jAda:o. (6)

If we take that equality into account then the refat{f) will be satisfied for an
arbitrary value ofl that is compatible with the constraints if:

a1 1
-2 =—+=| =K, 7
¥ Z[Rf%j 0
6_6 _
/71—3 2cos¢ 0, (8)

in whichK is a constant.

Indeed, those conditions are sufficient, becauseey #re fulfilled then the second
term in (5) will be zero, and the first one will re@uto the product of a constant with the
integral ofA ds which is zero, from (6).

Let us show that they are necessary; i.e., if #reynot fulfilled then we can arrange
things so that the relation (6) is satisfied, whilergdation (5) is not.

First assume that:
gz—-=3| —+—
2R R

is not a constant. It will then be a function bétcoordinates that presents at least one
maximum and one minimum, since it is applied to the dowgnsurface. If one then
takesK to be a value that is found between that maximum amidmum then the

function:
g(1 1
-2 =—+=|-K 9
v Z[Rf%j ©)

will be sometimes positive and sometimes negative. &ivalue tol that is zero along
the contact curve and has values with the same sigheapreceding difference at any
other point of the surface. Those values can alwayshbeen in such a way that the
condition (6) is satisfied. If that is true then anié have:

jKAda:o,
and as a result:
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(ot oot

However, by hypothesisd always has the same sign as the difference (9).
Consequently, the element of the latter integral agllpositive, and that integral cannot
be annulled. On the contrary, the second integral ins(8gro, since the value dfis
zero along the integration contour. The relationcég)not be satisfied for all values Af
that are compatible with the constraints then underconditions that we have imposed.
The condition (7) is necessary then.

Suppose that it is fulfilled, but that (8) is not. Quaa always takd to have values
that satisfy (6) in such a way that the sign of thadaes along the contact lineis the
same at each point at that of the quantity:

The first integral in (5) will be zero then, while teecond one will have a positive
value since its element is positive; as a result,glaion (5) will not be satisfied.

The conditions (7) and (8), when combined with the candi{6), are necessary and
sufficient then. The condition (7) is nothing bué tbquation of the free surface of the
liquid; it is identical to the one that Laplace found.

One deduces from the condition (8) that:

2’71_81

cosg = ,
’ )

which shows that the contact angle is constantchvisi a result that could not have been
obtained by Laplace’s calculations.

23. Potential due to a liquid of variable density— In 1831, the year that followed
Gauss’s publication, Poisson published Rsuvelle Théorie de I'action capillairen
which he reproached Laplace for supposing thatdtwesity of the liquid was constant.
The same criticism applies to Gauss’s theory.

By some laborious calculations, Poisson succeededving that it was impossible
to imagine a system of liquid molecules in equilibm under the action of their mutual
attraction without any variation of their densignd that if one takes into account that
variation of the density then one will nonethelgss back to Laplace’s equation for the
free surface, with the only difference being the two constants that enter into it will
have a more complex significance.

Fortunately, it is not necessary to repeat Poissamalysis in order to arrive at that
result. We shall arrive at it much more simplyeier

We seek the potential of a liquid of variable dgnat a pointM that is very close to
its free surface&, (Fig. 16). Drop a normdP; to the surface from that point. If one
displaces along that normal towards the interiothefliquid then the density will vary in
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a continuous manner in the neighborhood of the free suidadethen take on a constant
value.

M

S P:

S P>
S Ps
S P4

Figure 16.

Draw surfaces of equal intensBy, Ss, S, through the various poing, Ps, Py, resp.,
along that normal. We suppose, for the moment, that dénsity varies in a
discontinuous fashion when one crosses those surfaddseaps a constant value in the
space between the two of them.

Let o1, 02, 03 be the values of the density betwe&grandS,, betweert, andSs, and
betweersS, andS;, resp.; we assume that the dengitys constant outside &, . We can
suppose that the shell of densgyis bounded bys , on the one hand, and extends to
infinity, on the other, with the condition that omeist add a shell of uniform denspy —

o1 that is bounded b$ and extends to infinity, a shell of uniform density— o, that
goes fromS; to infinity, and finally, a shell of uniform densigy — p; that goes frony

to infinity. The search for the potential it will then be found to reduce to that of the
potential due to various volumes of constant density.

Now, we know that the potential of a liquid of constanit density is:

1 1
V=0 -6 | —+—=|.
“ (8)(F21+RJ

Since& is very small with respect t§ we can neglect the second term, and we will
have:

V=p6(9
for the potential of a liquid of densigy
Set:
MP; = ¢, PiPo=4, PiPs=4{,  PiPa=¢;
we will then get:

V= 0(&+(@-p) 0(e+ ) + (03— ) O(6+ () + (01— 03) O£+ ()

for the potential aM, or upon setting:

I
o

ﬂ) = 0! ZO
we will get:
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V=(—p) 0(e+ Q) + (02— 1) B(+ ) + ...
or rather:

V= Z('O' —P4)0(E+{ ).
Consequently, if we now suppose that the density variaxontinuous manner then:
v:jdpe(g+(). (10)

We remark that the position of the fdét of the normal that is based at the pdiht
can be determined on the surfégewith the aid of the two coordinatesand 8. The
position of a point such ag, will depend upon the value of the density, in addi
Consequently, the quantity, which fixes the position of that point, will befunction of
a, 5, and the densityp of the liquid.

24. Free surface and contact angle in the case of a variable diéns— Hydrostatics
teaches us that in a fluid in equilibrium the scef of equal density will coincide with
the surfaces of equal pressure. Now, we have f¢tnthat the pressure at a point of a
ponderable fluid is given by the equality:

p=V +gz+ const.,
without making any hypothesis on the density.
The surfaces of equal pressure, and as a raselsurfaces of equal density in a fluid
in equilibrium will then have the equations:

V + gz= const. (11)

However, one can neglegt with respect to/. In order to see that, return to the case
in which the density is constant; one will then dtav

1.1
V=0(9-6(9 | =+—=]|,
@ (S(R1+sz

and the equation of the free surface will be:

_91(0)[1 1}
gz= —= —+—|.
2 \R R

Hence, for the free surfacgz has the same order 840), while V has the same order
as 8. The order of magnitude &f cannot change appreciably when one passes to the
case of a variable density; similar statements aplply to thegz of the free surface.
Since the density is variable only in the neighbaowhof the free surface, moreover, the
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gz of the surfaces of equal density will likewise have sagne order of magnitude.
Consequently, one can write equations (11):

V = const.

We show that it is possible to satisfy that condgitby supposing that the surfaces of
equal densitys,, S, S5, S, are mutually parallel.

Indeed, when the surfaces are paradlgl(>, ... will have the same value at any point
of those surfaces, and consequently they will not depend tingocoordinates and S,
but only upono. Therefore, if the poiri¥l belongs to one of those surfaces thevill be
constant, and (a + {) will depend upon only. As a result, one will obtain a constant
upon performing the integration of (10) between the vauef the density at the point
considered and its constant value of 1 at an apprecialtencksfrom that point. The
potential will then be constant along surfaces of equakitle and the equilibrium
condition will be satisfied.

We do not know the form of the functiofisso it would be impossible for us to show
that there is no other solution to the problem. We sisslime that without proof.

However, if the potentiaV is a constant whea is constant then that potential will
generally be a function of only It will become zero whes is finite, because in that
cases + { will be likewise finite, and the integral elemei(s + {) dp will be zero. If the
point is interior to the liquid and at an appreciableatise from the surface themwill be
negative and finite, and sinegis always very smalls + ¢ will have a finite negative
value. Now, we have shown th@(- &) = A — 8 (&); consequentlyg (¢ + ¢) will reduce
to a constant, and the same thing will be true forriteggralV. In a word, the potentia
will be a function ofe that enjoys the same properties as the fundi@a) that represents
the potential both Laplace’s and Gauss’s theoriesnceSwe make use of only the
properties of that function in the latter theorysibbvious that we will arrive at the same
conclusions as the ones that we have found by replabhegndunction @ (&) with the
functionV = 8’ (¢) everywhere. The free surface and contact anglelhveiti be given by
the same equations.

We shall return much later to some other theoriesapillarity that are entirely
independent of the hypothesis of central forces. We sbal apply the results that were
found before.

For the moment, we observe only that the theoryithealled the theory cdurface
tensionwill lead to the same identical result as Gauss’srihemd consequently, that of
Laplace.

Indeed, under an arbitrary virtual displacement, thekwlaait is done by that tension
will be proportional todS; i.e., it will have precisely the same expressiorih@swork
done by molecular attraction under the hypotheses date@and Gauss.

Therefore, experiments cannot decide between the tledoaytraction and that of
tension, which is currently in favor. All of the fadtsat are predicted by the one will be
likewise predicted by the other.
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THIN FILMS

25. The equilibrium surface is minimal. — If we submerge a framework that is
composed of flexible and rigid wires in a liquid then upomigkhe framework back out
of the liquid, we will get a system of thin films thate bounded by the wires. Let us
look for the equilibrium surfaces of those films.

The general condition for stable equilibrium is that:

e &
Uz-22+|n-—=
guz-= (/71 stl

must be maximum. The last term in that sum candggected in the case that we are
concerned with, because the area of the contafetces; of the liquid and the solids will
be proportional to the thickness of the film, whishalways excessively small. The
volumeU is likewise proportional to that thickness. Aseault, it will be likewise very
small, and the first term can be neglected witlpeesto the second one, provided that
6 /2, which represents what one can callsheface tensiof the liquid, is nonetheless

very small.

The condition of equilibrium then reduces to toise: — (6 / 2) £ must be a
maximum, or ratherZ must be a minimum. Now, in the case of just alm, the free
surfaceX is composed of the two faces of the film, and ¢éhssrfaces will be roughly
equal if the thickness is very small. Consequenitlyorder for there to be stable
equilibrium, it will suffice that the area/ 2 of one of those faces should be a minimum.

Figure 17.

That conclusion can be verified experimentally yvexasily by means of an
experiment that is due to Van der Mensenbrugghee sdibmerges a metallic hoABC
(Fig. 17) that is suspended by three wires in aidig- for example, the glycerin that
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Plateau used. One withdraws the hoop and carefullgplaaing of cotton thread that
was previously moistened with the same liquid in the pléimarthat was obtained. That
thread will take on an arbitrary form, but if one woulelto burst the film in the middle
of the ring that it is included in then the thread wilge briefly and become circular.
Now, of all the curves with the same perimeter, tineumference will be the one that
bounds the largest area. The area that is found bettheecircumferenc® and the
contour of the metallic ring will then be minimal whthe liquid is in equilibrium.

A LA . BB
A M'N B
M N
Figure 18.

26. The mean curvature of the surface must be zero in thequilibrium state. —
Let AMB (Fig. 18) be one of faces of the liquid film. Draw afaceA;M’ B, that is very
close and parallel to it. KAMB is a minimal surface then the aregslglB and AiM’ By
must be equal, up to second-order infinitesimals. Drawnalsrto that surface through
the contour oAB. Those normals will cut out an areaXffrom the surfacé&;M’ B, ,
and if one let&" denote the annular area that is found between théli&éand the line
A;1B; then the preceding condition will be expressed by:

2'+2" =2,

Now, we have previously found @&) that:
-5 = j)l(i+ijda,
R R

j/] cosp ds,
sing

in which A is the length of the normalgis the area of an elemewiN of the surfacé\B,
ds is the length of an element of the contact curv@dB, and ¢ is the contact angle.
Consequently, we must have:

j)l(%+éjda+j)l cotd ds = 0,

and since that condition must be satisfied for &nye must have:
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i+_1: O,

R R
cotg =0.

The two radii of principle curvature of the surface nmustequal and have opposite
signs. The surfaces that enjoy that property have dpgen the general term afinimal
surfaces.

The equality cotp = 0 expresses the idea that the contact angle raustight angle.
However, since the direction of the tangent plane ware is arbitrary, that condition will
amount to saying that the surface must pass through tee wi

In summary, the problem that we have posed consistet@imining the minimal
surface that passes through a given contour.

Figure 19.

27. The helicoid is an equilibrium surface— Let OM (Fig. 19) be a line that is
perpendicular t@Z and capable of moving while constantly being supporte®@2gand
a helixAB that is traced on a cylinder of revolution that @&&for its axis. The surface
that is generated BYM is a helicoid. In order to show that it is a minireatface, it will
suffice to show that there exist two mutually-perpenldic asymptotic lines at each
point. Now, one of the asymptotic linesMtis obviouslyOM itself, so any rectilinear
generator of a surface will always be an asymptotic liike other one is the helxB,
because one can define the asymptotic lines by saying that$oeiating plane agrees
with the tangent plane to the surface. Now, the laiog plane to a helix is always
normal to the cylinder on which that helix is traced.will then pass through the line
OM, and since it also passes through the tangent to the ibevill coincide with the
tangent plane to the helicoid. Since those two lines parpendicular, because the
cylinder is one of revolution, the surface will indeecabainimal surface.

Schwarz realized that equilibrium surface experimgntaln order to do that, he
stretched a wire along the aXA8 (Fig. 20) of a glass cylinder by means of two metallic
wiresCD andEF that were supported by the bases of the cylinder. Thaseires were
parallel, so he formed a planar film by supporting it witl three wirefAB, CD, EF.
Upon rotatingCD, the film deformed and generated a surfaGDF that passed through
AB and cut the surface of the cylinder normally. Thataserwas a helicoid.
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Figure 20.

With a little care, one can then obtain a surfagtl several turns. If one suppresses
the vertical wireAB then the helicoid will nonetheless remain an equuiorsurface, but
the equilibrium will no longer be stable, and it will inepossible to obtain a surface with
several turns experimentally. Schwarz has himsetf gzt if one constructs such a
surface with the aid of the central wire and then thés wire then the helicoidal film
will disappear and be transformed into two planar filives tlose the bases of the glass
cylinder.

Figure 21.

28. The catenoid is an equilibrium surface—~ Let us look for the form of the
equilibrium surface for a liquid film that is supported to circumference#\ and A’
(Fig. 21) whose planes are perpendicular to the(i@éthat joins their centers.

That surface must be one of revolution aro@@’ One of the radii of principal
curvature at the poirtl will then be the radiusMN of the circle of intersection of the
surface with a plane that is perpendicular to the @s. The other one will be the
radius of curvatureMC of the meridian curvéAMA' of the surface. The form of that
curve must then be such that one ki$= MC, and upon expressing that condition, one
will have the equation of that curve.

Indeed, let be the length of the curve, and @&P be the distance from its center of
gravity G to the axisDO’”. From Guldin’s theorem, the surface that is gendrhtethat
curve will be 271 O0GP. One must compare the merid@MA' of the equilibrium surface
with the other curves that pass through the pdngdA’, and for which, the product
| [GP must be greater than it is for the cuA&IA. However, we can confine ourselves
to comparing it with those of the curves that have #meslengtH as the curv@MA'.
The minimum of our product will take place at the same tas that oGP for the curves
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of the same length Consequently, the desired curve will be the onevfach the center
of gravity is the point that is closest@D’ - i.e., the lowest one possible if one supposes
that the curv@dMA is in a vertical plane. Now, that is what will hapder a ponderous
line under the action of gravity, and the form of thae lwill be a catenary. Upon
rotating it around> O, that catenary will generate a surface that ons eaktenoid.

The catenoid is then an equilibrium surface for a filim

29. On the stability of equilibrium. — In order for equilibrium to be stable, it is
necessary that the potential energy must pass througgatee minimum. Consequently,
the condition for the stability of equilibrium is thidie area of the surface must be a
relative minimum. Now, upon expressing the idea thatntiean curvature of a surface is
zero, we write only that the first-order variation mhetzero. In order for it to have a
relative minimum, it is necessary, in addition, ttie second variation must likewise be
zero. That subject requires a very delicate discussuich was done in the most
elegant fashion by Schwarz.

The consideration of geodesic lines will permit us to alpjeea simple example that
will assist us in understanding the spirit of the mdtho

Figure 22.

Let AMB (Fig. 22) be a geodesic line on a surface. If it is ptesso draw a geodesic
line AM’B' that is very close to it and does not cut the lattenAMB will be a relative
minimum.

Indeed, consider an arbitrary lidéM’ B that is traced on the surface and ends at the
pointsA andB. That line will meet the geodesic lideM’ B' that is close tAB and a
point M. Draw an orthogonal trajectory throutyh’ that cutsAB at the pointM, and
draw a second trajectory through a pdihthat is infinitely close toM. That trajectory
will meet the geodesic lin&'M’B' at N, and the two segmentdN andM’ N’ will be
equal. The corresponding segm&htN; of the curveAM’ B will be larger tharM’ N/,
since the small triangl®!”N” N; is rectangular ai’. Consequently, each element of the
geodesic linfAMB will correspond to an element of longer length onlieAM’ B, and
that element will be larger than the first one. THeedesic line will indeed be a relative
minimum then.

-

P2 T

Figure 23.
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Minimal surfaces exhibit an analogous property. Beforabéshing it, we shall
show that if one traces out a tube that cuts asefieninimal surfaces orthogonally then
the areas of the sections of those surfaces by tkentililbe equal to each other.

Indeed, ifZ andZ' are two close minimal surfaces that cut the sameTulbég. 23)
then the difference between the arEamnd’ of the sections will be:

S -3 = j)l[%+?éjda+j)lcot¢ds,

from a general argument that was made already.

Now, the first integral is zero, since the surfade a minimal surface, and as a result,
its mean radius of curvature will be constant. The@sé®ne is likewise zero, because
@ denotes the angle between the tangent to the sutfand the tangent to the surface of
the tube. Since those two surfaces cut orthogonaty,angle will be a right angle, and
cot ¢ will then be zero. As a result, the ar@asndZ’ will be equal.

We shall now show that if a minimal surfad®B (Fig. 22) is found in a region
where the neighboring minimal surfaces do not intettsect the area of that surface will
be smaller than that of any other surfédd’B that is bounded by the same contour as
AB.

In order to do that, draw a tube that cuts the surferthogonally through an
elementMN of that surface. It will cut out an elemevit N; from the surfac&M’B and
an elemenM’N’from a minimal surfac&d’'M’ B’ that is close t®AMB, and that area of
the latter element will be equal to thatMN, from the preceding. The voluné’N’N;
can be considered to be a cylinder with parallel bas¢hésM ' N’ for a cross section.
As a result, the area ™’ N, will be larger than that d¥1” N’ or the equal elememN.
Since the minimal surfaces that are clos@kB do not intersect, by hypothesis, all of
the elements oAMB will correspond to elements &M’ B whose areas are larger.
Consequently, the area of the surfaddB will be smaller than that of any other surface
that is bounded by the same contour.

We thus reach the conclusion that a surface witb zexan curvature will be a stable
equilibrium surface when one can construct surfacegseod mean curvature that are
infinitely close to that surface and do not intersect it

30. Unstable equilibrium. — On the contrary, when the surfaces of mean curvature
that are close to the equilibrium surface do cut themarea will not be a minimum and
the equilibrium will not be stable.

In order to prove that property, we begin, as befori aconsideration of geodesic
lines.

AAB

M
Figure 24.
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Let AMB (Fig. 24) be a geodesic line that is cut by another geoliesiaM’ B at A
andB. Those two lines have different lengths, and the rdiffee between those lengths
will be a third-order infinitesimal, if one considers thistance between two poirts and
M of the two lines to be a first-order infinitesimal.

Indeed, we can characterize a geodesic line that pH#ssegih A by taking the
parameter to be the angle that the line makes withlatmaay line that is drawn through
A. The length of the line will then be a certain funciidrthe parameter. Upon lettirmg
and a + da denote the values of the parameter that correspore tovb linesAMB and
AM’B, resp., we will have:

f(a) and f(a+da)

for the lengths of those lines, respectively.
The difference between those lengths is then:

2 3

da +1"(a) da

f(a+da)-f(a)=f(a)da+f"(a) 1 7%

+ ...

However, since the curves considered are geoliless; one will have:
f'(a) =0, f’(a+da) =0,
and one deduces from those two equalities that:
f”(a)=0.

Consequently, the difference between the lengthbengeodesic lines that end At
andB will reduce to:

f(a+da)—f (@)= "(@) 99+ .
1C2[B
It will then have order three.
MI
F M
C D
E
A B
Figure 25.

We shall show that when a geodesic B (Fig. 25) and the neighboring geodesic
curves intersect, the linfeMB will not be the shortest path that goes frano B.

Indeed, ifCM’D is a geodesic curve that interseatdB then the length€MD and
CM’D differ only by a third-order infinitesimal. Upareglecting that quantity, one will
have:

CMD=CM’D
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and
ACMDB =ACM’DB.

Join an arbitrary poirE of the first path with an arbitrary poiRton the second one
by means of a geodesic line. Its length will be shohan the patlECF and will differ
from it by a second-order infinitesimal quantity. Consedjye

ACM’DB > AEFM’DB,
or, from the preceding equality:
ACMDB > AEFM’DB,

which proves the stated proposition.

We now pass on to surfaces. One can show thatofitfinitely-close minimal
surfaces are bounded by the same contour then theddréexse surfaces will differ by
only a third-order infinitesimal by an argument that imlagous to the one that is
employed for geodesic lines.

Assume that is true and consider a minimal sur&tt®t is bounded by a curteand
is cut by another neighboring minimal surfé&‘ealongL’. (L’ is a closed contour that is
interior to the contout..) From the preceding, the areas that are boundedd’ layd
belong toS in one case, ard, in the other, can be considered to be equal if onecisg|
third-order infinitesimals. As a result, the afaf the minimal surfac&that is bounded
by L will be equal to the are&” that is found betweeh andL’, plus the are&’ that is
bounded by “and belongs t&”. Trace out a contolr; on the surfac&that is interior
to L, but exterior toL’, and trace out a contoly in the surfaces’ that is interior toL’.

!

Pass a minimal surface through the two curvel; and L; and also denote the area of

that surface by, which be annular and bounded by two contdurand L, .

I will then letS; denote the area of the portion®that is found between andL;, let
S denote the area of the portion®that is found betweel; andL’, and letS; denote
the area of the portion that is interiorlt6

| will let § denote the area of the portionSfthat is found between’and L; , and

let S, denote the area of the portionSsthat is interior toL, .
One will then have:

$=S§5+8S,
up to third-order infinitesimals.
On the other hand:
2<$+S.
Hence:
S+S$+S>5+Z+S,.

Hence,S + S + S (i.e., the total area &) will be greater than the ar& + Z +S,,

which is also bounded the by the contaurThe area of that surface will not be minimal
then, and the equilibrium will not be stable.
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Consequently, an equilibrium surface corresponds to atalie equilibrium when
that minimal surface can be cut by a neighboring minsudhce.

31. The catenoid can correspond to either a stable or unstabéquilibrium. — Let
us see whether there exists a minimal surface thafimstely close to the catenoid and
cuts it. As a minimal surface, we can take a catetiwt has the same axis, and the
problem will come down to looking for a catenary that bancut by an infinitely-close
catenary at two points.

Figure 26.

If we can draw an arc of the caten&fiv ' B’ that is infinitely close téAMB and does
not cut AMB then the revolution of those two arcs of the catemall generate two
catenoids — i.e., two minimal surfaces that are i@ipiclose and do not cut; the
equilibrium will then be stable.

On the other hand, if we can draw an arc of theneaygA’'M’ B' that is infinitely
close toAMB anddoescut AMB at two pointsC andD (Fig. 26) then the two catenoids
will cut along two circumferences that will be paraled C andD. The set of those two
parallels will form a closed contolr’ that is interior to the contolr that bounds the
catenoidAMB and is composed of parallels foandB. The equilibrium will then be
unstable.

Let AMB be an arc of the catenary. Take the infinitely-elastenary to be a
homothetic catenary that has a pdtdn the axis for its pole and a homothety ratio of 1
— & If one can draw two tanger®C andPD to the catenanAMB through the poinP
then those lines will be likewise tangent to the homt¢hcatenaryA’'M’ B', and those
curves, which are infinitely close, will intersect #te contact pointsC and D.
Conversely, if the two catenaries intersect therpthiat of intersection will be very close
to the two contact points of a tang®&€ that is common to the two curves. The stability
of equilibrium of a catenoid will then depend upon the idgg of finding a point on
the axis where one can or cannot draw two tangentetgenerating catenary.

If there exists a poinP where one can draw two tangents to theAvtB then the
equilibrium will be unstable. If there exists a pdiwhere one cannot draw any tangent
to the arcAMB then that arc will not meet its homothetic transferwith respect to the
point P, and the equilibrium will be stable.
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Figure 27. Figure 28.

Two cases can present themselves: If the tangenbe textremitiesA andB of the
catenary cut at a poi (Fig. 27) that is located between the axis and the agtémen it
will not be possible to draw the tangent to the curve aiirat that is taken betwedhand
Q. Consequently, there will exist infinitely-close eadries that do not cut AMB, and
the equilibrium will be stable.

However, if the tangents #& and B cut beyond the axis (Fig. 28) then it will be
possible to draw two tangents AMB betweenP and Q, and the equilibrium will be
unstable.

The passage from the stable equilibrium state to th@hiasequilibrium state will
take place when the tangents to the extremities afdtenary cut along the axis.

Schwarz, who worked with glycerin, could verify thossdusions experimentally.
When the equilibrium ceases to be stable, the corresppodtenoid will disappear, and
the liquid will form two circular planar films thatass through the contours of two rigid
circumferences.

32. Riemann surfaces— In an important paper, the geometer Riemann determined
the minimal surfaces that pass through a given contobe. bé&tter part of his paper was
dedicated to the case in which the surface was boundedgHk®smnapolygon whose edges
were rectilinear. Darboux presented Riemann’s methodsndgons sur la théorie
générale des surfacealong with the results that he obtained in the ¢haé we just
pointed outY).

However, there is a case that Riemann studied ancdDadnly pointed out]. It is
the one in which the contour is closed by two cireld®se planes are parallel and not
perpendicular to the line that joins their centerse €bnsequences of Riemann’s study
seem to be capable of being verified experimentally, sshall present them.

Take theyzplane to be a plane that is parallel to the plaméiseotwo circles and take
the xy-plane to be a plane that contains the line that jdies tenters. The equation of
the surface will have the form:

Fy+a?+Z+5=0

which is obviously symmetric with respect to ttyeplane.
In order to express the idea that the surface is minwelseek the equation of the
inverses of the radii of curvature.

() Book Ill, Chapter Xje Probléme de Plateau
() Note on page 426.
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Draw a normaMP through a poinM (X, y, z) on the surface. The direction cosines
of that line are proportional to the derivatives:

X= d_F , Y:d—F , Z :d_F .
dx dy dz
Consequently, if we set:
MP

u=
J XZ+Y?+ Z2

then the coordinates of the poiwill be:
X+ UX y + uY, z+uZ

Draw a normaM P’ at a pointM that is infinitely close td1”. The coordinates of the
point P will be:

x+uX+d(x+uX), y+uY+d(y+uy), z+uZ+d(z+ul.

If one supposes that the poiftisandM “are found on the same line of curvature of
the surface and th& andP’ are the centers of curvature that corresponil and M,
resp., then the coordinates Bfand P’ will differ only by third-order quantities. Upon
neglecting them, one will get:

dx+uX)=d(y+uY)=d(z+u2 =0,

in whichu then denotes the radius of curvatur&laup to a factor/ X*>+Y*+ Z°.
Upon developing the first of those equations, we will have

dx+udX+Xdu=0

or
1dx+ axX+ X%: 0.
u u
Set:
2 2 2
XX:dF, Xy:dF, XZ:dF,
dx’ dxdy dxdz
We will have:

dX =X, dx+ X, dy+ X, dz,

and consequently the preceding equation will become:

G+xxjdx+ X, dyr X dz %:o.
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In the same way, we will have:

Y, dx+G+ \gj dy Y dz 3%:o,

Z, dx+ 2, dy{%+ gj dz %:o
for the other two equations.
We add the following equation:

Xdx+Ydy+Zdz=0

to those three, which expresses the idea thatmbig@ointsM andM ”are on the surfade
=0.

In order for those equations to be satisfied fam-mero values odx, dy, dz du, it is
necessary that their determinant must be zerpthat one must have:

SeX, X, X, X
Y, Z+Y Y Y
X u y z :O
Z, z, =+27, Z
X Y Z 0

That second-degree equation in A Will determine the radii of curvature &t. In
order for the surface to minimal, it will be necagsthat the sum of the roots of that
equation must be zero, which will then give thedibon:

X, X, X[ IX X X |Y Y
Y, Y, Y|+ Zz Z 2+ 7 2z Y=o
X Y Oo||X z o|l|Y zo

In the case that we address, we have:

X =2a'(y+a)+p, Y =2+ a), Z =2,
Xe=2a"(y+a)+22%+5" X, =24, X, =0,
Y, = 20, Y,=2, Y,=0, z,=0, 2,=0, Z,=2,

as a result of the form of the equation of theastef
If we take those relations into account then tteeg@ding equation will reduce to:

2XYX, —X? Yy =Y 2 X =Z? X =X?2,-2%°Z,-2°Y,-Y?Z,=0,
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or
AX (@'Y =R =(Y2+Z%) (X+2) =0,
or also to:
AX ('Y =R -4y +a)*+Z] (X+2)=0.

X has degree one in The coefficienta’ Y — Xdoes not contain that variable. As a
result, the first term in that equation will have degome iny. Xy + 2 has degree one in
y. The coefficienty + a)? + Z has degree zero, because that coefficient will be ¢qual
— 3, from the equation of the surfaée= 0. Consequently, the preceding equation will
have the form:

Ay+B =0,

in which A andB are functions of only.
In order for that to be satisfied for any point in diogs it is necessary that one must
have:
A=0, B=0,

separately, which are differential equations that peometto finda andS.

There indeed exists a minimal surface that passeaghrthe two circles then, and
from its equation, any section by a plane that is fra those of the circles will be a
circumference; that is a consequence that is easifsaible to experiment.

Riemann calculated the functioasand 5 ; those calculations demanded the use of
elliptic functions.

33. Remarks.— In order to show that the free surface of a thin filraquilibrium is a
surface of zero mean curvature, we have expresseddaehat, from Gauss’s theory:

e &
Uz—=2Z+|p -2
guz— (/71 stl

must be a maximum. We could have found that dayiulin condition just as simply by
starting from the equation of the free surface Lizgitlace obtained:

91(1 1j_
gz-—%| —+-— |=const.
2(R R

Indeed, consider two poinkd andM; (Fig. 29) that have the samas the two faces

of a thin film. From the preceding equatioéh+é must have the same value at those

two points.

However, sincél andM; are very close (since the film is thin), the raxfiprincipal
curvature at those points must have roughly theesalnsolute values. Since they have
different signs (since one of the points is ondbacave face and the other one is on the
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convex face), it will result that when one passemfibto M;, the sum of the inverses of
the radii of curvature must change sign without chandsglisolute value appreciably.

M/

My

Figure 29.

That conclusion will be compatible with the precedimg @nly if the sum of the
inverse of the radii of curvature is zero or very small.
Let us examine that analysis a bit closer. On tweoside, we have:

& gz—ﬁ(hij: c

2R R
in whichC is a constant, and on the concave side we have:
@) gz —ﬁ[i,+_1j:cc

2R R

If we compare the values of the various quantitieseapttintsM andM; then we will
seethat =7, R =-R;, R, =— Ry, and thatC = C’, moreover, since the pressure must

be the same on both sides, in such a way that eqyaiovill become:

a1, 1)
(3 gz+E(Ri+ RJ C.

Upon subtracting (1) from (3), what will remain is:

) ﬁ[i'+_1j:0'
2\R R

That is the condition that we reached previously.weleer, it is only a combination
of (1) and (3). If we would like to satisfy both (1)daf8) then that would be impossible,
in general. We could achieve that approximatel} Wivere very large, because the terms
gzandC would become negligible. That would show us that@ngtisurface tension is a
good condition for the preservation of thin films.
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34. — However, that is not the true explanation. Formgda, suppose that a
framework is planar and vertical. The equilibrium fofion a thin film will be bounded
by two vertical and parallel planes. If one imposesrgy small displacement to the film
in such a fashion that the two bounding surfaces remanparallel surfaces then the
work that is done by gravity will be negligible, as led the capillary forces. That is
what we showed above, but we can imagine some otheritehf-small virtual
displacements.

For example, imagine that after that displacememntitjuid is bounded by two planes
that make very small angles with the vertical, mubpposite senses, in such a fashion
that the film becomes thinner above than it is beloMre virtual work that is done by
weight will then be positive.

It then seems that equilibrium cannot be maintainddwever, in order for the film
to be thinner on the upper part and thicker in the lower @ne necessary that the
various liquid layers should slide over each other. Empmeits show that with certain
liquids, that sliding can be produced only extremely slowlife liquid would then seem
to exhibit considerable resistance that is analogous tosiigc Nonetheless, it is not
ordinary viscosity. It is much larger and obeys otharsjaone can call it theurface
viscosity.

That surface viscosity, which was pointed out by Platkas,been studied even less
than the ordinary kind. We shall see some other effadChapter V.

That resistance will come into play whenever sheae produced in the surface part
of a liquid. It opposes those shears, so it opposepdlsibility that two surfaces that
bound a thin film, which are supposed to be parallel to begim will cease to be that
way, or more generally, it will oppose variations loé¢ tvery small angle that those two
tangent planes define at two corresponding points on tivassurfaces.

The existence of that force will not change the pegpanalysis, moreover. In order
for equilibrium to persistor a long time it will suffice that the virtual work should be
zerofor all displacements that do not induce viscous resistaiében that resistance is
very large, it will then act like eonstraint and everything will happen as if the film were
subject to remaining bounded by two parallel surfaces, aadder to get the conditions
for stable equilibrium, it will suffice to express tidea that the potential energy is a
minimum by taking that constraint into account. Tlkawvhat we did in this chapter.

Certain liquids, such as soapy water and Plateau’sghychave a large surface
viscosity. That explains the persistence of the filnad are formed by those liquids.

35. — Before leaving the study of thin films, we shall explaihy a film does not
burst spontaneously and why it disappears completely whiees burst.

Figure 30.
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In order for the filmMABCD (Fig. 30) to burst spontaneously, a very small EHEH
must begin to form, and the free surf#cwill becomeAEFCBGHD Since that surface
is larger than the original surfaéBCD, and the potential energy is proportional to the
area of the surface, that cannot happen without an eikpendf work; the hole cannot
formin it.

However, once the hole is produced by an artificialseaut will tend to enlarge,
because the free surface:

AE'F'C+BG’H’'D

that corresponds to a large hole £’ G"H") will be smaller than the free surfaB&FC
+ BGHD that corresponds to the small hdi=GH).




CHAPTER IV

PLATEAU'S EXPERIMENTS

36. Equilibrium condition for an oil drop. — In his celebrated experiments, Plateau
most frequently appealed to a mass of oil that was glacdiluted alcohol of the same
density and held in place by two circular discs or twoathe rings of the same diameter.

In order to find the equilibrium condition for a mag®o, from Gauss, it will suffice
to write down that the potential energy of the systhat is composed of the oil and
alcohol is a minimum or a maximum.

Now, the forces that act upon that system are grawtlycapillary action. The center
of gravity will not displace, not matter how the al deformed, since the liquid that
surrounds it has the same density that it has. Asudtréhe work done by gravity will be
zero, and there will be no reason to take that fomt® account in the variation of the
potential energy.

There are several types of capillary actions. Osedlmattractions:

Of the discs or rings to the oil.

Of the oil to itself.

Of the diluted alcohol to itself.

Of the alcohol to the oil.

Of the alcohol to the surroundings.

ogkrwnhE

When one neglects the action of the matter that ceepthe vessel on the liquid that it
contains, that action will not enter into the vaoatof the potential energy that results
from a deformation of the drop, provided that it is atagpreciable distance from the
wall.

We introduce the notations:

the area of the contact surface between the dibiohol

the area of the contact surface between the ditl@ solid supports

the total area of the solid supports

the function that relates to the mutual attractidrite® oil molecules

the function that relates to the attractions ofdhanolecules to the solid
molecules of the supports

g andn, the corresponding functions for the alcohol

2 the one that relates to the action of the oil @analcohol

ISDOOM

We have that the potential energy that results fthencapillary actions that were
previously enumerated are:

1. -mS,
). %(sl +5),
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3, %(S— S +3).
4. - /72 Z,
5. n, (S-S,

resp., while neglecting constants, moreover.
Consequently, the total potential energy will be:

e , 6 @& , 0, @,
(El_/71jS+(El+_21_’72jz_(/71_’71__21+_21j S’

up to a constant.

However, since the surroundings are solid, tha 8will remain constant. In order
to get the equilibrium condition, it will then sidé to write down that the variation of the
last two terms is zero; i.e.:

6 6 6,6
(El+31_/72jéz_(’71_’71__21+_21j581:0-

If we compare that condition to the condition ¢(4pt we have obtained for the
equilibrium of a liquid in contact with air and tkelid walls (821) then we will see that
they have the same form. They differ only by théug of the coefficients o= and &5,
and by the disappearance of the term that relatgsavity. Now, upon transforming the
equality (4), we will arrive at the following conutins:

_@[1 1}
gz=—| —+— |+ const.
2(R R

@ = const.
It will then be obvious that the condition that yust established can be replaced
with:
1
+— =const,,
R

@ = const.

|-

In other words, the separation surface of theand the alcohol must have constant
mean curvature and must cut the solid supportanatant angle.

Figure 31.



60 Capillarity

37. The meridians of equilibrium surfaces of revolution aregiven by the rolling
of a conic.— In Plateau’s experiments, the planes of the two discsgs that supported
the oil were perpendicular to the line that joined tbeinters. As a result, that line would
be a symmetry axis of the mass of oil, and the separatirface of the oil and alcohol
would be a surface of revolution around that axis. In ¢hse, ifF is a point on the
meridian andXY is the axis (Fig. 31) then one of the radii of printipavature will be
the lengthFl of the normal that is found betweEBrand the axis, and the other radius will
be the radius of curvatureC of meridian. Consequently, in order for there to be
equilibrium, the meridian must be such that one has:

1,1
—-+—— =const.
FI. FC

We shall show that this condition is fulfilled by tbarve that is generated by the
focus of a conic when it rolls without slipping on a line.

Figure 32.

Consider an ellipse whose foci &e@ndF; and roll it along a lin&XY (Fig. 32). The
contact point will be the instantaneous center of rotation, andwilidhave:

velocity of F _ IF
velocity of F,  IF,

Take the poinG that is symmetric to the foclis with respect tXY. That point will
necessarily have the same velocityFas On the other hand, from the properties of the
ellipse,G will be found on the prolongation of the radiusteg FI, and one will have:

IF1=1G.

Consequently, the preceding equality can be writte
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velocity of F _ IF
velocity of G IG

Draw a normal to that curve through a pditithat is infinitely close td- along the
trajectory of that point. It will meeFIG at C, and that point will be the center of
curvature of the trajectory, since, as a result ofptloperties of the instantaneous center
of rotation,FIG will also be normal to the trajectory.

The lengthFG is equal to the sum of the radius vectBts+ Fil. It will then be
constant, and the trajectory & will be parallel to that of. As a result, the two
infinitely-small triangle~CF’, GCG’ will be similar, and one will have:

FF' _ CF

GG CG

Now, the first ratio in that equality is equal to tla¢io of the velocities ofF andG;
consequently:
velocity of F _ CF

velocity of G CG’

If we compare that value of the ratio of the velesiofF andG with the one that we
obtained before then we will have:
IF _ CF

IG CG

The four pointd, I, G, andC are then harmonic conjugates. Now, one knows that
one can express the idea that those points are harounjugates by writing that:

1. 1 _ 2

FI FC FG

The right-hand side of that equality is constantirso condition that the meridian
section of an equilibrium surface of revolution mustiliu then found to be fulfilled by
the trajectory of the focus.

One can show in the same way that the trajectotlyeofocus of a hyperbola that rolls
along a line will enjoy that same property.

In the case of the parabola, the trajectory ofdles is such that one will have:

i-{-_l = 0’

FI' FC

sinceFG is infinite, so the parabola can be preserved likellgpse with one of its foci
pushed out to infinity. The surface of revolution that isegated by the trajectory will
then be a surface of zero mean curvature in that case.

We already know of it: It is the catenoid.
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38. Unduloid. — Plateau gave the nameunfduloidto the surface of revolution that is
generated by rotating the trajectory of a focus of apsell
B A’

F/

Figure 33.

In order to find its form, suppose that the generatingsellis initially tangent to the
line of rolling at the extremityA (Fig. 33) of its major axis. It is obvious that no reatt
what sense in which one rotates that ellipse, the dimateis described b will have
equal ordinates for equal abscissas. The curve willlilaesymmetric with respect £&B;
we consider only the portion that is situated to thitrd that axis.

If we draw a tangent to the ellipse and move its abrgaint fromA to B then the
distance from the focus of that tangent will always increase. Consequenthgmthe
conic rolls onxy, the ordinates of the trajectory Bfwill constantly increase until the
extremityB of the major axis makes contact with the line ofinglimotion atB'.

The abscissas will likewise increase, because taaycease to cross only when the
tangent to the curve that is describedryill be perpendicular tay, and as a result, the
normal that is parallel to that line. Now, in thate, the instantaneous center of rotation
would be found to have been pushed out to infinity, whschat true. The trajectory of
the pointF will then be a curve of the forfMF".

If one continues to roll the ellipse then the curhattits focus describes will
obviously be symmetric with respect AB' along the portion that was described above.
It will then suffice to know the form of the cur¥é-"that is found between the symmetry
axesAB andA'B' in order to be able to trace out the meridian ofraguloid completely.

In the particular case where the ellipse becomascaneference, the two foci of the
ellipse coincide with the center of the circumferendgnder the rolling of that curve
alongxy, its center will describe a line that is parallelxio In that case, the unduloid
will then reduce to a cylinder of revolution arouqd

If the ellipse is flattened indefinitely then the fowill gradually approach the
summits, and the meridian of the unduloid will havenpothat are very close to the axis
of rotation. In the limit, the ellipse will reduce #oline that has its two extremities for
the foci, and the trajectory of one of the foci wik formed by a series of semi-
circumferences that have their centers along thexiineConsequently, the unduloid will
then reduce to a series of mutually-tangent spheres.
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39. Nodoid.— That is the name that Plateau gave to the surfatdéas the trajectory
of a focus of a hyperbola for its meridian.

Consider the hyperbola in the position for which its sutns (Fig. 34), which is in
contact with the linexy. The axisAB of the conic in that position is a symmetry axis for
the trajectory of the focus.

Figure 34.

Roll the hyperbola until the asymptd@® coincides with the lingy. The ordinate of
the trajectory ofF will always increase, because the distance fromfdbas of one
hyperbola to a tangent whose contact point displaces & to C will always be
increasing.

When the asymptot€D coincides withxy, we must roll another branch of the
hyperbola, and the contact will displace along the dir@®8B initially. The distance from
the focusF to the tangent to that branch will constantly inceeatien the contact point
of that tangent displaces franto B, so the same thing will be true of the ordinate of the
trajectory offF during the rolling.

Consequently, the ordinate will increase continuouslynffoto the pointF’, which
corresponds to the position of the hyperbola for whiehdontact withxy happens aB',
which is the second summit of the conic.

However, the abscissa will begin to decrease during tdt®m When the asymptote
CD coincides withxy, the instantaneous center of rotation will be foundhdwe been
pushed out to infinity. As a result, the normal to tlagettory ofF at that instant will be
parallel toxy, and the tangent will be perpendicular to that lindwe &bscissa will then
cease to decrease, and it will then increase 6. t€Consequently, one will have a curve
betweerF andF’that has the indicated forBMF".
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Figure 35.

The lineA'B’ is obviously a symmetry axis lik&B, so the meridian of the nodoid
must have the form that is indicated in Fig. 35.

40. Experimental realization of those surfaces- Plateau succeeded in realizing
those different surfaces experimentally, as we hade sa

When one employs two planar discs as rigid supporescan succeed in obtaining a
cylinder of revolution whose generators are supported bpdahedaries of the discs by
adding or subtracting from the oil with a pipette.

Upon gradually bringing these discs closer together, adlhebtain a convex portion
of the unduloid, and then a portion of the sphere, e finally, a convex portion of the
nodoid.

On the contrary, upon discarding the two discs, onesed a concave portion of the
unduloid form that will gradually get thinner through the roediand finally separate
into two pieces. The rupture must correspond to the mbatewhich (the ellipse being
infinitely flattened) the unduloid gives rise to two spds, if it does not have solid
supports.

If one employs two rings of the same diameterigid supports then one will see the
same surface reproduced in the same manner betweengbe However, at the same
time, the surfaces that bound the mass of oil abovartgs will deform, and conforming
to the theory, the mean curvature of those surfacédevéqual to that of the surface that
is found between the rings.

Hence, when the latter is a cylinder of revolutior, ather two will be spherical caps
whose radii are equal to twice that of the rings.wiNone of the radii of curvature for the
cylinder of revolution will be infinite, while the othene will be equal to the common
radiusR of the rings; its mean curvature will then be R./ That of a spherical cap is

i+—1 or 1; l.e., it is equal to the preceding value.
2R 2R R

41. On the stability of equilibrium for a cylinder of revolution. — In his
experimental studies, Plateau recognized that the cylinfleevolution is a stable
equilibrium surface when the height of the cylindesnsaller that the circumference of
the base, while the equilibrium will be unstable in thpasite case.
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In order to look for the stability conditions for glinder of revolution theoretically,
one must compare that surface with the equilibriumesed that are very close to it and
find the cases in which the area of the surface ofyheder is a relative minimum.

Plateau applied that method, but instead of comparingutface of the cylinder to
the surface of the unduloid (which is the equilibriumfate that results from a small
deformation of the cylinder), he compared it to the serfaf revolution that is generated
by the rotation of a sinusoid.

That process is not entirely correct. Neverthelssge the meridian of an unduloid
differs only slightly from a sinusoid and that procesk lad to the conclusion that is
found in experiments, we shall present it anyway.

Take the axes of a rectangular coordinate systenviotha line that joins the centers
of two discs or rings for the-axis; i.e., the axis of rotation of the equilibriumfage.

The equations of the planes of the cylinder bases are:

X = Xo, X=X,

and one of the generators of that cylinder that is sitbat thexy-plane will have the
equation:
y=a,

in whicha is the radius of the discs or rings.
We can take the equation of the sinusoid that genera¢esurface to which are
comparing the cylinder to be:

y=a—-u+pgsinx (D

Indeed, we can express the idea that this sinusoid is sepdoy the boundaries of
the discs or rings by writing that:

K=LFsinXg, pu=p4sinx; .

In order for those two equations to be satisfied simattasly, it would be sufficient
for X, —Xo to be equal to an integer multiple o£2We then set:

X1 =X+ 277

which amounts to taking a unit of length such that headthe cylinder is represented by
27 which is always possible.

Sincex and S are coupled by one of the preceding equalities, in ordsudoeed in
determining the equation of the sinusoid, it will suffiogfihd a new relation betwegn
£, anda. In order to do that, we express the idea that #&srof the oil must remain the
same; i.e., that the volume that is generated by tla¢iantof the sinusoid must be equal
to the volume of the cylinder.

The volume that is generated by the sinusoid is:

jxlﬂy2 dx = ﬂjxl(az—Za,u+,u2) dx+ ZITJX1 (a— p)B sin x+njy‘,32 sirf »,
X0 X0 X0 X
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or since the second integral on the right-hand siders z

m[2m(@ — 2au + nt) + B2

Since the volume of the cylinder is:
mma® x 27,

it will then be necessary that one must have:
~dap+2u’ + B = 0.

Now, i and S are infinitely-small quantities, since the sinusoid mdigter only
slightly from a straight line. Consequently, the pd#cg condition will be satisfied if:

day = B2 2
becauseu is a second-order infinitesimal thefi,has order one, and the termr2is
negligible.

Now, compare the surface that is generated by theasthugth the lateral surface of

the cylinder.
An elementdsof the sinusoid can be written:

ds=4/ dX + dy’ = dx4/ 1+ Y* = dx4/ 1+ 5° co< X.

That element will generate a surface when onagasté

27Ty ds= 2mr(a—p+ BsinX) «/ 1+ 5% cos x dx,

and the surface that is generated by the sinusdlibevthe integral of that expression,
when it is taken betweeg andx, . However 32 has order two, so we can write:

J1+ B cogx = 1+@

and

(@a—p+ BsinX) |1+ B*cos x =a—pu+ Bsinx + a'gz cos X,

upon neglecting the infinitesimals of order highlean two. As a result, the desired
surface area will be:

2
277"[;: (a—p)dx+ 2ﬂjzﬁsinxdx+ ZTJ:% co$ xd:

or
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S—

The surface area of the cylinder will be:
2ma+ 27

so it will be smaller or larger than the area ofsheface that is generated by the sinusoid
according to whether:

a3
2

iS negative or positive. If one takes the equalityiri®) account then that condition will
amount to:

-B%+aB*#0
or

2ma+ 2 0.

There will then be stable equilibrium if7za < 277 and unstable equilibrium in the
contrary case. Sincera is the circumference of the base of the cylinded 2r7is its
height (due to the unit of length adopted), oné wideed arrive at the conclusion that is
deduced from experiment.

That will suffice to establish that equilibrium usmistable when the height is greater
than the circumference of the base, but not togthe converse, since one has compared
the cylinder to onlyneof the possible surfaces that are infinitely-close

42. — Mathieu revisited Plateau’s analysis in fiséorie de la capillarité Upon
comparing {) the surface area of a cylinder whose heightss tean the circumference
of its bases to the area of an infinitely-closdate that is generated by a sinusoid whose
step is equal to the circumference of the baseswalhfind that the area of the cylinder
is less than that of the other surface, whichrssalt that is consistent with Plateau’s.

However, since it was the experiments that firstvgled Plateau with the result that
he then attempted to recover by theory, how doeseaplain the disaccord between that
result and the result of Mathieu’s calculations2@res to do that in the following way:

“The very small displacements that one ordinariymeunicates to
the liquid column — for example, by giving a vilbgt motion to the
vessel — are not absolutely arbitrary. One thereemythat the liquid
column has a tendency to pass through figuresafiledgum. Indeed, that
is what Plateau recognized. The meridian of théasa must then be a

sinusoid whose step is equal ta& and the area of the form must be

() See pp. 7%t seqof the cited work.
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greater than that of the cylinder if the height of tigeire is less than 72
a.”

That explanation is obviously insufficient. The treise of the disaccord between
Plateau’s results and those of Mathieu is that therlatipposed that the radius of the
circumference of intersection of the surface of retioh and one of the plates could
suffer an infinitely-small variation, while the formeupposed that this radius was
constant. That fact did not escape Mathieu complebelcause he remarked that “the
liquid can be maintained by the discs somewhat as & ofsts adherence and friction,”
but he considered that be only a secondary consideration.

The resolution of the debate then amounts to knowingetheln the base
circumferences do or do not vary under deformation.

.

A B

Figure 36.

In the experiments that were made with rings of Wire, the answer was immediate:
The surface of revolution must pass through those riagsthe radii of the base
circumferences must keep the same value — viz., the comadass of the rings.

In the case where plates are employed, the constdnte radii is not as obvious,
because if the cylinder cuts the plates at pointsAikedB (Fig. 36) that are situated at a
certain distance from the boundaries then the ciretentes can vary under a small
deformation. However, if we remark that the contagfle of the liquid surface and the
surface of the plate must have a constant value alengtersection curve (which is not
generally a right angle) then we will deduce that thetact can take place only along the
boundary of the disc, where the contact angle candaketable value, since the edge is
always more or less blunt. Under those conditioresyaldius of the base circumferences
will again preserve a constant value.

43. — Under that hypothesis, we shall prove, in full rigtrat the cylinder of
revolution is a relative minimum under the condititimst were pointed out by Plateau.

We shall first show that it is suffices to compahnat cylinder with a surface of
revolution with the same axis.

Let X be an arbitrary solid that has the same volume esyhnder, but a smaller
area. | say that there exists a solid of revolukibmwith the same volume and a smaller
area than the solis.

Cut X with a series of planes that are parallel to the$asdfQ is the area of one of
those sections the@ dx will be the very close volume that is included betwésa
infinitely-close sections. We can imagine a solidesolutionX’ whose circular sections
have an area that is equal to the corresponding secti@ansThe volume that is bounded
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by two infinitely-close sections &' will be Q dxthen; i.e., the elementary volumes of
the solidsZ' andX are pair-wise equal. Consequently,and> will have the same
volume.

Consider the areas. L€tandC’(Fig. 37) be the sections &fby two parallel planes
that are separated bix. If we project the curv€ onto the plane o€ "then we will get a
curve C", and the annular area that is found betw&€émnd C” will be equal todQ.
Draw normal planes to the curyeat two neighboring pointd andB on it. They will
intersectC’ at A" andB', and intersecC” at A" andB", and we can consider the solid
AAA"BBB" to be a right triangular prism.

Upon lettingds denote the element of arc lengiB of the curveC, the areas of the
faces of that prism will be:

dw =dsAA (for AABB),
daa =ds AA (for AA'BB"),
dap =ds AA (for AA"B'B"),

and since the triangl&A'A”, which is perpendicular &', gives:

2 2 2
AA = AA" + AA
one will have:

ddf = daf +da?.

However,dwis an element of the surface of the salidas a result, the area of that

solid will be:
fdo=f J3aT o
[V daf +dag > \/(J'dcq)2+(jda)2)2 ,

because if, for the moment, we regded andday as the variations of the coordinates of
a point on a planar curve then the left-hand side oingguality will represent the length

of a finite arc along that curve, while the right-hamdeswill be the square root of the

sum of the squares of the differences between the tediod the extreme points of the

curve and the squares of the differences between thgwisaas; i.e., the length of the
straight line that joins those points. Since thaight line is the shortest distance
between two points, the inequality will indeed be exact

oo |{[aa] ([

The solid of revolution is an exception. Indeed, int tase, the elementary arehs
da, dap will have constant ratios; it will then result thae inequality must be replaced
with an equality, so:

Now, one has:
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fdo = ([aa) +(fd)

However,.[da)2 is the area that is included between the cu@/esdC”, i.e.,dQ.

On the other hand, sin@&\’ is the distance between the two sections that aedigla
to the bases and infinitely-close to each other, olidhawe:

dw =ds AA =ds dx
and

jdcq =sdx

in whichs s the length of the curv@. Hence, the aredof portion of the soli& that is
included between our two infinitely-close planes thatpamallel to theyzplane will be:

S:J'da)>q/szdx2+ dg.

If the curveC is a circle of are® then its perimeter will be equal tp477Q . Since
the circle has the property that among all figures Withsame area, it has the smallest

perimeter, one must have:
s>/ 4mQ

for a solid sectioix that is not a solid of revolution, and consequently:

S>./4mQdx + d@ .

For the solid of revolutior®’, the preceding inequalities must be replaced with
equalities, and we will have:

s=.4mQ,
and consequently:

S'= ./ 4mQdx + d@F .

The area of the solid of revolutidi is then smaller than that of the solid As a
result, if we succeed in proving that the areghefright cylinder is smaller than the solid
of revolution with the same volume and the samedbaisen, by that fact itself, we will
have proved that it is also smaller than that ohdntrary solid of the same volume and
bases, and the area of the cylinder will indeea Ipelative minimum. In order to arrive
at that goal, we must prove two lemmas.
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44, —

Lemma |. — Suppose two arcs AMB, AW’ of the meridians of two unduloids with
the same infinitely-close axdfig. 38) have a common extremity A, and that their
extremities B and 'Blie along a normal BBto AM’B'. If those arcs intersect at a point

C such that the volumes that are generated by ANMCAMd CBB are equal then the
areas of the surfaces that are generated by rotating those arcs \eidjuze.

p B
M Cc B

A By
Figure 38.

Let Sbe area of the surface that is generateAM{8, while S + &5 is the area of the
surface that is generated A’ B'. LetV be the volume that is generatedAAMBB;,,
soV + Vv will be the volume that is generated AAM’CB’BB; .

By hypothesis, those two volumes are equaldsavill be zero; | propose to show
that &Sis zero.

Indeed, ledo be an element of the surfaB®B. Draw a normal to that element and
prolong it until it meets the surfagddvl’B’; let A be the length of that normal.

Let dSbe an element of the circumference that is genetatdtie pointB, and let
@ be the contact angle — i.e., the angle that the ca#fB makes witBB".

A formula that we have applied many times will give us

av:j/lda,
5= j)l(%+éjda+j)l cotg ds.

Since the angl® is equal torr/ 2, by hypothesis, the integral will be zero. However,

- 1 1 .
the mean curvature of the unduloid is constant, s ltake —+— out of thef sign,

and the first integral will reduce to:

(i.{__ljj.Adg' :[i+ijé\/ =0.
R R R R

One will then have:
&B=0.
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The two areasAMB, AM’ B' are equal then, if one neglects second-order
infinitesimals.

M C
A P B
Al Cl Bl X
Figure 39.
45, —
Lemma Il. —If AMC (Fig. 39)is an arc of the meridian of a solid of revolution that

results from the deformation of a cylinder of revolution whose heigithaler than the
circumference of the bases then there will exist an arc of the aidddPC that ends at
the same extremities and generates a volume that is equal to tha ebltd that is
generated by AMC, and there will be only one of them.

It is clear that one can always find at least oméuloid with the given volume that
admits the two given circles as its bases.

Indeed, one can consider an oil drop whose volume igitea volume and which is
supported by two solid discs that have the form of twemmeircles. That drop will have
at least one equilibrium position. In other wordspife considers several solids of
revolution that have the same volume and the same blaese the lateral surface area of
those surfaces cannot decrease beyond all bounds. Willdreen be one of those solids
for which that surface area is smaller than it isaftbof the other ones and which must be
an unduloid.

All of this is almost obvious. However, what | prggoto show is that if the two
bases (which are the circles of radiry and CC;) have slightly different radii then
among the unduloids that satisfy that question, thdfd&one and only one of them, in
general, that differs only slightly from a cylinder.

Let:

y=f()

be the equation of the curveMC. If Xo andx; are the abscissas of the poiAteandC
then if one lets denote the radiuaA;, one will have:

f(x)=a f(x)=a+g
in which € must be very small, becaugeMCB is the meridian of the solid that is

obtained by an infinitely-small deformation of thdiegler. The volume that is generated
by the trapezoidyAMCG, is given by the integral:

nj:j f2(x) dx.
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Sincef (X) differs only slightly froma, that integral will be equal to:
mr[a® (xo —%o) + &1,

in which &’ is a very small quantity.

Consider the unduloids with ax@x. Their meridians depend upon the dimensions of
the generating ellipse, as well as the position ofpbimt of the line that is found in
contact with a well-defined point on the conic (a sumfoit example) during the rolling
of that conic. Now, the ellipse is determined when lom@ws those two axes, and the
position of the contact point of one of its summitshwthe lineOx with the abscissa of
that point. The equations of the meridians of the umdsiiwith axisOx will then contain
three arbitrary parameters. One can eliminate onlkeose parameters by expressing the
idea that those meridians pass through the pajnand the general equation of the
meridians of the unduloid with ax@®x that passes throughwill become:

y=¢x a, B,
a=¢go (X, a, .

Suppose that the parameters are chosen in such a wéyeth@duloid reduces to the
cylinder fora = = 0. For those values of the parameters, one will:have

with the condition that:

a=¢ (x,0,0).

The arcAPC of the meridian of an unduloid will differ only sligy from the arc
AMC, and since it differs only slightly from the straidime AB, the arcAPC will differ
only slightly from that straight line. As a resuthe values of the parameters that
correspond to that arc will be exceedingly small, amel @an write:

pxap = ¢(x2,00)+ajf; ﬁdZ
dp . dg
T 'Bdﬁ

for that arc.
In order to express the idea that the arc of the umbiplsses through the extremity
C of the arcAMC, it will suffice for us to write:

f() =9, ap)

which will give us the condition:
d¢ +p 92 dg _

“aFap T )

Set:
nf ¢*(xa.B)dx =y (a. B,
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Since the arc of the unduloid reduces to the Alefor a = £ = 0, the preceding
integral (which represents the volume of the unduloid)tiven become:

(0, 0) =787 (X2 — Xo),

and sincex andg are very small for the al’sPC, we can write:

=l a2(x - d¢  ,d¢
fw(a,/ﬁ—ﬂ{a (% >s)+ada+ﬁdﬁ]

Since we desire that this volume should be equal toofttéie solid that is generated
by the arcAMC, we must have:
a/d_w+13d_¢/ - (2)
da dg
It is always possible to satisfy the conditions (id &) with well-defined values af
andgif the determinant:
dody oy dp @)
da da dao dg

is non-zerp and one can then show that there indeed exists aof #ne unduloid that
satisfies the stated conditions. Let us see thefgsignce of that condition.
If the preceding determinant is zero then one casfgadhe equations:

g, 0p_
ada’+'3d,3 0
a/d_w+ﬁd_¢/:0
da " dB

with non-zero values af and £, which amounts to saying that there will be an arthef
unduloid that has its extremities on the straight Aieand generates a volume that is
equal to that of the cylinder that is generated by tlgensat of the line that is found
between the extremities of the arc of the unduloid.

Now it will be impossible for that to be true folemgth of that segment that is less
thanAB if that length it itself smaller tharvga, as the statement supposed.

Indeed, we have seen that the meridian of the undisldied trajectory of the focus of
an ellipse that rolls along a line.

When the ellipse reduces to a circle of radiuthe unduloid will reduce to a cylinder
of radiusa that has a liné&B for a meridian.

Consider the intersections of that liAB with a meridian of the unduloid that differs
from it slightly; i.e., it is generated by an ellipsattidiffers slightly from a circle of
radiusa.

A line such asAB that is parallel to the line along which the generatifigse of a
meridian of the unduloid rolls will cut that meridiainaaseries of point®, E, F (Fig. 40).



Chapter IV — Plateau’s experiments 75

o A D1 X
Figure 40.

The extremityC of the arc of the unduloidPC considered cannot coincide with the
point of intersectiorD, because it is obvious that the volume of the unduload is
bounded by planes that are perpendiculaDxand pass through andD is larger than
the volume of the cylinder that is generated by the rgt#aADP; . As a result, the
point C must be one of the following points of intersectirF, ... Now, the point#
andE of the meridian of the unduloid correspond to positimmshe ellipse such that the
same point of the ellipse is in contact wik in those two positions. Consequently, the
difference between the abscissas of those pointdeidlqual to the length of the ellipse.
However, that length differs only slightly fronyza, because in order to obtain the line
AB itself, the ellipse must reduce to a circle of radiuand by hypothesis, the unduloid
ADEF will differ only slightly from the line.

It will then result from this that it will be poss#ébto have an unduloid that is bounded
by equal circles that have the same volume as thedeylwith the same bases only if the
height of the unduloid is at least equal to the cirarerice of those bases. The
determinant can be annulled only if that height is medlker than that circumference. (I
would even like to add, if it is a multiple of that cirsference.)

Now, in the statement of the lemma, | have suppadsadthe distance between the
two planesAAs;, BB, anda fortiori, that of the two plane8A;, CC;, was smaller than
that circumference.

Our determinant cannot be annulled then, and the lempravsd.

Here is how we can make use of that fact:

46.— Consider the solidMCBBA; (Fig. 39) and a moving plar@C, that is parallel
to the two bases; now construct the unduliRC that was defined above.

When the planeCC; displaces continuously, that unduloid will deform in a
continuous manner.

WhenC is very close td\, that unduloid will differ only slightly from the cylder.
Will it also differ only slightly when the poir€ goes tdB?

In order to address that, here is how we shall argue:

Put the equation of the cur@éviB into the form:

y=¢f1 (%),

in which £is infinitely small and; is finite.
The functionsg and ¢ that were defined above also depend up@md the abscissa
x2 of the pointC, so the equations that defioeand/ can be put into the form:

¢(0’,,3,5,X2):O,
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W(a, B & %) =0.

If we eliminatef from those two equations then we will have:

O (a, é x)=0.

74
U’

Figure 41.

If we regarda, & andx, as the rectangular coordinates of a point in spacehé
moment, then that equation will represent a surfadeat Jurface passes through the line
a=0,&=0, which is the lin&kSTin Fig. 41. The determinant:

dg dy _ dy dp

da da dao dg

is annulled fora = é = 0,x; = 2/7a, which must say that the plage= 0 is tangent to the
surface at the poir$that has the coordinates 0, 0, amda2 That plane will then cut the
surface along a curve that presents a double poiBtatd which will, consequently,
decompose into the lirkSTand a curvé&JSVthat passes through

If we now cut the surface with a plage= & (& being very small) then we will get
two branches of the cur®’ SV, U’T that are denoted with dashed lines in the figure.

When the poinC displaces continuously, the point, (¢, x2) will describe the branch
R’S"V’of a continuous motion. One sees that as long i@ssmaller than Za, the point
that describeR’ S’ will stay very close to the linRST and the unduloid will correspond
very closely to the cylinder. Whea becomes larger tharri, our point will describ&’
T/, and it will move away from the linRST i.e., the corresponding unduloid will not
remain only slightly different from the cylinder.

Hence, ifAB is smaller than Z a then the continuous deformation of the unduloid
will reduce it to the cylinder (which it will never be flsom) when the poin€ goes taB.

However, the same thing will no longer be truaHis larger than Zra.
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47.—

Theorem. — If the height of a right circular cylinder is smaller than the
circumference of its bases then the lateral surface area ofcttiader will be smaller
than that of any solid of revolution that has the same volume and thébasese

P M Cll
Q c’ B
A T
| 1
[ T
| 1 |
A C:C C
Figure 42.

Let AB (Fig. 42) be the generator of the cylinder, andAltB be the meridian of the
surface of revolution. Take an arbitrary pothon that meridian. From the preceding
lemma, we can trace out an arc of the undulaRC such that the volume that is
generated byAPCG will be equal to the volume that is generated AQAMCG,.
Suppose that we have shown that the surface area afrthaloid is smaller than that of
the latter volume and that if we consider a p@nof AMC’B that is infinitely close t&
then the unduloid that is supported by the circles of ra#éliiand C'C, (and which has
the same volume as the solid that is generateAMyMC C)) will also have an area that
is less than the latter solid.

Indeed, [etAQC’ be the arc of the second unduloid. If we draw thenabCC” to
that arc atC then we will have two arcs of the unduloid®C and AQC” that have a
common extremityA and are, on the other hand, bounded by a normal to otte ot

Moreover, the volumes that are bounded by the surfaeggyenerate those arcs will be
equal, since one has:

volume A AMC C = volume AAQCC,

and since the area of the trian@gl€’ C” is a second-order infinitesimal, upon neglecting
the volumes that are infinitely-small of that ordere avill have:

volumeA;AMCG, = volume AAQC' C,
or rather:
volumeA;APCG = volume A AQC' C,

in which the volumes of the solids that are generateds®WCC, and AJAPCG are
equal, by hypothesis.

The two arcs of the unduloidsPC and AQC” then fulfill the conditions of the
statement of Lemma |I. As a result, the areas @fstirfaces that they generate will be
equal up to second-order infinitesimal¥J’ being of first order):

areaAPC = areaAQC".
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If, as we have assumed, we have:

areaAPC< areaAMC
then we will have:
areaAQC” < areaAMC.

We add the following inequality:
areaC”C’< areaCC’

(which results from the fact that the li@&C” is normal to the ar&QC’ at C”, so the
element of the ar€’ C”will be smaller than the eleme@C”) to the two sides of the last
inequality and get:

areaAQC’ < areaAMC’,

Hence, if it is true that the arc of the unduloidttjegns A to an arbitrary poin€C on
the curveAMCB generates a surface whose area is smaller thaarthtiten that property
will still be exact when one passes fr@to a neighboring point’, since the volumes
that are bounded by those respective surfaces are equal.

The theorem is obviously true for an unduloid of in&ty-small height. Upon
displacing the poinC little-by-little, one will arrive atB. Now, the unduloid that passes
throughA and B and has the same volume as the solid that is gendrgatdte curve
AMCB will reduce to the cylinder of revolution. Consequertityg area of the surface of
that cylinder will be smaller than that of an arbgraolume of revolution that has the
same bases and the volume.

| would like to say that when the poi@tgoes toB, the unduloid will reduce to the
cylinder.

By virtue of Lemma Il, that will be true whekiMB differs only slightly from the line
AB and if the heighAB of the cylinder is smaller tharvéa (viz., the circumference of the
base).

Therefore, the cylinder of revolution whose height is smaller tharctratmference
will be a stable figure of equilibrium.

If the height of the cylinder grows larger then thedibons of the statement of the
second Lemma will no longer be satisfied. Plateau'$ysisawill then teach us that the
equilibrium of the cylinder is unstable.

48. Rotating oil drops.— When an oil drop is suspended in a liquid with the same
density without being in contact with solid supports, thaildrium condition of that
drop will be obtained by settirfg=S; = 0 in the equilibrium equation that was found in §

36. One will then have:
6.6
L+ - 02 =0,
(2 2 '72}

which expresses the idea that the contact surfatleeooil and the alcohol must be as
small as possible.
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Among the solids with the same volume, the sphetisfies that condition, and
experience has shown that an oil drop that is equihbrinside of a liquid of the same
density will indeed affect a spherical form.

If one rotates the drop around an axis that passes thrtsugénier then the sphere
will deform and transform into solids of revolution tlzae more or less flattened, and to
which one gives the name a&pheroids We shall look for the form of the new
equilibrium surfaces.

Figure 43.

Let S (Fig. 43) be one of those surfaces, andStetbe the one that results from an
infinitely-small deformation o Upon passing from one of those surfaces to the ,other
the work done by forces that act upon the drop must be geieeS is an equilibrium
surface. Now, from what we saw ir8§, the work done by capillary forces is equal to:

6 6
-12+8-,, |ss
(2 2 '72}

On the other hand, the rotation of the drop walvelop a centrifugal force whose
work is:

g
2

in which wis the angular velocity of rotation, ahds the moment of inertia of the drop
with respect to the axis of rotation.
Consequently, the equilibrium condition for theplis:

£5| _(i+ﬂ—/72j 0S=0
2 2 2
or

&B=ad,

in which a denotes a quantity that is proportional to theasgwf the angular velocity
and becomes constant when that velocity does.

As a result of the deformation &8 an elementab = do of that surface will
correspond to an elemedt’ = do’ of the surface&’that is obtained by drawing normals
to Sthrough the contour @b. The variation of the surfa&can then be written:
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&= [do'~|[do.

However, we saw in 81 that if we letd denote the length of the nornad then we
will have:

do” - do=/ ds[i+—1j.
R R

Consequently:

as:j/lda(i+—1j.
R R

The variationd of the moment of inertia is equal to the sum of th@ments of
inertia of the volume elements, suchadsdb’. Upon lettingr denote the distance from
the center of gravity of that element to the rotati@xad Ox, one will get:

d:jrz/lda.

One will then have that the equilibrium condition is
I)I da(i+—1—a rSJ =0,
R R

to which one must add the condition:
j/] do=0,

which expresses the idea that the volume of the drep dot change.
In order for those two conditions to be satisfied siemdously, it is necessary that:

i+_1— a r2 = 13,
R R
in which SBis a constant.

The surface that is defined by that equation & @frrevolution, so one of the radii of
curvature aM will be the radius of curvatufdC of the meridian curvature; the other one
MN will be bounded by the rotational axis. Uponiteft¢ denote the angle between the
normal atM and the perpendiculdavP to the rotational axis and lettirds denote an
element of arc length, measured to be positivenensense of increasing (i.e., in the
senseMA), one will have:

_ s Ri=MN= ——

RZZMC——, ,
dg cosg

and the equation of the surface will become:
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% + cosp =ar’+ yéi
ds r
which will give:

dg  cosp _
E+ y —ay +p

for the equation of its meridian that is locatedhexy-plane.
Since one has:

dy=-dssin g,
that equation can be written:
~singdg  cogp _ ay+p
dy y

or

dcosp . cogﬁza%t&
dy y

In order to integrate, we remark that if the ripand side is zero then the solution
will be:

cos¢:g,
y

in whichC is a constant. We now apply the method of vanmatif constants. We get:

1 _gyep
y dy
SO

C==Vv'+E yV+y, 1
JY oYy (1)
and consequently:

14

C _ a £
COSPp=—=—y +—y+—.
¢ Y 4y3 5y v

However, one has:
dx =dy cot ¢.

Upon eliminatingg from those two relations, one will get the equatiof the
meridian curve in rectangular coordinates. Oneudesl from the first one that:

2
sing = 1—C—2,
y

and as a result:
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so one will have:
X:I Cdy

—— (2)

in which C is the function of that is defined by the equality.

X X
0] @)
Figure 44. Figure 45.

The curve that this equation represents can be eitHattened closed curve in the
neighborhood of the rotational axis or two closed cutkas are symmetric with respect
to the rotational axis according to the values of thestamts that enter into that equation.
The former case (Fig. 44) corresponds to a weak angutaitye and the volume that is
generated will be a spheroid, while the latter (Fig. 48% A considerable angular
velocity, and the mass of oil will form a ring.

The curve obviously admits theaxis as a symmetry axis, but it likewise admits
another symmetry axis that is perpendicular to thé dine and which one can take to be
they-axis.

The points where the curve cuts thaxis are the roots of the equation:

(3) Y —C*=0.

That remark will suffice to allow us to discuss thelgem. Plateau observed that
when one increases the angular velocity, the mass, whidhitially unique, will
decompose into a central mass and an annular one.splihevill come about at the
moment where equation (3) has two equal roots.

When the curve is unique and cuts the axis, the determinafidhe integration
constants in the equality (2) will always be possiblhe same thing will not be true
when the rotational axis does not meet the curve.

49. — Plateau succeeded in establishing the spheroidal and anmulas f
experimentally. He stated that the latter is a stablalibrium form. The theoretical
proof of the stability of equilibrium of the ring preserdome serious mathematical
difficulties, since the integral in equation (2) is hygdkptic.

We also point out that in the case of a body thanimated with a rotational motion,
it is not necessary for the potential energy ofdistem to pass through a minimum in
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order for the equilibrium to be stable. Indeed, Dirithleheorem supposes that the axes
to which the points of the body are referred are &t res

When those axes are rotating ones, one must introtheceomposite force that is
defined by Coriolis’s theorem, and Dirichlet’s equilibritsondition, which is always
sufficient, will no longer be necessary for stability

We likewise observe that the equilibrium figures ofodrdrop in rotation are not by
any means comparable to those of the planets, althbaglopinion is very widespread.
In order for that to be the case, it would be necedsatythe Newtonian attraction should
obey the same laws as the capillary force, whiatotstrue. It even seems probable that
the annular figures, which are stable for the capillahenomena of Plateau’s
experiments, might become unstable in the case of Mé&awt@ttraction.

50. Closed systems of thin films=- Upon submerging a metallic wire framework in a
liquid, one can, in certain cases, obtain a systethinffilms that bound all parts of a
certain mass of air. As we shall show, the equiliiorisurfaces of those films, which
Plateau has studied experimentally, do not differ froeneuilibrium surfaces of an oll
drop that is placed in the diluted alcohol of the sdeesity.

Indeed, consider a system that is composed of some dild the air mass that they
enclose and give it an infinitely-small virtual defotrna when one starts from an
equilibrium position.

The work done by gravitgU Jz can be neglected, because, on the one hand, the
liquid mass that defines the films is very small, sitiaese films are very thin, and on the
other hand, since the air mass that they enclosesassahall, the air will have a very
weak density. As a result) will be very small.

Upon lettingZ denote the total area of the faces of the films &natin contact with
the outside air, the area of the faces that are itacbwith the interior air will be very
roughly Z, since the two faces of the same film are very clos® can be regarded as
parallel. The work done by capillary forces that refwln a variationd> of that area

will then be:
2(—idzj,
2

in which @, is the function that relates to the action oflipeid molecules on themselves.

If, at the same time, the contact surface of iipgid and the framework varies then
we will have to take into account the work donechpillary forces that result from that
variation. However, since that surface area ip@rional to the thickness of the film, it
will be small, and its variation can be neglected.

All that will remain then is the work 6 d=. One must add the work done by
pressure to that work. If one lgig denote the outside air pressure andpedenote the
internal air pressure then the work done by intepnassure will bgp dV” and the work
done by external pressure will bepe-dV, in whichdV’ is the variation of the volume
that is bounded by the internal faces of the filarsddV is the variation of the volume
that is bounded by the external faces. Those faoegarallel and very close to each
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other, sadV anddV’ will differ infinitely little, and one will have thathe total work done
by the pressures is:
(P —p) dV.

The equilibrium condition of the system is then:
-6 dX+(p-p) dv=0.

However, we have found (21) that:
1 1
dX = |A| =—+—= |do+ | Acotg ds,
J (Rl RJ I

and on the other hand, that the variation of the voltime is bounded by the external
faces is:
dv=[do.

One will then have:
j/{p— B, —e{i+iﬂ do-6,[ Acotg ds=0,
R R

and since that relation must be satisfied for agfpmnation, it will be necessary that one
must have:

P—p= Hl(%+?éj, cotg =0, sog =

N Y

separately.

The internal and external pressures are uniforinmgesthe weight of the air is
negligible, so the first of those conditions exge=ssthe idea that the mean curvature of
the surfaces of films must be constant. That & @fithe conditions that was found in §
36 for the equilibrium of an oil drop of the same dign

The conditiong = 77/ 2 seems more restrictive than the conditgon const. that was
found in the latter case. However, in reality,ythéll become identical if one remarks
that, by definition, they reduce to the stateméat the surfaces of the oil drop or the
films must pass through the metallic wires of ttaarfe or the boundaries of the discs.

The equilibrium surfaces of the films that fornsystem that is closed on all sides
will then be those of an oil drop that is placeailquid of the density.

In particular, if one forms a soap bubble thatspasthrough the contours of two
parallel rings of metal wires with the same radiusn one must get equilibrium figures
in the form of the unduloid, the right cylindergthodoid, and the catenoid.
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51. Soap bubbles—- Among the surfaces with constant mean curvature jrifyeest
one is the sphere. Experiments have shown thathei¢orm that a closed film will take
when it does not touch any solid wall.

There are possibly other equilibrium surfaces that pettaitis case, because the
equilibrium condition:

-6 d+(pP-p)dv=0

does not say that the area of the surface must beisumm as in the case of an oil drop
that is suspended freely in a liquid of the same densityere have been attempts to
prove that there is no other possibility, but the prolods have been proposed leave much
to be desired.

Be that as it may, in the case of a sphere otis&]iwe must have:

_ 26
P—D R
for the difference between the internal and exteringrassures.

That difference is positive, and it will become largeinen the bubble becomes
smaller. That has been verified quite sensitively bysmeag that pressure difference
with a manometer.

Consider two adjoining bubbles. They intersect alongcaraference through which
the liquid film that separates the two bubbles passesume that this film is spherical
and look for the relation that exists between theidR’, R’ of the three spherical
surfaces when there is equilibrium.

Upon lettingp andp, denote the air pressures that are internal to tsiedind second
bubbles, resp., we will have:

P—Po= 2—91

R 1

p’ —Po= 2_91
R’

26,
pP-p=—,
from which, we will deduce that:
1 1_1
Rr R Rn *
-
C P/C’ c”

Figure 46.



86 Capillarity

One can believe that this equilibrium conditionas sufficient and that there is good
reason to say, in addition, that the surface tendisaisare exerted upon a point of the
line of intersection of the three spheres must begunlibrium. We shall show that this
new condition amounts to the same thing as the precedig

Indeed, since the three spheres are composed of tleelisaid, the surface tensions
will be equal, and as a result, the spheres must ioteaseangles of 120in order for
those tensions to produce equilibrium. CetC’, C”(Fig. 46) be the respective centers of
those spheres, which are in a straight line since théypass through the same
circumference. Drop a perpendicular to that line aftees from a pointM in the
intersection, and let, a’, a”, resp., denote the angles between that perpendiculahand

radiiMC, MC’, MC” resp. Upon lettin denote the length of the perpendicWVép, we
will have:

1 1
— = =co0saq,
R h
1 1 ,
— ==cosqa/,
R h
1 1 ,
— = —cosa”.
R' h
One deduces from this that:
1 111 (cosa - cosa’-cosa’).
R R R h
Now, one has:
a+a’ =180 - 120 = 60, a+a' =120,

and consequently:
cosa - cosa’— cosa’ = cosa — cos (60— a) — cos (120- a) =0,

and that will give:

N )
R R

po

One will indeed recover the same condition that apdesrdhe consideration of
pressures.

The case of a larger number of bubbles that are joinegach other reverts
immediately to the preceding one. Indeed, Plateautaddtiat there are never more than
three liquid surfaces that intersect along the same liB&nce the three surfaces are
spherical, their radii must satisfy the preceding conalitio

52. Films that intersect along the same edge. The property of the bubbles that
they always intersect in such a way that there avemany more than three surfaces that
pass through the same edge is likewise observed wheintiseafie planar.
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Figure 47. Figure 48.

Upon submerging a tetrahedral fraadecd (Fig. 47) in glycerin, Plateau obtained a
system of thin films that was composed of ten plarnansfifour of which constituted the
faces of the tetrahedron, while the other six were su@poby the edges of that
tetrahedron and intersected in such a way that eatte dihtesoa, ob, oc, od belonged to
three films. The dihedral angles that are defined byfitms that intersect along one of
those edges will be necessarily equal to each othetcahdC in order for the surface
tensions to equilibrate.

With a framework whose wires form the edges of a cabe will get the liquid films
that are represented in Fig. 48, and which intersect-thybree along the liquid edges
abcdand along the edges of the cube.

That system of thin films is much more complicateghtthe one that is formed by
the four faces of the cube and its diagonal planeswdmch seems to be formed as a
result of the symmetry of the cube. However, itasyeto see that such a system can
exist only in a stable equilibrium state.

Take some frames that are simpler than Plateaulsasnformed from two parallel
wooden planks that are linked by metal wires that are rawnthose planks. Upon
submerging those frames in a liquid, one will get a systérplanar films that are
supported by the metal wires and are normal to the plaihikere are three wires b, ¢
(Fig. 49) then we will have six films, three of whichirfothe faces of a triangular prism,
while the other three, which are representeadyob, oc, will intersect along the same
edgeso and make dihedral angles of £2@tween them.

If we take a plank that has four wires that form tbges of a right prism with a
square base then we can never obtain the systermdilths that is represented in Fig.
50 and which includes the diagonal planes of the prism.
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Figure 49. Figure 50.

That impossibility is due to the fact that such aeysts not in stable equilibrium.
Let us show that.

Since the films are planar, the radii of curvatuiit e infinite, and the difference
between the pressures of the two sides of a film bellzero. Consequently, under an
infinitely-small displacement, the works done wiltluee to the works done by capillary
forces, namely,-8, d%. In order to have equilibrium, it is necessary thét éxpression

should be zero, and in order for that equilibrium to tadls, it is necessary th& X~
must pass through a maximum; i.e., thahust be a minimum.

Now, if one supposes that the preceding system is dedormguch a way that the
two films ao anddo becomead anddd, resp., and such that a new film will form fram
to o', then the sum of the areas of those three filnlsbgi smaller than the sum of the
areas of the original two films. Indeed, if one drtims perpendiculao’'f from o' to oa
then one will have:

fo =00 cosfoo
or

f0>£,
2

since the angléod is close to 45 On the other hand, the andig is infinitely small,
so one will have, roughly:

af =ad,
and as a result:
af + fo>ao +%

or

ao > ad +£.

2
One will likewise find that:
do>dd +%,

and one will obtain:
ao+do>ad +dd +00.
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It will then result that the sum of the areashef films will not be a minimum for the
system of thin films that contains the diagonal plarfeh® prism. That system cannot
correspond to a stable equilibrium state then.




CHAPTER V

PROBLEMS IN WHICH GRAVITY INTERVENES

In the preceding two chapters, the work done by gravisapgieared from the
equilibrium equations, either because it was negligib@mparison to the work done by
capillary forces or because it was zero. We shall nove on to the study of some
problems in which the action of gravity intervenes in theildgium equations. The
most important ones are the problems that relate toileguih in superposed fluids, the
equilibrium figure of a drop that is placed on a horiabqmtlane, and the attraction or
repulsion of two vertical walls that are submerged iquad.

A < > C
D
Figure 51.

53. Equilibrium of a liquid drop that rests upon a denserliquid. — LetABCD be
the drop (Fig. 51). LeS be its free surfacABC, and letS’ be its contact surfacekDC
with the denser liquid upon which it rests, tbe the free surface of the latter liquid,
and Iet%, % % be the surface tensions on the those surfaces. THedeoe by

capillary forces that result from a virtual deformataf the drop has the expression:

g byl m
2 2 2

Up to now, we have considered only one fluid, and we toeklénsity of that fluid to
be unity. In the case that we presently address, Wéheadensity of the lower liquig
and that of the liquid that forms the drgp . If we letU andU; be the respective
volumes of those liquids, and BtandZ; be the distances from their centers of gravity to
the xy-plane then we will have:

goU & +gpo U oy

for the work done by gravity, in which tlzeaxis is assumed to be directed downward.
Consequently, the equilibrium condition is:

goU & +go Uy ﬂl—%ﬁ—%ﬁ'—%ﬁ”: 0, 1)

to which one can add the two constraint equations:

aJ =0, AJ; =0, (2)
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which express the idea that the volumes of the liquidsad@hange.
>

Figure 52.

In order to transform these equations, consider the pwsitionsZ, ', 2" of the
surfacesS S, S” resp. (Fig. 52). If we draw normals to the formeraes$ through each
of the points of the original surfaces then the lengthsf the normals between the
original surfaces and the ones that result from thdard®tion will determine the latter
surfaces. Upon lettindo denote the area of an elementpive will have:

5= .[)I(—;+%jda+j)l dscotg

for the variation of that area (n®1), in whichdsis an element of the contact curve, and
@ is the angle between the li@F that joins two positions of a point on that curve and
the tangent to the deformed surfacéatOn the other hand, the trian@#iF, in which
CH is the normal tcs is roughly a right triangle &, and we will have the relation:

CH =CF sinHFC
or

A=using,

in which i denotes the lengt@F. Consequently, we can write:
1 1
&B= || =+—=|do+ | udscosp.
I (R Fij J uoscosp
We find similar expressions for the other variations:

£’=I)I[—+— dd+jydscos¢',

&= j/](i+i do” + [ pdscosy’
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In order to calculatéU;, we remark that if only the surfa&deforms then we will
have:

jAda

for the variation of the volume.
However, since the surfa&deforms along with it, one will have:

A = j/lda—j/lda’.
Similarly, one will get:
:j/lda’+J/1d0J’.

Since the volumes are invariable, one can write:

Ug azlszlZl:j/lzda—j/lzdf,
UZ =d0Z =[izdo+[Azd",

in which the right-hand sides of those equalities expresgiea that the variations of the
moments of the weights of the liquid with respect xjaplane are equal to the sums of
the moments of the weights of their elements wepect to that plane.

The equilibrium equation will then become:

Vda{glpz_ﬁ(%rﬁﬂ 2 cb{ pz P 29(; _@

(3)
+f/l do’ ng—— —+= ju d{—cos¢+— cogp’ O cog" | =0,
R” 2
and the constraint conditions will become:
j;lda—j;lddzo,
(4)
j/lda'+j)ldd’=

54. — Equation (3) must be true for aAyprovided thatl satisfies (4). In particular,
it must be true when one has:

j)lda:o, j)lda':o, j)ldd':o, (5)

which demands that one must have:
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6(1, 1
=2 =+ = |+
goLz > R Rjﬁ’

R R
(6)

g1 1 .

z =2 —+= ,

go NS Fi'j B
G a A "

—=Ccosp+— co®' +— cog" =0,
2 S 2 9 2 ¢

in which g, g, B” are constants.

However, in order for there to be equilibrium, eqourat{3) must be satisfied for any
displacement, provided that it is compatible with the tranmgs. It must then be satisfied
even when the conditions (5) are satisfied, providettheaequalities (4) are.

However, if we take the conditions (6) into account thgnmation (3) will reduce to:

B[Ado+pB[rdo+p'[Ado" =0,
or, upon taking the constraint equations (4) into account:
(B+B-B)[Ado =0.

In order for it to be satisfied for non-zero valudghe integral, it is necessary and
sufficient that one must have:

p+B-B'=0.

That is the new condition that one must append toactimelitions (6) in order to have
equilibrium.

The first three of equations (6) are the equations@furfaces S, S”, resp. The
fourth one expresses the idea that the projectionenteéhsions at the poi@ onto the
line CF is zero, sincep, ¢, ¢” are the angles between that line and the tangeattsité
drawn throughF in the normal plane to the intersection curve at goint. Since the
direction ofCF is arbitrary, that equation will express the idea thatthree tensions @t
must be in equilibrium.

That condition permits one to find the contact anglethe three surfaces when one
knows the values of the tensions. In order to dq thaill suffice to construct a triangle
whose edges are equal to the tensions. One of the amigkbsit triangle and the
supplements of the other two will be the contact angle

It can happen that the values of the tensions are $&aththe construction of the
triangle will become impossible. In that case, theitebe no equilibrium, since one of
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the equilibrium conditions is not satisfied, and tleating liquid will extend indefinitely
on the surface of the denser liquid.

That is what happens for a drop of olive oil that i€@thon the free surface of water.
The surface tension of oil in contact with air is dgoa37 dynes, that of oil in contact
with water is 21 dynes, and finally that of water intewh with air has the value 81, so
one of the edges of the triangle will be greater tharsim of the other two, because:

81>37 + 21,
and equilibrium cannot be produced.

Meanwhile, if the oil drop has a small volume and sheface of the water is
sufficiently large then one can confirm that the odpmlwill cease to spread out before it
reaches the walls of the vessel. There will thenrbecmilibrium state. However, that
fact does not invalidate the theory, because it suppbs¢she distance between the
surfacesS andS’ that bound the olil is greater than the radius of nudde@ctivity, which
will cease to be true when the oil drop has spread outisuniy.

S” S//
= ,
S .

Figure 53.

55. Superposed liquids in a capillary tube- As before, le§ (Fig. 53) be the area of
the free surface of the less dense lig&¢the area of its contact surface with the lower
4 & 8 b,

liquid, and letS” be the area of the free surface of the latter liquidt El

the surface tensions on those surfaces. In additibrmduce the areas of the contact
surfacess, and S of the tube with the upper liquid and the lower liquidpreas well as
the coefficients that | called:

N R

) ,
/71_51 /i

in Chapters | and Il, but which | will catyy and77; from now on, in order to abbreviate

the writing, and thereby change the meanings of the nosatiat were employed up to
now.

For a virtual displacement of the liquid inside the tube, work done by capillary
forces is:
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—%58—%58 +1,0 $+n,0 &

One will again have:

B= j;l(—+— do+ [ A dscotg,

& = j/l(i+i do’+ [ A dscotg,

in which ¢ and¢’are the contact angles of the liquid with the tube.
If only the surfaceS deforms then, from a formula that was found befohe, t

variation ofS; will be:
Ads

sing
however, sinc&’ deforms at the same time, one will have:

Ads ¢ Ads
sing 7 sing
and
Ads

sing'

s =|

Substitute those values 86, &, & ,JS in the expression for the work done by
capillary forces. It will become:

—j;li'l[ j j;l ( jda+j/1[l¢—%cot¢jds

O
+ V(sm¢ _S|n¢ —200t¢jd§.

The work done by weight is:
goVU dZ+goUy &7, = g,oj/lzda’+ gole 7 - ng/] zd’,

which is easy to see, from what was said in5®.
Upon writing out that the sum of those works mhbet zero, we will obtain the

equilibrium condition:
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6(1. 1), B g(1, 1
rlone (i) i g =5 o

_a _n
+j [SIT Lcotg ds+j)l[sm¢ sirg 2cot¢j

For the freeS, one has:

(7)

U +U1:—J'Szdxdy.

If we take into account equations (8), which give theeslbfz for the two surfaceS
andS’, then we will get:

g (p-p) U j{—(—+—j B |dxdy,

go (U+Uy = —J‘S{%[éﬂL%}ﬁ dx dy.

Now one has:
g(-p)U+go (U+Uy) =goU+goUs.

The right-hand side of that equality is precisely theght of the liquids that are
contained in the capillary tube above #yeplane. We will then have:

g1
At e[S
for that weight, but in nal2 we showed that:
1,1, [ﬂ d_mj
R R dx dy
in which| andm are the cosines of the normal to the free sunfate the x andy-axes,

and that one has:
H(—+—jdx dy = s cosg,

in which s is the length of the intersection curve of theiitr surface of the tube with a
planar cross-section. Consequently:

P :%scos¢ +£Q + %scos¢'+,[>"§2,
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in whichQ is the cross-section of the tube. As a resulbefrelation (10) betweefiand
£, that expression will reduce to:

P :% SCcos¢ +% scosg’,

which one can write:

U

P= % Scosg”,

due to the relation (11).

Now, the latter expression is that of the weighttlad liquid that was raised in a
vertical capillary tube that is submerged in the dengeid, since the liquid in the tube is
in contact with air. We will then arrive at the ctusion that the weight of the liquid that
is raised in a capillary tube that contains two superpdigaids will depend upon only
the lower liquid.

L
Cc’ B’ B Cc
Figure 54.

57. Surface of a liquid in the neighborhood of a vertical planafilm. — If that film
L (Fig. 54) is sufficiently large then we can regard tndasesABC, A'B'C’ of the liquid
on either side of the film as being cylindrical. The gahequation of the surfadeBC

(1 1
Z= 22 =—+=| +
90 Z[R Rj s
will then reduce to:
61
z=21=— +p
gp >R B

since of the radius of curvatuRe will become infinite.

Take thexy-plane to be the horizontal plane that passes thrdwgfide surface of the
liquid at a considerable distance from the film. Ongsthavez = 0 forR = «; as a
result,Z will be zero. If we set:

4_ Lo 12
o = H P (12)

to simplify, then the equation of the surfa&BC will become:
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N
I
PR

(13)

Figure 55.

Consider a poinM on that surface (Fig. 55) and draw the pardllEl to thez-axis
that passes through that point, as well as the ndvi@al Since the angle between those
two directions isa, we will have:

d

Q

1_
R

o

S

for the value of the radius of curvatuMC, in which the arc lengtls is measured
positively in the sense of the arrow. In addition,hage:

dz=dssina.
Consequently, equation (13) can be written:

sina da

or

One will then deduce that:

cosa=—-—+VJ.
5 Y.

If we suppose that the origld of the coordinate axes is sufficiently far frone tiim
then we will have:
a=0, cosa =1, z=0.

As a result, the integration constaamnust have the value 1, and we will have:
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2

2 —1_cosa= 2sikd
22U 2
hence:

z=2/u sin% . (14)

In order to gek, we remark that:
dx=-dscosa=-dzcota;

consequentlyx is given by the elliptic integral:

X=- jdzcota.

However, one does not need to consider that iategrorder to discuss the curve;
equation (14) will suffice.

By way of example, we propose to calculate thenatd of a point on the contact
line. Upon lettingg denote the contact angle, we will have:

$p=9C+a;

as a result, the desired ordinate will be:

z1=2 ,usin¢_2900 = 2@ 1—32|n¢’

or, upon replacing: with its value that one deduces from (12):

z = /i(l—sinm,
ap

in which the radical is taken with the + sign whbe contact angle is acute, as it is in the
case of mercury and glass, and with the — sign wiheontact angle is obtuse.

58. Drops of large dimensions that rest upon a denser liquid- In no.54, we saw
that the angles that are formed between the tamd@mes to the surfac&S’, S”that are
drawn through a point on the line of contact cardétrmined by the construction of a
triangle that has its edges proportional to thedlsurface tensions. In addition, when the
drop has large dimensions, it is easy to fix theifmmn of those planes in space.

The equations of the surfac8sS’, S” are the first three equations of the group (6).
When the drop is very large, one can equate thasaces to cylindrical surfaces, and as
a result, regard one of the radii of curvaturexagssively large. Those equations will
then become:
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z=2=+p,
gmz=2

g 1 )

— Z:——+,

g (o—-p) >R B

g1, .

z =2 +p

gp >’ B

We remark that at a point of the surfegge¢hat is sufficiently far from the contact
curve, the radius of curvature will be infinite, so therface will coincide with a

horizontal plane. Consequentlyzifis the distance from that plane to #yeplane ther3
will be equal togor 7o . If we set:

A=
5 H 9o
then the first of the preceding equations will become:

z-3%=

PR

and by a transformation that is analogous to the ortentbapplied to equation (13) in
the preceding paragraph, we will get:

z-3= Zﬁsin%.

We have similar expressions for the other two susface
, P
z-27,= 2\/7 sm;,

z-z =2y U sin%.

However, we have seen that the constgnf®, 5~ of the equations of the surface are
coupled by the relation:

p+B~p =0,

Here, one will then have:

9 +9(P-P) % - 9o % =0.

U

Now, if we multiplyz — 3,z — z,, z — z; bygo., 9(p— 1), — gp, respectively, then
we will get:



Chapter V — Problems in which gravity intervenes 101

9o (z-2) +9p-p)(z2-7)-9p(z-7)
=-002-9(P-p)Z%+ 9P %,
additionally.
That sum of products is zero then, from the precedirgioal
Consequently, we will have:

! U

. a P a ;. a
901 usm5+g(p—pl)ﬁsm3 +gp | f'sin—- = 0.

One can add two other relations to the relation betweeam, and a” that express the
ideas that the tangent planes define angleg’, ¢" between them that are determined
from the triangle of tensions, as we have recallddw, one has three relations then that
determine the angles a’, a”between the normals to those tangent planes arsaxis.
The positions of those planes are fixed in space theledsat approximately), since the
argument supposed that the drop was infinitely large.

59. Drop resting upon a horizontal plane— The free surface of the drop is always
given by the equation:

Let us look for its volumé&). The plane upon which the drop rests is taken to be the
xy-plane, so that volume will be given by:

U :H z dxdy.
As a result:

61 1
goU :E.U(E+Ejdxdy+ﬁﬁ dx dy.

Figure 56.

If the drop is one of revolution amds the radius of the circumference of contaBt
(Fig. 56) then one will have:

de dy = 7r?.

On the other hand, we have seedZgthat one has:
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jj[%+%j=scosa,

in which s is the perimeter of the contact curve, ant the angle between the tangent
plane to the surface at a point of that curve and thiicae Upon calling the contact
angleg, one will have cogr = sing. Consequently, one will have:

go U :% 27r sing + B r®.

The constanfican be deduced from the heigfof the drop, when that drop is large.
Indeed, since the drop is one of revolution, the twa cddiurvature will be equal at
the highest point, for which=h. Consequently, one will have:

6 2
- = +
g0 2R’B’

which is a relation that determingsas a function oR andh. In the case where the drop
is large, one will have roughR = «, and the relation will become:

B=-gph.

Observe that we have assumed that the drop is one dditieso That hypothesis is
legitimate, because if the drop were not one of revariuthen we could always find a
drop of revolution whose sections by the horizontal gdainad areas that were equal to
the sections of the drop considered by the same plahles.volumes of the two drops
would be equal then, and we could regard one of them agdb# of a deformation of
the other one, while the contact surface with theeplaould remain the same. Now, it is
easy to show, as we did in the context of Plateaypsr@xents (83), that the surface of
the drop of revolution is smaller than that of a dropttls not one of revolution.
Consequently, when one passes from the former to titeg, lthe work done by capillary
forces, which reduces t660S, will be positive since the contact surface with thex@la

does not change. The work done by weight has the exqpress
o) j gpoQdz,

in which Q is the area of the section of the drop by a horizgaat. SinceQ has the
same value for the two drops, that variation willzeeo.

The sum of those works will then be positive, when paeses from the form that is
not one of revolution to the one that is. Conseqyetité energy of a drop that is not one
of revolution will not be an absolute minimum. Suchd@p cannot be in stable
equilibrium then, and there is good reason to considigrthe drops of revolution.

Meanwhile, experiments show that one can obtain doops planar surface that are
not ones of revolution. In that case, equilibrium barexplained only by the viscosity of
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the liquid. Furthermore, one intends that word to meaarace viscosity that is much
larger than the ordinary viscosity, or resistance teriral motions.

®) X
D
A B
M
Ml
Al Bl
Dl
V4
Figure 57.

60. Suspension of an index liquid in a capillary tube- Consider a conical tube of
revolution, and letAB and A’ B' (Fig. 57) be the free index surfaces in its equilibrium
position. Take th&-axis to be a horizontal that passes through the su@mwitthe cone
and thez-axis to be the axis of the tube, which we assume tetieal.

If Z is the ordinate of the center of gravity of the intleen the moment of the weight
with respect to they-plane will begoUZ. That moment will also be equal to the moment
of the volumeO” AM’ B', minus the moment of the volun@AMB. If we neglect the
moments of the volumeSMBD, AM’B'D' and letzandZ denote from the summ@ to
the plane#\B, A'B', resp., that pass through the contact curves then lheawe:

moment ofOAB = aZ,

in whicha is a constant that is equal to the productreifith the square of the tangent of
the angle that the generators form with the axise moment ofOA'B' is given by an
analogous expression, so we obtain:

goUZ =az* -a7.

If we neglect the variations of the surfaceglB and A'M’ B’ then the term that is
provided by the capillary actions will berS. SinceS is the area of the contact surface
of the liquid and the tube, that surface will be therk surface of a frustum of the cone
of heightZz — z it will then be equal to:

b (2% - 2),

in which b’ is a constant. We can then write down the poteptrgy of the two
capillary actions:

-nS=b(Z?-2).
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In order for there to be equilibrium, the total potergiagrgy:
a(@-2%+b(Z-2?
must be a minimum. As a result, one must have:
(2a Z+ b2 dz—(2a 2>+ bz) dZ = 0.
However, the volume of the drop remains constanbnsohas:

7% -7 = const.,
and as a result:
272 dz—27%dZ = 0.

Upon eliminatingdz anddZ from the two equations that contain those diffesdsiti
one will get:

2a7+b 2aZ*+b
(1) = —

z z

It will then be necessary that the functiat 2 b /t must take on two equal values for
two different values of that have the same sign. Now, that condition lwarfulfilled,
because the left-hand side of (1) admits a mininfama certain value of, and thus
explains the possibility of equilibrium for an indm a conical tube.

We can argue in the same manner for a cylindrichk, and it will be easy,
moreover, to account for the situation in a tubevirich one does not have equilibrium.
Indeed, if one gives a downward displacement to itidex then the work done by
capillary forces will be zero, since the index does deform, while the work done by
gravity will diminish. The potential energy of thadex in its original position is not a
minimum then, and as a result, the index will r@irbequilibrium.

Meanwhile, experiments show that there is equiliarin a cylindrical tube. One
often says that this fact comes from the fact tingbractice, a cylindrical tube is always a
conical tube to a greater or lesser extent. Howehat reason is not sufficient, and the
equilibrium that is observed can be explained dylyhe existence of surface viscosity.
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Figure 58.
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61. Attraction or repulsion between two vertical films.— LetL andL; be two films
(Fig. 58), and leX be the normal force that one must apply to the filrm order to
maintain equilibrium. Give a virtual displacement tottfien that takes it toL’ in a
parallel position, and write down that the sum of tloeks that are done by all forces in
the system during the displacement is equal to zeree éuation thus-obtained will
determineX.

In general, the form of the free surface of the ligaidhodified by the displacement.
However, since the sum of the work done by forces maigebo for ararbitrary virtual
displacement, we can take the virtual displacemenetthé one that corresponds to the
free surfaces that are identical before and afterdisptacement.

Under that hypothesis, the work done by capillary foisezero. Indeed, that work
will have the expression:

Tc:—%aswasl,

in which Sis the area of the free surface, &ads that of the contact surface of the liquid
and the film. Upon calling the length of the film th& perpendicular to the figures, one
will have:

&= xCC'-1DD/,
and upon denoting the displacem@wt of the film by& and the contact angle lgy:

ccr=—*_, DD’= —*_,
sing sing

K= |(i_ij =0.
sing sing

ﬁ :| (C/C//_D/D//)’

SO

On the other hand:

or
& =1 (ecot g —ecot ¢) = 0.

The work done by capillary forces is indeed zéent

Let us evaluate the work done by gravity: It isi@cdo the variation of the sum of the
moments of the forces that are due to gravity wibpect to a horizontal plane; for
example, the planklH; that passes through the free surface of the lifaridrom the
film. Since the film is displaced parallel to ifseéhe submerged portiolSBEF A'B' E’
F’will remain the same, and the center of gravitgedrything that is situated below the
planeHH; will remain in the same horizontal plane. The mobtof the weight for that
entire portion of the system will not vary thenorfhe portion that is situated above that
plane, the sum of the moments of the forces dueetight will reduce to the difference
between the moments of the volumes of the sectd@&C', BDBD’, because by
hypothesis, the displacement is such that the foirthe free surfaces does not change.
Now, those sections can coincide with the rectangdeCAC", BDBD", since the
trianglesCCC", DD'D" have areas that are second-order infinitesintdémce, one has:
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Tp, = moment of the voACAC" — moment of the voADAD”

for the work done by weight, or:

T, =—gpl £CA|:-|C24A+ gol € DBIZ-PZ—B

CA -DB’
o[ 28

The work done by the force has the value €” X, where the force is measured to be
positive from right to left, so the equation of equilifon will be:

—_—2 —2
_gx_gpl gCA_TDB :0’
and one can write:
—_—2 —2
X=-gpl gw_

In order forX to be positive, or what amounts to the same thing,derdor the film
considered to be attracted to the other one, it is n@gedsat one must have:

—_—2 —_—2
DB >CA.

That condition can also be satisfied in the case evilee liquid is raised in the
neighborhood of the film (e.g., glass in water), a#i a® in the case where the liquid is
lowered (e.g., glass in mercury). Inthe former ctsenecessary that the liquid must be
raised more along the fad&D than it is along the facAC. In the latter case, it is
necessary that the liquid must be lowered more dihghan it is alongAC.

62.— That condition can be expressed differently.
We previously saw (87) that in the neighborhood of a planar film, the surfata

liquid will satisfy the equation:
2

z
cosa=—-——+J,
2u
in which yis a constantg is the angle between the interior normal to théase and the
positive direction of the-axis, andu is defined by the relation:

% = o
. .
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If we consider the portion of the surfald€ that is situated outside of the film then
we must have:

a=0 and z=0

for a point that is sufficiently far from the filnas a resulty= 1 for that portion of the
surface.

For the surface that is found between the two filptgn have an arbitrary value that
depends upon the spacing of the filmsQdie that value.

At the pointC, we will have:

z=CA cosa=sing;
hence:
-2
sing =- CA +1
2
For the poinD:
z=DB, cosa = sing,

and as a result:
—2

sing=- 22 4¢
2u

One will then have:
DB -CA =2u(C-1),
and consequently:

X:g,ol,u(C—l):%l (C-1).

The sign ofX depends upon the value Gf One sees that there will be attraction
whenC is greater than 1 and repulsion in the opposite casethefrmore, it is almost
obvious that if one seeks the forkghat must be applied to the second film in order to
keep it in equilibrium then one will find that same expi@s. One can then say that
represents the mutual attraction or repulsion of thefitms.

63. — Let us look for the sign of in the various cases that can present themselves.
We shall not suppose that the two films are composecedfaime substance.

First, suppose that the contact angles between utfaces of the films and the
surfaces of the liquid are all acute. The anglaill be negative at the poirld and
positive at the poinD; . There will then exist a point on the surf&®; for which a is
zero. One will have:

ZZ
1=C-—
2

for that point, and sinc# / 2u is an essentially-positive quantity, it will becessary that
one must have:
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C>1.
The films will then attract each other.

D:] [C

1

Figure 59.

If we suppose that the contact angles are obtuseatéth be positive at the poirD
and negative at the poiby . Consequently, there will exist a point for whighs zero,
and one will once more reach the preceding conclusion.

When the contact angles with one of the films angeaand the contact angles with
the other one are obtuse, the surf@@® will generally intersect thgy-plane (Fig. 59).
As a resultz will change sign when one passes fidrto D;, and since one has:

PR

the radius of curvature would likewise change sign. Thahge of sign can be produced
only if R becomes infinite. The cuni2D; will then possess an inflection point. Now, if
one constructs the curves that are represented by théoequat

ZZ
cosa=C- —,
2u

while giving values taC that are, in turn, less than unity, equal to yratyd greater than
unity, then one will find that the curves that @spond to values that are smaller than 1
will be the only ones that can have inflection peiat a finite distance. It will then be
necessary that one must have< 1 in the case considered, and there will be Isgpu
then.

However, the contact angles can be acute for btleedilms and obtuse for the other
without the liquid surface that is included betwebha films having to intersect the-
plane. The intersection curve of that surface whehplane in the figure will not present
an inflection point then, an@ will have to be greater than or equal to unitg.tHe latter
case, the films will necessarily attract each gthdrenC = 1, there will be equilibrium.
Let us see what kind of forms for the liquid sugaavill correspond to that equilibrium.
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Figure 60.

SinceC = 1, the section of the free surface of the liquid hgdoto the curve:

2
cosa=1- 2.
24

If one constructs that curve by giving all of the valudsvben —a and +a to a then
one will get Fig. 60. However, when one is dealwith vertical films, one cannot obtain
all of the portions of that curve, becausean vary only between #/ 2 and +77/ 2 since
¢ is always found between 0 amand one has = 9F° — ¢. The portions of the curve
that correspond to those valuesaoéxtend from infinity to the points where the tanige
to the curve is vertical. They are the ambsa'b’, ayb;, a b then. Moreover, since the
free surface of the liquid will become planar asuficiently large distance from the
films, the section of the liquid surface that iated to the left of filnL will necessarily
be a portion ofib or &'b’. For the same reason, the section of the liquithse that is
situated to the right of the filto, must be a portion dfa; or by & .

Figure 61.

Suppose that the contact angle Witls acute and the contact angle withis obtuse.

The only portions of the curve that can then caeautside of the films will bab for

the one on the left aralb, for the one on the right. Between the two filmse can have

a curve that is symmetric to either the portiorabthat was used or the portion @b,
that was used, because it is obvious that the cbatagles of the free surface that is
interior to the films with the films will be equéd the respective exterior contact angles
in those two cases. Figures 61 and 62 represersetttions of the three free surfaces in
the two cases. One easily sees that in the iystd, the sung + ¢, of the contact angles
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is less than two right angles, while, on the comtréinat sum will be greater than two
right angles in the second case.

C
‘:{__ D-——=——| F=————-
- p||C
m /
¢
R Figure_62.

It remains for us to see whether the equilibrium stz corresponds to those forms
for the free surfaces is stable or unstable. If weentbe films together then the lengths
of the arcdDD; will diminish, but the angl®OD; that is defined by the tangentxtand
D will remain constant, since the contact angles dovant. Consequently, the absolute
value of the radii of curvature at a point of thosesavdl diminish, and since = ¢/ R,
the absolute value afwill increase. It will then result that the equation

ZZ
cosa=C- —,
2u

which was satisfied b = 1 originally, can be maintained further only falues ofC
that are greater than unity. The films will theétract each other as long as one displaces
them towards their equilibrium position.

By an analogous argument, one will see that if onwwes the films apart then a
repulsive force will be produced. Equilibrium wiilen be unstable.

In summary, when the contact angles with the fiams both acute or both obtuse,
there will always be attraction. When the contawile with one of the films is acute and
the contact angle for the other film is obtuse ttesme will generally be repulsion, but in
that case, one can have attraction, or even fiadilths in an unstable equilibrium state.

Figure 63.
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64. Buoyancy experienced by a partially-submerged body of revoionh. — Let
CAD (Fig. 63) be body of revolution around an a&B that we suppose to be vertical.
Calculate the buoyancy that the body experiences when it is in equilibridtarabeing
partially submerged in a liquid of densjy

In order to do that, we give a vertical displacemstat the body such that the form of
the free surfac®lA is unchanged, but merely extended up to the contact wamtthe
body in the new positio@’B' D', and write down that the sum of the works done by all
forces in the system during that displacement is zero.

The work done by capillary forces has the value:

e
Tczﬂlﬁ—zl

in which &5, is the variation of the area of the contact surfddée solid and the liquid,
and &5 is that of the free surface. Upon denoting the radiute parallel that passes
through the contact cun&byr, one will have:

Jd5, = 27rrr AB,
&5 = 2irr AB,

and since the constams and &, / 2 are coupled by the relation:
8
= —1C0S¢,
= ¢
in which ¢ is the contact angRIAE, one will have:
_8
T =5 2mr (AB cosg —AB).

However, the angIBAB is opposite to the summit of the angleso it will be equal
to the latter, and the quantity in parentheses will rethe projection of the contour
B'AB onto the directiorAB'. That quantity will then be equal to the projectiont
vertical BB' that closes the contour. No®B' is equal toCC, and as a result, ta As
for the angle betweeBB andAB), it is the angle that is defined by the tangent plane to
the free surface at the poidtand the vertical. Upon calling that angleone will have:

Te :% 27r £cosa.

Let us now evaluate the work done by weight.

Since the body is in equilibrium, its weight is eqaald directly opposite to the
buoyancy that it receives on the part of the liquithc&that was denoted by the work
done by weight that is exerted on the body will be:
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Xe
for the displacement considered.

The work done by forces that are due to weight and ekapen the liquid is equal to
the variation of the moment of those forces witBpeet to a horizontal plane — for
example, the plane that passes through the free swfabe liquid far from the body.
Since we have supposed that the free surface extendgmtdyits contact with the body
under the given virtual displacement of the systent,wi@ation will reduce to:

Tp =—mom. ofGDD' + mom. ofELG + mom. ofABEL,
or
Tp =—mom. ofLHGD' + mom. ofEHGD + mom. ofAB'EL.

Now, one can write:
mom. ofLHGD' = mom. ofE'H’G'D’ + mom. ofLE'HH’,

in which EE is a vertical that is drawn through the contact p&imtf the xy-plane with

the meridian of the body. The voluni&'HH " differs slightly from that of a right
cylinder of heightHH’ = £. It will then be a first-order infinitesimal, and itsoment

with respect to thexy-plane will have order two. As a result, one can reglbat

moment, and get:

Tp == (mom. ofE'H’G'D" - mom. ofEHGD) + mom. ofABEL.

However,E'H” G'D’ is nothing but the displaced volunBHGD; as a result, the
difference between their moments will be equal to thedpet of the vertical
displacement by the weights of one of those volumes; one wéhthave:

Tp =-£gpvol. EHGD + mom. ofABEL.

It remains for us to evaluate the moment of the digwilumeABEL. The surface of
the triangleAA' B’ is a second-order infinitesimal, so the volume geedrhy the rotation
of that triangle can be neglected with respect tostheme that is generated BWEL, in
such a way that one will have, approximately:

mom. ofAB'EL = mom. ofAAEL,
or rather:
mom. ofAB'EL = mom. ofAEF — mom. ofA'LF,

in which F is the contact point of the verticA\' with thexy-plane. If we prolong that
vertical by a lengthFF’ that is equal tas then we will obtain a triangl&'E'F’ that
generates a volume whose moment differs from the mbofahe volumeA'LF only by
a second-order infinitesimal. As a result:

mom. ofAB'EL = mom. ofAEF— mom. ofA’'E'F’,
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The volumes that are generatedAfyF andA'E'F’ are equal, so the difference between
their moments with respect to the same horizonghgill be equal to the product of

the weight of that volume with the quant&yipon which one bases the center of gravity.
One will finally have:

mom. ofAB'EL = £gpvol. AEF,
and as a result:

T, =- £gpvol. EHGD + £ gp annular vol AEF.
If we now write out that the sum of those varioumke will be zero then we will get:

Tc+Xe+ Ty =271 ecosa + Xe—£gp(vol. EHGD - vol. AEF) =0 ;
hence:

X =

- %271 £cosa +gp (vol. EHGD - vol. AEF).

That is the expression for the buoyancy that theifigdbody experiences.
If the free surface of the liquid is planar thenbbeyancy will have the value:

go % vol. EHGD.

One will then see that ifr is acute, as in the case of Fig. 63, then the capillar
phenomena will have the effect of diminishing the buayanHowever, if the contact
angle is obtuse then the angtewill generally be likewise obtuse. Moreover, it Wk
easy to assure oneself that the tgmnvol. AEF must be taken with the + sign when the
point A is below thexy-plane. Consequently, the capillary phenomena careSmes
have the effect of the increasing the buoyancy, aralrasult, of permitting a body that is
placed upon the surface of a less-dense liquid to be intequnm.

Cc D
Clheoe D’

Figure 64.

65. — Let us exhibit that situation for a cylinder with veat generatoré&BCD (Fig.
64). Give that cylinder a vertical virtual displacemémit does not change the free
surface of the liquid. The work done by capillary &g evill reduce to:

m el,
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in which ¢ is the displacement ands the perimeter of the cross-section of the cylinder.
The work done by the weiglft of the cylinder isP¢. The work done by the weight on
the liquid will result from suppressing the cylindeBAB'. It will then be:

gpQ £z,

in which Q denotes the area of the cross-section of the cyliraledt z denotes the
ordinate of a point on the bad8. The equilibrium condition will then be:

Pe-gpQ ez+m el =0,
SO
P=gpoQz-ml.

However,/7; is a negative quantity here, since one mas (6, / 2) cosg, 6,/ 2 is the
surface tension of the liquid, which is an essentdigitive quantity, ang is the contact
angle, which is obtuse, by hypothesis. Upon letindenote the absolute value gf,
one will get:

P=goQz+al
or
g Qh=gpQz+al,

in which g, is the density of the cylinder ahds its height, so one can deduce that:

h :ﬁz-}-il

A 90 Q

In order for the cylinder to float, it is necessamgtth must be larger tham That
condition will not be incompatible with the preceding peeen if o, > p, provided that

the second termié is sufficiently large. A body can float on the sud of a less-
90

dense liquid if the contact angle is obtuse then.




CHAPTER VI

APPLICATIONS OF THERMODYNAMICS TO
CAPILLARY PHENOMENA

66. The thermodynamic potential. — In all of the preceding, we obtained the
equilibrium conditions for fluids by writing out thatté sum of all of the virtual works
that are done by a deformation that starts from thdliegum state is zero. In other
words, we have assumed, with Gauss, that the princfpletual velocities is applicable
to capillary phenomena.

The legitimacy of that application was contested byious authors, and most
recently by Duhem ®. The principle of virtual velocities will break dowfor
phenomena in which changes in the state of the body coedidege produced; for
example, in the phenomena of fusion and evaporatiayw, Mhen one deforms a liquid
in equilibrium in contact with other liquids or solid waltertain parts of the liquid that
were originally in the immediate neighborhood of thelwalother liquids will then be
found at an appreciable distance from the contact ggfa€their densities will vary then;
some parts of the liquids will have experienced a charfgstate. There is therefore no
reasona priori to suppose that the principle of virtual velocities, whgenerally does
not apply to systems that are capable of changing sttdye legitimately applied in the
particular case of the study of the theory of capilghenomena.

The application of the principles of thermodynamiascapillary phenomena, from
which Lord Kelvin (viz., Sir W. Thomson), Moutier, Vanrd&ensenbrugghe have
already deduced some interesting consequences, can beopah iategant form by the
introduction of the function that Duhem called the “thedynamic potential,” and whose
definition | would like to recall.

Let U be the internal energy of a systef), its entropy,V, its volume, T, its
temperaturepP, its pressure (which is assumed to be unifovi),the external force
function, andg, the mechanical equivalent of the heat. The function:

®=EU-TY+PV+W (1)
is what Duhem called thbermodynamic potentialf the system of bodies.
Under an infinitely-small transformation at consteemperature, the variation of that
function will be:
d® =EdU - ET dSt P dV+dW.
However, the equivalence principle provides us with éfetion:

EdQ=EdU+P dV+dW,

in whichdQ is the heat that is supplied to the body during the fmamation; as a result:

() “Applications de la thermodynamique aux phénoménes cagdlaAnn. sci. Ec. norm. sup. (2)
(1885), pp. 207.
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dd =E (dQ - T d$

On the other hand, Clausius’'s theorem teaches us ufdér an irreversible
transformation, one will have:
dQ<TdS

and that under a reversible transformation:
dQ=TdS.

It will then result from this that any transformatiat constant temperature will be
accompanied by a negative variation in the thermodynantenpal, so that variation
will become zero in the special case where the tramsfoon is reversible. Thus, if the
thermodynamic potential is a minimum in a certaintestaf the system then no
transformation at constant temperature can be producetdfms from that state, since
the variation of® would be positive then. As a result, the state dened will be an
equilibrium state, and we will obtain the equilibriwwanditions by writing out that the
thermodynamic potential is a minimum.

67. — Let us look for the expression for that potential dosystem of solids and
liquids in contact.

First suppose that the bodies are homogeneousM{L&¥l,, ... be their masses, let
g1, &, ..., respectively, be their specific volumes, Ugt u,, ..., resp., be their internal
energies per unit volume, and &} s, ..., resp., be their entropies per unit volume. We
will then have that the volumé of the system will be:

V=> Mo,

U=> Mu,
S=) Ms.

Consequently, the thermodynamic potential of theesystill have the expression:

the internal energy will be:

and the entropy will be:

®=E(X Mu-TY. Mg+ B> My +V.

A

B
Figure 65.
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However, as a result of the variation of the d@siof the liquids in the immediate
vicinity of the contact surface, the systems that oaasiders in capillarity are not
composed of homogeneous bodies, and the preceding expresdio be only
approximate. Let us show that in order to account fov#n@tion of the density, it will
suffice to add terms that depend upon only the contacicestfa

Let AMB (Fig. 65) be the contact surface of two bodk2B and AQB. If we
transport one of the bodies to infinity then the dapjilforces will do work. As a result,
the internal energVy in the system that is composed of the two bodiesvary with the
displacement. However, no matter what hypothesesngmases upon their basic nature,
the capillary forces will be exerted at only exceedirgtyall distances. Consequently,
the variation of the internal energy that resultsrfrithe transport to infinity of one of the
two bodiesAP’ B, AQ’ B, which have the same contact surfaces as the prgcedes,
will be equal to the internal energy of the systenbadiesAPB, AQB. In other words,
that variation will not depend upon the volumes of thdiés considered, provided that
the contact surfaces are the same and that the otti@cess that bound the bodies are at

finite distances from them.
As A
i ]
Qo M~ Qo
Py M
Qo
B

B
Figure 66.

Therefore, suppose that the two surfasB8 andAQB become surfacesP, B, AQB
(Fig. 66) that are parallel 8fMB and distant from it by a length that is equal to tlkusa
of molecular activity. Under those conditions theaaof the section of the system by a
surfacePy; MQ that is normal to the surfageMB will be infinitely small, and the work
that results from the separation of the system mwtm partsAP, MQo , BPy MQo will be
infinitely small. Upon transporting the portié&®€yM of one of the bodies to infinity, the
capillary forces will do a certain amount of walik; upon transporting the portidd(;M
of the same body to infinity, the corresponding workelvill be T, . If we putAPM

andBPM, on the one hand, ad)M andBQM, on the other, back into contact with each
other after that operation then the work done by lzaiforces will be infinitely small.
However, by definition, that series of operations waithount to the transport of the
bodiesAP; B, AQ, B to infinity. Consequently, if one calls the corresping work done
T then one will have:
T=To+T,,

up to infinitesimals.

The work that relates to a contact surfaddB will then be equal to the sum of the
works that relate to the partial surfaces into which oan decompose it; as a result, it
will be proportional to the area of the surface.
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It results immediately from this that the internakregy of a system that is composed
of two bodies in contact with each other will contaireart that is proportional to that
contact surface. An analogous argument will show tiiatentropy likewise contains a
term of the same type. Consequently, the thermodynponential of a system of bodies
in contact will have the general expression:

O=E(X Mu-TY Mg+> A+ B M +W, (2)

in which @ denotes the area of any of the contact surfacesAatehotes a coefficient
that depends upoh g, and even other variables, such as the ones that dediredectric
state of the system.

68. The equilibrium conditions.— As we have seen, in order to find the equilibrium
conditions, it will suffice to express the idea thais a minimum.
One must then have:
do=0

for any virtual deformation. Suppose that deformatiorughghato remains constant.
However,T and g do not vary, so the functionsands, which depend upon only those
guantities, will themselves remain invariable. On theokand, the massétof each of
the bodies do not change. As a result, the equilibeguation reduces to:

d®=> Adf +dw=0.

We have thus recovered the equation to which the Laplagdegsauss hypotheses led
us. The coefficienf, which is represented [# / 2 in mechanical theories, is once more
the surface tension in the contact surface.

Having recovered the fundamental equation of capillagnpmena, it is obvious that
all of the consequences that we have deduced from the resldoeories of Laplace and
Gauss will persist in Duhem’s thermodynamic theory. wBy of exercise, we shall look
for the pressure difference between the sides of tiwacb surface of two fluids in
equilibrium.

Let 75 and 7 be those pressures, and affect the quantities thatimevduced before
with the indicesp and g when they pertain to the two respective fluids. Defolne
contact surface in such a fashion that the volume efodthe bodies increases ¢hyand
the volume of the other one diminishes by the same itjame then have:

dv=Mpdg, = - My doy . 3

The specific volumes vary, so the same thing willrbe for the internal energy and
entropy of each of the bodies. If we set:

H=EU-Tg)+Pdg
then we will have:
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dgp =E (du, — T dg).

However, from the equivalence principle, upon letulogdenote the quantity of heat per
unit mass that is provided to the bgayone will have:

E dg=Edw,- 75 dg, ,
when one neglects the work done by weight. As atresul
dg,=E(dg—-T dg) +P dg, — 75 dg, .
Now, we can suppose that the virtual deformation of ysem is reversible. In that
case:
dg=Tds,
and we will get:

dgy =P dg, — 75, dgp

or, upon replacinglg, with the value that we infers from the first of ggualities (3):

P-r
dg, = P dv.
P M
We will likewise find that:
P-1
dgq=- v 9 dv,

q
and as a result:

Mp dgp + Mq dgq = (78 — 7%) dv.

However, from the general expression (2) for thentoglynamic potential and from
the expressions that defigg andg,, one will have:

® =M, dg, + Mg dgg + > A6

for the thermodynamic potential of the system thatosposed of the bodigsandq,
upon neglecting the weight. Consequently, the equilbonditiond ® = 0 will give:

(75— 75) dv+) Adf =0,

if one nonetheless assumes tAas constant, which is not entirely rigorous, becahsg t
coefficient depends upom; and the latter quantity can vary, by hypothesis. Upon
supposing, in addition, that only the contact surf@gef the two bodiep andq varies,
one will have:

(76 = 75) dv + A dGq = 0.



120 Capillarity

Now, we have seen that the variation of the afedhe contact surface of the two
bodies has the value:

1 1 1 1
dég= (E+EJJA dw = (E+Ej dv;

1 1
~m=- Al =+ |
e (Rf%j

as a result:

That is indeed the expression to which we arrinetthe molecular theories.

VY ()

A B AE B
C D C = D
N N
Figure 67. Figure 68.

69. Influence of the curvature of a liquid surface on the vale of its maximum
vapor pressure.— Consider a closed ves3&(Fig. 67) that contains a liquid and another
larger vessel that contains the same liquid. Eropty and suppose that the temperature
of the system is uniform. The maximum tensionhea two liquid masses will be equal
then. If the two level&B andCD are not on the same horizontal plane then thespres
that is exerted upon those surfaces will not hdne dame value; if it is equal to the
maximum tension for the temperature of the systenthe surfaceCD then it will be
much less than that tension on the surfaBe Consequently, the latter surface will emit
vapors that will condense upon the exterior surfsfdbe liquid. The leveCD will then
go up at the same time that the lex& goes down, and there will be equilibrium in the
system, just as when those two levels are founth@isame horizontal plane.

The conclusion would not be the same if we hadosspd that the leveAB is
originally lower than the levelID.

In the case where the interior vessel is a capitlabe (Fig. 68), there will necessarily
be an equilibrium state again, but in that stagettto free surfaces will no longer have
the same height. Lord Kelvin assumed that it wasowus that those two surfaces would
be the same, as if the capillary vessel commuricaith the other one. Indeed, if that
were not true then when one established that conwation, the equilibrium that had
been attained would be destroyed, and it could meeegeestablished. It would produce
a continual circulation of the liquid that evapesafrom one of the surfaces, condenses
on the other one, and returns to the first onerbgging the orifice of communication.
That motion would be perpetual. Consequentlyha ¢ase where the contact angle of
the liquid and the wall of the tube is acute, thdaxeAB would have to be found to be
higher than the surfad@D in the equilibrium state. However, when thereqgsilibrium,
the surfaceAB will no longer emit vapor. The pressure that isréed upon it will then
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be equal to the maximum tension in the liquid, and simgilfan the surfaceCD. Now,
the pressure on the latter surface is larger thanoh B. Consequently, the maximum
tension on the surfac&B will be smaller than the maximum tension on the ser@D
for the same temperature. The difference betweesettwo values will be proportional

1 1 ) ) .
to the mean curvature—+— of the meniscus, since the difference between the

pressureAB and CD will be proportional to the vertical distance tls#parates those
surfaces.

If we had supposed that the contact angle wasselihen the meniscésB would be
lower than the surfac€D in the equilibrium state. We would have then fduahat the
surface of the concave meniscus of the maximumders the vapor was larger than the
maximum tension for a planar surface and that ifierence between those tensions was
proportional to the curvature.

70. Delay in boiling.— If one carefully heats a liquid that has no ga# then one
can bring it to a higher temperature than thatafmal boiling. Lord Kelvin deduced a
very simple explanation for that superheating ftbmpreceding considerations.

Consider a bubble of vapor at the moment of itm&dion. It will then be very small,
and its curvature will be very large. As a restie maximum vapor tension at the
surface of the bubble will differ noticeably fromet tension in a planar surface; i.e., on
the maximum normal tension. Since the bubble s/er on the liquid side, the former
of those tensions will be smaller than the latt€onsequently, at the normal boiling
temperature, the vapor tension in the bubble wellsinaller than the pressure that the
surrounding liquid exerts, and the bubble canneeldg. There will be no boiling then.

However, if one introduces a gaseous bubble insidiee liquid then the curvature of
that bubble will be finite; as a result, the maximwapor tension at the surface of that
bubble will differ only slightly from the normalsion. When that becomes equal to the
pressure in the gaseous atmosphere that is inatomiidn the free surface of the liquid,
the vapor tension in the bubble will once more Hétle less than the pressure that is
exerted by the ambient liquid. However, for a vslight increase in temperature, the
difference between those quantities will changa,sgp the vapor bubble will develop
and rise in the liquid. In that case, there weél inly an inappreciable slowing in the
boiling phenomena.

Lord Kelvin’s conclusions can be recovered in aalgical form by considering the
thermodynamic potential. Indeed, when a vapor lubdbvelops within a liquid, the area
of the contact surface with the liquid will increas For the same variatiadv in the
volume, the variatiordd in the surface area will become larger as the melu gets
smaller. Consequently, when the bubble is alse®steely small, an increase in its
volume will produce a variation of the tedhA &that will be very large in comparison
to the variations that the other terms in the esgioe for the thermodynamic potential
will experience, and it is that variation that wgilve the sign ofl®. Sinced increases,
d® will be positive. Now, one must hadé < 0 under any possible transformation. As
a result, an increase in the volume of the bublleot be produced, and there must be a
delay in boiling.
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That application of the thermodynamic potential toghely of the vaporization was
the subject of lengthy developments in the paper by Duhatmath cited. We refer the
reader to that paper for those developments, as welbratheir applications to the
phenomenon of supercooling.




