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INTRODUCTION

The theory of vortex motions rests upon a theorer ithaue to Helmholtz, and
which constitutes the greatest advance that has beenupadenow in hydrodynamical
theories.

In full rigor, that theorem applies to only the noois of fluids in which there exists
no friction, and which present a uniform temperature or rtkjpg@on only the pressure.
One can still apply the theorem when these condit@asnot satisfied exactly, but only
real conditions that differ from them very slightlyy considering the results that are
obtained as being not rigorously exact, but only a dipgtroximation.

Vortex motions seem to play a considerable role in meksgical phenomena, which
is a role that Helmholtz attempted to specify.

One is also tempted to find the mechanical explandbonthe universe in the
existence of such vortex motions. Instead of represgthe space that is occupied by
atoms, which are separated by distances that are imnemrsanparison to their own
dimensions, Sir William Thomson assumed that masiezontinuous, but that certain
portions of it are animated with vortex motions thatsmpreserve their individuality,
from Helmholtz’s theorem.

Finally, the equations that serve to define vortex omstipresent a certain formal
analogy with the equations of electrodynamics. Th#tnaturally bring the two theories
closer together, and in certain cases, it will peoni to deduce the solution to a problem
that is posed in one of the theories from a problem wzet solved in the other one.
Moreover, a certain number of attempts have been nbadestablish a closer link
between them.

After recalling the equations of hydrodynamics, | wilbye Helmholtz's theorem,
and | will then develop its consequences that relateetoribtion of fluids by comparing
the results with those of electrodynamics.



FIRST CHAPTER

HELMHOLTZ'S THEOREM

1. Equations of hydrodynamics.— Let Xy, Yo, 20 be the coordinates of a fluid
molecule at the time origih= 0; X, y, z are its coordinates at tinte u, v, w are the
components of its velocityg is the density of the fluid, arglis its pressure.

One can take the variables toxaeyo, z, which is the Lagrange system,»w, z, t,
which is the Euler system. | will adopt the followingtions in what follows: | let:

A oduodu du
dt’ dx,  dy, dz

denote the derivatives with respect to the Lagrangahias, and | let:

W
ot ox oy 0z

be the derivatives that are taken with respect té&ther variables.
In the Lagrange system,y, z are functions oxo, Yo, % :

dx _ ﬂ: dz

—=u, v,
dt dt dt
are the components of the velocity, while:

du dv dw
dt ' dt’ dt
are those of acceleration.
In order to pass from one system of variables to anpthwill suffice to apply the
ordinary rules of differentiation, and to write:

du: 6u+6u dx+6u dy+6 ud:

dt ot oxdt oy dt az dt
or

(1) — = —+U—+V—+W—

and similarly:
) = ZEru—
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Letdr be a volume element; the mass of liquid that it dostwill be o dr. 1 will call
the projections onto the axes of the resultantladfahe forces that act upon that element
pXdr, pY dr, pZ dr. The equations of hydrostatics, which express the iu#athe
element is in equilibrium, are the following ones:

3)

In order to pass from these equations to those of hydamdigs, one must add some
fictitious inertial forces to the real forces (d’Alembg principle). The components of
these inertial forces are equal to the componentbeotitceleration, multiplied by the
mass and with the sign changed: namely:

u v w
—,oer:I—t, —,oer(;—t, —pdrl:—%—t.

The equations of hydrodynamics will then be:

1. Inthe Lagrange system:
ﬁ: X —% ,
L OX dt
(4) ﬂ =Y —i’ ,
poy dt
ﬁ =7 —d_\N.
p0z dt
2. Inthe Euler system:
5) ﬂzX—@—u@— @—W@ etc.
L 0X o ox ody 0z
2. In all of what follows, | will suppose that y, z are continuous functions &, Yo,

Z; that condition is not always satisfied. Indeedtlet reservoirs be filled with liquid
that are separated by wall that is pierced with an opemind, suppose that a high

pressure prevails in one of them.

That will produce afjéiquid, outside of which the

liquid will remain immobile, while inside of which it wilake on a uniform motion.
Suppose that the jet has the form of a cylinder thatralphto thex-axis.
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Outside of the cylinder, we will have:
X = Xo, Y =Yo, z=2),
and inside of it, we will have:
X =Xg + Vi, Y = VYo, z=z.

x is thus a discontinuous functionxaf yo, z.

If X, y, z are continuous functions &, Yo, zo then the liquid molecules that form a
continuous curve or surface at the titne O will again form a continuous curve or
surface at an arbitrary epothf the curve is closed at time 0 then it will aghm closed
at timet.

Indeed, suppose that the molecules form a certain faec aurve in their initial
positions. The equations of that arc of a curve cgrubéto the form:

x=f(a), yo=Tf(a), z=1f(a),

in whichfy, f;, f; are continuous functions of the parameter
The coordinates of the molecules becoxney, z at timet, which will be, by
hypothesis, continuous functions xf yo, 2. Consequently, they will be continuous
functions ofa:
x=f(a), y=f'(a), z=1"(a).

These equations will again represent a continuousfahe @urve.

If the initial curveCy is closed them, Yo, Zo Will be periodic functions otr. Sincex,
y, z are uniform functions ok, Yo, 2o they will also be periodic functions @f, and the
curveC that the molecules occupied at the epiowiil be likewise closed.

If the molecules occupy a continuous surf&geat the time origin then their
coordinates can be expressed by:

X =fo (a, B, Yo = fo (@, B, = f5(a, P,

n

in whichfo, f;, f, are continuous functions of the parametersf). The coordinates

will becomeyx, y, z at the epoch, and they will be continuous functions»f yo, z, and
consequently, ofd, ). Therefore:

x=f(a,n, y=ft'(a,p, z=f"(a,p,
in which f, f/, f” are continuous functions; consequently, these equatidhsagain

represent a continuous surfdége

3. Equations of continuity.— Consider a surface elemahw and seek to evaluate
the quantity of fluid that crosses that element durirgttmedt. The molecules that



Equations of continuity 5

traverse the elemediwat the epochwill occupy a surface elemedtv at the timd + dt
that is infinitely close taaw In particular, the ones that are found at the ceaftgravity
G of dwwill go to G’; the ones that croskvat the epoch + dt will occupy that element
itself. Finally, the ones that crodabetween the two epochandt + dt will be found in

intermediate positions.

Figure 1.

In summary, all of the molecules that passed thralmlduring the timedt will be
found in a volume at the instaint dt that amounts to a cylinder that has the elerdent
for its base and whose generators are parall@@®o (Fig. 1). MoreoverGG’ =V dt,
whereV is the velocity of the fluid at the instant considerd&the height of that cylinder
will be the projection 06G’ onto the normal tdw namely:

V dttos GG’'N) =V, dt
The quantity of fluid that crossesvduring the timedt is then:

P Vy dw(t.

Figure 2.

Now, consider a rectangular parallelepiped whose edggzagallel to the coordinate
axes, and are equal ttx, dy, dz respectively (Fig. 2). From the preceding, the mass of
fluid that traverses the fad&BCD that is perpendicular t®©X during the timedt will be
equal to:

pudydzdt

and the mass that crosses the opposite face will be:
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(pu+aﬂj dy dz dt
0x

Therefore, there is a mass of fluid between thesefases of the parallelepiped that is
equal to:
dpu

- —— dxdy dz dt
0x

Upon performing the same calculation for the other pamws of faces, one will find
that the total fluid mass that passes between thene ipatallelepiped during the tinck

will be equal to:
_(9(pw)  9(pY) , 3(OW ) 4y 4y d7 dt
ox )Y 0z

On the other hand, the increase in the npecks dy d=of the fluid that is contained in
the parallelepiped during the tirgeis:

9% dxdy dz dt
ot

sincedp/ ot represents the increase in the dengitiyring the timedt.
It is therefore necessary that:

(6) 9p , 9(pu) L 0(pV) , (oW _
ot 0x oy 0z

This is the equation of continuity in the Eulerteys. It can be written:

op ou 0o _
T LG LG =0

or, upon taking the relation (2) into account:
do ou
" 4 —_~ = 0’
dt ,OZ 0X
except that in the latter form, it refers to th@tiypes of derivatives.

4. Simplification of the Lagrange equations.— The Lagrange equations are
susceptible to being simplified when one makedhpotheses that are necessary for the
application of Helmholtz’'s principle, as we shades

In that case, the force§ Y, Z will admit a potentiaV:
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=y g
0x oy 0z

No matter what the fluid, the denspy the pressurg, and the temperatuiewill be
coupled by a relation such as:

p=f(p .

In order for the theorem to be applicable, it is seaey thajp must be a function of
only p. This will be true if one is dealing with a single liquor a gas that obeys
Mariotte’s law and whose temperature is uniforn=(p), or a gas that is subject to an
adiabatic transformationo(= p’). If the temperature is non-uniform then it will be
necessary that the surfaces of equal pressure mustdeowith the surfaces of equal
temperature. If there are two superposed liquids themillitbe necessary that the
pressure must be constant on the separation surfacdenfor one to have the right to
apply the theorem.

Whenp is a function op, dp/ o will be an exact differential, and:

'[ dp
Yo,
will be a function of. If one sets:

v—jd—ppzw

and differentiates with respectxdahen it will become:

9y _ oV _ 9p
X OX pox
If one replacesa—g with its value that is inferred from that relation time first
0 0X

Lagrange equation then, upon remarking t%\étz X, that system will become:
X

du_oy
d  ox '
dv 0
(7) _:_‘/’,
dt  oay
dw _ 0y

dt 0z
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5. Helmholtz’s theorem.— Consider an infinitude of fluid molecules that form a
closed curve, at the instant = 0; they form another closed cur@dno. 2] at the instant
t. The integral:

(8) J= j(u dx+ vdy+ wdy

is constant when it is taken along the cutve

Helmholtz did not give his theorem in that forrs,vee shall see later on.

That theorem contains Lagrange’s theorem as aadmese: If there exist a velocity
potential at the time origin then there will exaste at an arbitrary epoch.

Indeed, in that case, one will have:

u dx+v dy+w dz=dg,
and the integral will be zero at the time origin. If it is constathen it will always be

zero, and the expression under ftisign will always be an exact differential.

6. Proof of the theorem~— Let the equations of the closed cuB¢ehe:
=fo(a), yo="1(a), 2= 1(a),
in whichfy, ... are continuous periodic functionsaf Similarly, one will have:
x =f(a), y=f’(a), z=1"(a)

for the curveC.
If one letsa denote the period @& then:

One basically needs to prove that:

dJ _
—=0
dt

_ (A dx
J= J.O ZUE da',

Now:

dJ (A du dx A o x
E—IOZ&ada‘FIOZUMdtdOf

| say that each of the surass an exact differential.
In fact:
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du dx oy dx
dx da 9= 2% ox a

Zaw dx _ 0y dx 9y dy oy dz_ dy

ox da oxda o0y dr 90z & da’

SO
du dx
——da
Z dt da dy.
On the other hand:
2
u d’x da=u Eda'—id—uda di?, etc.
da dt da 2 da
Consequently:
dJ
dy +3d(0 + V + W
= ) L +3d( )].

Since the expression under thsign is an exact differential, the integral alomg
closed curve will be zero, and:
dJ
9 —=0.
9) it

7. Remark.— This theorem is true, on the condition tlgtis an exact differential —
in other words, thap must be a functiop and that the external forces must admit a
potential; i.e., there is no friction. One soma&tsexpresses the last condition by saying
that the theorem is true when there are no instaotss forces, but that statement is
imprecise.

8. Stokes’s theorem= In order to transform Helmholtz’s theorem in thanner that
| just demonstrated, | will make use of a theorbat ts due to Stokes, which | would like
to recall.

Let C be a closed curve, and pass from that curve &rlatrary surface; the cur@
bounds a certain aréaon that surface. Letwbe an element of that area, and e, n
be the direction cosines of the normatlta From Stokes’s theorem, one has:

_ dw dv du_ dv dv d
(10) .[C(udx+ vdy+ wdy —J.da){ (d_y sz m(?z dsz+ n( ix dﬂ

in which the first integral is taken over all oktlelements o€, while the second one is
taken over all of the elemerdsvof the ared.

1. First, suppose that the arfais planar and situated in the plane ¥), for
example. In that case:
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[=m=0, n=A, dz=0, dw=dx dy
and what remains will be:

Iudx+vdy J'dxdy{gv Zuj
X ay

this is the statement of a well-known theorem inymis. The same thing will be true for
the other coordinate planes.

Figure 3.

2. The ared\ is planar, but situated in an arbitrary plane.

Let there be three infinitely-small lengt@g\, OB, OC (Fig. 3) that are parallel to the
axes. Join them into the triangdBC the triangleABC s planar and infinitely small. |
say that the theorem is true for that triangle. Gma@ously has:

Juacn = Liaon *Jecon *J cioc
ABCA ABOA BCOB CAOC

Indeed, the edgelA, OB, OC are traversed twice in the opposite senses, and aivtha
remain in the right-hand side will be ththat is taken aroundB, BC, CA as in the left-
hand side. Since the triangl&®B, etc. are infinitely small, | can write:

[ wdx+ veyr wdy = ACB| dw_dv), c{d“ d _dv_dy
dy dz dx d

upon applying the equality (1) to each of the tgias that are situated in the coordinate
planes. Now, these triangles are nothing but tiogegtions ofABC onto these planes;
therefore, if:

ABC=dw

AOB=ldaw AOC=mdw BOC=ndw
then one will indeed have:

J'udx+ v dy+ Wd::jldw(z—\;v—%zlj +
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The theorem is then true in a general fashion, sincearaitrary area can be
decomposed into triangles that are small enough toebgett as planar triangles such as

ABC
Maxwell made frequent use of that theorem. (See duagise.)

9. Helmholtz’s notations. Definition of vorticity. — Helmholtz set:

dw dv
- - = 2 )
dy dz d

(11) S o,

From Stokes'’s formula, one will then have:
[ (udx+ vdy+ wdy=2 [ daw (1§ +m+ 7).

From what we established [n6], when this integral it taken over the arait will
remain constant during the motion of that area.
The vector whose components age 4, &) is what Helmholtz called theorticity.

That name demands some explanation.
A v

-
.
¥
\

Figure 4.

Suppose that the curv@ is a circumference (Fig. 4). Draw the vecid¥ that
represents the velocity through the pdihton the curve; its components atg {, W).

The expression:

u dx+vdy+wdz

represents the product of the element of the chivE with the projection of its velocity
onto the directioM . That product will represent the work that is elday a force that
is numerically equal to the velocity when its poafitapplication is displaced froM to
M’ The integral will then be equal to the work that is done byt ioace if the pointM

describes the entire circumference.
Decompose the vectdV into three other ones, one of which is paralleti® OA

axis that is perpendicular to the plane of thelejrthe second of which is directed along
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the tangent to the circle 8, and finally, the third of which is along the radius wect
OM. Only the tangential component will do any work. Betlenote the radius of the
circle; we represent that componentds;, whereg is an angular velocity. Set:

Xx=Rcosw Yy=Rsihw
and it will become:

_ [ p2
J= j R dw.
Let ¢ be the mean angular velocity along the circle, wisatefined by the relation:

[pdw = 27140,

so we will have:

J=2mdy R

On the other hand, we know that in order to obtandlement of the integrd) one
must multiply the elemerdw of the area by two times the projectiok€ + ms + n{ of
the vector £ 7, {) onto the normal. That projection is the normal porent of the
vorticity. If our circle is very small then we caake its area to be the elemelsy and
we will have:

J=2R &+ mn+nd),
and consequently:
$o=1&+mn+nd.

@o is the normal component of the vorticity.

10. Streamlines— We have two vectors at each point: namely, thecityl whose
components are, v, w, and the vorticity, whose components &re, {.

One can consider the lines whose tangent at each @présents the velocity, and
whose differential equations are consequently given by:

(12) —===

They arestreamlines Those lines are not necessarily the trajectoriasadecules.
That will be true only in the case of a permanent ftegime, for which the velocity is
constant.

11. Vortex lines.— One can also consider the lines that are tangehietoorticity
vector at each of their points. Their differengguations are:
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(13) —====

They are thevortex lines For example, suppose that the velocity is indeperafent
and parallel to the planey. w = 0, and the derivatives afandv with respect to are
zero. From the defining equation (11) [8h.one will then have:

¢=n=0,
_ _du
=gy

The equations of the vortex lines will then become:

dx_ dy_ dz

0O 0 ¢
or

dx=dy=0.

The vortex lines will then be lines that are parateDz

12. Vortex surfaces— A vortex surfacas a surface that is generated by vortex lines;
in other words, it is a surface whose tangent planeaet @oint passes through the
vorticity. The condition that expresses the ided thaurfacd(x, y, 2) = 0 is a vortex
surface will then be:

(14) 53—‘;+/73—fy+z%‘; - 0.
A
B’
&
A
Figure 5.

Consider an arc of an arbitrary cuAB (Fig. 5), and draw vortex lines through the
various points of that curve. The set of all of theithgenerate a vortex surface, which
will be simply connected if the curnAB is not closed.

Trace a closed curv€ on that surface that bounds a certain arearhe integral,
which is taken along, is zero; indeed:
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Jo = LZdw( |&+my +n?).

In order for that integral to be zero for any ane# is necessary that:
IE+mn+nd =0

for all elements of the surface; i.e., the normal ponent of the vorticity must be zero.
The surface will then be a vortex surface.

14. Suppose that we have a certain number of moledudé®tcupy a vortex surface
at a certain epoch= 0. | say that these molecules will again occuppréex surface at
an arbitrary epoch

Indeed, from the preceding, at the epbehO, the integral is zero for the surface
that is occupied by these molecules. From Helmhaltesrem,J will remain constant.
That integral will then be zero at an arbitrary epaufg the surface that is occupied by
the molecules at that epoch will again be a vortefasar

The intersection of two vortex surfaces will be atewiline, and conversely, one can
always pass two vortex surfaces through any vortex line.

Therefore, consider a string of molecules that oe=upi vortex lineCy at time O.
That line will take a certain positidd at the time; | say thatC is also a vortex line.

Indeed, pass two vortex surfac&sand S, throughCy. These two surfaces will

becomeS andS’ at the timet, which will haveC for their intersection. From what we just
saw,S andS’ will remain vortex surfaces. Their intersectiBwill then be a vortex line
again.

Figure 6.

15. Vortex tubes.— One calls the surface that is obtained by drawing xdirtes
through the various points of a closed curweedex tubgFig. 6). One can describe two
kinds of closed curves on such a surface.

The curvesC of the first kind bound a portion of an area on the amarfby
themselves.
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The curves of the second kind, suchD&3EQ, divide the surface into two regions,
each of which is bounded by only the cuBEQ. When one develops the surface, only
the curves of the first kind will develop along closed esrv

16. Moment of a vortex tube— When the integral is taken along a closed curve of
the first kind, it will be zero [nol2]. However, the argument no longer applies to the
curves of the second kind, and the statement of theaoneist be modified in the
following manner:

When the integral is taken along a closed curve of the second kind, ithaWe the
same value for any such curve.

Indeed, leDPEQandD'P'E'Q’ be two closed contours: One can show that:

Joreq = JoPEQ -

Figure 7.

Take a poinP in the first curve and a poiRt on the second one, and join them with
PP (Fig. 7). The contour:
PEQDP-PP -PD'QEP —-PP

can be regarded as a closed contour of the first kirngreTore J will be zero along that
contour, or:
Jreqop+ Jpp + JppgEP +JPP = 0.

The second and fourth integrals vanish, siRE€ is traversed twice in the opposite
sense. What remains is then:
Jreqop+ JppoEP = 0,
or
Jreqpp = JrPEQDP -

The integral, thus-determined, is called theomenbf the vortex tube.
That moment will remain constant when the molecthas$ are situated on the tube
are displaced, since we know tlatmains constant.
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17. Applications. Infinitely-thin vortex tubes. — Consider a vortex tube that is
infinitely thin (Fig. 8). Draw a cross-section of thabe; it will be a closed curve of the
second type. One can then calculate the moment aiutiee by taking the integral
around that section. Now:

J=2[dwé,,

as we have seen [n8], whereé, is the normal component of the vorticity. In thegant
case:
J=2dwl¥,

since we have only one element, to which the vortisitgarmal,dwis the cross-section
of the tube (which is a cross-section that one caaysvassume to be parallel to e
plane), andf is the vorticity itself. One concludes that:

The product of the cross-section of an infinitdlyrtvortex tube with the vorticity will
be constant along the tube.
That product will also remain constant in time.

These two propositions result immediately from thet thatJ is constant under the
same conditions [no6]; they apply to liquids and gases whenever there exists
function that we have callegl.

Figure 8.

18. Theorems that relate to only liquids— Let a force tube be infinitely thin, and
let two cross-sections of that tube be made infinitédgecto each other. The volume of
the tube that is contained between these two sedfams8) can be equated to a cylinder
that has one of theuhwfor its base and a height 8M’, whereM andM " are the points
of the two sections that are situated along the sawnew line. The volume of the
cylinder will be:

MM daw

The molecules that constitute this volume will defar®ther vortex tube at another
epoch. The molecules that occupy the two cross-sectiall occupy other sections that
are infinitely close and will not necessarily be srgections. However, the volume that
is found between them, which amounts to a cylindet,bil
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M, Mi da,

in whichM1 M, is the length of a generator, aih@) is the cross-section.
If one is dealing with a liquid then its volume wilhnain constant, and:

MM’ dw= M1 M; da.

Moreover, we have seen thadw will vary for the opposite reason as the vorticityhe
distanceMM " between two molecules will thus vary in proportiortiie vorticity. MM’
thus represents the vorticity multiplied by a certadmstants in magnitude, direction,
and sense.

If one letsx, y, zbe the coordinates & then those oM’ willbex+ e, y+é&n,z+
£q.

After an infinitely-small timedt, the coordinates d#l will become:

X+ udt y +vdt z+wdt
Those oM "will be:
x+eé+u dt, ..., etc.
Now:

u=u+ %&W@aﬁﬂs{ :

0é on o{

The coordinates d¥1’ will then become:

: etc.

ou 6u+ Ju
oy 0z

x+eéudt+edt (E—H]— {—
ox

On the other hand, since the projectionsMi¥l’ are equal togé, &n, &, those
coordinates will be:

X +udt+ 5(5+£dtj.
dt

Upon equating these two expressions, one will have:

dé ou Jdu Ju
15 = +pnp—+7—.
(15) dt 0x ,76y Zaz

This relation is identical to the following one:

dé ou ov ow
16 — = —+n—+7—.
(16) dt 1) ,76x Zax

Indeed, if we subtract corresponding sides of these ieqaahen we will get:
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du ov Ju ow
O=p| ——— |+{| ——— |,
O(Gy axj Z(62 axj

==2n{+2n{=0.

or

The relation (15) and the other two that are deduced ifréyn permutation express
Helmholtz’s theorem, but in the case of liquids, esisely.

19. Other proofs of Helmholtz's theorem.

1. Helmholtz’'s proof— Helmholtz sought to obtain the equations in the ldbten
(15) that we just gave them by starting with Euler’s equati
We wrote [no4] the Lagrange equations:

%: a_l/l etc_

dt  ox '

in a form that contains both the Lagrange variablestlaose of Euler. In order to leave
only the latter ones, we make the transformation:

du au uau Vau Jdu
dt at  ox oy z

and we will obtain:

(1) a—u:a_w_u%_vﬂj_

17 2) —=——-U—-V—-—
(17) @) ot a9y 0x 0y

(3) a_vvza_w—ua_vv—va_vv—vva_vv_
ot o0z ox 0y 0z

Differentiate equation (3) with respect yoand equation (2) with respect zpand
subtract them; upon recalling the definitionsépf;, {[no. 9], one will get:

(18) 296 = _ 0% %8 g%
ot 0x ay 0z

_0uodw_dvow_ awav ouv 0\ wo vad v

dy ox dydy 0ydz 0z R

(00 W
dy 0x 0yady ayaz 020 X0 DYy

On the other hand:

+

dE_9¢, 9¢, 0f  0f
dt ot ox o0y 0z
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and the equation of continuity for liquids will reduce to

Upon taking this relation into account, one easily gatsation (4) into the form:

d ou_ ov
S BT,
dt ox oy 0z

In fact, we recover equation (16). However, this proofHefmholtz’'s theorem
applies to only liquids.

20. Kirchhoff's proof. — Kirchhoff took his starting point to be the Lagrange

equations:
du_ dy dv_ oy dw_ dy

dt ox' dt ay  dt oz’

when they were transformed in such a manner that thpgnded upon only the
Lagrange variables.
We have:
dz// oy dx 61// dy oy dz
dx, ox d)gJ oy d>5 0z dg(

Multiply the first Lagrange equation ik / dx, the second one gy / dx, the third one
by dz/ dx, and add them. We will get:

du dx dv dy _dw d d¢ dy

dt d)g dt dx dt dg( dx,

and two other analogous equations that are obtained by syynmet

21. One can, moreover, give these equations a more ajefoem by substituting
three other variables b, ¢ for Xo, Yo, Zo, Which are defined by three arbitrary relations:

Xo = ¢o (a, b, ©),
Yo =¢1(a b, 0,
2 =¢2(a b, 0),

in which a, b, c do not depend upan The derivatives with respect tovill be the same
in the two systems of variables.
We perform the same operation as before, and find:
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dudx dvdy dw d_ dy
dt da dt da dt dz da’

and two other equations that are obtained by charaginp b and then inte.
We will finally have the system:

du dx
@ __:ﬂ’
dt da da
dudx_ d/
19 2
(19) (2) dt db db’
du dx
dt dc dc

Differentiate (1) with respect tg (2) with respect ta, and then subtract them:
3 d’u dx_ dfu dx _o
dtdb da dtdad ’

d (dudx dudg 0.

dt“~\dbda dad

or, as is easy to verify:

and finally:
du dx du dx

db da dadk
(20) ,dvdy_ dvdy
db da dadk

dbda dadt

One obtains two other analogous equations by permating c circularly and
changing the value of the constant.

21. (cont.). As we shall show, these Kirchhoff equatians equivalent to the ones
that we gave at the beginning:

J= j udx +v dy+w dz= const.

Indeed, consider a poiM whose coordinates arg, {, 2) in the Euler system @&, b,
¢, t in that of Kirchhoff. x, y, z vary witht, buta, b, c are independent afand depend
upon onlyXo, Yo, Zo. The pointM belongs to a certain curég | chooses, b, cin such a
manner that = 0 for all points of that curve. If that conditionsatisfied at the instamt
= 0 then it will still be true at any other epoch.
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If we regarda, b as the rectangular coordinates of a point in a plame¢h& moment,
then each poinyl of C will correspond to a poiri¥l’ of the plane, and whevl describes
the curveC, M’ will describe a certain curv’that will be closed ifC is closed, except
that the curveC’is fixed, while the curv€ is mobile. Take the integral:

Icudx

around the curv€:
[ udx:j(u%dm ug(dtﬂ,
c ¢\ da db

and the second integral arou@d Transform that integral by the Stokes formula gjo.

jc, (u%dm u%dtﬂ = H {%{u%}—%&u%ﬁﬂ

in which H is taken over the are¥ that is bounded by the cur@.
Perform the indicated differentiations, and after r&das, one will have:

[Ludx=] (%Q(—ﬂj—dﬁ da db
c dadb dbd
Upon performing the same transformation .f%nv dy and IC wdz and then adding,

we will find that:

(21) J= .[C udx +v dy+w dz= jA, (—————2 da dh

The area’ does not vary, sinc€' is fixed; the2 that is placed under ti{esign is
constant by virtue of the assertion of Kirchhoff. dfere,J = const.
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CONSEQUENCES OF HELMHOLTZ'S THEOREM

22. Case of permanent motion— A motion ispermanentwhen the functions that
we have defined — vizy, v, w, ¢ — do not depend upomn but only upon the Euler
variablesx, y, z Consequently, in the case of permanent motions:

M=o,.. 2% = 0,etc,
ot ot

and [no.1]:

u
dt ox o0y 0z
W0, 0, 2

- + \/\\l' y
dt 0x oy 0z

which is a relation that applies to an arbitrary functimoreover.
Under these conditions, one can deduce a certain nuohlmnsequences of the
fundamental theorem of Helmholtz.

23. Theorem.— If the motion is permanent then there will existiaimitude of
surfaces on which one can trace an infinitude of stieasiand an infinitude of vortex
lines.

Here is the significance of that statement:

C C’ C,, Cm

A A’ A" A" I

Figure 9.

One can draw a streamlid&€ and a vortex linéT through a poinA (Fig. 9). If we
draw vortex lines through the various pointsA® then they will generate a certain
surface. Similarly, if we draw streamlines throughwlgous points oAT then they will
generate another surface. The theorem impliestibaéttwo surfaces are identical.

Furthermore, if we draw streamlind€, A'C', A"C", A'"C'" through the pointé, A',
A", A" of AT then a vortex line that is drawn through an arbitranptd® of AC will meet
AC AC, ..., etc.
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That proposition is almost obvious. Indeed, when tltiam is permanent, the
streamlines will be the trajectories of the fluid nooles. Now, consider the molecules
that are aA, A', A", A" at the epoch= 0; they will be taken t8, B', B", B'"" at the epoch
t. Since the vorticity is preserved by virtue of Helnikisltheorem, the molecul&; B',
B", B will again be on the same streamline.

24. General equation of these surfaces.We have set [nél]:
d
p=v-[=F,
P
T=3(0 +V +w).
| say that the equation for these surfaces that stelpfined is:

{—T = const.

In order to prove that, it is sufficient to show ttha — T is constant along the
streamlines, on the one hand, and along the vortex timethe other.

1. Along the streamlines- These lines are the trajectories of the moleculte
follow a molecule along its motion. With the Lagramggiations, only is variable, so:

dy
dw=9% 4t
Y=g
ar=9T gt
at

dT=udu+vdv+wdw= u@ +v$/ +wd—W,
dt dt dt

d_T: al/l + Vaw = W—
dt 1) 4 oy 0z dt dt dt

so, from the Lagrange equations [dp.

% = a_l// , etc.
dt 1)
Therefore:
dy _dT

dt dt
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(1) - T = const.

2. Along the vortex lines- These lines have the equations:

dx_dy_dz _
¢ n g
or:
dx = £&da, dy=r7da, dz={da.
| say that:
dy _ dT
da da
Indeed:
dy _oy . oy oy
T T+ T py+ T
da 6x5 ay,7 0 <
a_‘/’:%:u@_*_\/@_*_wﬂj, etc
ox dt ox dy 0z
Substitute:
dy _ ou odv
= u R PR
da (56x ,76x Z

+v(5@+ a—V+Z
ou ov
+W(EE+/76—Z {— j

On the other hand:

dT du dv dw
- Uu—+V——+ W—-

da da da da

(5@+ o, g o j
o0X 0z

+v(§ﬂ+ a—V+Z j
0z

ox oy

ow ow 0w
tw|E—+np—+

(56x ,76y Zazj

However, we have seen [r8] that:

ou Jdu Ju ou ov ow
R N ghihat 5 b 1 RN g
56x ,76y Zaz 56)( ,76x Zax’

..., etc.
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Consequently:

dy = dar and (¢ -T =const.

da da

25. Bernoulli’'s theorem.— The direction of the vorticity will be indeterminatethe
case where the vorticity is zero — i.e., when tledists a velocity function:

¢=n=4¢=0.

An arbitrary line can then be regarded as a vortexdineé(/— T will be constant in all of
space; that iBernoulli’s theorem

26. Determination of the velocity as a function of the vorticity— We propose to
determine the components of the velocity, w when we are given the componeétg;,
{ of the vorticity.

Since vorticity is conserved, if we can solve thaibem then we will know the
velocity with which it displaces, and consequently,dii®ction and magnitude at each
epocht + dt that is infinitely different from the first one, @then at an arbitrary epoch,
by integration.

We first remark that this problem is indeterminate, inegaln except in two cases:
viz., when one is dealing with a homogeneous liquid thatipies an indefinite space or
a homogeneous liquid that fills the vessel that contacampletely.

27. Simply-connected and multiply-connected volumes: Before beginning the
study of the question that was posed, it is indispensibtéetine what we call “simply-
connected’and “multiply-connected” volumes. These are notiorat thie will have to
make constant use of.

A volume with simple connectivity or asimply-connectedolume- is a volume in
which no holes are present: e.g., the sphere, ellipgnticube.

O«

Figure 10.

Any closed curve that is traced inside of such a volumebeareduced to a point by
deforming it in a continuous manner without leaving the velFig. 10), so it will then
sweep out a certain ar@ahat is bounded by the curve exclusively.

We then agree to say that a volume is simply-condegten any closed curve inside
of that volume can be regarded as the contour of ampdaea that is situated completely
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inside of the volume. If one adopts that definition thea volume that is contained
between two concentric spheres will again be simplyrected.

Figure 11.

28. A multiply-connected volumie a volume in which one or more holes are present.
The number of holes defines tbder of multiplicity;e.g., a torus (Fig. 11).

One can trace closed curves of two kinds in multiplgrected volumes: As we
defined them in the preceding paragraph, the curves of #gtekifd can be reduced to a
point without leaving the volume. For the torus, thegkbe the circumferences that are
traced in a meridian plane and concentric to oneeoftéridian circumferences.

The curves of the second kind cannot be reduced to a pgird continuous
deformation without leaving the volume. For example,daorus, they would be the
circumferences that are traced in the plane perpendic¢al the axis and have their
centers along that axis.

29. Having said that, suppose that the vorticity is zero:

¢=n=4¢=0
and consider the integral:

J= j (udx+ vdy+ wdy.

That integral will be zero when it is taken aloaglosed curve of the first kind.
Indeed, [n09]:

J= [ 2%, dw,

where &, is the normal component of the vorticity, add) is an area element that is
bounded by the curve. Since, by hypothesis:

&H=0, one will have J=0.

That proposition is no longer true for curvestsd second kind. Indeed, suppose that
the volume is that of a torus, and that:
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X
Y V=== 21
Xty

w=0.

The streamlines are the circles that have centerated on the axis and are traced in
planes that are perpendicular to that axis:

y dx— xdy

2 2

Xty

Yy

udx+vdy= =d arctan-.
X

The velocity function arctay/ x is not uniform, but it is it susceptible to an infinitude
of determinations that differ byx If we take the integral along a curve of the second
kind then that integral will not be equal to 0, butzor a multiple ofrz so one will arrive
at another determination of the function upon returningecstarting point.

30. Cuts.— If a volume is multiply-connected then it will begsthble to render it
simply connected by making cuts in it. In particulathé# volume is doubly-connected
then it will suffice to make only one cut. For exae)p torus can be rendered simply
connected by cutting along one of its meridian circles.

The curves that do not cross the cut will be of thet &ind; the curves that do cross
the cut will be of the second kind.

The velocity function will remain uniform when oneedonot cross the cut, and the
integralJ will be zero when one takes it along a curve thasdwt cross the cut.

On the contrary, consider two infinitely-close poiotsone and the other curve that
are infinitely close to the cut, but situated on one sidd the other of the cut. The
velocity function will present a discontinuity betevethese points. The difference in the
values that it takes at the two points will be firated equal to the value of the integial
when taken along a curve of the second kind that lirksvito points.

31. Theorem.— That difference is constant; in other words, tHeevaf the integral
J will be the same for all of the integration curvieattcross the cut once.

Figure 12.

Indeed, suppose that the cufvés deformed in a continuous manner without leaving
the volume until it becomes, for exami@e(Fig. 12). During that transformation, te
will sweep out a certain area that is situated comlgletside of the volume.



28 Chapter 1l — Consequences of Helmholtz’s theorem.

The integral) will be zero when it is taken along the complete gonbf that area
CC.
The two curve€ andC' are traversed in the opposite sense, so:

Jc—JC' =0
or
JC :JC' .

The value of the discontinuity in the velocity fuctip on one side and the other of
the cut is then the same at all points of that etih be that value.

If the curve of the second kind along which one integratesses the cut two times
then the discontinuity of the functiogh will be 2A, etc. In a general manner, if the
integration contour crosses the auimes in the direct sense anidtimes in the opposite
sense then the value of the integral will be-(r) A.

Figure 13

32. If the volume is triply-connected (Fig. 13) then one thmiake two cuts in order
to render it simply-connected. The velocity functignwill then be determined
completely. However, it will present a discontiguéicross each of these cuts. That
discontinuity will have a constant valdealong the first cut, and a constant vaualong
the second one that is generally different frlam

If the integration contour meets the first cut twiken:

Je = A
If the contourC' meets the second cut twice without crossing thedmstthen:
Jo =B.
Finally, if the integration contour crosses thetfast, in a general mannertimes in
the direct sense amd times in the opposite sense, and crosses the secopdicgs in

the direct sense amitimes in the opposite sense then one will have:

J=(-n)A+(p-p)B



CHAPTER 1l

DETERMINING THE VELOCITY COMPONENTS
AS FUNCTIONS OF THE VORTICITY COMPONENTS.
SPECIAL CASE OF LIQUIDS

33. We established [n@] the continuity equation:

9, a(pu) , (oW , ApW _

1
@ ot 0x oy 0z

in the general case, but when one is treatinguadighe density will be constant, and
that equation will reduce to:

(2) — 4+ —+—=0

Suppose that the vorticity is zero everywhere;tireowords, that the expression:
u dx+vdy+wdz

is an exact differentialg; ¢ will be the velocity function.
The continuity equations will then be written:

Ag =0,
upon setting:
_0%¢ 0% 0%

A )
¢ x> ay* 07

as usual.

34. THEOREM . — There are two cases in which these conditiansat be satisfied
without the liquid being at rest:

1. When the liquid that fills the indefinite spasdound to be at rest at infinity.

2. When the liquid fills a closed, simply-connettsolid vessel completely.

We shall prove these two propositions by appeain@sreen’s theorem, which is
expressed by the equation:

(3) I¢%da) = I ¢A¢dr+j Kg—@ +(%} +(%) } dr.

The integral on the left-hand side is taken oveelamentsdw of a closed surface;
the other two are taken over all of the elementthefvolume that is bounded by the
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surface.d¢ / dnis the derivative o when it is estimated along the normal to the surface
at the center of gravity of the elemelh» Here, it is the projection of the velocity onto
that normal. The functiog must be uniform in the interior to the volume

35. Liquid that occupies an indefinite space-~ We apply Green’s theorem to a
sphere of very large radius.

Since we suppose that the liquid is at rest at infidigy/ dn will be zero on all of the
surface of that sphere; the integral on the left-redd will be zero. The first integral on
the right-hand side will also be zero, sidkg = 0; consequently, the same thing will be

true for the latter:
I (%j2+ 99 2+(%jz dr=0
ox ay 0z '

The differential element is essentially positivajcsi it is a sum of squares; that
equality will then imply the following one:

% = 0’ % = 0’ a¢ =
0x
or
u=0, v=0, w=0.
The velocity will then be zero.

36. Liquid that fills a fixed vessel completely.
1. Simply-connected vesseDnce more, apply Green’s theorem, upon choosing the
wall of the vessel to be the integration surface dedvolume of the vessel to be the

volume. Since the wall is immobile, the velocitytbé liquid at a point of that wall can
only be tangential, and the normal componelgté dn will be zero; therefore:

J. ¢% dw= 0’
dn
since:

j¢A¢dr =0,

T3] (] oree

One then deduces, as above, that:

and consequently:



Doubly-connected vessel 31

w_9_%_,

ox oy o0z

The velocity is then zero at all points.

37. The preceding argument is valid only for a simply-cote@wolume. If the
vessel is multiply-connected then the functémill no longer be uniform, and Green’s
theorem will cease to be applicable.

38.

2. Doubly-connected vessel.Suppose that the vessel is doubly-connected, and that
it has the form of a torus, for example. Make aalahg a meridian circle; the closed
contours of the second kind will meet that cut. Thecfion of the velocityg will be
uniform as long as one does not cross that cut; howéwerfunctiong will present a
discontinuity from one side to the other that is camsbaer all of the cut surface.

| say that if one is given that constant — in otherds, the value aof along a curve of
the second kind — then the motion of the liquid will beedmined entirely.

Indeed, suppose that there are two possible solutiondetigd and ¢ ” be the two
velocity functions that correspond to these solutitetsp, and ¢, be the values op’

on both sides of the cut, and it and ¢, be the values ap”. We will have:

¢ — @, =Jo,

n_
(o 2_\]01

in which Jy is the given constantp’and¢” are uniform as long as one does not cross the
cut, moreover. If one subtracts the respective sadi¢lse two equations above then one
will get:

o~ 9= 0.~ 4.

The functiong’and ¢ ” will then have the same value on both sides of thescult,
will be uniform and continuous in the whole volume, and oan apply Green'’s theorem;
one then deduces that:

o0¢'=9" _
0x

etc.

or

o¢' _0d¢" 0d¢' _d¢" 0¢' _ 09"

ox ox 9oy oy 0z 0z

The components of the velocity are the same in ba#ies; there is then only one
possible motion.



32 Chapter lll. — Determining the velocity components

39.

3. Triply-connected vesselln this case, one must make two cuts in order to render
the volume simply-connected.
The motion will be given when one is given:

Pr1—@o=Jo, @P3—@s=1Jy,

in which ¢, — ¢ is the difference between the valuegain the two sides of the first cut,
and @s — ¢, is that difference relative to the second cut.
As before, upon assuming that there exist two soluigasid @ ”, one will find that:

b-9,= 4~ 4;,
bi-4.= 4;-9;.

Since the functio’— ¢”is uniform and continuous inside of the volume, oné wil
deduce from Green’s theorem that:
@’'— ¢” = const.

0¢' _ 09"

—=— etc.
0Xx 0Xx

or

40. Non-zero vorticity. — In the case for which the vorticity is non-zerbe t
Helmholtz problem will be determinate, and if one solutexists then only one will
exist.

Indeed, what is the nature of that problem? It amotntieterminingu, v, w from
the equations:

ow o0v
28=——-——,
d dy 0z
_ou_ov
0z 0x’
(4)

2{:%—%
ox oy’

Ju ov oJw
—+—+—=0
ox dy 0z

when one is given the componegts;, { of the vorticity.
Suppose that we have found two solutions:

!

u=u, u=u",
vV =V, v =V,
W=Ww, w=w".
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We will have:
ow oV
_a_y o
ow' oV
_a_y =7

SO
o= AW =w) (V=)
ay oz

along with two other analogous equations. Theseetlequations express the idea that
the sum:

(U —-d)dx+ (V —-V)dy+ W —w)dz

is an exact differentialg. One can thus set:

u’—U’:%, etc.
0x
Write down that the continuity equation is saéidfforu =u', ..., etc., and fou = u”,

..., etc., and that will give:
ou' ou”
— =0, — =0.
Z 0x Z 0x
Thus, upon subtracting corresponding sides:

ou-u)_ .
2 ox o

Ag=0.

If the vessel is filled completely then the norraemponent of the velocity must be
zero at each point of the wall. If one leten, p be the direction cosines of the normal at
a point of the wall then the normal component efwklocity will be:

lu + mv+ pw,
and if that component is zero:
lu +mv +pw =0,
lu” +mv' + pw' = 0.
Consequently:

“Z+m—=+

ox dy 0z on

If the vessel is simply-connected then we willdfiupon reasoning as we did above
[no. 36], that:
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@ = const.,
% :% :% =0
ox ody o0z

or:
u=u', v=v, w=w.

The problem thus admits only one solution.

41. Suppose that the vessel is multiply-connected, so tlegiregy argument will no
longer be legitimate; one must introduce one or morditions, as well.

For example, suppose that the volume is doubly-connedfiedte a cut, and lel be
the value of the integral that is taken along a closedecthat crosses the cut once.

The problem will be determinate when one is given theevafJo, in addition to the
values ofé, n, ¢

Indeed, suppose that there can exist two solutigns’(w) and (", v', w'), and we
prove, as before [n@&§], that:

u’—u":%, v'—v”:%, W—W’z%,
0x oy 0z
%:0, Ag=0.
on

On the other hand:
j u'dx+ vVdy Wdi=Jp,

j u"dx+ vV dy W d=Jo,

and upon subtracting corresponding sides:

j %dx+%dy+% dzl =0
0x oy 0z

or

jd¢:o.

The functiong thus remains uniform, even when one suppresses the gutsttthen
reduce to a constant. Consequently:

or u=u", etc.
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42. If the volume is triply-connected then one must make tuts. In order to
determine the problem, it is necessary to give the \loéthe integrall along a closed
curve that meets only the first cut once and its vdjusglong a closed curve that meets
only the second cut once, in addition to the value§ gf ¢.

43. Analogy between Helmholtz's hydrodynamical equations and Maell's
electrodynamical equations.

1. Suppose that the liquid considered occupies an indedpatee and is at rest.

In that case, the Helmholtz equations present the $amm as the Maxwell system of
equations that relate to a magnetic field.

Maxwell called the components of the currant, w, which signified that a surface
elementdwthat is normal tdx is crossed by a quantity of electricitydw dt, ..., etc.,
during the time intervatit. a, 5, y are the components of the magnetic field that is
produced by the current, aadb, c are the components of the magnetic induction, which
will reduce toa, £, ywhen there is neither a permanent magnet norrsaffpresent. The
Maxwell equation:

will then reduce to the following one:

a_a+%+a_y: 0
ox dy 0z

If we compare the two systems then we will find that:

() SeeElectricité et optiquel, § 102 and § 118.

Maxwell () Helmholtz
4]Tu_a_y—% 25: d_VV_ﬂ/
dy 0z dy dz
4y =003y |, du_dw
0z O0X dz dx
4w = % a_a 2(: i’-ﬂj
ox oy dx dy
9a 0B dy_ | du dv dw_,
ox dy 0z dx dy dz
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One sees that in order to pass from the Helmholtz ieqgato those of Maxwell, it
will suffice to change, 7, & u, v, winto 27z, 277v, 271w, a, G, V.

We have proved that if such a system admits one goltitien that solution will be
unique.

Now, suppose that we know the magnitude, direction, andesef the vorticity
vector. Divide that vector by72and assume that this vector, thus reduced, represents an
electric current. The system of currents thus-obthwd produce a magnetic field, and
the vector that represents that field will represkatvelocity of the fluid molecule at the
same point. The lines of magnetic force will be sheamlines of the hydrodynamical
current.

44, Case in which only one vortex tube exists. Suppose that there exists just one
closed vortex tube that has an infinitely-small gettthat the vorticity at each point has
a very large value in order that the tube should beefiand finally, that the vorticity is
zero everywhere outside of the tube.

M
c R
Q
P
@)
Figure 14.

By reason of the last hypothesis, there will be laciy function ¢ outside of the
tube. However, the volume external to the tube is decinhnected, since one can trace
two kinds of closed curve in it: The ones, suclCd&ig. 14), that do not enlace the tube,
and the other onegsS' that do enlace it, in the manner of the rings in a ch&ifhen the
integralJ is taken along the former curves, it will be zeroowsdver, when it is taken
along the tubes of the second kind, it will no longeeqaal to zero, but to the moment
of the tube.

Since the section of the tube is infinitely smdiatttube can be equated to a curve,
which | will assume to be closed, and which | will dak axis of the tube. Indeed, we
can pass a certain surface through the axis of thexvube and take the cut to be the
area that is bounded by the axis of the tube on that surfilone of the closed curves
that cross that area will be of the first kind; trees that do cross it will be of the second
kind [no.30].
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45. Suppose that the functighis zero at infinity, which is permissible, since that
function is given only by its derivatives and is, cansatly, determined only up to a
constant. In order to define the valuegadit a given poinP, we take the integralalong
a curve that joins it to a point that is infinitelystiint from the poinP considered without
crossing the cut. That definition will obviously be suéfitt only if the functiong is
uniform, and consequently, if the value thus-calculated choé¢ depend upon the curve
that is followed in order to take the poftto infinity. Now, that condition is fulfilled.
Indeed, consider two arbitrary patd€®P, MRP that join a poinMM that is very distant to
the pointP. The integrall is zero along the closed contddQPRM which does not
cross the cut; therefore:

.[MQPd¢ +.[PRM d¢ =0
or

.[MQPd¢ = .[MRPd¢ =¢e

The value ofp that is calculated at a poikt depends upon the surface that is chosen
for the cut; the same thing is true for two cuts thahabinclude the poini, but things
will be different when the pointM is found between the two surfaces that are
successively chosen for cuts.

We must now determine that valuegbf Let i/ be the moment of the vortex tube:

ﬂzz 52+,72+Z2da)’
in whichdwis a cross-section of the tube, which we have assumiael itdinitely small.
If we replace the vorticityd, 77, {) with the currenty, v, w) then each component of the

current will be equal to the corresponding componentef/trticity divided by 2z The
intensity of the current, when measured tangentialthéovortex tube, will be:

i=Ju+V+wWdw.

=4 .

Consequently:

If one determines the value bfrom that equality then the magnetic force and the
velocity of a fluid molecule at a point will be repeesed by the same vector. The
velocity function will be the magnetic potential tife current. As one knows, that
potential will have:

o

for its expression at a given point, wheseis the solid angle in which one sees the
contour of the current from that point. (CElectricité et optiquet. |, page 107.) As a

result:
) HO
=iog="—.
¢ 4
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o is the solid angle in which one sees the axis of vubwex tube from the point
considered.

If there are several vortex tubes then the funcgidhat relates to the system will be
the sum of the functiong,, ¢,, ..., etc., that relate to each of them, and the satagon
will persist.

46. Case of a rectilinear and indefinite vortex tube— Let a vortex tube be
rectilinear.

Apply the preceding rule. We must replace the tube aithndefinite, rectilinear
current that possesses an intensity:

From the law of Biot and Savart, the action of dusrent on a magnetic pold is
perpendicular to the plandPQ and inversely proportional to the distancérom the
point M to the linePQ. The velocity of a fluid molecul® will then be perpendicular to
the planeMPQ, and will vary inversely with its distance from thasaof the vortex tube.

47. That result can be obtained directly, moreoverhavit the intermediary of the
electrodynamical comparison.

Figure 15. V

By reason of symmetry, the velocity must be foundh& planeR that is drawn
throughM perpendicularly t&?Q. On the other hand, if we consider the plBMQ then
that will not be a symmetry plane, properly speakingleéd, take the plane of the figure
to be the plan® (Fig. 15). The lindP¢ projects onto that plane Bt MN is the trace of
the planePMQ. Suppose that the vorticity has the sense that isaitedl by the arrow,
and that the velocity is directed alohty.

Take the image of the figure with respecMbl. The moment of the vortex tube will
keep the same value, but the vorticity will change sehsell becomeMV’. SinceMV”’
must be symmetric tMV with respect taVIN, MV must be perpendicular tdN, and
consequently, to the plandPQ, since we know thatlV is situated in the plarfe.
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48. In order to find the magnitude of the velocity, recalttha
J= j (udx+ vdy+ wdg= w.

Choose the integration contour to be the circliaéplane that is perpendicularRQ
that is described by having its centeNa&ind a radius d¥AN. TakePQ to be thez-axis,
the pointN to be the origin, and two rectangular diameterthefcircle to be th& andy
axes. Inthat system of axes:

X=pC0SwW Yy=psinw

dx=-psinwdw  dy=pcoswdw dz
u=-Vsinw, v =V cosw, w
Thus:

2m .
U= jo OV (si’ w+ cog w dw = 2 V

v=_H_
2mp

That velocity is therefore inversely proportiot@althe distancIN = p, as we found
by another method.

49. Direct proof. — It is not indispensible for one to obtain themession for the
function ¢ in order to take recourse to the comparison betwbe hydrodynamical
equations and the electrodynamical ones, as we Hawe; that expression can be
obtained directly, as | will show.

To abbreviate, we say that the functigiis generated by a conto@® when it is due
to a vortex tube whose contodris the axis, and we agree to take a vortex tubeserh
moment is equal to 1. That choice of unit will radtect the generality of our proof. |
shall first establish some theorems that we wigdcheé order to find the expression for
the functiong.

Figure 16.

50. Theorem I.— Consider a closed cunaBCD (Fig. 16); join two points of that
curveB, D with an arbitrary patBBED. Then, form two partial contouABED, BCDE,
and a total contouABCD. Assume that these contours define the axesreé thortex
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tubesT’, T”, andT. Each of these contours generates a fungtioihet ¢, ¢”, and¢ be
the functions that correspondTqg T” andT, respectively. | say that:

p=¢'+9"

Indeed, we can pass a certain surface through thedtrees, which will determine
two cuts. The functiop admits the two cutsp’admits only the cut (1), angl” admits
the cut (2). In order to establish the theorem, suidicient that one have:

p-¢'-9"=0
identically. That function will verify the Laplacejeation:
Ag-¢'-9¢7) =0,

Ap =Dp'=Ng"=0;

since:

it is annulled at infinity, just like the partial funct®m, ¢’ ¢~ It is permissible to apply
Green’s theorem [n@&4] if it is uniform; i.e., if the integral:

jd¢—j d¢'—j dg" =0

along an arbitrary closed contour. Suppose that thgratien curve is of the first kind;
i.e., it does not meet any cut. The three partial imdegrill then be zero. If the curve

crosses only the cut (1) th({nd¢ will be equal to the moment of the tubgi.e. to 1, by
hypothesis. j d¢' is equal to the moment of the tubé which is also 1.j dg¢" is zero.

The equation is still verified; one will establishintthe same manner if the integration
curve meets only the cut (2).

B

w R

T
P
Figure 17.

Furthermore, an arbitrary closed contour can alwayseptaced with a series of
contours, each of which meets only one cut (Fig. 17)erdfare, the contouMNPQ,
which meets the two cuts, can be replaced MINRQM which meets only the first cut,
and NPQRN which meets only the second one. Indeed, traversegettwo contours
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amounts to traversing the original contour in a well-defisense, and the aRRQ once
in one sense and once in another; that arc will theapg@ear in the result. Consequently,
along an arbitrary contour:

jd¢—j d¢'—j dg" = 0.

The functiong — ¢’ — ¢” is uniform and identically zero, as a consequencereé®s
theorem.

51. THEOREM Il. — The functiong that is generated by a planar contGus zero
at any point of the plane.

1
!

Figure 18.

Let C be the contour (Fig. 18). Represent the directiomefvorticity by an arrow,
and take the figure to be symmetric with respect to dimeocir;  must not change. The
point M, which belongs to the symmetry plane, does not chahge.moment of the tube
keeps the same absolute value, but changes in sign,teeeeotion of the vortex does
not change sense. The functigmust simultaneously not change and modify its origin;
it can only be zero.

94
N
@,

Figure 19 Figure 20.

52. THEOREM lll. — Suppose that a conto@ris traced in the surface of a cone
that has its summit & (Fig. 19). One can trace two types of curves on tndace: The
one type bounds an area in which one does not find thensuthe other one makes a
circuit around the cone that bounds an area that dogsicéhe summit.
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a. The functiong will be zero at the poiri¥ for the curves of the first type. Indeed,
one can decompogginto infinitely-small contours, each of which can bscasated with
a planar element that is situated in the plane thanigent to the cone. Since all of these
tangent planes pass through the sunhingf the cone, the functiog that is generated by
each of them will be zero. Since the funct@gthat is generated by the entire contGur
is the sum of elementary functions [ad)], it will also be zero.

b. Now, let there be two curves of the second IABCD andA'B'C'D’ (Fig. 20).

| say that the functiong that are generated by these two curves have the sauee val
at the pointM.

Indeed, join a poinB of the first curve to a poinB' of the second curve by the
generatoBB, for example; similarly, joirD to D' with DD'. | can replace the contour
ABCD with the contoursA'B'CD’, ABBA'D'DA, CDD'CB'BC. In fact, upon
successively describing these three contours in the dfaseis indicated by the
succession of letters, | will traverse each of ttes &wo times in contrary senses, except
for ABCD. Now, the functiong that are generated by the two contours are zero, from
the first part of the theorem)( Therefore, the functions that are generated bguhees
ABCD and ABCD, which have the same perspective at the pdinwill have the same
value at that point.

53. Infinitely-small contour. Form of the function ¢. — Suppose that the contour is
infinitely-small. A priori, the functiong can depend upon the distamdeom the pointVi
to the elementary surface that is bounded by the corfeeirangley that the line that
joins the pointM to the center of gravity of the element makes witt #lement, the area
of that element, and finally, its form. In other wey¢ can depend upon ¢, and the
solid angle and form of the cone that has the contwutd director and its summit at the
point M.

| first say thatg cannot depend upon the form of that cone. Indeed, tbat which
is infinitely-small to first order, can be decomposet isquares that will be infinitely-
small of second order. All of these squares havedir, fso the angle/ will have the
same value for each of them, up to higher-order infimtals. In addition, one can
render their number very large in order that they wollectively differ from the area
considered as little as one desires, no matter whafortm. The value o that is
generated by the total contour will be the sum of timetians ¢ that relate to each of the
squares. However, since these functions are the sarmadbrsquare sincer andy are
the same, and the squares have the same form — théutatiadn ¢ will be proportional
to the number of squares — i.e., to the area thatusdsa by the contour — and it will be
independent of its form. Consequently, we can set:

¢ =dof(r, @),

in whichdgois the solid angle of the cone, and a function that we must determine.
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dohas the same value all along the cone. On the odimet, two closed curves and
C' that are traced on the cone must generate the samct@ofug. Howeveryr and ¢ can
be arbitrary for these two curves, so it will be neagsthat:

f(r, ¢) = const. ZA.

54. If one is dealing with a finite, closed curve then @a® decompose it into
elementary curvesg will be proportional to the solid angtbo for each of them. One
will have:

p=A0

for them collectively, in whiclw is the total solid angle.
In order to determindd, suppose that the poimfl describes an arbitrary closed
contour, so one will have:

jd¢:Ajda,

and if one calls the moment of the vorgeihen:

jd¢:#
On the other hand:
j do =4
SO:
H=4rTA
and
- Ho
¢ 4T

55. Liquid that fills a simply-connected vessel completely~ We propose to
determineu, v, w from the equations:

ow odv
28§ = ———,
d oy 0z
0a 98 3y _
ox dy 0z

In the case of a liquid that fills a simply-connectex$sel, it is necessary that the
component of the velocity that is normal to the walist be zero at any point of that
wall. If one calls the direction cosines of themal |, m, n then that condition will be
written:

In+mv+nw=0.
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In order to obtain the case that corresponds to thalesctrodynamics, one must
suppose that the currents prevalil in the interior oktirgaceS of the wall, and that all of
the exterior space is occupied by a perfect condudfoone starts out at rest and then
progressively increases the interior currents then inductimrents will be produced in
the exterior space. When the permanent regime iblisstad, the electromotive force
will disappear. However, the induction currents willgigrwhen the exterior medium is
a perfect conductor; i.e., when it presents zero eggist Upon making that hypothesis,
the problem of electrodynamics will coincide with tbdHelmholtz.

Indeed, let there be a closed circuit, andNebe the flux of magnetic force that
traverses it, so the electromotive inductiodN$/ dt, and from Ohm’s law:

If we suppose that the conductor is perfect fRen0, and as a result:

N
aN_ 0, N = const.
dt
If we start at rest theN = 0 to begin with, and it will remain constantly zeso no
line of force will traverse the surfa& i.e., the component of the magnetic force that is
normal to the surface will be zero.

56. Special cases: Let the velocity be parallel to th-plane and depend upon only
x andy, so:

Upon supposing that these conditions are satisfiedeabtigin of time, they will
always be true:

1. If the liquid is indefinite, because any plane thaiarallel to thexy-plane will be
a symmetry plane.

2. If the liquid fills up a cylinder that is parallel @z and is indefinite in the two
senses.

The same thing will be true if the cylinder is bounded by planes that are
perpendicular to the-axis. Indeed, when one introduces a partition intoithed, one
will generally impose one or more conditions on theiom namely, that the component
of the velocity that is normal to the partition mbstzero on it. However, in the case that
we are occupied with, that condition will be fulfillbgfore one creates the partition, and
its existence will not modify the motion.
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57. From the hypotheses that we have made:

26= 2 -,
oy 0z
Ju ow
6 =—-— =0,
©) 2 0z 0X
ov du
20 = ———,
¢ ox oy

and the equation of continuity will reduce to:

ou  odv
+ =

7 —+— =0.
% ox ay

All of the vortices are parallel 10z so all of the vortex tubes will be cylinders that
haveOzfor their axis.

Follow one of these tubes in its motion; | say thatatoss-section will remain
constant.

Indeed, consider a portion of the liquid that is boundethéyurface of a vortex tube
and two cross-sections that are distant from

If we call the area of that cross-sectiwithen the volume of the liquid will be w

The liquid is incompressible, so that volume will remzonstant. On the other hand,
the vortex tube will be conserved, so the volume withain cylindrical. A molecule that
is situated on a cross-section at the origin of twilealways remain so, since its velocity
will be situated in that plane. The two sections thatind the cylinder will always
remain at the same distance. Siheceandh are constant, it will then follow thabis
constant.

In particular, if we consider a vortex tube whoseisads infinitely-smalldwthen its
momenty will be given by:

U=2dwly,

sodwmust be constant, as well as Therefore/ is constant, and:

d¢ _
dt

(We used(/ dt, and notd{/ ot, since we are following a molecule in its motion;,ivee
adopt the Lagrange variables.)

58. The case that we just treated is the one that Hdimicalled the case of a
rectilinear vortex.

In particular, suppose that we have a vortex tube wkesgon by they-plane is a
circle of radiusk, and{ = const. inside of that circle? = 0 outside of it, and there is a
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velocity function. Take the center of the circleb® the origin. LeM be an arbitrary

point (Fig. 21). Set:
OM=p= X +Vy*.

Figure 21.

The velocityV of the pointM will be perpendicular to the radius vectM, by reason of
symmetry:

u=-vY, v=v2X
0

y

Yo,

andV will depend upon only. Take the integral:
J:j(udx+vdy :jzzdw

along the circumference that is described by Otsaganter with the radiu®M = p:
j udx+ vdy represents the work that is done on a materiahtpthiat describes the
circumference by a force that is represented byéotor (1, v, w), which is the velocity;

that vector has a constant magnitude and is ddeetleng the tangent to the
circumference at any points, so:

j (udx+ vdy =2 V.

We obtain another expression tbby means of integral§ {Aw that are extended

over the entire surface of the cir€v.
One must distinguish two cases:

1. The pointM can be inside of a circle of radiRyp < R). {will then be constant
inside of the circlep, and:

J=1 F =2 V.

2. The pointM is exterior to the circl® (0 > R). { will then be constant inside of
the circleR, and zero outside of it, so:
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J=2I R =2mp V.
We deduce from this that:

V={p
if pis smaller tharr, and:
RZ
V={—
P

if pis greater thaRk.
In the latter case, we remark that moment of theexdube will be equal to:

27 R? = 2irm
upon setting:
m={R,
andV will take the form:
v="
Yo

That formula will persist iR becomes very small, bdgtbecomes very large, in such a
fashion thaimremains finite.

59. This result can be compared with some other resuttzyed¢ different kinds:

1. Electrodynamical comparisonr- We have seen that from the law of Biot and
Laplace, the velocity of a molecule is representedheysame vector as the magnetic
force that is produced by a current that traverses thextube [no45].

60.

2. Analytical comparison— Outside of the tubé= 0. From that condition and the
equation of continuity (2) [n&7], one will have:

ov _du

ox oy’
(8)

ou_ _ov

X dy

These equations express the idea¥ha{/ -1 uis a function ok +y./-1. This is easy
to verify in the present case. Indeed:

v+fqu=m(—l_'Jtifrfj:x+fhdl

X2+y2
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Set:
Z=X+,/-1Yy,
and we can then write:
(9) v+1/—1u:f(Z):g.

61. If there are several vortex tubes thenxilane will cut each of them along an
infinitely-small circle that one can make agree witd pointsa;, ay, ..., a, that coincide
with their centers. LetZ2my, 277, ..., 2Tm, be the moments of these tubesaylfay,

..., @8 have the coordinatesd , a/, ..., a,, &, ... then these points will be the ones that
are affixed to the imaginary quantities:

alza;+\/—_1a;',
azza’z+\/—_1ag.

In order to obtain the value of+ \/—_1 u that corresponds to the first tuag it will
suffice to take formula (9) upon transporting the origirthe pointay, ..., and similarly
for the other tubes, so the total vaiue\/Tl u will be the sum of the partial values that
are thus obtained:

1y=_M m m_ _ m,
+ _1 e + +... - .
Y y Z-a Z-3 +Z—q ZZ—ak

That expression is the derivative of the function:
8(2) =), m/log(Z-g).
Let M be the point that is affixed #, and letp, be the distancMa; or the modulus

ofZ—a . Similarly,» =May; ..., o0 =Ma, . Letw be the argument & —a; ; it is the
angle thaMa; makes withOx, ..., etc.

8(2)=> mlogp,+-1> ma,,

or, upon setting:

(10) Y= Z m.logp, ,
(11) $ = ma,
(12) 02 =y+-1¢.

Differentiate that identity with respect Zp upon remarking that:
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! = - :a_l/l —%
6'2)=v+/-1u > +ﬂax’

" =/ - — :6_40 —%
6 (Z)—\/_lv u oy +\/_16y.

Hence, upon defining:

(13) V:a_l//’ u:—a_w’
0x oy

(14) u:%, v:%.
0x oy

From the relations (14), one sees that the velocity function.

62.

3. Electrostatic comparison= Suppose that the electricity is distributed amfly
over an indefinite line: The attraction of thatatidied line to an exterior point will vary
inversely with the distance.

Replace the vortex tube with a uniform distribatmf electricity along its axis. The
attraction at a poin¥l will be directed along the normal that is drawonfrM to the axis.

The velocity will be represented by the same vetttat one will have rotated by 90
degrees. If there are several tubes then onemeke the same transformation. One
composes the partial attractions, and the resuitalutcity will be represented by the
resultant of these attractions when one rotatas theough 90 degrees.

On will arrive at the same result by supposing tha pointsa;, ay, ..., a, act upon
the pointM in inverse proportion to the distance.

If we consider some vortex tubes that are distethin an arbitrary manner and a
point M that is very distant from them, so the distancafigitely large of first order,
then the attraction (or the velocity) will be infely small of first order.

63. The curvesg = const. — i.e., the ones along which the argunedre®? is
constant — are the lines that are normal to thecitglat each of their points. Indeed, for
these curves:

dg =u dx+v dy=0.
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The curvesy = const. — i.e., the ones along which the real par# ¢Z) or the
modulus ofe?? is constant — are the streamlines. Indeed, along theses, one will
have:

v dx —u dy= 0,
or
dx _d
u v

In electrodynamics, the equatiogs= const. represent the equipotential lines, and the
equationgy = const. represent the lines of force; the oppositeiesin electrostatics.

64. Special case of two vortex tubes. If there are only two vortex tubag anda;
thend(2Z) will involve only two terms:

6(2) =my log (Z — a) + My log (Z—ay).
The equation of the streamlines will be:
my log o1 + mp log p2 = const.
If my = m, then the equation will become:

01 P2 = const.

The streamlines will then be Cassini ovals.
If m; = -, then the streamlines that are represented by the equation

2 = const.
P,

will be the circumferences, with respect to whichpbétsa; anda, will be conjugate.



CHAPTER IV

MOTION OF VORTEX TUBES

65. Theorem on the conservation of the center of gravity: Suppose that we have
nvortex tubewy, ay, ..., a, that have the momentsz2ny, 27, ..., 2rm,, resp.; assume
that the tubes displace, but that their moments rethai same. If we regard, my, ...,
resp., as masses then we can construct their cengeawaty G. | say that the poink
will remain fixed under the displacement of the tube.

Let X1, V1, X2, Y2, ..., Xn, ¥n D€ the coordinates af, a, ..., a,, resp., and lexy, yo be
those ofG, so these coordinates will be coupled by the relations:

Xo) M= D mex,
Yo M= D> My

If one treats tubes of finite dimensions, insteadnhitely-thin ones, then one will
definexo, Yo in an analogous manner:

xoj 27 dw= j 2xZ dw,
. vienn., EEC.,

in which the integrals are taken over all of theneéntsdwof the sections of the different
tubes.
Differentiate with respect tb Since we have constrained the moments of thestidoe

remain constant{ and wwill not depend upoh[no.57], and:

dx, dx
1 — | {dw=| —{dw = | u¢ dw.
(1) o) Gl =] ddw=[u

| would like to establish that the latter integisakero. In order to do that, | consider
the integral:

j [(u?=\?) dx+2 uvdy,

which is taken around a circle of very large radidat integral will be zero. Indeed,
for R very largeu andv will be infinitely-small of first order [no62]; u?, V* are second-
order infinitesimals. The integration path is mitely large, but only of first order, so the
integral will be negligible.

On the other hand, transform that integral usmigntila (1) of 8:

[ W =) dx+2uvdy = | dw{a(uz_\f)_za(uw}
ay 0x
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Perform the differentiations:

2 _\2
O V) _,0(uy _ 5 0u_, v, 0V 50U
oy 0x oy oy 0X 0Xx

However, from the continuity equation, we will leav
ou  odv
P By
ox ay
and, on the other hand, by definition:

EETRS

:O,

ox oy
Therefore:
[ 1w =v’) dx+2uvdy =~ 4 [ u¢ dw.

The first integral is zero, as well as the secomne; therefore:

One likewise proves that:

and as a result, the poi@tis fixed.

66. Motion of the center of gravity of a vortex tube— | would now like to study
the motion of the center of gravity of one of theeeex tubes. We have:

dx, _
Ej(dw-ju(da).
Set:
u=u +u’,

in whichu' is the velocity of the tube considered if it alaneasts, andl” is the velocity
of the other two:

juzda) :ju'(dwj U7 dw.

The integral j u'd dw is zero, because if the first tube exists by fitdedn its center
of gravity will be fixed.
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Consequently, if we would like to determine the velooitythe center of gravity of
one of the vortex tubes then it will suffice to takeo account the velocity that is
communicated by the other vortices.

67. Letay, a, ..., a, be the vortex tubes. Set:

Pr2 = ﬁ ,
Pi3s=a &,
and in a general manner:
Pk =aaq.
Consider the function:
(2) P=>mmlogp, .

P is a function of the2coordinatesq, yi, ..., X, Yn -

One must determingx, / dt anddy; / dt. We just saw that the velocity of the point
x1, Y1 Will be the same if the tulm is suppressed and only the other tubes persist. From
equations (13) [ndB1], we will then have:

dx__9¢
dt ay,
dy _ 9y
dt ox,
where:
Y= Zm logp,, -

| say that these formulas are equivalent to tHeviehg ones:

dx _ 0P
la_ a_yla
dy, _ 0P
la_ a

Indeed,P can be written as:

P=m)> mlogp, +> mmlogp,,,

in which none of the indicasandk in the second term is equal to 1.
On the other hand, thethat are affected with the index 1 are the only ones that
depend upom; andy;, so:



54 Chapter IV — Motion of vortex tubes

P _ o mlogp,) _ g
0%, 0%, 0%,

and similarly:
P_ %
oy, oy,

68. In a general manner, we then obtain the following egpst

dx __ 0P
™G oy,
Q)
dy . oP
dt  ox

In this form, one recognizes Hamilton’s canonical eguati up to the factam; in
order to get the canonical form exactly, it will sufficetake the variables to be:

X1, X2, .oy Xn - @Nd  Muys, MpY2, ..., Mhn.

69. Integration of the equations— The integration of equations () is possible when
there exist only three vortex tubes, as we shall show.

70. THEOREM. — We can first recover the theorem of the consemwabf the
center of gravity. Indeed, the functidh depends upon only the distances and
consequently upon only the differencgs-xz, ...,y1 -V, ..., etc. Therefore:

oP 0P oP
+

—+—+ .. +—=0,
ay, 0y, 0y,
namely:
oP dx,
3 —=0 or — =0,
() Z6yk ka dt
D m, % = const.
Similarly:
D my, = const.

The center of gravity of the system then remainglfixe
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71. Thevis viva theorem. — Multiply the two sides of equations (1) lox, dy,
respectively. If one operates similarly on all of #malogous equations and adds them
then one will have:

dx, dy,
or:
dP=0.

Therefore:

(4) P = const.

That relation expresses the theoremisfviva That is not obvious immediately, and
we must eliminate several difficulties. Indeed, froar hypothesis, theis vivawill be
infinite, for three reasons.

1. The liquid is indefinite in all of its senses. wW&ver, we have seen that the
motion is not modified by introducing two solid planar pems that are perpendicular to
the Oz axis. We can thus limit ourselves to the considamatb the liquid that is
contained between the two planes.

2. Even with that restriction, thes vivawill still be infinite, since the liquid extends
indefinitely in thexy-plane. The componentsandv of the velocity will tend to O when
one goes indefinitely far along a circumference whaskusR is regarded as infinite of
first order;u andv are first-order infinitesimals [n@2]. The elementaryis vivawill be
a second-order infinitesimal, but the surface of theleciwill be a second-order
infinitude, so the totalis vivawill be infinite. Upon calling the sum of the moments o
all of the vortex tubes 2M, the velocity on the circumference of radirisvill have the
value:

up to second-order infinitesimals.
Suppose thatl is zero. The velocity v) will then be a second-order infinitesimal.
The elementaryis vivawill be of fourth order, and the totak vivawill be finite.

3. This further supposes that the vortex tubes are nott@ty thin. Otherwise, the
velocity in the neighborhood of these tubes would biest-order infinitude, and thes
vivawould be a second-order infinitude.

72. We assume that thas vivais finite. As we just saw, in order for that totbee,
it will suffice that:

1. The liquid is bounded by two parallel planes that anegoelicular taOz

2. The sum of the moments of all the tubes is zero.

3. The tubes have a finite section.
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Consider two small surface elemedteanddw’ that correspond to the valuésand
{’ of the vorticity, resp. Letting/2dm 277dm’be the moments of the elementary tubes
that are bounded by these elements, one will have:

2{dw = 2mrdm
2" do/ = 2rrdmi.

The term inP that corresponds to these elements will be:
dm dmlog p,

if one calls the distance between the two elemenasd:

P= H dmdnilog p
or
(5) p= .U 4 da)](jzaflogp’

in which the integral is calculated by taking afl tbe pair-wise combinations of the
elementdwanddw, each of which is taken once. bety, andx, y be the coordinates
of the centers of gravitgwanddw, resp.the value ofy at the pointX, y) will be:

z//:jdrﬁlogp :J-Mnlogp.

On the other hand:
277P = j j {7 dwdddlog p,

in which the integral is taken ovall of the combinationsdi daw'), so each of them will
be used twice, and:

(6) 7P = nj Wdw.

73. We will be able to write down that formula immeidily when we refer to the
electrostatic comparison [n62].

Indeed, if we considedm, dn1 to be the electric masses that are spread over the
elementda dw, resp., then the functiog will represent (up to a constant factor) the
electrostatic potential, ard will represent the electrostatic energy. One kanadlaat a
relation of the form (6) exists between these twactions.

74. Replacing Z by its value in the expression Bwill give:
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anP= [ 2y dw = j(d” d;j wda

Consider the integral:
(7) [ vay+udy e

That integral will be zero when it is taken alongiicle of very large radius, since we
have supposed [n@2] that the algebraic sum of the moments of alltthiges is zero. It
will then happen that andv are of second order, since the length of the oifetence is
only a first-order infinitude. Upon transformirtgoly Stokes’s theorem:

J' d@v) _d@u ) 4= 0
dx dy ’

or, upon performing the differentiations:

dv du dy _
jw(dx dyjdw j( dx ' dy dyjdw_o'

Now:
dv du
2{= ———,
¢ dx dy
w_, A,
dx dy
Therefore:
(8) 4TP + j (V2 + 1?) dw= 0.

P then represents (up to a constant factor) \he viva j (v*+ v’ da and
consequently, thatis vivawill be constant.

75. THEOREM. — The moment of inertia of the massasvith respect to th®©z
axis is constant.

Confer an infinitely-small rotatiog around thez-axis upon all of the system. Upon
neglecting the second-order infinitesimals, therdoatesx andy; will become:

X—¥é& yitX €.

P, which depends upon only the distanpg$no. 71], will not change.
Therefore, if one writes thalP = 0 then one will get:
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R ey 0P,
> &yﬂﬁz 0y xe =0

Z E—yﬁ =0
)gdyi ' dx

In the electrostatic comparison, that equation sigmifinat the sum of the moments of
the attractions that are exerted on either of thetrfied lines, when taken with respect
to thez-axis, is zero. That is obvious, since the attractamespair-wise equal and of
opposite sign.

If we replacedP / dy anddP / dx with their valuesm dx / dt andm dy; / dt, resp.,

then we will find that:
dx . dy
Zm(x a Y dtj
or, upon integrating:

© > m(F + )= const,

or

76. THEOREM. — The sum of the moments of the quantities of matidth respect
to the x-axis is constant. If is a homogeneous function of first order then Euler’s
theorem will give:

df df df
X—+y—+ 27— =f
dx dy dz
or:
Zxﬂzf
dx
or finally, that:
Z:Xdlog f _q
dx

If one applies this to the functid® Oak then it will be a homogeneous function of
first order inx;, yi, and the other coordinat®g yx do not enter in. Consequently:

x dlogp,, ry dlogp, +
dx dy

=1

or, upon multiplying all of the terms lmg m :

| =mm

dmmlog g, dmmlogp,,
Ky ,
2 (Xp d, Ty,
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in which, the summation is extended over all valugg fodbm 1 ton. One must then, in
turn, take all of the possible combinations ehdk, and take the sum, which will give:

S| x aP ., 9P 5
p pr p dyp m nﬁ '
From the equations (1) [n68], that relation is equivalent to:
dy d
(10) Zmp(xpd_tp_ ypT)zaj :me'

The left-hand side is the sum of the moments ofgtientities of motion, while the
right-hand side is constant.

77. We have thus determined three integrals of our diffeeaquations (1); these
properties of the equations permit us to integrate them lrauaes when there are only
three vortex tubes.

Indeed, our equations have the form of Hamilton’s canbmigaations, which are
integrated by quadratures when they contaiv&iables, and one will know particular
integrals. Now, when there exist three vortex tulibs, equations will contain six
variablesx, yi, X2, Y2, X3, y3, and we have found three particular integrals.




CHAPTER V

THE CASE OF TWO VORTEX TUBES.
METHOD OF IMAGES.

78. Letay, a; be two vortex tubes whose moments a2 and 27m, resp. Their
center of gravityG will be situated on the lin@; a; and will be determined by the
condition:

Ga__m
Ga, m,

(The segment&ay, Ga are taken with their signs.)
From what we know [nd&9], the pointG will remain fixed. The velocity of the point
a; will be the same as if the vortex existed by itself, namely:

m
a &
and it will be directed perpendicular @pa;.

Since the poinG is fixed, the three points, G, a; will always be in a straight line,
and the velocity of the poirg; will be constantly normal to the radius vec@®a, , and
the trajectory of the poird, will be a circumference that has its centeGaand a radius
of Ga, . The trajectory of the poir will likewise be a circumference that has its cente
at G and a radius 0Ba; . Since the distanaa a; remains constant, the velocities of the

two points, which are equal terTL and&, respectively, will also be constant.
a & a &

79. Suppose thaty, andm, are of contrary sign. The poi@t will then be outside of
a; a2, and will be further determined by the condition that:

In particular, ifmy = — m, then the poinG will be pushed out to infinity, and the
trajectories of the poinig anda, will reduce to lines that are perpendiculaai@s.
The two tubes displace with the same velocity:

M _y,
3 a,

If we consider the poinM; that is the middle o&; a, then the velocity that is
communicated to that point by a vort@xwill be:
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Moo M ooy,

aM “aa

The vortexa; likewise communicates a velocity of:

to it.
The resultant velocity of the poiM is thus equal to four times the velocity that is
common to the centers of the vortex tubes.

80. Liquid contained in a cylindrical vessel— Imagine that the liquid is contained
in a vessel that has the form of a cylinder whose gesrsrate parallel to theaxis. In
that vessel, one finds a vortex tube that is formedrbinfinitely-thin cylinder that is also
parallel toOz

C

Figure 22.

Let C (Fig. 22) be the cross-section of the vessel inxghplane, and leAA be the
point to which the section of the vortex tube reduces.
The equation of continuity reduces to:

Mo,

ox ay

Since the vorticity is zero everywhere, excephat
@—@ e 0
ox oy

We have seen [n&3] that under these conditions there will exist a vigjoftinction
@ such that:

ox oy

_op ,_9¢

so the equation of continuity will become:
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Ag=0.

In the present state, the boundary condition isttietontoulC of the vessel must be
a streamline; i.e., that at any point of that curvewlecity will be tangent to it.v +

J —1 umust be a function of + ./ -1 y in the interior ofC. That function must behave

regularly, except at the poi&t where it becomes infinite.
The determination af andv can be achieved by two methods:

1. The method of images, which applies to only a gertamber of simple cases.

2. The method of conformal representation, which is nmate general.

Figure 23.

81. Method of images— Suppose that the vessel has the form of a circyleder
that is parallel t@Ozand a radius dR. LetC be the trace of that cylinder on thgplane.
Let A be the trace of a vortex tube of momemt(2ig. 23).

Join the cente© of the circle to the poinA and take the poirnB along OA that is
defined by the condition that:

OA[DB=R.

The vortex tube that is parallel @z whose trace i8 and whose moment is equal to
2rmis called themageof A with respect to the circlé.

If the liquid is indefinite, and the tubésandB exist simultaneously in reality then
the streamlines will be circumferences, with respeavhich,B andA will be conjugate
[no. 64].

In particular, the circumferenc€ will be a streamline. The component of the
velocity that is normal to that curve, and more gdhenaormal to the right cylinder that
hasC for its base, will be zero. The introduction ofddics wall that has the form of that
cylindrical surface will not modify the motion insidetbat surface.

The center of gravityA of the tube displaces with the same velocity as ifttiee B
existed by itself, and the liquid were indefinitdB / 2rwill be the absolute magnitude
of that velocity, which is constantly directed along pleependicular to the radius vector
OAB. The pointA will thus describe a circumference that is concenaC.

That trajectory is not the same as if the parti@odid not exist, although the velocity
will be the same. Indeed, if the liquid is indefiniterhthe pointA will describe a line
that is perpendicular tOA [no. 79].
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Figure 24.

82. If the radius of the circumferencé@ increases indefinitely then that curve will
conclude by reducing to a line, aBdwill be symmetric toA with respect to that line, or
rather, to the plan€, to which the cylinder reduces. The trajectoryApivhich is normal
to AB, will be a line that is parallel to the trace of tianeC (Fig. 24).

Bo Ay By

Figure 25.

83. Liquid contained between two concentric cylinders aktvolution. — LetC and
C’be the traces on thg-plane of two cylinders of revolution whose axi©ig A is the
trace on the plane of an infinitely-thin vortex tubeose moment is72(Fig. 25).

Let By be the image of\, with respect taC’, By, the image of, with respect tdC,
A4, the image oB; with respect taC’, etc., in such a way that we have an infinitude of
pairs of points that are conjugate with respecCtand C’, which is indicated by the
following table:

CONJUGATES
With respect taC’ With respect taC
Ao, Bo B1, Ao
A_]_, Bl BO, Al
A1, B B2, A
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in which the indices vary from c to + 0. Consider each of the poimsto be the trace
of a vortex tube whose moment ig;2nd each of the poinBto be the trace of a tube of
moment — 2z These tubes will be conjugate.

Suppose that all of these tubes really exist, andttigatiquid is indefinite. The
velocity of the liquid will be the same as if the [t@ohs existed in only the vortex tube
A. We calculate that velocity by taking the sumhef velocities that are due to each tube
separately. We then obtain a series, and we would tbk&now if that series is
convergent.

From the relations:

OA¢ DB, =R?,
OA, [DB; =R,
one will have:
08 _ (Bj
og (R
Similarly:
2
%8 (8] e
In a general fashion:
2n
(1) OB, = OB{EJ :

One proves, in a similar manner, that:
R 2n
(2) OA, = OAO(E) :

Group the terms of the series as follows:

1. The terms that relate to the tulfeshat are affected with negative indices; the
sum of these terms will form a series. When tlilexn becomes very large, the point
A_, will become very distant, and the velocity thatagmmunicated to a poiM by that
tube will become very small of order MA_, . If the pointA, is very distant then the
differenceOA, — MA_, will be negligible, and the velocity will be of ordef magnitude 1
/ OA.,. The distanc®A-, increases according to a geometric progression withicaafa
(R’/R)%.. The series 1QA., is thus convergent.

2. The terms that relate to the tullesthat are affected negative indices. An
argument that is identical to the preceding one wikenaclear that the series DA, is
convergent.

3. Group the tubes that are affected with positiveceslinto pairs:

Ao, Bo—A1, Bi— ... Ay, By
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If one subtracts the corresponding sides of the ¢gya) from those of the equality
(1) then one will get:

R 2n
3) Ao B = Ao Bo (Ej |

The tubesA, By, ..., An, By have moments that are pair-wise equal and opposite in
sign. The geometric sum of the velocities thatdare to a groupA,, B,) has the same
order of magnitude a&, B, . It thus decreases in a geometric progression withcaaht
(R’/ R)?, and will tend tdD whenn increases indefinitely; the series is then convergent.

Since the three partial series are convergent, tine siaing will be true for the total
series.

84. Furthermore, | say that the circumferen€and C” are streamlines. That is
obvious. Indeed, all of the tubes are pair-wise conjugdterespect to the circl€ and
the circleC’. Assemble the tubes into groups of two that are cotgugih respect t&;
the velocity that is due to each group will be tangenCto Consequently, the total
velocity will itself be tangent t€. The proof forC’is analogous.

85. The solution that we just found is not the only ona;esthe vessel is not simply-
connected. In order to obtain the most general solutiowill suffice to add a tube
whose trace has its center@iand an arbitrary moment. Indeed, the velocity thaues
to that tube will be tangent © andC’, in particular, since all of the streamlines that ar
due to that tube will be circumferences that haver their center.

The trajectory o\, is obviously a circumference whose center ©,a0 the velocity
that is due to all of the tubes will be constantly rairto the radius vectdA .

Y  Figure 26.

86. Liquid contained between two rectangular planes- Take the two planes that
bound the liquid to be thezandyzplanes. LeDxandOy be their traces, whild, is the
trace of an infinitely-thin vortex tube whose momer27gFig. 26).

Take the symmetric points #g with respect t@®x andOy to beA; andA,, resp., and
then take the symmetric point A with respect t®y and the symmetric point #, with
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respect tdOx. Those two points will coincide withs, which is the symmetric point #y
with respect to the poird.
Attribute the moment:
+ 2/1t0 Ao,
— 27Tt0 Ay,
— 27Tt0 Ay,
+ 2/ITto As .

Suppress the partition, and imagine that the four tulgsA;, A, As exist
simultaneously. Th&®x andOy axes will be streamlines, since the tubes are paie-wi
conjugate with respect to those axes, and the introductithe partitions into th&z and
yz planes will not modify the motion.

What will the trajectory of the poi, be? We have defined the functiBrino. 72,
and we have seen that in the case of an indefinit&llipat function will be proportional
to thevis viva Therefore, if the partition is suppressed, and thestdbur really exist
then the totalis vivaof the liquid will be equal t®, up to a constant factor. However,
the vis vivaof the liquid that is contained between the two plaseme-fourth the total
vis vivathat one would obtain by suppressing the partitions and giveal existence to
the tubedAy, Ao, As.

Therefore: Thevis vivaof thereal liquid that is contained between the two planes is
again proportional t®, and thevis vivaequation is written:

P = const.
Now:

P=> mmlogp,.

In the present casey =+ 1, and there are six terms, corresponding to six aietamn
that are pair-wise equal. The prodogtm, = + 1 for the terms that correspond to the two
opposite vertices of the rectangle; for the other ferms,m m¢ =-1. Therefore:

P =2logAo As — 2 logA; Ao — 2 logA; Ap = const.,

AgAs =2/ X°+ V¥,
AlAo=2,
Ao Ao = 2X.

The equation for the trajectory of the pofgtwill then be:

2 log 2/ X’ + y* — 2 log &y = const.

or.
2 2
X2 +
> Z = const.,
X'y
1,1_
— T 5= const
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Therefore, the trajectory of poiAg in the motion being studied will be represented
by a curve that is asymptotic to the two axes.




CHAPTER VI

METHOD OF CONFORMAL REPRESENTATION

87. Definition of a conformal representation.— Let two planar areas be simply-
connected, and l&f (x, y) andM’ (X, y') be two points of those areas. Suppose that one
has established a correspondence betWeandM’ such thak' andy' are functions ok
andy; each pointM corresponds to just one poilt’, and conversely. X' andy are
continuous functions of andy thenM " will describe a curve whelM describes a curve,
and conversely. The various points of the contour effitst area correspond to the
various points of the contour of the second one, amyarsely. Upon conveniently
choosing the functions< and y', one can preserve angles; i.e., one can obtain
representations of the curves that intersect at the sangle as the curves themselves.
One then says that the representatiocoisformal Two corresponding infinitely-small
triangles will then be similar, and also two arbitrazgrresponding infinitely-small
figures, since one can decompose them into pair-wisé@simangles.

88. Consider the complex variable+,/ -1 y'. It can happen that +,/-1 Yy is a

function ofx +,/-1 y. In that case, the angles will be preserved, and cselye
Indeed, the conditions that express that idea are:

dX _ dy

dx  dy’
(1)

o __ay

dy ~ dx’

Can one define a conformal representation of a curve itgedhin this manner?
For example, take a circumference.

1. One can rotate it around its center.

2. Consider a pointl inside of the circle; letx( y) be its coordinates. | can make it
correspond toM’ (X, y'), which is likewise interior to the circumference, dgonformal
representation in such a manner that the céntaill correspond to an arbitrary poit’
that is interior to the circle.

Indeed, take the radius of the circumference to bey.uni is assigned to the
imaginary quantitk + ./ —1 y, and the equation of the circumference is:
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|x+ 4 -1y]|=const. =1.

Leta +./ -1 b be assigned t®’. Consider the expression:

T Q1Y)+
X 41y y(x+-1y)+3

| can choosex, £, y, din such a fashion tha#l“ describes the circumference at the
same time aM/; i.e., that the modulus of +,/ -1 y' is equal to unity at the same as that

ofx+[-1y

The pointO’that is conjugate t® is assigned to 1 A(-./ -1 b); set:

g TTy = XLy <a+J_1b) 1rlb
-1v-— at
X+ -1y a+ﬂb
|x+\/—_1y|:const.:1

X +y' =1

The condition:

is equivalent to:

or
——x+1/ ly
X=4/ =1y
Therefore, for pointsx(y) on the circumference, we can write:
+-1 +J-1
x+\/_1 xJ y-(a+./-1b) 1
_ 1 a-. -1b
x—ql—ly a—-/-1b
or

x+\/_1y (a+,/-1b) ar\ -1k
X4{-1y x—[-1y- (a,J_im( J__y)a— -1b

The two fractions have unity modulus, since tiwm terms are conjugate. Thatof
-4/ —1yis equal to unity. The modulusxf+./ -1y will then reduce to unity.

If one makes:
X+ -1ly=a+.-1b

X+ /-1y =0

then one will have:
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in such a way that the poif® is the transform of the poirf®’, which was chosen
arbitrarily inside of the circumference.

89. Schwartz gave the means to construct the confornmkesentation of an
arbitrary planar area onto a circle. However, theg@dare is generally very complicated,
except in some relatively simple cases.

Suppose that we know how to make a conformal represantaftian area onto a
circle in such a manner that the pdwitof the areaA corresponds to a poil ’ of the
circle, and the poin®, of the areaA will correspond to the center of the circle. | dagtt
one can also find another representation of the A@athe same circle that will be such
that another poin® of the areaA will go to the center of the circle. Indeed, Fetbe the
point of the circle that correspondsRainder the first representation. Make a conformal
representation of the circle onto itself in such a reantimat the poinM “ will correspond
to the pointM”, and the poinP’ will correspond to the center of the circle. Thall w
always be possible [n&8].

We will again have a conformal representation of thgiraal areaA. Indeed, letX
y), X,y), and &', y") be the coordinates of the poiMt M’ andM", resp. x" andy” are
functions of K, y'), and in turn, functions of( y), like X andy' themselves. On the
other hand, the angles have not been altered, sintealrepresentations that were made
in succession are both conformal representations. ¥infthe pointM goes toP then
the pointM "will go to P, and the poinM"” will go to the center of the circle.

90. (Application to) the Helmholtz problem. - Suppose that the section of the
vessel is a curv€. LetAp be the trace of a vortex tube that has a momentstiegual to
27 As we have established [r&0):

v+ -1u

is a function ok +./ -1 y.
| can then set:
) v 1u=dwry-19) \/_W),
d(x+.-1Yy)

S0:
y=_9¥ _d¢
dy dx’
()
_dy _dg
Cdx  dy
Set:

X+ /-1y =&,
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That expression will be a function &f+,/-1 y. The functionsu andv behave

regularly inside of the curv€, except at a poinf,, whereu andv become infinitely
large of first order.
| add that the difference:

1
_1 —
v+ /-1u I Ty

remains finite. The function:

@+-1 p—log k+/-1y) =f1 (x+/-1Y)

also remains finite, even at the pofat. Consequently:

e‘/’+\/jl¢ - (X+ [_1 y) efl

will admit no singular point, since the two factoeshbve regularly at the poidy . ¢ =
const. along the curv@, which is a streamline. Now” is the modulus oé"’”F”’, orx
+./—1Y. Therefore, the modulus ®f+,/ -1y is constant along:

(1) X2 +y'? = const.

Consider a poinM (X, y) inside of the curv&€. When that point traverses all of the
area that is bounded Iy, the point X, y) will traverse the area that is bounded by the
curve that corresponds €@ Now, from equation (1), that curve will be a circenence

whose center correspondsfg. The representation will be conformal, sintce /-1y
is a function ok +./ -1 y.

91. Converselyif one makes a conformal representation of the @rd@&n one can
solve the Helmholtz problem. One will then kngw+./ -1 ¥, so one can set:

e‘l/‘*\/jl¢ :XI_I_ ’_1 yl,
Ay

dx dy

@ will be the velocity function (outside of the tuBg).

92. In order to determine the trajectory of the center a¥igy A, of the tube, it will
be most convenient to appeal to the electrostatic cosgpa

Consider an electric field that is determined by a cemamber of lines that are
perpendicular to thexy-plane, whose lengthsl Zre very large with respect to their
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separation distances, and which are uniformly eledrifie We suppose that the
extremities of all of these lines are in the two ptane | andz=-1.

A

Figure 27.

Let AB be one of these lines (Fig. 27), Rbe an arbitrary point on that line that has
the coordinates’, y', Z, and letP’ be an infinitely-close point whose coordinates>are
y,Z +dZ.

If dis the charge per unit length then the chargB@mwill be 0dZ, and the potential
of the lineAB at a point such & (x, y, 2) will be:

_("adZ
- MP'

If pis the distance from the poikt to the line:

MP” =7+ (z - 2?

V_.[H odz

Z={+z a=l-z L=1+z

Set:

V= '[ _odd

AN

V = Slog a+y{p’+a’ —5|og(”+*/ p+a’)(-f+y p’+a’)
_ﬁ+ [pZ +ﬁ2 pz ’

or, sincea andg are very large in comparison gpone will have approximately:
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4ap 2,17 -2°

V =0dlog —-=2dlog P

93. If the electrified lines are arbitrary in numlikeen:

|2 2

P
or

(4) V=-233logp +2loga/1°-2°> 7.

If the sum of the charges is zero:

>a=0
then the potential:
(5) V=-23% Jlogp

will no longer depend upon eithieor z.
The componendV / dzof the electromotive force that is parallelQais zero.

C
M

Figure 28.

94. Application to hydrodynamics.— Let C be the section of the vessel, andQet
be that of the vortex tube (Fig. 28). The vomnjigftvaries in an arbitrary manner inside of
Q, and is zero outside of it. Letrbe the total moment of the tube:

(6) [ Zdw=2n

The equations that must be satisfied are: tharaaty equation:

) W, oy,
dx dy
and the equation:
dv du
(8) —=2

dx dy



74 Chapter VI — Method of conformal representation

The relation (1) expresses the idea thaand v are the derivatives of the same
function (X, y):

= "
dy dx
v dx — u dy= d.

If one substitutes these valuesuadndyv into (2) then one will get:

Ay=2¢,

and there is a velocity function. The cu@enust be a streamline; i.e., along that line:

dx_ dy
u Y
or
d_wdx+d_wdy: dyg=0.
dx dy
Therefore, one will have:
{ = const.
alongC.

Sincey is defined by only its derivatives, one can alwayarage them in such a way
that the constant is zero.

95. Now, replace each infinitely-thin tube in the tubewith an electrified line of
length 2, and a charge density along the line that is propottiond Suppose that the
space that is enclosed betweRrandC is filled with a dielectric, and exterior 16, a
conductor is bounded on the inside by the cylinder that adhatscurve for its cross-
section. If that conductor is connected to the ground iteguotential will be zero, and
one will havey = 0 all alongC.

However, a layer of electricity will spread alo@gthat forms a charge that is equal
and opposite in sign to that &h (Faraday’s theorem). Upon conveniently choosing the
proportionality factor that couples the densitydtahe potential will be represented by
the functiony that we have defined previously [réd].

Inside ofC, inside of the dielectric:

Ay=0.
Inside of the cylinder:
AYy=-4mu'.
It will then suffice to take:
__ 9
(9) M oy
or

j,u"da):—%.
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The functiony will then satisfy the same conditions as the fumctiothat is defined
by the Helmholtz problem./ depends upon onby andy, and the sum of the charges is
zero, since the charges 6randQ are equal and of opposite sign.

At a point of the surface of the cylind€r the surface densiy’ will be such that:

JHdw=4,
upon calling the arc of the cur@
The potential then has the expression:

(10) 7/ :—Zj,u’ds Iogp—j M'dw log p
:wl+ wl/

(upon denoting the first integral g%’ and the second one lgy/).

It must indeed be remarked thiat is not the potential of the cylind€rby itself, and
" is not the potential of the cylind€X by itself, since the charges on these cylinders,
when they are considered to be isolated, are no longer ze

The expression for the potent@will be [no.93:

—Zj,u’ds log p+ 2 log 2«/I2—22J' i ds
-y +log 2|17 -2%,
W”-log 2417 -2%,

upon remarking thaf MHds=+1/2 andj M'ds =-1/2.
The components of the electromotive force are:

or

and for the cylinde:

:d_l/l u:—?j—l’;/

dx '’

so one must make a 90 degree rotation in order to obtacothponent of the velocity,
whose values will consequently be:

__ gyt dy”
dy dy’
(11)
y= ¥
dx dx

96. Suppose that the tube becomes infinitely-thin, strate reduces to the poiGt
and its moment remains equal ta 2
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Any electricity will be concentrated on the lii2 that is perpendicular to they-
plane. The electric force and consequently, the velocity — will become large & th
neighborhood of that line. The expressiongdtwill become:

W'=-2 Iogpbj M'ds=log m,

in which g is the distance from the poikt to the line that is drawn through the center of
gravity of the tube and parallel to thaxis.

Indeed,po is equal tgm, up to higher-order infinitesimalsMP becomes equal tdG
(Fig. 28)]. If the point considerdd approache§& indefinitely theng, will tend to 0, and
¢” will become infinitely large. On the contrary, will remain finite, sinceo remains
finite even when the poiMl approache& indefinitely.

Consequentlyl andv increase indefinitely, even though their first tedgs /dx and
d¢” I dxremain finite; in other words, the functions:

4+ dlogp,
dy

,_ dlogp,
dx

will remain finite, even at the poi.
The functiony must then satisfy the following conditions:

,dlogp, | y_3a10g0,
dy dx

u

The problem thus-posed involves only one solutibat solution will be given to us by
conformal representation.

97. Indeed, assume that we have obtained the confoemaesentation of the ar€a
on the surface of a circle of radius unity andciemter at the origin. Suppose that the
point G corresponds to the center of the circle. The tpbin(x, y) of the areaC will

correspond tv’(x, y) on the circlex +./ -1 y is a function ok +./ -1 y. Set:
log (X +/-1Yy) =@+ -1 ¢.

| say that the function:
Y=log xX*-y?

satisfies the required conditions.
Indeed:
Ay=0,

sincey is the real part of an analytic function.
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¢ =0 alongC, sinceC is represented by the circle:
X?+y?=1
¢ = log o remains finite. It can be infinite only at the po@that corresponds to the
point O, for which:
X% +y?=0.

Let Xo, Yo be the coordinates of the pofaf so:

po=Ix+=1y|=[x0+/-1Yol,

x’+\/—_1y
x+=1y—(p+/-1y)

X +,/ -1y is annulled forx +\/ -1y =X, +4/ -1 yo, and it will be a simple zero; the
guantity under the log sign will thus no longeramulled at the poir.

- log o = real part of log

98. Velocity of the pointG. — The velocity of the poinG is determined by the
equation (1) [no65):

(Z—)?J‘Zda):juida)

or
d)% dwl wlll
—2 | {dw=- | —{dw- | —{dw.
dt IZ J dy ¢ j dy ¢
Now, jddiida) = 0. Indeed, if the partitio& does not exist then the components
y
of the velocity will be:
po_ S _du
dy dz

However, in this case, the center of gra@tpf the vortex tube will be fixed:

dy"
dx, :_j dy cdw _
dt jfdw
SO.
j%(da) =0.

What will then remain is:
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d _cdy
Tﬂzdw_—jd—y(dw

dxo / dt will be one of the values thatdy)’/ dy takes inside of the sectidh of the vortex
tube. If the tube is infinitely-thin then that value Ivdiffer slightly from the value that
the function takes at the poiGt

In order to calculatdx, / dt, we then take the derivatived¢’/ dy and substitute the

coordinates, Yo of the pointG for x andy. We calculateo(ljlt‘): (dij :
0

dx

99. Electrostatic comparison— Consider a poin# in the xy-plane. The electric
force that acts at that point is situated in thah@laby reason of symmetry (since the
extremities of the electric lines are supposed to li¢ther planesz = £ |, which are
equidistant from they-plane), so its components will have the expressighsdx, dy’/
dy. It is due to the charge on the cylinderand the surfac€. That force can thus be
regarded as the resultant of two other ones, one ohwhidue to the charge @éhand
whose components will be:

dy' dy' dlog21”-27°
dz '

dx ' dy’

If the pointM is in thexy-plane then the third component will be annulled. The
second force that is due @will have the components:

dg” dy" dlog2y -2’

dx = dy ' dz

The second term in the potential@fwill no longer depend upanandy.
The third components are further annulled in xiggplane, and we will have two
forces whose three components are:

dy' dy'

dx ' dy =
and

dy” dy”

dx ' dy '’

the latter will become very large near the pdéit The former will remain finite, and
from the preceding section, one will obtain the velooitthe pointG upon making a 90
degree rotation.
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100. Trajectory of the pointG. — In order to find that trajectory (or rather oriat®
principal properties, since it is not always possiblelitain its equation in a finite form),
it is convenient to once more appeal to the electiostamparison.

101. | first recall some theorems of electrostaticg thwill make use of.

THEOREM |. — Let an electric field contain conductors that posskasgesMs,
Mo, ..., My at potentialsva, Vo, ..., V., respectively. If that field experiences a change
then the work that is done by the electric force$ bélequal to the increase in the sum:

1(M1VL+ MoV + .+ MoV = 1> MV .

THEOREM II. — Let S and S’ be two systems of conductors that exert mutual
actions upon each other (abstracting from the forcdstiieaconductors of one system
exert upon the conductors of the same system).

Suppose, to simplify the statement, that the conduat@sery small and reduce to
points. If that is not the case then one must decoenpash conductor into infinitely-
small elements.

Let M1, My, ..., M, be the electric charges on the conductors that comjhase
systemS and letV,, V,, ..., V,, respectively, be the potentials that the sys&m

produces at the points where these charges are foundMLletM,, ..., M, be the

charges on the conductors in the sys&nand letVs, Va, ..., Vi, resp., be the potentials
that the systerS produces at these points. The force that is doné& oy S, when
added to the work that is done by the forces $#iakerts upor§ is equal to the increase
in the function:

MV/+ MV, + ...+ MV, =MV, +MV,+ ... + M)V,

D MV'= > MV,

If the electric masses are infinite in number thea theorem will still be true;
however, one will replace the sufiswith integralg .

or

102. Apply these theorems to the study of the electeid fihat we have defined [no.
95].

The forces that are exerted in this field define foougs:

The forced=; that the chargeg’ exert on each other.
The forced=, that are the actions of the chargésn the chargeg”.
The forcesF, that are the actions of the chargén the charges’.

The forced=; that are the actions of the chargésn each other.
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Decompose the cylind€? into infinitesimal elements in the following manner: We
divide the cylinderQ into infinitely-thin cylinders of sectiodwthat are parallel t®z
and we then cut up these cylinders with planes that amalgdato the xy-plane; the
volume of each slice will béwdz and its charge will bg" dwdz

The components of the for€e that relates to that element will be:

1 dewdz -
dx

1 dawdz Y
dy

2 _ 2
. da)dzdlogzd’/zl z |

We remark that the section of the cylindemwas assumed to be very smally’/ dx
anddy’ / dy have values that are reasonably constant inside to$e¢loion. The point of
application of the resultant of the fordésis situated inside d®; it is thus very close to
the line that is drawn through the potand parallel tdDz Upon lettingl denote the
total charge o2, which is supposed to be concentrated on that line, shdtaat of the
forcesF, will have the projections:

8 4y
dx dy

103. The evaluation of the work that is done by thesee®tregins with the total
work that is done by the four kinds of electrostaticésfi, F», F,, Fs.

The work that is done by the electrostatic forcegpsesented, as we just recalled, by
the increase in:

%dem,

in which V is the potential at which one finds the infinitely-dhedhargedm and the
integral is taken over all the masses. In the dasevie are occupied with, the potential
will be ¢. The desired work will then be equal to the increase in:

%jwy”da)dﬁ—;jw,u’ dsd;,

in which dw is the section of one of the elementary cylindets mwhich we have
decomposed, anddsis an element of the contoGr in such a way that the surfaCas
decomposed into rectangles whose areadsatz

Upon remarking tha#, 1/, andu”do not depend upar) and that one must integrate
betweerz = - | andz = +1, that expression can be written:
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ijy"daﬁljz//,u'ds.
Set:
P= jw,u"daﬁjz//,u’ds.

The work that is done by the electrostatic forcesbelrepresented by:

d7=1dP.

104. Make the same calculation for the forégsby themselves. The charge on a
small cylinder ist”dwdz and its potential is:

W’ -log 2417 -2%.
One must then have:
d7= %dj [W"-log 2y |” - Z°| " dw dz

= %dj W' dow dz-4 dj W/ dolog2) - 2] d:
= Ide”,u"da)—%j u" da)jjll log2\/ I> - Z* dz,

since u”does not depend upan The last two integrals are constants. Consdtylen
upon setting:

PI - leﬂ"dw,
the force that is done by the fordeswill have the expression:
[ dP.

The work that is done by the other fordes F,, andF; will be represented by the
difference:

ld(P-P).
Now:

P-P= jz/l’,u"daﬁj W i ds.

 represents the potential at a pdiitthat potential is zero, sing@ is connected to
ground. The second term is therefore zero. Tist ifntegral must be taken over the
entire ared. Since that area is infinitely small;’ will have a value that is constant in
all of its extent, up to a constant, which will tiee valuey, that it has at the poirt.

We can then write:
P-P= z//(’)j Hdw =— ;.



82 Chapter VI — Method of conformal representation

105. Suppose that the tube displaces, and the velocity oénter of gravity has the

components:
D __ (4 %:(d_w'j
dt dy )’ dt  \dx ),

(O(Ijij denotes the value th%% takes when one substitutes the coordingieg, of
Y Jo

the pointG for x andy.

The massem will then displace, and that displacement will bedified at the same
time as the electric distribution on the surféce
The forced-, have:

dy’ - dyt
dx ' dy

for their components in therplane. The resultant of the fordésis then normal to the
trajectory of the poinG, and therefore does no work; the same thing will befouéhe

forces F, andFz . Indeed, the resultant of these forces is normahé conductoC
(because the lines of force always contact the conductarmally for an electrostatic
distribution). The masses’ will displace, but while remaining on the surface of the
conductor and consequently, in a direction that is perpendic¢alénat of the force. That
force will do no work.
The total work that is done by the fordes F,, andFs will then be zero.
It then results that:
dP-P)=0
or
P — P"=const.,
and
Y, = const.

106. The trajectory is a closed curve— Suppose that one makes a conformal
representation of the ar€onto the circlK that has its center & (Fig. 29). The point
G (Xo, Yo) corresponds t&' (x;,Y,), and the poinM (x, y) corresponds to the poiM’

(X,y). Set:
X+ -1y =2,
x+\/—_1y =Z,
%+ -1y, = Z;,
X+ /=1y =Zo.
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Figure 29.

Z is a certain function oZ, namely,f (Z), and Z, is the same function af,, namely,

f(Zo).
Further set:

X =/ ~1y, = U,.

In order to be able to apply the formulas, we must fambther conformal
representation such that the pdétorresponds to the poiit, andM, to a pointM ” (X",
y"), such that:

X'+ -1y =2"=¢ (2.

During the displacement of the pofaf the form of the functio will vary, but that
of f will remain the same, because the p@rmtlays no role in the definition &f
We know [no88] that it suffices to takes:

Indeed: If modZ’= 1 then one will have maod’ = 1.

If Z=2,thenZ’= Z,, and Z, = 0; i.e., the poinG will indeed correspond to the
point O.

Z" will be a function ok andy:

7" =g,
¢ =preal part of logZ" = log |Z" |,
Y'=logm,

if one takes:
P=MG=|Z-2%]|,

Y= log = log

Z-_ZW—k@|ZUg—1L

o
Z-2, Z-2,

Y, is the value of that expression ©F Z,, so upon applying 'Hopital’s rule:
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dz,

Y, =log E‘_|09[1_|Z:)|2]-

d ; 12 12 —
é‘—loglzouo—ﬂ =log

The equationy, = const. can then be written:

dz
dz,

— = const.
1- |Zo |2

when one passes from logarithms to numbers.
The trajectory is therefore always a closed curve.



CHAPTER VII

MOTION OF VORTEX TUBES. GENERAL THEOREMS.
TUBES OF REVOLUTION

107. Vortex tubes of revolution— Suppose that vortex tubes exist in an indefinite
liquid that are tubes of revolution around thaxis. If that condition is satisfied at the
time origin then it will persist constantly; any plathat passes through tkeaxis will be

a symmetry plane and remain one.
P

@) Figure 30.

z

Let M be an arbitrary point of the liquid; draw the meridane that passes through
that point (Fig. 30), and take the image of the systeth weispect to that plane. The
velocity of the pointM should not change (by reason of symmetry), so itaessary that
it should continue in that meridian plane.

z

@) Figure 31.

108. Consider an infinitely-thin tube that forms a kindafus (Fig. 31), letwbe its
cross-section, and I&be the distance from the center of gravity of thatisa to theOz
axis. The volume of the tube will then be:

27R dy

and it must remain constant. Since the vorticitig perpendicular to the meridian plane,
the moment of the tube will have a value:
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20dw

which is constant all along the tube. Simlzeis constant, it is necessary tlmshould
also be sogdepends upon onyandR. Upon setting:

X =R co0sg,
y=Rsing,
zZ=g,
it will become:
o=f(R 2.

On the other hand, the moment of the tube must renganstant in time;
consequently, the same thing will be true dorR.

109. We have to find functions, v, w that satisfy the equations:

dw dv

25—d—y &

_du dw

Cdz dx

dv du

(1) 2(—& Wy
du, dv, dw_ g

dx dy dz

These equations have the same form as those of MaxiMe¢y will coincide with
Maxwell's equations by assuming that one has replacedottiex tubes with the currents
whose components at&/ 27z nnl 2 {/ 2 u, v, w will be the components of the
magnetic field that is determined by these currents.

Maxwell introduced what one calls the potential veethiose components, G, H
are defined by the conditions:

(2) u:d—H—d—G, etc.,
dy dz
and which verify the condition:
dF dG . dH
— + =+ = =0
dx dy dz

Upon eliminatingy, v, w, one will find that:

AF +Hmu=0
or
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AF + 477[-1i =0.
21T

F is then the potential of an attracting material whosesitheis £/ 27z Letx, y, z be the
coordinates of a point of the field, Kt y', Z be the coordinates of the center of gravity
of a volume elemerdr’, let &, 17, {’ be the values of, 77, { at that point, and letbe the
distance between the pointsy, zandx, y', Z. From that, we will have:

.[g(dT

®3) G=] 2o,

IZdT.

~ These formulas givé, G, H, and in turnuy, v, w, when¢, 7, ¢ are known. (Cf.,
Electricité et optiquel, page 144et seq).

110. Expressing thesisviva of the liquid. — The totalis vivaof the liquid will have
the expression:

(@) T=4[ (@ +V+w) dr,

upon supposing that the density of the liquid ketato be unity. In the electrodynamical
comparison, if the medium in which one finds therents is non-magnetig/(= 1) then
the electrokinetic energy will be:

1¢,, T
(5) s_nj(” +v2+vv2)dr—ZT.

That electrokinetic energy is susceptible to amo#xpression. Indeed, consider a
current element on one of the circuits that geesr#te field. Lets be that element,
the current intensity, and |&tbe the projection of the potential vector onto divection
of the elementls so the sum:

3[idsP,

when extended over all current elements, will repne¢ the kinetic energy. If, for the
moment, we (with Maxwell) denote the componentsthe current byu, v, w then
Maxwell showed that:

(6) 3[idsP =4[ (Fu+Gv+ Hw o .

(Cf., Electricité et optiquel, page 153.)
With our present notations, the components ottheent are:



88 Chapter VII — Motion of vortex tubes

< n g
2 2 2
SO
1 _ $ n 4 _1
2judsp = ZJ(F S *Go_+H Zﬂjdr = 4nj (FE+Gn+HQ)dr,
and
(7) T=[(FE+Gp+H)dr.

111. The identity of these two expressions is proviegctly, moreover. Indeed.
[ (FE+Gn+HE)dr = [ Y Fédr _sz dr sz
We remark thatiz = dx dy dzand integrate by parts:
dF
J'F—dxdydl- j Fwdxdy—J' w— d.
dy

We must integrate from o to + . Now, F andw are zero at infinity. All of the
known terms are then zero at the limits, and whit@main is:

j Fd—Wd - j W— dr.
dy
Similarly:

I F—d —J.v(jj—Fdr

Therefore:

_ dH _dG dF_ dH dG dF
=4[ dr|u - + W ——— .
dz  dz dz b d d
or, upon referring to equations (2):

T:%j(u2+v2+vv2)dr.
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112. Mutual actions of the current elements that replacthe vortex tubes.— Let a
current elemenMM’ of lengthds and intensityi be placed in a magnetic field. LUt
be the vector that represents the magnetic fordd,and letMC be a vector that is
tangent taVIM " and proportional to ds. As one knows, the elemeltM “is subject to a
force that is perpendicular to the plav@C and equal to the area of the parallelogram
that is constructed oM T andMC. Letdx, dy, dzbe the projections afs onto the three
axes, leta, B, y be those of the magnetic ford&T, and leti dx, i dy, i dz be the
projections of the vectdviC. The projections of the electrodynamical force dhaxis
will be:

(0X) idz0B —idy Oy
(Oy) i dx Oy —i dz o,
(02 i dy Oy —i dx 3.

In the case that we are occupied with, the quanth@sdorrespond todx, i dy, i dz
are:

fdr npdr {dr
2 2m’ 2w’

and those that corresponddpg, y areu, v, w. The components of the electrodynamical
force will then be:

9 g—wn) =x dr
2
E(WE— uf) =Y dr,
2
E(u n-vé) =2Zdr,
2

upon setting:

X= i(vZ— w7), ..., etc.
2

113. THEOREM. — The forcesX, Y, Z), which represent the mutual actions of the
fictitious current elements, and with which we havelaegd our vortex tubes, must be
pair-wise equal and opposite. Therefore:

The sum of their projections onto an arbitrary axi$ ve zero:

(8) D Xdr =0, or: D (V¢ —wy) dr =0.
Similarly, the sum of their moments with respecamoarbitrary axis will be zero:

(9) D (Xy-Y® d =0.
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114. Direct proof of the equationz X dt= 0. — LetS be a surface; for example, a
sphere whose center is at the origin and whose r&tlissvery large. Letlw be an

element on that surface, and letm, n be the direction cosines of the normal to that
element. | say that the integral:

jdw[l—z(u2+\f+ W) — u( lu+ mw n\')/}

iS zero.

Indeed, we have supposed that our vortex tubealla¢ finite distances. A point of
the surface that is situated at a very large digtRirom the origin will also be at a very
large distance from the vortex tubes that is oEoRI The vectory, v, w) represents the
velocity or the magnetic force. One knows thas thagnetic force varies like IRP. If
we then regar® as infinite of first order then, v, w will infinitesimals of third-order,
like 1 /R®, andu?, V2, W* will be of sixth order. Granted, the surface owgtich one
extends the integral is infinitely large, but oolfysecond order; the integral is therefore
zero.

Transform that integral with the known formula:

leda) :jd—Fdr,
dx
and it will become:
du dv dw
U—+ V— +
dx ax dx
Idr —u%—vﬂl—wﬂv =0.
dx dy dz
_ du_ du_ du
dx dy dz

The second line is zero, by virtue of the equatércontinuity. Upon taking into
account equations (1), what will remain is:

2jdr(v(—w,7):o
or
> Xdr =0.

115. The theorem of moments gives an analogous equiatio

j (Xy-Y® & =0
or
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y x0
9 Iuvwdr:O.
ind

116. Another expression for thevis viva. — In order to obtain that expression, first
recall the following theorem of electrodynamics: Ifeodisplaces the currents without
changing their intensity then the work that is done leyelectrodynamic forces will be
equal to the increase in the electrokinetic energy. Letireent elements have an
intensityi; suppose that the coordinatesy, z of that element experience the variations
X, oy, &

or

j(x5x+Y5y+ 203 d="—.
4

In particular, assume tha&k, dy, & are proportional ta, y, z
XK= EX, oy =&Y, Z=€Z

Sincec¢is an infinitely-small constant, the transformatiwii amount to multiplying
all of the distances by 1 & Suppose, to fix ideas, that there are only twaents; in
that case:

T=3(LP+2Mii" +Ni?),
AT =1(ALi”+2Mii + N i?).

The currents will remain homothetic with respextthe origin under the particular
change that we have performédM, N are their lengths, in the electromagnetic system.
By reason of homogeneity, these lengths must bépted by 1 +& Therefore:

A =Lg M = Mg, AN = Ng,
and finally:
ol =Te

That formula will obviously remain true for an @rary number of currents, and even
an infinitude of them. Therefore:

j(x X+Y y+ Z3e=1E
4

or upon suppressingand replacing, Y, Z with their values:

XYy z
(10) :I uvwdr:IZ,
§ng¢
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or, upon representing the determinantCby

der :12.

117. Liquid enclosed in a vessek If one is dealing with a liquid that is enclosed in
a vessel and fills it completely then one can again appe the electrodynamical
comparison on the condition that one must replacedhsel with a perfect conductor.

Maxwell has shown that the currents in such a condactlocalized to the surface,
and that surface will form an electrodynamical screem, (a current sheet). The
theorems that were stated previously will remain truené takes that current sheet into
account.

118. Consider a point on the surface of the vessel: THeaules of liquid that are
situated inside of the vessel have a velocity thaitimted in the tangent plane, while the
liquid is at rest at a point that is infinitely closethe surface, but situated on the other
side. The velocity will then be discontinuous. THatcontinuity can be replaced with
the introduction of a vortex tube. Indeed, take the qdei case of a planar surface — for
example, thexy-plane — such that the liquid is beneath that planke velocity will be
zero beneath the plane, so the vortex tube willdpestant and parallel tOx.

Suppose that the variation of that velocity does n@péa impulsively, but in a
continuous fashion, although very rapidlyu will be a certain function of in the
transition layer:

u=f(2,
and

du

— =f(z

= 4]

will be non-zero. From the hypotheses that were mada] be a function of onlyz v =
w = 0. Therefore andn will be zero, but:

will be non-zero and even very large.
The vortex that replaces the discontinuity wikmhbe parallel to the separation plane
and perpendicular to the velocity.

119. The theorem will still be true when the separasonface is curved, and the
velocity is variable. In order to prove this, it walliffice to decompose the surface into
elements that are small enough that one can consieer to be planar and the velocity
as being constant over all of their extent. It iseafsvpossible to choose the thickness of
the transition layer to be itself very small witlspect to these elements; we can then
replace the surface with a sheet of the vortex tisem the preceding proof, each of the
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tubes will be directed in the plane of the elemené= in the plane that is tangent to the
surface — and its boundary will be on that surfacefits®d perpendicular to the velocity
at the point considered.

120. The force X, Y, 2) that represents the electrodynamical action oneanent of
our fictitious current must be perpendicular to bothdhaent and the magnetic force.
The current is in the plane that is tangent to theasarbf vessel. The magnetic force,
which is directed like the velocity, is also situatedhe tangent plane. The force [,

Z) is then normal to the surface of the vessel.

121. In order to apply the theorems that we have provebercase of an indefinite
liquid [no. 113-114 to the present case, we must take into account twapgrof
electrodynamical forces, namely, the ones that acih upe currents that we have
substituted for the vortex tubes and the ones that act the current sheet that replaces
the surface.

However, in a certain number of particular casessdlcomplementary terms that are
provided by these latter forces, which we must add to ourtiegaawill have a zero
sum.

For example, if the vessel has the form of a d@inwhose generators are parallel to
Ox then the forces that act upon the current sheet (lm&ingal to the surface) will be
normal toOx, and the sum of the projections o@& will be zero. The first theorem will
remain true without modification [nd13.

If the vessel is a figure of revolution aroudd then the sum of the moments of the
complementary forces with respect@a will be zero, since all of these forces will meet
Oz The second theorem [Nb13 will still be true.

If the vessel is a sphere or the space betweemrdwoentric spheres then the second
theorem will be true with respect to an arbitrary alxet passes through the center when
the sphere is a figure of revolution around an arbitrais; a

If the vessel is bounded by two planes that are patalllexy-plane, for example,
then one can consider it to be a figure of revolutimuad thez-axis or a cylinder that is
parallel toOx andOy, and apply the remarks that relate to these various.cases

122. The vortex tubes are cylinders that are parallel tdOz — Under these

conditions:
E=n=0, w=0.

¢, u, vdepend upon only

The motion will not be modified [n&6] if we bound the liquid with two planes that
are parallel to they-plane; for examplez= 0,z = 1. The two theorems will again be
applicable. Here is how we define the elentart Decompose they-plane into surface
elementdw and take each of these elements to be the baseytihder that is parallel
to Ozand bounded by the planes 0 andz= 1. The space that is found between the two
planes will be divided into an infinitude of these cylirslen that fashion. We can then
draw planes that are parallel to theplane with a distance aliz between them. It is the
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slice of one of these cylinders that is bounded by twiha$e planes that we take to be
the elementdr. We will then have:
dr=dwdz

and the statement of the first theorem will become:
[v¢dz dw=o0.

Sincev, ¢ do not depend upan we can integral over between the limitz = 0 andz
=+ 1, and get:
(11) [v¢dw=0;
in the same manner, we will find that:
(12) [u¢dw=o.

Upon developing the determinant [rid.g, the second theorem will become:

j (xu+ y\) {dz dw= 0,

or upon integrating oveg, as above:

(13) j(xu+ yV) {dw= 0.

123 We thus find the theorems that we have proveatarpreceding chapters.
The center of gravity of all of the vortex tubesnains fixed, which is expressed by
the equations:

j X {dw = const.,

j y {dw = const.,

and the moment of inertia of the tubes with respe@n arbitrary axis that is parallel to
Ozwill remain constant. For example, with respedDritself:

(14) j O + y?) € + YA dz dw= const.

In fact, upon differentiating these equations wibpect td, one will get:

j%‘(dw: jv(dw: 0,
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| Y do= [v¢dw=0,
dt

dax . dy - =
J(thwdtjzdw j(xu+yv)(da) 0.

We recover the equations (11), (12), and (13)wae written above.
Finally, upon writing that the sum of the momeotshe quantities of motion of the
tubes with respect tOzis zero, we will get:

j(uy— vy {dw= const.
or
xyO
j u v 0| dw= const.,
00¢

which is nothing but equation (10) of nbl6 in the case that we have placed ourselves
in:

j D dr = const.

124. Direct proof of the relationj D dr =T/ 2. — Now, return to the general case.

We have proved the relation (10):

j Ddr = T
2
by the electrodynamical comparison.

That relation can also be established directlyyashall now see.

Set:
h= uw? + VvV + W |
2
to abbreviate, or:
T= j hdr .

Develop the determinait in elements of the first row:

D =Ax+By+Cz
upon setting:

A=nw-=2yv,
B=Ju —éw,
C=¢v—-nu

For example, calculat:
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du dw dv du
2A=2nW—-2AV=W|——— [-V| ——— |,
a2 (dz dxj (dx dyj

_ . du du, du du du di
ZU—-U—+Vv—-— + W— = W—,
dx dx dy dy dz d:
_du.  du du dr
ZU—+V—+ W———
dx dy dz o

so the expression fd@ andC can be deduced from this by symmetry.
Imagine the integral:

u?+ v+ wW

L {(Ix+my+ nJ —(lu- mw NI xe Y z)v}dw.

That integral will be zero when it is taken over sieface of a sphere of very large
radius, from an argument that we have made severes taineady (see, in paitl4. We
transform it with the formula that we have alseatlty made use of:

[1Xdw= jz—dr

or
[ Y IXdw = jz—dr
and get:
X:XW —u(Xu+yv+zw =xh-uK

upon setting:
K=xu+yv+zw
and consequently:

d_x_ Xﬂ] h—ﬂJK—uz—u(XgJ-f- ygv-f- d\:j
dx dx X d dx d

where the last two equations are obtained by synymé&ve must then write that:

IZ—dr 0.
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Upon performing the sul,, we will find, after the obvious reductions, and upon
taking the equation of continuity into account, that:

Z((jj—xzh—Z@\x+By+Cz):h—2D,
X

SO
jhdr—jzodr:o,

T

3

[ Ddr=4[hdr

125. The vortex tubes are figures of revolution aroundz — Suppose that the
vortex tubes are figures of revolution arou@dd In that case, we adopt semi-polar
coordinates by setting:

X = 0 COS ¢,
y=psing,
z=z

By hypothesis, the vorticity is perpendicular he meridian at each point.
Therefore, ifois the magnitude of the vorticity then:

{=-osing,
n= o0cosgy,
{=0.

By reason of symmetry [ndl07], the velocity (1, v, w) will be situated in the
meridian plane:

dp

u=—=-c0s4g,
dt ¢
do .
V= —=sin ¢,
dt ¢
dz
w=—.
dt

Moreover,g/ pis constant, as we have seen [H2f.
Substitute these values in our equations; a certamber of them will reduce to
identities. However, the following one will remain

(15) j (un-vddr=0,
in particular.
In order to define the elemedt, consider a meridian plane; for example, tye

plane. Decompose it into surface elemalis Each of these elements will generate a
volume when it is revolved arour@z If we draw meridian planes that have an angular
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separation oflg then those planes will cut out sections of the veasirthat amount to
cylinders of sectiomlwand heighjp dg. The volume of these sections will be:

dr=pdwdg .
Equation (15) will become:

j a‘i—‘t’ (cog ¢ + sirf ¢) = pdwdg = 0,
or

dp
16 —— pdwdg =0.
(16) [ o= pdwds

The integral must be extended over all elemdat®n one-half of theyplane and
between the limitg = 0 andg = 27z

Since the coefficient oflg does not depend upa#y one can integrate over and
write:

dp
17 —— dw=0.
(17) [ oo "

Now, transform the determinabt by multiplying it with another one that is equal to
1

Xy z cosp siny
D =|(&n ¢ |x|-sing cop
uv w 0 0 1
XCOSp +ysSing —xsip+ycog z
=|écosp+n sip —¢ sip+n cog ¢

ucosg +vsing —usip+vcog w

or
p 0 z
D=|0 o O :a(pd—z—z%j.
dt dt
dp o dy
dt dy

If we substitute that value &f in the relation (10) then it will become:

[Ddr =[Dp dwd¢:12,

27| Dp da):Iz.
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d dz__dp)| _
(18)( 4njapda)(a Zdtj T

126. Magnitude of the velocity.— Let an infinitely-thin tube of circular cross-
section exist by itself; its radius will remain comgtaThe relation (17):

dp
op—dw =0
J g
expresses the idea that:
j op® dw= const.

Indeed, if we differentiate the latter with respéett, upon remarking thatv dw
represents the moment of the tube and is constantyievill recover equation (17):
Set:

(1) [odw=m,
(2) j oo’ dw= MR
M will be a constant, as well &4R.
If ohas the same sign everywhere tRewill be found between the extreme values

of p, namely, ando; .
Indeed, lefo be the largest value pf

MR? < j op? dw

or
MR < o} [ o dw= Mg}
R < pf;
one likewise proves that:
R > of.
Consequently:
Po>R>pr.

If the tube is infinitely thin them, and o will differ very little from each other and
the mean radius of the tube. That mean radiusalatl differ very slightly fronR, and

) Helmholtz found:

dz dpj _
477 gpdw| p—2-22F | =T,
[op a)(pdt Zdt

instead of this equation, as a result of an error irutation. However, the presence of the factor 2 will not
change the results that we shall present, since tleepeered upon only the consideration of the order of
magnitude of the different factors.
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can be regarded as constant, just RkeThe only motion that the tube can undergo will
thus reduce to a displacement paralleD What will the velocity of that displacement
be? It is not obvioua priori that it will be constant, because the position oftthze
relative toOz will not change under the displacement; the velocity depend upon the
form of the section.

That is not true: The velocity will be constant andyvarge, as Helmholtz showed
by appealing to equation (3) and taking the order of magnitude gjudintities:

T, u,V, and%
dt
into account.

If the section of the tube is infinitely thin then aimathat is situated at a finite
distance from the tube will have a finite velocitlowever, a point that is situated in a
neighborhood of that tube will have a very large vé&jyocThe radius of the section of the
tube and the distance from that point to the boundétiat section will always be very
small relative toR. One will obtain a sufficient approximation by makinie t
neighboring part of the tube into a cylinder and applyingfahewulas for the cylindrical
tubes to it.

127. Consider an infinitely-thin rectilinear tube. In orderdetermine the velocity,
we replace the tube with an indefinite rectilinear aurreThe velocity is represented by
the same vector as the magnetic force; it will tharynversely with the distance form
the point considered to the axis of the current. Thecitgl will be infinitely large at a
point that is infinitely close to that line. Consequigrthevis viva Twill be infinite.

The potential vecto|, G, H) is defined by the relations:

F :j < dl, etc.
27T

Suppose that our rectilinear tube is parallel toxthgis.

In the present casé,/ 2rwill be a constant.F will be the potential of a uniformly-
electrified, indefinite line. That potential will be ofder logp at a point that is infinitely
close to the line, ipis the distance from the point to the line.

X z

Figure 32.
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128. Now, let there be a circular tube or a circularent that replaces it. In the
plane that is normal to the circle at the pd@ntl take a poinM that is very close t@. |
would like to look for the magnetic force and the vegqtotential that is generated by the
current at the poin and compare them to the ones that are generateddunfilanear
current that is directed along the tangenOtand has the same intensity as the circular
current.

Take the pointO to be the origin (Fig. 32), the tangent to be xkexis, and the
diameterOCto be they-axis. The poinM will be in theyzplane.

Suppose that the intensity of the current is equal to uhgydsbe a current element,
dx, its projection ont@®x, and letr be the distance froufsto the point\:

P1

Figure 33.

LetPP’=ds let BB =dxbe the projection oPP’onto thex-axis (Fig. 33), and lat
be the distance frofR,E to M. The vector potential that is due to the rectilin@arent
will have the expression:

F]_: —_—.
rl

The integral must be taken frofieo to + o0, but, since we are proposing to study only
the order of magnitude &, we can take it between the limitdR-and +R, like the first
one.

Indeed, the elements that are situated at a finitardistfromM will contribute finite
terms to the expression fé# that are negligible in comparison to the very latge@ns
that are given by the elements that are clodé.to

It then results that we have the right to write:

F—H:jdx[%—%j.

We can then find an upper limit for the element of thiggral. Indeed, let:
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0, Yo, Zo be the coordinates ™,

X, y’ 0 13 13 P,
X, 0,0 “ “ P .
In the triangleMPP;:
MP=r, MP1=r1, PP, =y.

Now:
1_1
rr

rn-=r
rr,

(r1—r) [riz +r_12j :

Sincer; —r <y, one will finally have:
oL,
r’ r?

F—F1<jyr—(3)(+'[ ):lgx.

is smaller than:

and

Moreover:
2= MP =3+ (y— )2+ 2,

ydx y dx
J r’ _Jx2+(y—yo)2+25’
o)
Iy_w<<jy_d><,

r? NG

When the poinP approaches 0 indefinitely,/ x* will tend to a finite limit &, where

R is the radius of the circle. The integrj‘alyr—?x, and likewise, the integrej] yt;lx
rl

, will

thus remain finite, and as a result, the differéneeF; will be finite.

129. Order of magnitude of the potential vector— Since the differencE — F; is
finite, we can replace the circular tube with aiteear tube in order to find the order of
magnitude of the potential vector.

First, suppose that one is dealing with a unigioe tand that the vorticity is constant.
The rectilinear tube will be a cylinder with a citar section. The potential vector will be
equal to the potential of an attracting mass thatistributed on the cylinder, and whose
density will be equal td / 27z
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At a point exterior to the cylinder, the potential bt the same as if all of the
attracting mass were concentrated on the axisy 1§ the radius of the cylinder then
everything will take place at an exterior point — ia.a point whose distance from the
axis is larger thamy, — as if there existed an attracting mass along thenattisa density
of:

: & _ ¢
Poon 2
and the potential at that point will be:
(3) [ 05 ogp (0>m).

For a point that is interior to the cylinder —.i.éor p< o — the potential will be
obtained by decomposing the cylinder into two pbst& cylindrical surface that has the
same axis as the cylinder and passes through thequmsidered. The annular layer has
no effect upon the point. The other part has #meseffect as if all of the mass were
concentrated along its axis.

Consequently, the attraction will be equal to:

2
_ZpO fOt’,0>,00,

yo,
—-{p " p=p
-{p  “p<m.

The potential will then have the expression:

4) - +C,

so the two formulas (3) and (4) will agree for o . That condition will determine the
constaniC:

2
—% +C=-{p; log p,

C = {p; (3-logp,).

Suppose that the momedijy of the tube is finite. Ij is very small therC, and
consequently, the potential vector, will have tAme order of magnitude as Ipg.

130. Order of magnitude of thevisviva. — LetP be the potential vector, and let
be the vorticity, which are both perpendiculartie meridian. Theis vivawill have the
expression:

I :janr: janwd¢,
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or, upon integrating ovep:
| =27 j oPpdw.

Now, j odw is finite, since it is the moment of the tube, whiah regard as finite,

by hypothesis. P has the order of logy . Thevis vivawill also have that order, and
consequently, it will be very large. As for the velgcit will have the same order of
magnitude as the attraction of the cylinder that we densd above, and consequently, it
willbe 1/ .

131. Velocity of motion.— Set:

(5) A:japzzda):MRzzo,
upon taking:
(6) MR? = j op®dw = const.

7, will be assigned to a point that is situated insidehefmeridian section of the tube.
Indeed, letzz andz be the extreme ordinates of that section.
| say that:
n>0>2.
Indeed:

j op’z, dw = le p*odw=2z MR
On the other hand:
ja,ozz dw< ja,azzl dw,
or:
2 MR <z MR,
and:
n<Z.

If one differentiate#\ with respect ta then one will get:

dA dz, do 2dzj
— =MR?2= | gdw| 202+ p*— |,
at | ( P& TP

becauserdw which represents the moment of the tube, is ateoh On the other hand,
we infer from equation (3) [nd.29 that:

dz do T
op*—dw = — dw+—.
I P dt IU'OZ dt ar
Consequently:

@) A _mre9% - 3 00292 dw+ -
dt dt dt arr
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One deduces from equation (1), upon remarkingzhata constant:

dp
8 0= —= 7z, dw,
(8) [ oo LS
and, upon adding (7) and (8):
(9) MRz Lo dzo =3[ Upd’o(z 2) ch)+—ﬂ

The first term in the right-hand side is finitendbed,j odw is finite, as iso. dpo/ dt

is the component of the velocity along the radius vedtas a very large quantity that
has the same order as & /z — g is smaller than the diameteof the section of the tube.
Thereforedp/ dt (z — 2) is finite.
One can thus neglect the first term in comparisathéosecond one, and one will be
limited to writing:
dz, _ T 1
dt 47 MRS
It results from this equation that:

1. The velocitydz / dt is very large and has the same order of magnaisdéevis
viva T.

2. It is reasonably constant, sintas constant. Granted, the first term is variable,
but we have shown that it is negligible in compamiso T.

The vortex tube will thus displace with a veryglelocity parallel t@®©z

Figure 34.

132. Order of magnitude of the velocity. Direct proof— As we know, the velocity
(u, v, W) is represented by the same vector as the magioetie. LetAB = ds be a
current element (Fig. 34), and Ietbe a magnetic pole that is equal to unity. Thedo
that the elemen\B exerts upon that pole will be perpendicular topteePAB, and will
have the expression:

AB x i
rz2 -

AB’is the projection oAB onto a perpendiculdA, i is the current intensity, ands the
distanceAP.
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In absolute value:

AB'x i ids
< —.
re re
Decompose our vortex tube into volume elements an@aemach of them with a
current element. 1&is the intensity of the vorticity then we must giveiatensityodw

/ 2rr[no. 43], and consequently:
i ds

_ odsdw _ odr
21T 2

in whichdwis the element of the section, ahdis the volume element of the tube.
The velocity will then have the upper limit:

5

Decompose the tube into elements in the followingmea

Draw some concentric spheres with their centeiR. alThese spheres cut out slices
from the tube that have the form of spherical capspadrticular, consider one of these
slices that is bounded by spheres of radiasdr + dr, and the integral:

2 H

odr
1=

which is extended over all of the volume of that slitet o; be the largest value that
takes in the slice. Since all of the elements itthegral have the same sign:

J-Urtjr <.[Ulr(zjr'

r can be regarded as constant over the entire thickihéiss slice. That permits us to
write:

JZ5E <G

Now, | d7is the volume of the slice, which is equaltalr, if one calls the section of
that sliced. As a result:
odr _ gAdr
J. r2 < r2 '

Now, letdw be an element of the section of the tube, and cantigeelementary
tube that is generated by revolution around the axis oflbatentdcy sodA will be the
section of that tube that is made by the sphere afsad

| shall divide these spheres into two groups:
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1. The ones whose radius is smaller than a certairr dippe that is, at most, the
diametere of the section of the total tube. For example, | take that limit to be 2

2. The ones whose radius is greater than 2

The upper limit on the velocity will then be:

2

22 g Adr  cagAdr
(10) J.O r2 +.[2£ r '

In the first integral is obviously smaller thanr?, which is the area of the entire
sphere. Therefore:

J-Zs gAdr

2¢
< 4ﬂj o, dr
0 r 0

or

J-Ze oAdr <870 &
0 r2 )

As always, we suppose that the moment of the hasea finite magnitude, sgQ
will be finite. a1 will then have the same order of magnitude af1-/i.e., 1 /& — and
oiewill have order 1 E.

C

A

Figure 35.
In the second integral:
a=22
sind

in which @ is the angle by which the sphere cuts the tubg. @&5); & is always greater
than a certain limi, which is different from 0. Indeed, no spherdle second group
can be tangent to the tube. The contact will {alkee in the meridian section, and the
radius of the sphere will be less than

As a result:
da < 9'“’
sing,
and
A< Q

sing, ’
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Iaal)ldr <ja o Q dr

2¢ 2 2esing, r*’

the first factor. 712 is finite, while the second one is:
sing,

jrod 11
2sing, r> 2 a

The integral again has the order of magnitude.1 /

The two terms in the expression (10) then haveséime order of magnitude as &, /
and the velocity itself has an order of magnitud s at most equal to that of &/
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STABILITY CONDITIONS FOR PERMANENT MOTION

133. Permanent motion— Suppose that the liquid is indefinite, and the vortexsube
are parallel tdz The motion will obviously be permanent if tff@re functions of only

the distancep= / X* + y*.

There will be a series of concentric layers aro@zdinside of which the vorticity
will have a constant value.

M

Figure 36.

Let M be an arbitrary point (Fig. 36). The velocity of tipaint will be directed

perpendicular to the radius vectoM, which is drawn from the origin to that point. The
point M will go to M1, which is situated at the same distance f@nauring the timett.
M will therefore describe a circumference with itsteermtO. Let { be the value of the
vorticity at the pointM and the instartt while {”is its value aM; at timet + dt, and{; is
its value atM at timedt.

| say that:

¢=d.

Indeed, the molecule that is foundMatat timet will go to My, which is on the same
tube, at time + dt. Now, { = const. for the same tube.

Indeed, the two pointl andM; will be on the same circumference whose centat is
O at timet, and{ will depend upon only the distance to the p@nby hypothesis.

The intensity of the vorticity a; is therefore constant. Sind#; is an arbitrary
point, the same thing will be true for every other paamig the motion will be permanent.

134. Stability of motion.— Is that permanent motion stable?

In other words, if an arbitrary cause tends to deftnese concentric layers infinitely
little then will that deformation be exaggerated, or Wik liquid tend to revert to its
original state of motion?

In order to resolve that question, we must study th@ati@n of the velocity (, v)
under these transformations.

We have found [n®4], in a general manner, that:
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" -
dy dx
upon setting:
p=-] %% 109
T

If we pass to polar coordinates by setting:

X =T COS¢,
y=rsing

then the components of the velocity will become:

dar __ dy
dt  rdg’

(98w

dt dr

135. Special case- Suppose that there exists just one cylindrical tube wtross-
section is a circle, and th&tis constant inside of that circle. The velocityaatarbitrary
point will be r inside of the cylinder and'r; /r outside of it, if we call the radius of the

cross-sectiomg .
Furthermore:

Figure 37.

Suppose that the cylinder experiences a small deformatimnexample, the poiil
goes toM; — and the radius vect@M = s becomes a function of tinteand the angle
that it makes with a certain diameter through theio@X (Fig. 37).

During the timedt, the pointM; will go to M, and its polar coordinategands will

experience increments of:

d¢ = %dtd_w: dt
dt  rdr
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and

ds:—d—w dt.
rdg

On the other hand, sineas a function ofp andt:

ds= 95 4g + 954t
dg = dt

S0, upon replacindsandd¢ with their values and solving fals/ dt, one will get:

a1 ds__dy _dy ds.
dt rdg rdrdg

Develops in multiples ofg using Fourier’s formula:
(12) S=ro+ Y a,cosng+y hy sinnp.

The total surface of the tube must not vary. Theegfthre constant must be equal to
ro, Up to second-order infinitesimals, andb, are functions of that are independent of
¢ and very small, since we have assumed that the dramstfion is very small. The
function ¢ is, up to a constant, the potential of an attractingsmiaat is distributed with a
density{ / 2rrthroughout the entire cylinder that forms the tube. rtepto simplify the
notation, we shall suppose that 1 in what follows.

The potentialy can be considered to be composed of two parts: Thepisedue to
the undeformed cylinder, while the oth@p is due to the deformed part (which is shaded
in Fig. 38). Since the thickness of these deformed pari®ivery small, the potential
will have the same value as if, instead of attributingp i constant cubic density, one
gave it a surface density that was proportional tohioknesss —ry .

That surface density will bgz_—ro :
T

S— 1 _ > a,cosng+ >y sinnp

13
(13) 217 217

The potentiaby will then be a function af andg, and we can write:
Y=Y c,cosng+> d, sinng.
For a point that is exterior to the active layexg,will verify the Laplace equation:

A (o) = 0.
Consequently:
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A (c,cosng) =0,
A (dy sinng) = 0.
Sincec, andd, are functions of only:
Ch=cC, r"+c r",
do=d r"+d' r ",
inwhichc,, ¢, d , d are constants.

Sincedy must not become infinite at the same time, asis necessary that:

c, =d =0.

"
The function is different for an interior point.i$ necessary that it must remain finite

forr =rg, so in the interior:
C" = dl

[/
n n

=0.

It then results that for an exterior point, we maest

(14) W=7y 9, (%jncosm+z h{rr_oj” sinng

and for an interior point:

(15) W=7y o, (%jncosm+z H{rr—ojn sinng .

The potential remains continuous when one crosses ttlaetmty surface. The two
formulas (14) and (15) must then give the same value=ap, which demands that:

g;:gn1 h;:hn-

However, when one crosses the surface, the foltendergo a brief variation that is
equal to the product of the density by 4That force will have the expression:

1. At an exterior point:

(16) ddif” =2 —n[ijn%(gn cosng + hy, sinmp .

r

2. At an interior point:
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(17) ddi:/l => n{rLj %(gn cosng+ h sing ).
0

For r = ro, the difference between these two expressions fneisequal to #
multiplied by the expression (13) for the density.
One then has the relation:

-2 %(gncosn¢+ h, sing ' =2 (a,cosng + 1k sinrg ).

Upon identifying the coefficients of cog and sinng, one will get:

I
gn:_ah 01
n
hn:_bnro.
n

If we substitute these values into the exprestioy then we will get the following
expressions for the potential:

1. At an exterior point:

(18) Y=gp+W=p-y, %(ancosn¢+bnsinr¢ (r?j :

2. At an interior point:

(19) =6~y 2% (a cosnp+ b sinry H .

n 0

(when we re-establish the factgthat we have suppressed).
The two formulas will agree far=ro, and will both give (upon once more supposing

that{=1):
W= =3 2 (a,cosmp+y sinrg ),

while equation (11) must be verified, moreover.
Forr =ro, one will have:

3_4;’ = Z r,(a,sinng —b, cosng ',

d_l//: i - )
W3 -t cos
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ds
=r

) 2>, (-na,sinng + ny cosrp ).

ds/ d¢ is a first-order infinitesimal. Since we are neglegisecond-order infinitesimals,
it will suffice for us to take finite quantities in theefficients ofds/ d¢ .
To that degree of approximation, that coefficient vatluce to:

gy _
hdd,

Make the replacement in equation (11):

g—f:— Z (a,sinng — h, cosrp | - Z (-na,sinng + nh cosmyp |

_y da ag
=> i cosng + i sinng .

Upon identifying them, we will get the conditions:

da, _
ar (1 -n)bn,
(20)
da _ 4 _
p Q-na,.

These equations admit the integrals:

a, =Asin(1—n)t+B,
(21)
b,=Acos (1n)t+B.

These equations show thataf and b, are small at tim&¢ = O then they will always
remain very small. The motion will then be stable.

136. Special deformations— Let there be a deformation such that all of the
coefficients are zero to begin with, except &@randb, . All of the other ones wiill
remain constantly zero. The deformed curve will h&reegiquation:

(22) S=ro+aycosng + b, sinng .

The radius vector will then presentmaxima andn minima, and the curve will
present a series of festoons (Fig. 38).

The curve will keep the same form whievaries, except that it will appear to rotate
aroundOzwith a velocity that is equal to (1n} ¢
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)
Q
D

Figure 38.

If the curve is more complex — i.e., if it has mohart two non-zero coefficients —
then one must decompose it into simple curves that @acbspond to a value afand
each rotate arour@z with a particular velocity.

137. Suppose that = 1, so that:
S=rpt+a;cosg+bysing.

That equation, up to second-order infinitesimals, reptesenircle whose center has
the coordinatea; andb; . In that case, 1 rwill be equal toO, so:

d _, d_g
at at

The center of the circle, b,) is therefore fixed.
Letn=2.
S=ro+aycos  +hbysin2p.

Up to second-order infinitesimals, that equation isdateation of an ellipse whose
center is at the origin and whose eccentricity iy wfight. On the other hand, In=1,
so:

a; =Asint + B,
b, = A cost + B,

and the ellipse will appear to rotate with a uniform ooti

138. That theorem is still true in the case of an arbytedlipse. Indeed, lef be the
value of the vorticity inside the ellipse, which is assd to be constant.

Take rectangular coordinates again by choosing the axss ttte axes of the ellipse
at a well-defined instant.

The components of the velocity will be:
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yo _aw
dy dx

which will be the components of the attraction thagxerted by an attracting mass that
fills the cylinder and possesses a constant densiy/dtzz Now, we can consider an
elliptic cylinder to be an ellipsoid whose one axisimite.

Let a homogeneous ellipsoid be:

axX + by’ +cZ = 1.
Its attraction at an interior point will have thengponents:

Ax, By, Cz
in which A, B, C are constants.
The equation of the cylinder will reduce to:

ad +by’ =1,

Therefore:

At the beginning of time, the interior point consel@mwill experience a displacement
whose components are:

udt=-9% gt =— By d
dy

vat=—% gt= Axdt
dx

| can always determine two numbersnd/ such that:

A=a+ [,
B=a+ /M,
as long as # b andA # B.
The displacement will then decompose into two otbees that will have the
components:

(1)

respectively.
The displacement (1) will not alter the form of #lkpse. Indeed, differentiating the

equation of the ellipse will give:

—[bydt= dx ) —aydt=dx
Laxdt= dy axdt=dy,

2ax dx+ 2by dy= - 2axfoy dt+ Zbyfax dt= 0.
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The displacement (2) represents a rotation arddad The ellipse rotates with
deformation after the timet, and consequently, after an arbitrary time.

139. Concentric vortex tubes— Consider a vortex tube that is bounded by two
cylindrical surfaces of revolutio@ andC’ aroundOz (Fig. 39). We assume that the
vorticity has a constant valug+ ¢’ inside of the cylindeC whose radius isy , another
constant value” between the two cylinders, and finally, that the wistiis zero outside
the cylinderC’whose radius is, .

CI

/\

Figure 39.

The effect of the two concentric tubes will be eqiwathe sum of the effects of the
two tubes, one of which has a radigsvith a value of the vorticity that is equal §pand
the other of which has a radius §fand a vorticity”.

Each of these tubes will give rise to a permanentiomofno. 133; if one
superimposes their effects then the motion will agaipdyenanent.

140. Stability conditions.— Is that motion stable?

In order for us to answer that question, we shall mdcky a method that is
analogous to the one that we employed previously.

Let ¢ be the value ofy. ¢ depends upon only so the velocity will perpendicular
to the radius vector and equaldgy / dr.

If r <rg then the point will be interior to the two cylinders; so

% ={r+{'r.

If ro <r < 1, then the point will be exterior to the first cylind@rand interior to the
second on€’, and:
dy, _ 415

+ 'r.
dr r ¢

Finally, ifr > r, then the point will be exterior to both cylinders, and:



118 Chapter VIII — Stability conditions for a permanentiom

d¢/0 _ ZrOZ +er52.

dr r r

Forr =rgandr = r. , these formulas will become:

d%—(zw)ro,
dl//o Zr erl

I
dry r?

Upon settingr, / r = &, they will become:

Yo - zv g
r,dr, ’
dwo - Z£2+ZI-
rpdrg

EndowC and C’ with a small deformation, in such a way that thediua vectors
become:

S=ro+) a cosng+Hh sinng,
S=1, +) a cosng+H, sinng,

respectively.
We have found that for just one tube the valug¢/after deformation will be:

W= - z (ancosn¢+b]smr¢{ j ,

upon agreeing to give a sign that makes the factE}f—j always be < 1.
0

For tubes, we will have:

W= - z (an cosng + by smr¢{ j_ —Z%(a{1 cosng + 4, sinny {rLj_ :

If we write the differential equation (11) for dmaf the tubes then it will be:

d_S:— dw— 'E
. - dg (Z+Z)d¢’
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E:— dl// - 2 'd_é
dt rrdg (ce +Z)d¢'

Develop the terms and identify the coefficients€o$ng and simg for r =ro andr =
r, . We will then find the equation (upon suppresshmgindices as being superfluous):

L= brebge™onb(7+ ),

dd_?': bl e™ + b —nb({ &%+ ("),
(13)

%lt): —ad-ad’ g™ +na(d+{),

d??: —ade™-ad’+nd ({2 + ().

We thus obtain four linear differential equatiomth constant coefficients in order to
determine the unknowrss b, &, b'. The integrals of these equations come down tassu
of exponentials of the formef"".

If ais real and positive then that exponential witlrgase indefinitely with time, and
the motion will be unstable, which will accentuttie deformation.

If the exponentials are of the forg?', where a is real and positive, then the
deformation will tend to 0, and one can believea tha motion will then be stable. That
is not the case, however, because since the chdstictequation has roots that are equal
with opposite signs, we cannot have exponentikésdi?" without having exponentials
like €' at the same time.

Consequently, one will have instability wheneviee tharacteristic equation has a
real root.

If the roots are complex, and of the form+ \/—_1,[:’, then the exponentials will have

the form:

VD = g (cosBt + [ —1 sin B),
and there will again be at least one of them whuedulus increases indefinitely. The
motion will again be unstable.

The necessary and sufficient condition for therde stability is then that all of the
roots of the characteristic equations must havéatima:

a.-1,

whereaq is real. The integrals are then a sum of termb si3:



120 Chapter VIII — Stability conditions for a permanentiom

e/ = cosat+./-1sinat,
which will remain finite.
We thus have to look for conditions under which thiltbe the case.
To abbreviate, set:
a={-n({+{),
ﬁ: Zlfn_l,
y: Z,£n+l,
0= -n({e’+ ).
Equations (23) become:

da
—=ab+ b,
dt p
da
—=yb+ b,
a7

(24)
db
—=—-ga-pfa,
dt P
db
—=-ya-oa.
a7/

Furthermore, set:

Aa+ A a =x,
Ab+ A b =y,

in which A andA" are two numbers that we shall determine convenieattigpme point.
Multiply the first two equations (24) byandA’, and add them. That will give:

%‘: b(Aa+ A +b (AB+1J.

I now choosel andA’ in such a fashion that the right-hand side reduc&sto
A andA" will be given by the equations:

Aa+ A'y=85)4,
AB+Ao=SA'.

If one findsA and A’ that satisfy these conditions then:

dx
—=9Sy
at

Upon treating the last two equations in the systemg@ijarly, one will find:
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ﬂ=—8x
dt

We obtain the value o% by writing that the determinant of the homogeneous
equations i andA’ is zero.
Swill then be a root of the equation:

(25)

a-S y
B 0-S

That equation has degree two;3dndS, be its roots, and let:

AAXY be the values that correspon&to

A, A, X, Ya “ “ S.
We will have:

Aia +A1’ a =X,

Aib +/]l' b =y,
dx _
e Sy,
dy;
L =-5X.
p S X1

The general equation of our equations will then be:

X =A sin §t+B),
y =A cos §t+B),
X1 = A; Sin (S_]_t+B),
yi=Aicos G t+B).

If Sis real then the sines and cosines will remain firitel there will be stability.
If Sis imaginary thels=s+,/ -1 u:

sinS t=¢e" (cosst +,/ -1 sinsi).

The modulus increases indefinitely witlthe motion is then unstable.

The necessary and sufficient condition for the nmotio be stable is then that the
rootsSare real.

Develop the equation &

S -S(a+J) +ad- By=0.
The roots will be real if:
(a+d°—4@d-p)>0

or

(a+ 37— 4By > 0.
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Replacea, 5, y, oby their values:
[{-n({+ )= +n({e?+ )]+ 4 ™ > 0.

That inequality must be verified for all integer valoés.
We first remark that if the vorticitie§ and ¢’ have the same sign then. The motion
will be stable in that case.

141. We shall not make a complete discussion of the ingguaNe shall consider
only the particular case for which:

Je?+7'=0.

That condition expresses the idea that the velddity® + {*) r,?/ r is zero at an

exterior point before the deformation. Choose thesunisuch a manner thdt 1, so{”’
= - &% The motion will be stable if the aforementioned indityas verified for all
values ofn. Upon writing that it is true fon = 2, we will have the necessary condition
for stability:
[1-21-€%)+e-4¢€°>0
or
(1-e9)1-43>0.

Since the first factor is essentially positive, omest have that:

1-4%>0,
or, sinces is positive:

E< =
2

As a result, if the radius of the interior cylind@ris larger than the mean radius of the
exterior cylinderC' then there will be no stability.

142. Explanation of an experimental fact— Imagine that two currents exist in a
liquid that either have opposite senses or just differelaicities. The two liquid masses,
when animated with different velocities, will rub agaich other, and that will give rise
to a separation surface of small vortices. Ordinaiflypne wishes to explain the
formation of these vortices then one will be contergay that they are due to the friction
between the two veins of liquid. That explanatiomad sufficient. Indeed, to begin
with, we will have two liquid masses that are animatédth wifferent velocities, which,
for more simplicity, we consider to be constant iagmitude and direction. That state
cannot persist, due to the friction that comes fromogsyg in the liquid. However, it
first seems that it must produce a transition layenhich the velocity varies gradually
and the vortices are distributed uniformly. Now, tlsahet what one actually observes,
as opposed to the formation of small vortices thamsieehave a tendency to collect into



Explanation of an experimental fact 123

separate tubes. That amounts to saying that underotiditions in which we find
ourselves, the state in which the vortices are didied uniformly is unstable, as we can
show by appealing to the preceding discussion.

Indeed, letC be a cylinder. Endow the liquid inside of the cylinder vathniform
rotational velocity { + ), while the liquid will remain at rest outside. Theocity will
be discontinuous at the surface of the cylinder, and in, tiniction must produce a
transition zone that is limited by two cylinders thag eoncentric tc.

As in the case that we just studied, there will be taacentric cylinders: The value
of the vorticity inside the first one will bé + {’, while it is zero outside of the second
one, and finally, it will vary gradually in the annularneo Nonetheless, for more
simplicity, | will suppose that the vorticity has anstant value between 0 agd+ ¢’ in
that annular zone; let that value e

Set:

{+{'=a
and attribute a mean constant valu&tas in the preceding example, such that:
Je*+{ =0,

which expresses the idea that the liquid is at rest outside
We infer from this that:

Since the transition zone is very thin to begithy& will be very close to 1, ang’
will be very large. However, singgis larger than 1 / 2, these conditions will betahke,
from what we saw in [nal41].

Suppose that the liquid on the outside possessedan velocityb, instead of being
at rest, so:

{e°+{ =h,

and there is friction again, since the velocitydiscontinuous. Upon substituting the
values of{ and {” into the inequalities of the condition, we willaag find that there is
instability.




CHAPTER IX

FLUIDS THAT PRESENT A FREE SURFACE

143. Up to now, we have studied the motion of liquids Hrateither indefinite or fill
a vessel that encloses them completely. We sballaccupy ourselves with the case in
which the liquids no longer fill the vessel completatyd possess a free surface that is in
contact with the fluid.

G

C M

Figure 40.

Imagine that the molecules describe circumferencesavhenters are along tke
axis and lie in planes that are perpendicular to that dkisuch a motion is possible then
it will be necessarily permanent.

If the pressure and the density are the same all aloagfthe circumferences then
the equation of continuity will be verified. The eatisystem will be a figure of
revolution around)z so the velocity of the molecuM (Fig. 40) at an arbitrary instant
will be directed along the tangent to the circumfeee@¢ and it will have the same
magnitude for all points on that circumference.

Take a small surface element in the pl@@MV; that element will generate a small
surface under revolution arou@k The fluid that occupies the volume that is bounded
by that surface will undergo a rotation aro@e and its volume will not be altered.

Set:

2 2

MP=r=,X+Vy".

The pressur@ and the density are functions of only andz from the hypotheses
that we have made. Consequently:
w=0,
ux+vy=0.

One-half the square of the velocity, namely:
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will also be a function of only andz
If the weight is the only external force that aofson the fluid (thez-axis being
vertical) then we can set [nd):
V =09z

w:—jd—pp +V.

The functiony exists on the condition thatis a function of onlyp. That is what
happens when the fluid is a homogeneous liquid gasathat experiences isothermal or
adiabatic transformations.

In the Lagrange system of notations, the compaenehtthe acceleration have the
expression:

 _ du
ox dt’
) 9 _ av
dy dt
o _ dw
oz dt’
(See &4.)

On the other hand, if a molecule describes a gifetence in a uniform motion then
the acceleration will reduce to the normal accdélena

w+v: 2T

ZTx 2y
rr rr
Moreover:

oy _ oy dr

ox  or dx’
and as a result:

oy __2T

or r’
(2)

6_4[1 - 0

0z

It must then be the case thatdepends upon only, the same thing will be true for
o/ or andT.
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144. Simple special cases.First, let us study some simple special cases:

1. The velocity is inversely proportional to the diseanc T will then be inversely
proportional tar?, or:

_a

T= oz

in which a is a constant.
dy __2a

r r2’

and upon integrating, one will have:
p=2 +c=T+C
r
Therefore:

(3) - T = const.

We recover Bernoulli's equation, which is easy to mtedindeed, that equation was
proved [no.24-29 in the case for which there exists a velocity fumcti i.e., the
vorticity is zero — and consequently, for which, the eijovaries like 1 k. Presently,
we suppose that there is only one vortex tube thatOzafr its axis, and outside of
which the vorticity is zero; we have then satisfieel éforementioned conditions.

145.
2. The velocity is proportional to the distancén other words, the liquid possesses

a rotational motion around theaxis with a constant angular velocity: It moves in the
manner of a solid body. One obviously has:

T=ar?
d—wz -2ar,
dr
W=- ar?+ const.,
or
(4) w+T=const.

That result could also be predicted.
Indeed, recall that we have [etdenote the integral [n&):

J= j udx+ vdy+ wd,,

which is taken along an arc of the curve. We have slibatn
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%:j(dz/HdT).

Sincedy + dT is an exact differentiatld / dt will be zero when the integration curve is
closed. Here, from equation (4):

Y+ T =const.
or
E =0,
dt

Figure 41.

Indeed, we have assumed that the liquid rotat@sndrOz in a uniform motion; the
integration curve will also rotate arou with deforming. Draw a vectdvV from the
point M that will represent the velocity (Fig. 41). Upoonsidering that vector to be a
force, J will be the work that is done by that force whillee point traverses the
integration curveAB. When that curve takes the positiéiB’ in its rotation aroun®z
the vectoM "V’ will keep the same magnitude and position relaiv&'B”. IndeedM V'’
will be obtained by rotatingylV aroundOz until M agrees wittM”. The workJ that the
force MV’ does when the poitdl’ traverseA'B” will then be the same as the work that
the forceMV does when the poii describe\B.

146. Form of the free surface-— Suppose that the only external force that gotsiu
the fluid is its weight.

Take thez-axis to be vertical, and measureas positive upwards. Under these
conditions:

If the fluid is a homogeneous liquid then:
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p = const.
and
(5) w=-gz- 2.
P

If one is dealing with a gas whose temperature istamih then the densiggwill be
proportional to the pressure, and upon denoting a constght by

pP=Bp,
(6)

1
Y=-9gz-—Inp.
g9 B p

Finally, for a gas that is subject to adiaba@nsformations:
p=p87v

upon letting y denote the rati@ / C of the specific heat at constant volume to the
specific heaC at constant pressure. Then:

p.

1
7 =—gz—
(7) Y=-gz B=7)

146 (cont.).— Let a homogeneous liquid have a free surface wguch atmospheric
pressure is exerted. If we call the excess of peagsure over atmospheric pressore
then one must make:

p=0
in equation (5), and write:
(8) Y=-9z.

Y is a function ofr, and that equation will be the equation of the fsarface of the
liquid.

Suppose that there exists just one vortex tubk lha the form of a cylinder of
revolution around)z the vorticity is constant inside of the cylinderd zero outside of
it. The cylinder will then possess a uniform raaal motion.

Let ro be its radius. Inside of its surface (i.e., fok rg), the velocity will be
proportional tar, and:

T=ar’

Outside of it (i.e., for >rg), there will be a velocity function, and:

a'
rz’

T=
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These two expressions formust take the same value at a point on the surface of th
cylinder (i.e., for =rg). Therefore:

al
2
ar? ==,
0 r02
o}
a=ar.

We calculate the values gfby means of these expressions.
In the interior:

Y+ T =const.,
So:

Y=-ar*+C,
and exterior:

Y- T = const.,
So:

[//_ ar04 + Cr

> :

r

These formulas must give the same valuegiavhen one makess=rq , which will
give a relation between the constaitandC':

4

ar
-arf+C=—2+C.
r

| may assign the consta@t arbitrarily: Changing its value amounts to displacing the
xy-plane parallel to itself, which simply has the effe€ adding a constant tg and in
turn, toy. | shall takeC' = 0. With that choice, we will have:

=0

z=0.

for r =, and consequently:

The free surface of the liquid thus admits an asymppdsice; it will be the plane that
we have chosen to be thkg-plane. It will be the level of the liquid at a velarge
distance from the axis. The equation for the free sarfachen referred to the rotational
axis and to the asymptotic plane, will then be:

1. Inside of the vortex tube:
9) gz=-a(*- 7).

2. Outside of the tube:

(10) gz=-
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The first one is represented by a paraboloid. Insiddetube, the meridian of the
free surface will be a small arc of a parabola.

z
(@) r
Figure 42.

The second equation represents a surface whose meridiaomposed of two
branches that are asymptotic to thaxis (Fig. 42). The two curves will agree on the
section of the vortex tube.

We remark that is always negative. Consequently, the free surfacebeiituated
completely below the&y-plane.

That circumstance does not take into account the apegpotheses that we have
made; it is a general fact, as | shall show.

Indeed,yis zero forr =. Hence:

(" o dr e dr
p=] =]

Since T and r are essentially positive, the same thing will be trae ¢, and
consequentlyz will be negative, from equation (8).

That result does not seem to conform to observatlodeed, everyone that has had
occasion to observe a whirlwind will agree that theidlgis, on the contrary, raised
towards the center of the vortex in such a mannerittfiatms a sort of bead beneath the
free surface. This disagreement between calculatidroaservation is probably due, in
part, to the fact that in the calculations we haverassithat the pressure is uniform on
the surface of the liquid, while that condition is prolganot satisfied in the case of a
whirlwind. Meanwhile, there is no doubt that this hypoihéms a very great influence
on the results of the calculations if it is to make difficulty that we just pointed out
disappear.

147. Distribution of pressure in a gas= If the fluid in motion is a gas then we can
determine its state by studying the manner by which theypegsvaries in a plane that
is parallel to thexy-plane. If the gas keeps a constant temperature tiemast appeal
to formula (6), and one will find that:

Inp=-892-Ly
in the planez =12z .
{ becomes zero at infinity; g be the corresponding value of
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INpo=-4592,
SO.
n =-py
P

The right-hand side is negative, singas always positive, as we just saw./ po is
then smaller than 1, and as a consequence, thereevaildepression inside of the vortex.

If the gas is subject to adiabatic transformatiom thewill be formula (7) that is
useful. The pressupwill be given by:

pP=-BL-P2-BL-Yy¢

in the planez =2z .
Yis zero at infinity, ang is equal tqoo; consequently:

P =-B1-)n,
SO.

P- == L-)
The quantitieg, 1 —y; ¢ are positive, and consequently:

pr- <0
or
P<Po.

There is a depression inside of the vortex again.

148. Case of several superimposed liquids. Form of thepseation surface. —
Suppose that there are only two liquids. pebe the density of the first one, and pet
be its pressure, while, andp, are the density and pressure, resp., of the secondibne.
one letsys and ¢, be the functiong/ that relate to the two liquids then:

l,l/1=—921—&,
Py
p=-gz-Lo.

2

z = 7z at the separation surface, and the pressures mustjuad, sop; = p. .
However, we know only one thing abogt and ¢, namely, that their derivatively, /
dr andd¢s / dr must have the same value. From that condition:

a4, _ dy,
dr dr
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one deduces that:
Y — b = const.

( 1 1} _
——-—| p=const.
P P

The pressure is then constant on the separation sugad that surface will have the
same form as the free surface.

or




CHAPTER X

INFLUENCE OF FLUID VISCOSITY

149. Hypotheses. Notations: When one is dealing with a viscous fluid — i.e., one
whose molecules can move only with a certain amoumtilaifing against each other —
there will no longer exist a force function; in facte tiorces of friction will depend upon
the velocity. Helmholtz's theory, as we have proviedwill therefore no longer be
applicable.

Up to today, one can subject that case to calculatidy by appealing to certain
hypotheses that are more or less likely, but which amergéy adopted.

One first assumes that the force that is due teigoesity has the components:

KAu, KAv, KAw

in the system of Lagrange variables, wherne a constant.
One then assumes that the surface of the vesdbediquid is at rest, so in other
words:
u=v=w=0.

Finally, one assumes that an elemeatof that surface is acted upon by surface forces
whose components are:

Suppose that the external forces that act upon thel lmpmit a force functiorV.
Upon introducing the force of viscosity, the Lagrange equat{1) will become:

O __du v,
P OX dt ox

(1) ﬂ:_ﬂ’+a_V+KAV,
poy dt oady
ﬁ__d_W_{_@_V_{_KAW
p0z dt o0z

When a volume elemerdr of the liquid is subjected to a displacement whose
projections aralx, dy, dz the work that is done by the forces that admit tmetian V
will be:
pdrdy,

and upon adding this to the work that is done by the foreesodsity, one will obtain the
real work:

d7 = pdr[dV+K (Au dx+ Av dy+ Aw d3)].
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We again set:
d7=pdrv,
where:
(2) dV =dV + K (Au dx+ Av dy+ Aw d3.

However, it is essential to remark that the notatl has only a purely symbolic
significance, sinceV is no longer an exact differential.
We then write:

(3) dt//:dv—%,
0

and recover equations (1) in a simplified form that nalegous to the one that we
obtained in &

oy _ du
ox  dt’
(4) a_w: il,
dy dt
oYy _ dw
9z dt’

upon remarking, as above, that one is dealing with only signbd¢ is not a total

differential, but it is defined by the relation ( Y %_l/’ %_l/’ are not derivatives of the
X 0y 0z

same function(x, y, ), but only the coefficients afx, dy, dzin the expression fad.

150. Helmholtz’'s theorem [ncb-6] is expressed by the relation:
dJ _ _
(5) a—jc(dt/wdT)—O.

The integral will be zero along a closed curve wdgn+ dT is a total differential;
i.e., when one is dealing with an inviscid fluid.

However, if one neglects the viscosity thég + dT will no longer be a total
differential. From relations (2) and (3), one will theawve:

(6) —= (dv—%ﬂ de+ Kj (AudxrA vdy A wo.

From Helmholtz’s theorem [nd], the first integral will be zero when it is extede
over a closed contour. What will then remain is:
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7) ‘;J K[ (audx+ Avdyr A wdy.

Make an arbitrary closed surface pass throughctmour of integratiorC. The
curveC will bound a certain ared. Letl, m, n be the direction cosines of the normal to

the elementdwof the aread. Upon applying Stokes’s theorem [18). we found that:
J=2[ (&+my+nd)da

in which the integral was taken over all elemessof the aread, and ¢, n, { were

defined by relations (1) of § 9.
Transform the integral (7) by the same theorerd,get:

j (Au dx+Av dy+ A wdy

dAW dAv (cﬂu d\ av A4
—Id +m ——+n ——-—1].
dz dz dx dx dy,

We remark that one can invert the order of difiéietions and write:

dAw _ Ad_vv
dy dy
%’ = AdV,
dz dz

or, upon subtracting corresponding sides:

dAw  dAv _ 5| 9w dw dv
dy dz

2A
dy dzj ¢

Upon transforming the other terms similarly, on# fnally arrive at the formula:

8) ‘if 2K [ (A& +mA7+nAg) da

151. Necessary conditions for Helmholtz's theorem to stile applicable.— We
have proved [no.14] that, from Helmholtz’s theorem, the vortex sudac(and
consequently, the vortex lines) will be conservethe motion of a liquid if one neglects
the forces of viscosity or friction. If one takégese latter forces into account then that
statement can no longer be true, in general. Thherem can still be true only under
some special conditions that we propose to determin

Helmholtz's theorem [ndg] is expressed by the condition:
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dJ
dt

=0.

Along a curve that is traced on a vortex surface, otidane:
J=0,

since all along that curve the vortex will be represeriy a vector that is tangent to the
surface.

In order fordJ / dt to remain zero when one introduces viscous forces, litbeil
necessary that:

I AE +mAn+nAl=0,
from equation (7).

That relation expresses the idea that the vett@rXs, A() is found in the plane of
the elemendw Trace out that vector: If it is tangent to the stefd = O after timedt
then one will again havé= 0. SincedJ/dt = 0, the vortex surface will be conserved. If
we would desire that the vortex lines should be conseheadit will be necessary that an
arbitrary element of these lines should remain congtéamigent to the vortex vector. It
would then be necessary that the plane of the eledseshould contain both of the two
vectors, and since that must be true foadntrary elementdwthat passes through the
vortex, it would be necessary that these two vectbmild agree in direction; in other
words, that:

(9 = =02

In general, that condition will not be fulfilled, @rthe vortex lines will not be
conserved.

152. In the particular case where there exists a veldaiigtion, the vorticity will be
zero, so one will have:

52/7:(:0,

and as a resulké, An, AJ will be zero identically. For an arbitrary curve, wandhen
write:
J=0, @ =0,
dt

and the velocity function will then persist at an a#ry instant.
That consequence of our argument seems to constitaigjection to the hypotheses
that served as its point of departure.

153. Special case in which the vortex lines are conserved.Suppose that the
vortex lines in an indefinite liquid are lines that aregfial to thez-axis, and that” and s,
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are zero, as well a8¢ andAn, but that{ andA{ are non-zero. The conditions (9) will
then be fulfilled, and the vortex lines will be consat. Moreover, in order to prove that,
it will suffice to appeal to symmetry considerations.

Indeed, consider an arbitrary plane that is parallehéxxy-plane. That plane is a
symmetry plane, for which, one does or does not tak&oh into account. If the
streamlines are planar at the onset of the motidrsédnated in planes that are parallel to
the xy-plane then they will always remain in those platmsreason of symmetry, and
independently of friction.

However, under the present conditiodisyill no longer preserve its value, add/ dt
will no longer be zero.

Indeed, take the contour of integration to be the cseston of a vortex tube.
Because of that choice, one must make:

l=m=0, n=1,
and one will get:
(10) J=2[ {dw,
(11) a__ 2Kj Al dw.
dt

The section of the tubgw is constant; indeed, the volume that is bounded by that
tube and two planes= z; andz = z will be constant, from the equation of continuity.
That volume will be equal to:

(z1-2)dw.

z andz remain constant, since the velocity is always partdi¢hexy-plane, andlw
will therefore be constant.
Differentiate equation (9) with respectttand get:

(12) E:2j£da)

Compare these two expressions ddr/ dt; since the integrals are extended over the
same area, it will be necessary that:

(13) 9 _kac

dt

The derivatived{ / dt is calculated with the Lagrange variables; i.e., bipfahg a
molecule in its motion.

Equation (13) is analogous to the one that representprdpagation of heat by
conduction, except that in the latter problem one ordinaafards the molecules as
immobile. Here, on the contrarg,will vary as the temperature of the liquid variest if
possesses the same motion, &nds its coefficient of conductivity. However, under
those conditions, a transport of heat by convectiohalsb be produced.
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154. (Extension of some) general theorems. We have proved [no$5, et seq,.
113 et seq some theorems that are applicable to liquids in whichfrietion is
produced; some of them will still be true.

Indeed, let an indefinite liquid contain vortex tubeg #ra cylinders that are parallel
to Oz

We have seen [nd.2q that upon considering’to be the density of an attracting

mass that is spread over theplane, the total madd = j { dw of that fictitious matter

will be constant (when the integral is taken oveelmentsdwin thexy-plane).
The mass thus-defined will still be constant wherithed is devoid of friction.
Indeed, differentiate:

M:j(dw

with respect to time, upon remarking tliabis constant; one will get:

dM _ 1 dZ 4, =K [ 8¢ dav.

14 —
(14) dt dt

| say that this integral is zero. In order to prthet, apply Green's formula:

j(uﬂ—v@j ds= j (uAv-\A U dw
dn dn

to a circle of very large radius upon supposing tha functionsau andv, or just one of
them, are annulled at infinity. The integral oe tbaft-hand side will be zero, and what
will remain is:

juAv = iju.
If we now make:
u=1, v=¢
then we will find that:
(15) j A dew= 0.
Therefore:
M = const.

155. The center of gravity of these fictitious masgedixed, even when there is
friction.
Indeed, the coordinates of that center of graatieydefined by the equations:

Mxo:ijda),
Myo= [ {ydw.

Differentiate the first one with respectttand get:
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M z—)f[oz.[iudw+j%—ixcku,

sincedw is constant. The first integral is zero, because d@xistence of friction will
influence only the value of the derivativeswéndv, but not the values themselves of
those functions. What will then remain is:

dx, _ [ dd _
M i J.Exda)—KjAZxda).

Once more, apply Green'’s theorem, while setting:

u=x, v=<¢
x has degree one, &x will be zero.
Consequently:
(16) [ xi¢ dw = [ A xdw= 0.

Hencedx, / dt = 0, andx is a constant.
The same argument will lead to the same conclusioyfo

156. The moment of inerti& of the fictitious mass with respect to an axis tlsat i
parallel toOzwill be constant when there exists no friction. wéwer, when friction does
exist that same moment will vary in proportion to time.

Indeed:

| = [ £0¢+ ) dw
and

dl _ dd
= Zxur yy dwor [ (X4 ) do.

The first integral is zero, as if there were nigtion, since the presence of friction
does not affect the valueswindv. Upon taking equation (12) into account, one has:

dl dZ 2 2 2 2
—= | =(x"+y)dw =K | A{ (X" +Y°) dw.
” it (X +y) j (X +y)
Foru=x%+V? v =z Green's theorem will give:

J (¢ +y)A¢ do = [ £ A +y) dov,
when one remarks that:
A(E+y) =4,
[ ¢+y)A¢ dw = [ ¢dw = av,
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and finally:
(17) — = AKM.

The derivativadl / dt is constant, and in turhwill vary in proportion to time; it will
be easy, moreover, to calculate the rapidity of vaaiation.

157. Application to a simple case- Suppose that, to begin witfi,depends upon

only the distance to theaxis,r = 4/ x>+ y*. By reason of symmetry, that condition will

always persist. The velocity at a point will be perpemdr to the radius vector that is
based at a point 0@z and perpendicular to it. The point will describe auwinference
that has its center on tl@z axis and is situated in a plane that is perpendiculéinaiob
axis. Due to symmetry, the point will remain on thatuunference, even when there is
friction; however, in the latter case, the velocityl wease to be uniform. Indeedjs a
function ofr andt. Therefore:

d¢ _ a¢ +6( dr

dt ot or dt

However, since = const.dr / dt will be zero, and one will have simply:

or, from a well-known formula, sincédoes not depend upon

(18) 9% _k (dz( +i£j.

ot dr? r dr

We must now integrate that differential equation.
Consider the integral:

z:—j_*:e-””h F(x+a.t) do,

in which a is a constant. We will have:

dZ _ progomp 9 gy

dt I 2/t

Integrate this by parts:

E: e—azlh(_hji +D'[+°° e—azlh Fn Ch
dt 2)Jt| 4l
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The integrated term is zero at the limits, so this @sgion will reduce to:

4z _hpegamp gy
dt 47—~

On the other hand:
dZZ J’+

ae Te M E da,

00

SO:
d?z
dx®

dz
dt

N e

In a more general manner, consider the integral:

a’+p?

z:jj e " F(xtayr,y+a 1) dadg

If, for the moment, we regagdand 7’ as constants thehwill be a function of only

andr, and from the preceding discussion:

dz _hd?z

dr 4 dx®’

If we similarly regardk andr as constants then:

dZz _ hd*z

dr'~ 4dy

On the other hand, we have:

dZ_dZdr  , dzd' _dz, K dz
i s~

dt  dr dt dr dt dr dr
or.

In order to identify that equation with equatidi2), it will suffice to set:

h = 4K,
in whichK is essentially positive.
Upon taking, in turn:
{=2

we can calculat& at an arbitrary instant.

141

In order to choose the functidh one must know the value gfat the initial time,

since fort = 0:
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H2+ﬂ2 H2+ﬂ2

zozjje’ hF(xy) da dB=F(X, ) jje h da dpB.

Now:

a?+p?

e !

o= ’ZT F(x, ),

T
dadf=—,
o 4

and consequently:

which is an equation that determirfes

If the initial value of¢ depends upon onlythenF will no longer depend upan and
it will be possible to determingé at an arbitrary epoch, if nothing perturbs the symmetry
or if the stability conditions are fulfilled.

158. Helmholtz's theorem for relative motion.— Helmholtz’'s theorem expresses
the idea that the integral:

J:judx+ vdy+ wd:

is constant when there is a force function. Inahse of relative motion, there is no
longer a force function, so the theorem will no lonigeitrue. One has:

dJ

—=|dy +dT

ol
with

dw:dv—%,

Yo

when there exists a potential
If there no longer exists a potential then:

dg=Xdx+Ydy+Z dz—%.
p

If the dragging motion is, for example, a rotation acbtime terrestrial axis with an
angular velocity otw then one will have:

Xdx+Y dy+Zdz=dV+ 2a (vdx —u dy,

from Coriolis’s theorem, if the potenti®lincludes the ordinary centrifugal force, where
the z-axis is the axis rotation. One will then get:

dJ
E:j(dv +dT)+chq)(vdx—ud9.
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The first integral is zero, and what will remain is:

dJ _
i 2%j (Vvdx—udy).

Figure 43

Let C be the integration curve. Project it onto ¥yeplane. LetA be the area that is
bounded by the projection (Fig. 43), andNeandM " be two infinitely close points; the
projections ofMM’ onto the three axes adx dy, dz After the timedt, the various
molecules that cross will go to C’, and in particularM will go to M;, andM " will go to
M, . The projections oMM, areu dt, v dt w dt The quadrilaterdiM’M1 M, can be
regarded as a parallelogram whose projection dmoy-plane bounds an area that is
equal to:

dt (v dx—udy.
The integral:
dt j (v dx — u dy

thus represents the variatidA / dt of the area during the timedt. Consequently:

E: Zabd_A\
dt dt
and
J= 2w A + const,,

and ifJo andAg are the initial values afandA then one will have:

Jo = 2ap Ao + const.,
J—Jo = 2w (A — A).

Let (Fig. 44) be a circle of radiug. The molecules that are situated on that
circumference are originally in relative equiliomuwith respect to the surface of the
Earth. Therefore:

Ao = rr7sin A,
in which A is the latitude, and:
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J=0.

@

Figure 44.

If a perturbation is produced that pushes the air towthedsenter of the circle then
the molecules will occupy a closed contour after gagertime that amounts to a
circumference of radius In that new position:

A =¥ sinA,
J = 2ap r1(r* - r2) sin .

A rotation will then be produced: Leb be the angular velocity or the vertical
component of the vortex, so one will have:

J= Zj wdo,
in whichdois a surface element, or upon supposing éatconstant:
J= Za)j do= 2wrnr?.

Upon equating the two expressions Jpone will find that:
r2
w= w sSinA (1—%}.
r

If r /rois very small therwwill become very large and will always have the same
sign — i.e., the rotation will always be directedhia same sense.

That is one of the explanations that have been propfsethe formation of
atmospheric cyclones.

FIN



