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 In this article, we will need to know the angles that the perpendicular to the osculating 
plane of a curve makes with the three aces of coordinates.  In order to determine them, 
let: 

Ax′ + By′ + Cz′ = 0 
 

be the equation of that plane.  Call the required angles α, β, γ, in such a way that we will 
have, from known formulas: 
 

cos α = 
2 2 2

A

A B C+ +
,  cos β = 

2 2 2

B

A B C+ +
,  cos γ = 

2 2 2

C

A B C+ +
. 

 
Furthermore, let x, y, z be the coordinates of the point on the curve to which the 
osculating plane is referred.  Since it must pass through that point and two consecutive 
points of the same curve, we will have these three condition equations: 
 
 A x     + B y     + C z    = D, 
 A dx   + B dy   + C dz  = 0, 
 A d 2x + B d 2y + C d 2z  = 0 ; 
 
hence, one can infer the values of A, B, C.  If one performs the elimination one takes the 
quantity D, which is indeterminate, to be equal to the common denominator of A, B, C, 
and in order to simplify those values, then one will have simply: 
 

A = dz d 2y − dy d 2z,      B = dy d 2x − dx d 2y,      C = dx d 2z − dz d 2x, 
 
and consequently: 
 

cos α = 
2 2dz d y dy d z

K

−
,  cos β = 

2 2dx d z dz d x

K

−
,  cos γ = 

2 2dy d x dx d y

K

−
, 

 
in which we have set: 
 

(dz d 2y − dy d 2z)2 + (dx d 2z − dz d 2x)2 + (dy d 2x − dx d 2y)2 = K2, 
 
to abbreviate. 
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 Now consider an elastic line whose points are subjected to given forces and which is 
in equilibrium.  Denote that curve (without it being necessary to illustrate this) by AmB, 
in such a manner that A and B are its extremities and m is an arbitrary point that answers 
to the coordinates x, y, z.  Suppose that the part mB of the curve is made inflexible and 
fixed, and that the other part mA becomes only inflexible, while preserving the freedom 
to turn around the point m.  The equilibrium of the entire line must still persist.  
Consequently, the given forces that act on the part mA and the elastic forces that take 
place at the point m must be in equilibrium around the fixed point, which will demand 
that the sums of the moments of those forces, when taken with respect to the three axes 
that are drawn through the point m, must be zero. 
 Now, the elasticity at the point m will tend to produce two distinct effects.  First of 
all, it will tend to put the two elements of the curves that are bounded by the that point 
back into a straight line, or more generally, if the natural form of that curve is not a 
straight line then the elasticity will tend to make the angle of contingency at m take on a 
greater or lesser value than the one that it had in the natural state of the curve.  Therefore, 
let E refer to the moment of that force when it is taken with respect to the point m.  The 
perpendicular axis to its plane will make angles with the coordinate planes that we just 
denoted by α, β, γ.  Hence, the moments of the forces will decompose according to the 
same laws as those of the forces themselves (*), so it will follow that the moments of the 
force that we consider, when referred to the lines that are drawn through the point m and 
parallel to the x, y, and z axes, will be: 
 

E cos α, E cos β, E cos γ, 
 
respectively, or rather, upon setting E / K = u and replacing the cosines with their 
preceding values: 
 

u (dz d 2y – dy d 2z), u (dx d 2z – dz d 2x), u (dy d 2x – dx d 2y) . 
 

 When the elastic line is twisted on itself, the elasticity at the point m will tend to 
produce a second effect that consists of making the moving part mA of curve turn around 
the indefinite prolongation of the element that is bounded by the point m and belongs to 
the fixed part Bm.  We attribute this second effect to a force that one can call the torsion, 
and which is exerted in a plane that perpendicular to the tangent at the point m.  Let θ be 
its moment, when it is taken with respect to that tangent.  The cosines of the angle that 
the line will make with the x, y, z axes are dx / ds, dy / ds, dz / ds, where the element of 
the curve is represented by ds.  Consequently, the moments of the torsion with respect to 
the same axes will be: 

dx

ds

θ
, 

dy

ds

θ
, 

dz

ds

θ
. 

 
 Finally, let X, Y, Z denote the components of the given forces along the x, y, z axes 
that act upon the point of the curve that corresponds to those coordinates.  The sum of the 

                                                
 (*) See my Traité de Mécanique, Tome Premier, page 3.  Here, we intend the moment relative to an axis 
to mean the moment of the forces when it is projected onto a plane perpendicular to that axis.  



Poisson – On the elastic lines of double curvature 3 

moments with respect to the x-axis of the similar forces that act upon the part mA of the 

those curves will be given by the integral ∫ (zY – yZ) dm, in which dm represents the 
material element of the curve, and if one would like to refer the moments of those forces 
to the line that is drawn through the point m parallel to the x-axis then it will be easy to 

see that one must add the quantity y ∫ Z dm – z ∫ Y dm to that integral.  One will get some 
similar results relative to the y and z axes.  Hence, the sums of the moments of the given 
forces, when taken with respect to three lines that are drawn through the point m and 
parallel to the x, y, z axes will be expressed by these formulas: 
 

 ∫ (zY – yZ) dm + y ∫ Z dm – z ∫ Y dm, 

 ∫ (xZ – zX) dm + z ∫ X dm – x ∫ Z dm, 

 ∫ (yX – xY) dm + x ∫ Y dm – y ∫ X dm . 
 
The six integrals that are contained in them are supposed to each refer to an arbitrary 
constant that is provided by the particular forces that can be applied to the point A. 
 Upon now adding the moments of the given forces and the elastic forces that all refer 
to the same axis and equating the sums to zero, we will have the three equations of 
equilibrium of the elastic line with double curvature that is twisted on itself, namely: 
 

2 2

2 2

2 2

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0.

dx
u dz d y dy d z zY yZ dm y Z dm z Y dm

ds
dy

u dxd z dz d x xZ zX dm z X dm x Z dm
ds
dz

u dy d x dx d y yX xY dm x Y dm y X dm
ds

θ

θ

θ

− + + − + − = 

− + + − + − = 

− + + − + − = 


∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 (1) 

 
 If one differentiates these equations then one will get: 
 

 dz d (u d 2y) – dy d (u d 2z) + d ⋅⋅⋅⋅ dx

ds

θ
+ dy Z∫ dm – dz Y∫ dm = 0, 

 

 dx d (u d 2z) – dz d (u d 2x) + d ⋅⋅⋅⋅ dy

ds

θ
+ dz X∫ dm – dx Z∫ dm = 0, 

 

 dy d (u d 2x) – dx d (u d 2y) + d ⋅⋅⋅⋅ dz

ds

θ
+ dx Y∫ dm – dy X∫ dm = 0, 

 
and if one adds these, after multiplying them by dx / ds, dy / ds, dz / ds, respectively, then 
one will have: 

2 2 2

2

dx dy dz dx dx dy dy dz dz
d d d d

ds ds ds ds ds ds ds
θ θ+ +  ⋅ + ⋅ + ⋅ + ⋅ 

 
 = 0. 
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However, one has: 
 

2 2 2

2

dx dy dz

ds

+ +
= 1 and 

dx dx dy dy dz dz
d d d

ds ds ds ds ds ds
⋅ + ⋅ + ⋅ = 0 

 
identically, so it will result that dθ = 0, which is an equation that shows that the moment 
of the force of torsion is a constant quantity under all extensions of the elastic curve in 
equilibrium. 
 Hence, the torsion is not a force whose law one can determine by a hypothesis, as one 
ordinarily does for elasticity, properly speaking.  The torsion depends upon neither the 
form of the curve nor forces such as weight or other ones that act at all of its points.  It is 
produced by a force that is applied to one or the other extremity, and whose moment with 
respect to the extreme tangent will determine the value of θ.  Once that quantity is given, 
it will remain the same for all of the other points of the curve, in such a manner that if 
one would like to cut the curve at an arbitrary point then if one wishes to prevent it from 
untwisting, one must employ a force whose moment with respect to the tangent at that 
point will be equal to the moment of the extreme force that produces the torsion.  Binet 
was the first to look into the torsion to which elastic curves are susceptible (*), but he did 
not explain the nature of that force, and showed that its moment would be constant in the 
equilibrium state.  In his Mécanique analytique (** ), Lagrange gave some equations for 
the elastic line with double curvature that he found by an analysis that was very different 
from ours, and which nonetheless come down to our equations (1) when one supposes 
that θ = 0. 
 Upon adding those three equations, after multiplying them by dx / ds, dy / ds, and dz / 
ds, the u will disappear, and one will have: 
 

2 2 2

( ) ( ) ( )
d x d y d z

zY yZ dm xZ zX dm yX xY dm
ds ds ds

⋅ − + ⋅ − + ⋅ −∫ ∫ ∫  

 

+ 
2 2 2 2 2 2y d x x d y x d z z d x z d y y d z

Z dm Y dm X dm
ds ds ds

− − −⋅ + ⋅ + ⋅∫ ∫ ∫ = 0. 

 
 

However, that equation is a result of the preceding one, as is easy to verify when one 
differentiates it under the hypothesis that ds is constant and observes that dθ = 0. 
 It results from this that in order to determine the elastic curve, one can take equation 
(2), combined with one of the equations (1) or some combination of those three equations 
that one prefers, provided that it again refers to the variable u.  As for that quantity, one 
has u = E / K, and one commonly supposes that the moment E of the elasticity at the 
point m is proportional to the square of the thickness of the curve multiplied by the excess 
of the angle of contingency that exists at that point in the equilibrium state over the one 
that exists at the same point in the natural state of the curvature.  Since those angles are 

                                                
 (*) Journal de l’École Polytechnique, 17th Cahier, pp. 418, et seq..  
 (** ) Second edition, Tome premier, page 154.  
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inversely proportional to the radii of curvature that they correspond to, that hypothesis 
amounts to setting: 

E = a ε 2 1 1

rρ
 − 
 

, 

 
in which a is a coefficient that depends upon the matter that the curve is made of, ε is its 
thickness at the point m, ρ is its radius of curvature at the same point, and r is the radius 
of curvature that exists at that point in the natural state of the curve.  Since it is supposed 
to be inextensible, it will then follow that the arc length s, when counted from the 
extremity A and stopping at the point m, must not change when the curve is flexed by the 
forces that are applied to it.  Hence, the radius r can be regarded to be a function of s in 
each particular case.  The expression for the radius ρ for an arbitrary curve is ρ = ds3 / K, 
where K has the same significance as before.  One will then have: 
 

u = 
E

K
= 

2 2

3 1
a ds

ds r K

ε  
⋅ − 
 

 

 
for the value of u that one must substitute in the second equation of the elastic curve.  The 
integration of those two simultaneous equations is impossible in general, and one will 
succeed in separating the variables only in some very special cases that are the simplest 
ones that one can treat. 
 We conclude this article with a remark that can often be useful: When everything is 
similar with respect to the three coordinate axes x, y, z in a question of geometry or 
mechanics, and if one has an equation that relates to one of those axes then there will 
exist analogous equations that refer to the other two that can be deduced from the given 
equation by simple permutations of the variables x, y, z, and all of the other quantities that 
refer to them.  However, in order to not risk being wrong, and in order for the analogous 
quantities to keep the same significance and not change sign, it will be necessary to 
perform that permutation in a certain way that we shall indicate, and the reason for which 
one will easily recognize.  One arranges the letters x, y, z, and everything that 
corresponds to them in this manner: 
 x, y, z, ..., 
 z, x, y, ... 
 
One then replaces each letter of the top line with the one that is found below it in the 
bottom line in such a way that x takes the place of y, y takes the place of z, and z takes the 
place of x.  The given equation will be changed into another one by that permutation, and 
upon performing the same permutation on it, one will have the analogous equation with 
respect to the third axis.  That is how, for example, we deduced the third equation (1), 
which refers to the z-axis, from the first one, which relates to the x-axis, and then deduced 
the second equation by a second permutation, and the third equation by a third 
permutation. 
 

__________ 


