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Introduction 
 

 

 To the extent that one deals with problems in mechanics with finitely-many degrees of 

freedom, the Hamilton-Jacobi theory plays a fundamental role in the investigations. The concept 

of the differential equations of motion being the Euler-Lagrange equations of a variational 

problem that is made possible by Lagrange’s introduction of the kinetic potential (i.e., the 

Lagrangian function) and the principle of least action finds its analytical expression in a variety 

of formulations, along with the conversion of those equations into a canonical system, as well as 

ultimately the introduction of the principle of varied action by Hamilton, and with that, the 

exhibiting of the Hamilton-Jacobi partial differential equation for the “characteristic function,” 

have provided the key with which to open the door to the difficult problems of the mechanics of 

point-systems. 

  In the mechanics of continua, as in mathematical physics in general, it was indeed also shown 

a long time ago that the differential equations that regulate the detailed processes can be regarded 

as Euler-Lagrange differential equations for a variational problem, although the principle of 

varied action has not come into its own up to now. In fact, an essential difficulty will appear in the 

introduction of that principle as soon as one goes over to double or multiple integrals. In the theory 

of the simple integral, Hamilton’s “characteristic function” seems to be determined by the two 

limiting points of the path of integration, so it takes the form of a function (in the usual sense of 

the word) of finitely-many variables. By contrast, the analogous integral value for a multiple 

integral depends upon the boundary of the domain of integration, i.e., a curve, surface, or higher 

manifold. Hamilton’s “characteristic function” then no longer takes the form of a function, but 

that of a “functional.” 

 Volterra has tackled the investigation of functions (i.e., line functions) (1), and has thus created 

the tool with which one can adapt the Hamilton-Jacobi theory to multiple integrals. He himself 

had also proposed that adaptation to be one of the most important goals of the new theory and 

made some first attempts (2). Thereupon, Hadamard took up the continued development of the 

theory of functions, and then Fréchet (3), who was influenced by him, attempted to continue 

Volterra’s adaptation of the Hamilton-Jacobi theory, while on the other hand, P. Lévy (4) 

constructed a general theory of partial functional differential equations, to which the partial 

functional differential equation for the “characteristic functional” that enters in place of 

Hamilton’s “characteristic function” belongs. However, from his general viewpoint, the former 

seems to be only a very special class of those equations, such that the relationship to the Hamilton-

Jacobi theory recedes into the background completely in his presentation. 

 For a systematic construction of the Hamilton-Jacobi theory for multiple integrals, as we will 

attempt to do in what follows, it would seem preferable to start from the fact that the “limit 

formula” of the calculus of variations is the source of that theory, and all of its results can then be 

 
 (1) V. Volterra, “Sopra le funzioni che dipendono da altre funzioni,” Roma, Acc. Lincei Rend. (4) 3 2 (1887), in 

various places. 

 (2) V. Volterra, “Sopra una estensione della teoria Jacobi-Hamilton del calcolo delle variazioni,” Roma, Acc. 

Lincei Rend. (4) 6 1 (1890), pp. 127. 

 (3) M. Fréchet, “Sur une extension de la méthode de Jacobi-Hamilton,” Annali di matematica (3) 11 (1905), pp. 

187. 

 (4) P. Lévy, “Sur l’intégration des équations aux dérivées fonctionnelles partielles,” Palermo circ. mat. Rend. 37 

(1914), pp. 113. 
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derived from that immediately. Meanwhile, since that viewpoint has not been established 

completely in the theory of simple integrals in its usual presentations but is obscured by appealing 

to many other realms of analysis, a presentation of the Hamilton-Jacobi theory of simple integral 

will be prepended as an introductory section. The Table of Contents that precedes this introduction 

will, at the same time, allow the guiding concepts for the adaptation of the theory to multiple 

integrals to emerge. 

 Part I is organized into three sections. In § 1, the variational problem will be introduced, and 

at the same time, Hamilton’s “characteristic function,” for which the term extremal integral will 

be chosen, and which can be considered to be a function of the two limits of the integral. The 

extremal integral, as a point-pair function, satisfies the two Hamilton partial differential equations, 

which can also be combined into one from the standpoint of point-pair functions. However, if one 

would like to determine the extremal integral from those equations then the difficulty will arise of 

separating the extremal integral from the set of solution. Jacobi overcame it by replacing the 

extremal integral in a field of extremals with the “extremal integral value” (i.e., field integral). 

That extremal integral value satisfies one first-order partial differential equation that will be 

referred to as the Hamilton-Jacobi differential equation. In conjunction with the concept of a 

field, the connection between the Hamilton-Jacobi equation and the “independence fields” that 

were studied by A. Mayer and D. Hilbert will be summarized, and from that, the equivalence of 

knowing a complete integral of the Hamilton-Jacobi equation and knowing a solution of the 

boundary-value problem for the Euler-Lagrange equations will be inferred. 

 § 2 generally treats the properties of the Euler-Lagrange equations (the equivalent canonical 

system that they can be converted into, according to Poisson and Hamilton, resp.). The limit 

formula for the calculus of variations will once more be consulted since it yields a direct connection 

with Poincaré’s theory of integral invariants. On the one hand, those integral invariants are closely 

connected with the Hilbert independence theorem, and on the other, they yield the reciprocity 

property of the Jacobi equations for the second variation (équations aux variations). However, the 

limit formula also provides an immediate understanding of the concept of a canonical system as 

an infinitesimal contact transformation in the Lie sense, and together with a theorem on the 

solutions of the Jacobi equations, it will further provide an understanding of the connections 

between the infinitesimal transformations of the canonical system into itself and its integrals, at 

which point the reciprocity property of the Jacobi equations will then lead to Poisson’s theorem. 

 The brief § 3 inverts Hamilton’s line of reasoning by solving the integration problem for a 

given partial differential equation by an extremal integral that is known by means of integrating 

the Euler-Lagrange equations; in other words, it treats the Jacobi method for integrating first-

order partial differential equations. 

 With that organization and according to the given principle, the theory will be adapted to 

multiple integrals in Part Two. The presentation will be restricted to double integrals, and in the 

first chapter, it will be restricted to double integrals of one unknown function, while in the second 

chapter, it will be restricted to double integrals of two of them, but a theory that relates to n-fold 

integrals with m unknown functions would create no essential difficulties. Consistent with the 

present state of functional calculus, the implementation of that adaptation is given here only to the 

extent that no especially irregular behavior comes into question, since the theory of functionals 

itself still does not possess the same sharpness in its structure that is found in the theory of functions 

of a finite number of variables. The application of the arguments to well-defined problems of 

mathematical physics will of itself lead one to study such degenerate cases, and in that way, 

retroactively require the construction of the functional calculus. 
_____________



CHAPTER ONE 

 

The variational problem for simple integrals 
 

 

§ 1. 

 

The variational problem and the partial differential equations of Hamilton and Jacobi. 

 

 1) The variational problem and the Euler-Lagrange equations. 

 

 The realization of the theory might be coupled with the following problem in the calculus of 

variations: 

 Determine two functions y (x) and z (x) of the variables x in a given interval (x1, x2) such that 

the integral of a given (analytic) function f that depends upon those functions: 

 

(1)    I = 
2

1

( , , , , )

x

x

f y z y z x dx   ,
dy dz

y z
dx dx

 
 = = 

 
 

 

will be an extremum, while one might possibly make special demands on the “boundary values” 

of the functions y (x) and z (x) at the boundary points x = x1 , x = x2 of the interval, which might be 

established in advance. 

 That problem is generally sufficient to allow all of the traits of the theory for a larger number 

of dependent variables to already emerge clearly, such as the introduction of auxiliary conditions, 

etc. The problem with only one dependent function still does not possess that generality. Indeed, 

its treatment generally runs parallel to the following developments, except that an essential 

simplification will enter at one point that will be noted in particular at that point in the development 

(rem., pp. 10). 

 Thus, now let the boundary values of the unknown functions y (x), z (x) in the Problem (1) be 

given as fixed: 

 

(2)    y1 = y (x1) , z1 = z (x1) ; y2 = y (x2) , z2 = z (x2) . 

 

In a known way, the calculus of variations will then give a first criterion for the occurrence of an 

extremum, which is the existence of the Euler-Lagrange equations for the unknown functions 

y(x), z (x) : 

(3)   

( ) 0, , ,

( ) 0, , .

y y y y

z z z z

d f f
f f f f

dx y y

d f f
f f f f

dx z z

 

 

 
− = = =  


   − = = =    
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 From known existence theorems in the theory of ordinary differential equations, there is, in 

general, one and only one integral curve of those equations (3) that goes through two points P1 and 

P2 that are given in equations (2). The integral curves of (3) are called the extremals in the calculus 

of variations, so an extremal is generally determined uniquely by a point-pair P1 (x1, y1, z1) and 

P2(x2, y2, z2). 

 

 2) The “extremal integral” (i.e., principal function) as a “point-pair function” and its 

derivatives. 

 

  We now imagine that two points P1 (x1, y1, z1) and P2 (x2, y2, z2) are given arbitrarily in a 

suitable region of space and connected by an extremal. We would like to calculate the value of the 

integral (1) when it is taken along the extremal from P1 to P2 that was constructed. That integral 

will have a well-defined value for any positions of the points P1 and P2 , so it will take the form of 

a function of the point-pair P1, P2 : 

 

(4)   I (P1, P2) = I (x1, y1, z1 ; x2, y2, z2) = 
2 2 2

1 1 1

, ,

, ,

( , , , , )

x y z

x y z

E f y z y z x dx  , 

 

in which the symbol E shall suggest that the values of the functions y and z along the (associated) 

extremal are substituted in f . The significance of that point-pair function was first emphasized by 

Hamilton (1), who called it the “principal function.” We would like to refer to its by the more 

intuitive name of “extremal integral.” 

 
 The following remark about point-pair functions might be made here: By analogy with Volterra (2), we would 

like to call a point-pair function S (P1, P2) simple (“semplice,” “di primo grado”) when it satisfies the condition: 

 

(5)      S (P1, P3) = S (P1, P2) + S (P2, P3) . 

 

The extremal integral I (P1, P2) that was just introduced is generally not simple as a point-pair function because since 

the integral depends upon the extremals and they are completely independent of each other, the value of the extremal 

integral when taken along the extremal P1 P3 will be completely different from the sum of the integrals that are taken 

along the extremals P1 P2 (P2 P3, resp.). However, one can easily construct a simple point-pair function from an 

ordinary “function of position” V (x, y, z) in space when one sets: 

 

(5*)     S (P1, P2) = V (x2, y2, z2) − V (x1, y1, z1) . 

 

 That would be essentially identical to the Ansatz of a simple point-pair function that is defined by a curve integral: 

 

(5**)   S (P1, P2) = 
2 2 2

1 1 1

, ,

, ,

( , , )

x y z

x y z

L x y z dx + M (x, y, z) dy + N (x, y, z) dz  

 
 (1) W. R. Hamilton, “On a general method in dynamics,” London Phil. Trans. (1834), 247-308. “Second essay on 

a general method in dynamics,” ibid. (1835), 95-144.   

 (2) V. Volterra, cf., the survey treatise: “Sur une généralisation de la théorie des fonctions d’une variable 

imaginaire,” Acta math. 12 (1889), 233-286. 
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that is independent of the path of integration. It can be proved with no effort that every simple point-pair function can 

be represented by a path-independent curve integral (with the help of one function of position, resp.) in that way. 

 

 From the so-called “limit formula” of the calculus of variations, the differential of our extremal 

integral (4), which takes the form of a function of six variables x1, y1, z1 ; x2, y2, z2 , is: 

 

(6)  I = 
2 1

( ) ( )y z y z y z y zf y f z f y f z f x f y f z f y f z f x            
      + + − − − + + − −     , 

 

which will then imply the following six variables for its derivatives: 

 

(6*)  

2 22
2 2 2

1 11
1 1 1

, , ,

( ) , , ,

y z y z

y z y z

I I I
f y f z f f f

x y z

I I I
f y f z f f f

x y z

   

   

  
 = − − = =   


    = − − − = − = −

   

 

 

in which the indices mean that the functions y (x) and z (x) that determine the extremal in question 

are evaluated at the locations x = x2 (x = x1, resp.). 

 Since the direction coefficients ( )y x  and ( )z x  of the extremal at one of the two points P1 

and P2 depend upon the position of the other one, the derivatives (6*) are once more point-pair 

functions. 

 
 For simple point-pair functions, the derivative (6*) are just functions of position, as one will verify immediately 

from (5*) [(5**), resp.]. 

 

 An asymmetry enters into the formulas (6) [(6*), resp.] in such a way that one point of the 

point-pair appears as the lower limit of a certain integral in the point-pair function, while the other 

appears as the upper limit. Therefore, the increment dx might be, say, positive on both sides of an 

increasing interval at the point P2 , but negative at the point P1 . The symmetry in the concept will 

then be regained when we replace dx1 with (− dx1) at P1 when constructing all derivatives with 

respect to x. The sign in the second group of formulas in (6*), which deviates from that of the first 

group in (6*), will then, in fact, invert, so we can say that the derivatives of the point-pair function 

I (P1, P2) are: 

(7)    
I

x




 = 

y zf y f z f 
 − −  , 

I

x




 = 

yf  , 
I

y




 = zf   

at both of those points. 

 

 3) The two Hamiltonian equations. 

 

 Hamilton (1) concluded from formulas (6*) that the integration of the Euler-Lagrange 

equations (3) for given boundary values (2) could be achieved when the extremal integral was 

 
 (1) Hamilton, loc. cit., pp. 10.  
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known in some way as a function of its two boundary points. That is because we can calculate 

1( )y x , 1( )z x , 2( )y x , 2( )z x  from the four following equations in (6*): 

 

  
2

I

y




 =   

2yf   ,  
2

I

z




 =    

2zf   , 

(6**) 

  
1

I

y




 = −

1yf   ,  
1

I

z




 = − 

1zf   , 

 

and thus construct an extremal from each of the two boundary points in a known way. We know, 

a priori, that each of the two extremals thus-constructed must also go through the other point of 

the point-pair, and therefore both of them must be identical. 

 However, there is initially no advantage to be derived from the approach that was taken up to 

now, since one must first integrate the Euler-Lagrange equations if one is to define the extremal 

integral. Meanwhile, Hamilton arrived at an Ansatz for that integral directly as a solution to two 

partial differential equations. In order to do that, he started from equations (6*). Once he had solved 

the last two equations in each row for y  and z , he substituted each of the expressions that were 

obtained in the first equation of that group of formulas. He then set: 

 

(8)     
y zf y f z f 

 − −  = , , , ,
I I

H x y z
y z

  
 

  
 , 

 

to abbreviate, and obtained the two partial differential equations for the point-pair function I (P1, 

P2): 

  
2

I

x




 = 2 2 2

2 2

, , ; ,
I I

H x y z
y z

  
 

  
 , 

(9) 

  − 
1

I

x




 = 1 1 1

1 1

, , ; ,
I I

H x y z
y z

  
− − 

  
 . 

 

If we replace dx1 with (− dx1), as we have shown to be natural above, then both of equations (9) 

will coincide in one equation: 

(9*) 
I

x




 = , , ; ,

I I
H x y z

y z

  
 

  
 

 

that must be fulfilled for each of the two boundary points P1 and P2 of the point-pair function. 

 Hamilton then raised the question of whether any point-pair function that is a solution to each 

of the Hamilton equations (9) can play the role of an extremal integral in the arguments of this 

Chapter and lead to an integration of the Euler-Lagrange equations for prescribed boundary 

values. One can immediately convince oneself that this is not the case. To that end, we construct 
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a point-pair function that satisfies equations (9) in the following way: We imagine fixing one point 

of the extremal integral (say, the upper limit) at a well-defined point A1 of the region considered 

and then connect any other point P in the region to A1 by an extremal. If the points P, as a type of 

covering of space, were then assigned the values of the extremal integral I (A1, P) then a function 

of position V1 (x, y, z) would now be defined in the region of space (in contrast to a point-pair 

function), and that function of position would be a solution to the partial differential equation: 

 

(10)     1V

x




 = 1 1, , ; ,

V V
H x y z

y z

  
 

  
 , 

which coincides formally with (9*). 

 In the same way, we can connect a second fixed point A2 in the region with all points P by an 

extremal and define a second function of position V2 (x, y, z) by the associated extremal integral 

value that likewise satisfies the partial differential equation (10). 

 If we then define the following point-pair function for the two arbitrary points P1 and P2 with 

the help of those two functions of position V1 (x, y, z) and V2 (x, y, z) : 

 

(11)   T (P1, P2) = V2 (P2) − V1 (P1) = V2 (x2, y2, z2) − V1 (x1, y1, z1) , 

 

then it (which is naturally not a simple point-pair function) will satisfy the two Hamilton 

differential equations (9). However, from the way that the point-pair function T (P1, P2) was 

created, it is clear that the partial derivatives 
2

T

y




, 

2

T

z




 (

1

T

y




, 

1

T

z




, resp.) have nothing to do with 

the direction coefficients of the extremals that connect the points P1 and P2, so they cannot be used 

for the desired integration of the Euler-Lagrange equations. We then see that the difficulty lies 

precisely in separating the extremal integral itself from the set of all possible solutions of the partial 

differential equations (9). 

 

 4) The Hamilton-Jacobi differential equation. 

 

 Perhaps in order to get around that difficulty, Jacobi (1), who pursued Hamilton’s 

investigations further, broke with Hamilton’s conception of the extremal integral as a point-pair 

function. He started from precisely the idea that we have just used by fixing the one endpoint of 

the extremal integral and then arrived at a covering of space with the values of the extremal integral 

V (x, y, z). As we saw, that covering yields a solution to one of the partial differential equations 

(10) that replaced the two Hamilton differential equations in Jacobi’s representation and which 

we would then like to call the Hamilton-Jacobi equation. 

 The function of position considered – viz., the extremal integral value V (x, y, z) – is a solution 

to that equation that depends upon two essential constants (actually three, but the third one is only 

additive) as a result of the arbitrary position of the point A from which the extremal integral is 

 
 (1) C. G. J. Jacobi, Cf., esp., the survey paper: “Probleme der Mechanik bei Existenz einer Kräftefunktion und 

bei die Theorie der Störungen,” Werke, Bd. V, pp. 217-395. 
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extended and is then a complete integral of (10). The extremal integral value itself can, with no 

further analysis, take the place of Hamilton’s extremal integral in the determination (6**) of the 

solution to the Euler-Lagrange equations above. Namely, if we assume that the point A has the 

coordinates x = a, y = b, z = c, so the complete integral will be V = V (x, y, z, a, b, c), then from the 

developments on pp. 6, we will need to form only the derivatives of that function with respect to 

b and c in order to find the initial direction of the extremal that radiates from A and goes through 

P. When we set the derivatives equal to new arbitrary constants: 

 

(12)     
V

b




 =  , 

V

c




 =  , 

 

we will obtain the entire family of extremals that radiate from A. Equations (12) will then yield the 

general (i.e., depending upon four constants) solution to the Euler-Lagrange equations. At the 

same time, the boundary-value problem that was posed above will also be resolved insofar as the 

constants  and  can be determined in such a way that the extremals (12) go through a second 

arbitrarily-given point in addition to A. 

 Here, we shall also ask the converse question of whether an arbitrary complete integral of (10) 

can always be represented by an extremal integral value (whether that can happen, resp.). Jacobi 

(1) expressed that by saying that the general solution to equations (3) can be obtained from an 

arbitrary complete integral of the partial differential equation (10) by means of equations (12). 

 If we would like to arrive at that theorem from the variational problem directly (which Jacobi 

derived by calculation) then some further analysis will be necessary. In order to accomplish that, 

we shall once more clearly emphasize the difference between Hamilton’s original conception and 

the modification that Jacobi carried out. 

 Hamilton simultaneously considered the whole four-parameter family of integral curves to the 

Euler-Lagrange equations, each of which could serve as a certain choice of the extremal integral 

for him. Jacobi then selected a two-parameter family from that four-parameter family, namely, all 

of the ones that radiated from a fixed point A. He then first obtained the four-parameter set of 

extremals in such a way that he again let the point A vary afterwards, which would introduce two 

new parameters. 

 

 5) The Hamilton-Jacobi differential equation and the extremal field. 

 

 In order to get Jacobi’s theorem later, we appeal to the picture of a two-parameter family of 

extremals that fill up space simply and with no gaps, so they define a field in the Weierstrass. 

Jacobi’s family of extremals is one such special field that leads to a solution of the Hamilton-

Jacobi differential equation. In general, we would like to characterize the extremal fields from 

which a solution to the Hamilton-Jacobi differential equation can be obtained. 

 If we imagine that we are given an arbitrary field of extremals: 

 

(13)    y = Y (x, b, c) ,  z = Z (x, b, c) 

 
 (1) Jacobi, loc. cit., pp. 240-241.  
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then we can also define a function of position W (x, y, z) in it in manner that is similar to what 

Jacobi did. We need only to lay any surface through the field that cuts each extremal at one and 

only one point. Any point P in space can then be associated with a functional value that is the value 

that the extremal integral takes when it is extended along the extremal of the field that goes through 

P from the intersection point of that extremal with the surface to the point P. 

 However, the function W (x, y, z) thus-defined does not generally satisfy the Hamilton-Jacobi 

differential equation. 

 Namely, let x0, y0, z0 be the coordinates of a point of the initial surface and let the equation of 

that surface read: 

 

(14) x0 = x (y0, z0) . 

 

y0 and z0, and also x0, by the intermediary of that equation, will then take the form of functions of 

the coordinates x, y, z of an arbitrary point because every point of the field is associated with a 

point on the initial surface by the extremal that goes through it. One will then have: 

 

(15)  y0 = y0 (x, y, z) , z0 = z0 (x, y, z) , x0 =  (y0 (x, y, z), z0 (x, y, z)) . 

 

 If we apply the limit formula (6) of the calculus of variations to the function: 

 

(16)    W (x, y, z) = 

0 0 0 0

, ,

( , ), ,

( , , , , )

x y z

y z y z

E f y z y z x dx


   

then that will give: 

 

(17) W =  0 0 0( ) ( )y z y z y z y zf y f z f x f y f z f y f z f x f y f z
  

            
   − − + + − − − + + . 

 

 The y  and z  in this mean the derivatives of the extremal of the field that goes through the 

point P. They can also be regarded as functions of position in the field, so they will be called the 

slope functions of the field; they might then be denoted by p (x, y, z) and q (x, y, z). If we introduce 

those notations and recall (15) then we will get the following values for the partial derivatives of 

the function W (x, y, z) : 

 

(17*)

0 0

0 0

0 0

0 0

0

( ) ( ) ,

( ) ( ) ,

( )

p q p q p p q q

p p q p p q q

q p q p

y zW
f p f q f f p f q f f f p f q f f

x y x z x

y zW
f f p f q f f f p f q f f

y y y z y

W
f f p f q f f

z y

 

 

 

 



        
= − − − − − + + − − +    

         

        
= − − − + + − − +    

         

 
= − − − +

 

0 0

0

( ) .p q q

y z
f p f q f f

z z z

 












      
+ − − +     

       
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It is immediately clear from the form of those derivatives that W (x, y, z) can satisfy the Hamilton-

Jacobi differential equation only when the expressions that are included in brackets vanish. 

However, that means that the initial surface must be determined in such a way that it is an integral 

of the total linear differential equation: 

 

(18)    (f – p fp – q fq) d + fp dy0 + fq dz0 = 0 , 

 

so it must be a surface that cuts all extremals of the field transversally. 

 

 6) The extremal field as an “independence field.” 

 

 In order for one to be able to determine such a transverse surface, the differential equation (18) 

must be completely integrable. 

 
 For the variational problem with only one unknown function, the differential equation: 

 

(18.a)     (f – p fp) d + fp dy0 = 0 

 

will appear in place of (18). Since it is an ordinary total differential equation in  and y0 it will always possess a 

solution. Therefore, any field is of the desired type here. The specialization that was spoken of on pp. 3 is based upon 

that fact. 

 

 The integrability condition for equation (18) reads: 

 

(19) ( ) ( ) ( )
p q q p

p q p p q q p q

f f f f
f p f q f f f p f q f f f p f q f

z y x z y x

         
− − − + − − − + − − −     

          
 = 0 . 

 

 Furthermore, the following partial differential equations for the slope functions p and q are true 

in any case (1): 

(20)   

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0.

q p q p q

q p q p q

f f p f q f q f f
x z z y

f f p f q f p f f
x z y z

     
− − − + − =  

     


     − − − + − =      

 

 

 Equations (19) and (20) represent three homogeneous linear equations for the expressions: 

 

p qf f

z y

 
−

 
 ,  ( )

p

p q

f
f p f q f

x y

 
− − −

 
 , and ( )

q

p q

f
f p f q f

x z

 
− − −

 
 . 

 

 
 (1) Cf., A. Mayer, “Über den Hilbertschen Unabhängigkeitssatz,” Math. Ann. 62 (1906), pp. 339 or O. Bolza, 

“Über den Hilbertschen Unabhängigkeitssatz,” Palermo circ. mat. Rend. 31 (1911), 258-261. 
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Since their determinant: 

1 0

0 1

p q q pf p f q f f f

q

p

− − −

−

 = 0 1 0

0 0 1

q pf f f−

 = f 

 

does not vanish identically, it will then follow that the slope functions p and q of the fields that we 

consider here must satisfy the conditions: 

 

(21)    

0,

( )
0,

( )
0.

p q

q p q

p p q

f f

z y

f f p f q f

x z

f f p f q f

x y

 
− =

 
   − −

− =
 
  − −

− =
 

 

 

However, those are the conditions for the Hilbert integral: 

 

(22)   
( )

[ ( ) ( ) ]

p q p q

p q

I f p f q f dx f dy f dz

f y p f z q f dx

 = − − + +

 = + − + −




 

 

to be independent of the path of integration in the field. The Hilbert independence theorem is true 

for our field then, so we shall call it an independence field. We can then formulate the result as 

follows: If we would like to obtain a solution to the Hamilton-Jacobi equation from the value of 

the extremal integral in a field then the field must be an independence field and the value of the 

extremal integral must be calculated from a transversal of the independence field. 

 However, with that, we have then found the connection to the aforementioned theorem of 

Jacobi, as we will discuss in more detail in the third section because if we fix the constants in an 

arbitrary complete integral of the Hamilton-Jacobi equation then we can give an independence 

field, i.e., a field that possesses a transversal surface for which the value of the extremal field that 

is calculated from a transversal surface will coincide with the given integral (1). 

 

 7) The independence field and the integration of the Euler-Lagrange equations. 

 

 The independence field unites into just a two-fold infinitude of extremals. The boundary-value 

problem for the Euler-Lagrange equations cannot be solved with the help of the value of the 

extremal integral that such a thing defines, since four available parameters are, in fact, necessary. 

 

 
 (1) Cf., also J. Hadamard, Calcul des variations, Paris, 1910, t. 1, pp. 161-162.  
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 Naturally, the same thing is true for the Hilbert independence integral that belongs to the field, which indeed 

represents a point-pair function, but also a simple one. 

 

 Meanwhile, we can provide the necessary number of parameters in such a way that we do not 

consider one independence field by itself, but a family of fields that depends upon two parameters 

(1). 

 In order to exhibit such a thing, we shall give a two-parameter family of surfaces and construct 

an independence field for each of them by drawing all of the extremals that are transverse to them. 

The value of the extremal integral that belongs to each individual independence field then takes 

the form of a function of the two parameters of the family of surfaces I = I (x, y, z, a, b) . Since it 

includes two essential parameters, it will then be a complete integral of the Hamilton-Jacobi 

differential equation (10). In the third section, we will likewise show that any complete integral of 

that equation can be represented in the given way. 

 If the two-parameter family of surfaces is given by the equations: 

 

x0 = x0 (x, y, z, a, b) ,  y0 = y0 (x, y, z, a, b) ,  z0 = z0 (x, y, z, a, b) 

 

then the limit formula of the calculus of variations will yield the derivatives of the value of the 

extremal integral I (x, y, z, a, b) with respect to the parameters (for fixed x, y, z) in the form of: 

 

(23)   

0 0 0
0 0 0

0 0 0
0 0 0

( ) ( ) ( ) ,

( ) ( ) ( ) .

y z y z

y z y z

y z xI
f f f y f z f

a a a a

y z xI
f f f y f z f

b b b b

   

   

  
 = − − − − −    


    = − − − − −

    

 

 

 Those expressions will not change as long as the point x, y, z remains on the same extremal of 

the field, so the equations: 

(24)     
I

a




 = c , 

I

b




 = d , 

 

in which one understands c and d constants, will then represent the individual extremals of the 

variational problem. 

 Now in order to solve the boundary-value problem for the Euler-Lagrange equations for two 

arbitrarily-given points P1 and P2 , we shall determine the values of the extremal integrals I1 = I 

(P1, a, b) and I2 = I (P2, a, b) that belong to P1 and P2, and initially for a fixed choice of the 

parameters a and b. We will then get: 

 

(25)     

1 1
1 1

2 2
2 2

, ,

,

I I
c d

a b

I I
c d

a b

 
= =  


  = =

  

 

 
 (1) D. Hilbert, “Zur Variationsrechnung,” Math. Ann. 62 (1906), pp. 361.  
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for the extremal of the field that goes through P1 (P2, resp.). 

 Should the field be chosen in such a way that P1 and P2 would lie along the same extremals 

then one would need to have c1 = c2 , d1 = d2 , i.e., the parameters a and b would have to be 

calculated from the equations: 

 

(26)    1 2( )I I

a

 −


 = 0 , 1 2( )I I

b

 −


 = 0 . 

 

The directions of the desired extremals at the point P1 or P2 are then determined from the relations 

 

 

§ 2. 

 

Integration theory of the Euler-Lagrange equations (the associated canonical system, resp.) 

 

 The integration of the two Euler-Lagrange equations: 

 

(1)      

( ) 0,

( ) 0

y y

z z

d
f f

dx

d
f f

dx






− =


 − =


 

 

was accomplished in the first section with the help of the Hamilton-Jacobi partial differential 

equation where it was used, in particular, to treat the boundary-value problem for those equations. 

However, the fact that they arise from the variational problem: 

 

(2)     I = 
2

1

( , , , , )

x

x

f y z y z x dx   = extremum 

 

also brings with it certain advantages for the general integration theory of those differential 

equations. We would like to summarize them in an overview here. 

 

 1) The canonical system. 

 

 In the previous section, we first started by solving a boundary-value problem for the equations 

(1), namely, we determined an integral curve in such a way that it would go through two given 

points of the region considered. In the sense of the general integration theory of differential 

equations, it would seem simpler to give only the values of y and z and their derivatives y  and 

z  at a point in the region. That convention will seem quite natural when one decomposes the two 

equations (1) into a system of two first-order differential equations (as one likes to do in the 

integration theory of ordinary differential equations). Formally, one can achieve that conversion 

simply by introducing: 
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y  = p , z  = q 

 

as new variables, by which the system (1) will go to a system of four first-order ordinary 

differential equations. 

 Meanwhile, for such a conversion, it is expedient to apply a Legendre transformation and 

introduce the quantities: 

 

(3)       = fp ,   = fq 

 

in place of p and q as new variables. If we calculate p and q as functions of  and  using those 

two equations and introduce the new function: 

 

(4)     H (, , y, z, x) = f – p  fp – q  fq , 

 

while once more substituting the calculated values as we did in the previous section [cf., equation 

(8)], then if we consider the relations: 

 

f

y




 = 

H

y




, 

f

z




 = 

H

z




, 

(4*) 

− p = 
H






, − q = 

H






, 

 

which follow immediately from (4), the Euler-Lagrange equations (1) will go to the canonical 

system: 

(5)  

, ,

, ,

d H dy H

dx y dx

d H dz H

dx z dx









 
= = −  


  = = −

  

 

 

which belongs to the system of Euler-Lagrange equations of the variational problem: 

 

(6)    I = 
2

1

( , , , , )

x

x

dy dz
H y z a dx

dx dx
   

 
+  + 

 
  = extremum 

 

intrinsically. While varying that integral, we can prescribe the values of y, z ; ,  at only one of 

the endpoints, say, for x = x0 . 

 We can associate any group of values of the canonical variables ,  ; y, z, x geometrically 

with a point in a five-dimensional space. One and only one integral curve of the canonical system 

will then run through each point in that space, which is determined completely when we are given 
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that point, such that we will immediately have in mind a simple covering of that five-dimensional 

space by the set of all solutions to the system (5) [and therefore equations (1), as well]. 

 By contrast, with the Euler-Lagrange equations (1), we have only three variables y, z, x, which 

we must interpret in a three-dimensional space. An integral curve of equations (1) is first 

determined then when we prescribe, not only a point x, y, z, but also its direction y , z  at that 

point. Therefore, a two-fold infinitude of extremals will run through each point in space. Here, we 

would like to have a simple covering of space, so we must select one such two-parameter family 

that defines a field from the four-parameter set of extremals. When we speak of the integral curve 

of equations (1) in what follows, we would always like to imagine that such a field has been given. 

 

 2) The relative integral invariant and the independent integral. 

 

 In order to arrive at the principle from which we can derive the advantage in integrating 

equations (1) that arises from their relationship to the variation problem, we shall now focus on 

the limit formula for the calculus of variations and consider the differential expression: 

 

(7)     ( )y z y zf y f z f y f z f x     
 + + − − , 

 

in which the differentials x, y, z are arbitrary increments, while y  and z  are the well-defined 

direction coefficients of the extremal of the field that goes through the point in question. In terms 

of the canonical variables, that expression would take the form: 

 

(7*)      y +  z + H x . 

 

 We take the line integral of the expression (7), as well as (7*), along an arbitrary closed curve 

in the associated three-dimensional (five-dimensional, resp.) space. An extremal will emanate 

from each point of one such closed curve, and we imagine that the curve has been chosen especially 

to make no two curve points lie along one and the same extremal. The set of all extremals that are 

lined up along the curve will then generate a type of tubular surface. If we lay a second curve of 

that kind around that tube of extremals then each point of the first curve will be associated with a 

well-defined point of the second curve, namely, the one that lies along the same extremal as it. We 

can establish the points of the first curve x1, y1, z1 [when we couple them with the expression (7)] 

as functions of one parameter , so the points x2, y2, z2 on the second curve that they are associated 

with will also be given as functions of . If we now take the extremal integral that we introduced 

in the previous section [equation (4)] along the piece of the extremal field that connected the two 

associated points then it will likewise take the form of a function of the parameter  : 

 

(8)   I (x1, y1, z1 ; x2, y2, z2) = I (x1 (), y1 (), z1() ; x2 (), y2 () , z2 ()) = I (a) . 

 

From the limit formula of the calculus of variations, we will then have: 
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(9)    

2 2 2
2 2 2

1 1 1
1 1 1

( ) ( ) ( )

( ) ( ) ( ) .

y z y z

y z y z

y z xI
f f f y f z f

y z x
f f f y f z f

  

   

  

  

   

   

 
 = + + − − 

 

 
 − + + − − 

 

 

 

If we then take the integral of that expression along the given closed curve then we will have 
I

  

= 0 on the left-hand side, and we will then get: 

 

(10) 
2

( )y z y zf y f z f y f z f x     
  + + − −
   = 

1
( )y z y zf y f z f y f z f x     

  + + − −
  . 

 

 Poincaré (1) expressed the fact that our integral of the differential expression (7), which is 

taken over a closed curve, will keep the same value when we take it over a second arbitrary curve 

that encircles the tube of extremals that emanate from the first curve by calling that integral an 

integral invariant of the Euler-Lagrange equations, and indeed it is, in particular, a relative 

integral invariant, with his terminology, and it is relative in the sense that the domain of integration 

must be a closed curve. 

 In the same way, one will find that the integral of the expression (7*) for the canonical system 

(5): 

 

(10*)     y z H x    + +  

 

is a relative integral invariant. 

 Knowing that relative integral invariant is the foundation for the theory of integration for the 

Euler-Lagrange equations (the canonical system, resp.) that Poincaré discussed in detail. Here, 

we shall investigate how that relative integral invariant is connected with the Hilbert independence 

theorem. 

 If we consider those curves that can contract to a point on a tube of extremals, as we have 

characterized it up to now, and assume, for the sake of simplicity, that they are intersected by each 

extremal at two points then we can also associate the points on the curves that lie along the same 

extremal here, as well. We will then get the points of the two segments of the curves that arise in 

that way as functions of one parameter . In that way,  will run from one value   to another 

value  , which correspond to the points at which the curve is tangent to the extremals of the field, 

in order to describe that curve. We will then have ( )I   = 0, as well as ( )I   = 0, and it will then 

follow from (9) that: 

 

0 =
2 2 2 2 2 2( ) ( ) ( )y z y zf y f z f y f z f x





  


   



 + + − −  −
1 1 1 1 1 1( ) ( ) ( )y z y zf y f z f y f z f x





  


   



 + + − −   

or 

 
 (1) H. Poincaré, Les methodes Nouvelles de la mécanique celeste, Paris (1892-99), t. 3, Chap. 22. 
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(11)    ( )y z y zf y f z f y f z f x     
 + + − −  = 0 , 

 

in which the integral (11) is once more extended over a closed curve (1). Naturally, a corresponding 

statement would be true for the canonical system. 

 The latter case always presents itself when the variational problem (2) includes only one 

unknown function. That is because we will then have a field in the plane, and in that case, any 

closed curve will be of the kind that can be contracted to a point. That says nothing more than the 

fact that the Hilbert integral: 

(12*)     ( , , ) y

y
f y y x y f x

x







  
 + −  

  
  

 

is independent of the path of integration for any field in the plane. By contrast, a field in space is 

an independence field only when the integral in the formula (10) has the value zero for any tube 

of extremals along which the curve of integration cannot be contracted to a point. The Hilbert 

integral: 

(12)    ( , , , , ) y z

y z
f y z y z x y f z f x

x x

 


 
 

    
   + − + −    

    
  

 

will, in fact, be independent of the path, here as well. The independence integral can then be 

regarded as a special type of integral invariant (2). 

 

 3) The associated “absolute integral invariants” and the “Jacobi equations.” 

 

 We can immediately construct absolute integral invariants (of order two) from the relative 

integral invariants (of order one) that we have considered up to now by means of Stokes’s theorem. 

From the previous section, we can distort a given closed curve that serves to define the relative 

integral invariant arbitrarily along the associated tube of extremals without changing the value of 

the invariant. With no loss of generality in the argument, we can then assume from the outset that 

the curve lies in a plane x = const. The relative integral invariant will then take on the form: 

 

(13)     
y zf y f z  +  = const., 

or 

(13*)     y z   +  = const., 

 

resp. 

 
 (1) A theorem of H. Hahn: “Über den Zusammenhang zwischen den Theorien den zweiten Variation und der 

Weierstraß’schen Theorie der Variationsrechnung,” Palermo circ. mat. Rend. 29 (1910), 49-78. 

 (2) That fact is essential if one is to gain the advantage in integration that comes from knowing the independence 

integral. In fact, all of the results of D. C. Gillespie (Dissertation, Göttingen, 1906), who pursued that topic further, 

are immediately contained in Poincaré’s theorems on integral invariants. 
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 If we then lay an arbitrary surface through the closed curve along which the integral is taken, 

which we can naturally choose to be the plane x = const. that goes through curve, for the sake of 

simplicity, then from Stokes’s theorem, the curve integral will go to the double integral: 

 

(14)    ( ) ( )y zf f y z
z y

  

  
− 

  
  = const., 

or 

 

(14*)     y z   +  = const., 

 

resp., in which the integrals are extended over the surface patch in the plane x = const. that is 

enclosed by the curve (1). 

 If we next recall (14) then we can bring that formula into either of the forms: 

 

y y y z y z y z z z z y

y z y y
f f f f f f y z

z z z z
            

       
+ + − − − 

    
  = const. 

or 

 

(15) ( )y y y z y z z z y z z yf y y f y z f z y f z z f f y z                    
   + + + + −  = const. 

 

by differentiating it. 

 In the consideration of the basic field of extremals, let the individual extremals be characterized 

by the two parameters a and b. The individual points in each plane x = const. can also be established 

by those parameters then. If we introduce the parameters into the integral (15) then we will get: 

 

( )y y y z z y

y y y y y z y z
f f f da db

a b b a a b b a
     

             
− + + − −    

           
  = const. 

 

along each extremal, so we will also have that the integrand satisfies: 

 

(16)  ( )y y y z z y

y y y y y z y z
f f f

a b b a a b b a
     

           
− + + − −   

          
 = const. 

 

(because the domain of integration is completely arbitrary). For the canonical system, one has the 

corresponding result that one has: 

 
 (1) Should the field in question be an independence field, then it would follow from (14) that the expression 

( ) ( )y zf f
z y

 

 
−

 
 must vanish identically. The quantities 

yf 
 and 

zf 
 must then be the partial derivatives of a function 

 (y, z, x) . That is the condition that A. Mayer (loc. cit. on pp. 10) gave for the validity of the Hilbert independence 

theorem. 
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(16*) 
y y z z

a b a b a b a b

             
− + −   

          
 = const. 

along the extremals. 

 Those results can be given yet another setting: The Euler-Lagrange equations (1) are 

associated with certain linear differential equations that we would like to call the Jacobi equations. 

(In Poincaré’s terminology, they are called the “équations aux variations.”) They belong to the 

second variation of the integral (2), and they are the Euler-Lagrange equations of that integral. 

If: 

(17)     I = 
2

1

( , , , , )

x

x

x dx  y z y z  

is that second variation, in which one has: 

  

(18)  

2 2

2 2

2 ( , , , , ) 2

2 2 2 2

2 ,

y y y z z z

y y y z z y z z

yy yz zz

x f f f

f f f f

f f f

     

   

       = + +


   + + + +
 + + +

y z y z y y z z

y y y z z y z z

y y z z

 

 

then the Jacobi equations will read: 

(19)     

( ) 0 ,

( ) 0 .

d

dx

d

dx






 −  =


  −  =


y y

z z

 

 

 As Jacobi showed, any solution y = y (x, a), z = (z, a) of the Euler-Lagrange equations (1) 

that includes one parameter will immediately imply a solution to the equations (2) when one 

differentiates them with respect to that parameter: h = 
y

a




,  : z = 

z

a




. We can the derive the 

following two systems of solutions to the Jacobi equations from the two-parameter family of field 

extremals directly: 

(20)     
1 1

2 2

, ,

, .

y z

a a

y z

b b

 
= =  


  = =

  

y z

y z

 

 

Those solutions are coupled by the relation (16), which says that the Jacobi system (19) is self-

adjoint. It would likewise follow from (16) that the Jacobi system that belongs to the canonical 

system (5): 
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(21)   

2 2 2 2

2

2 2 2 2

2

2 2 2 2

2

2 2 2 2

2

,

,

,

d H H H H

dx y y y z y

d H H H H

dx y z

d H H H H

dx z y z z z

d H H H H

dx y z

 

    

 

    

    
= + + +

      

    

= − − − −
      


    = + + +

       


   
= − − − −       

p
y p z k

y
y p z k

k
y p z k

z
y p z k

 

 

is also self-adjoint. As will be explained in subsection 5), that reciprocity property leads to 

Poisson’s theorem. 

 

 4) The canonical system as a contact transformation. 

 

 Lie (1) addressed the integration theory of the Euler-Lagrange equations (the canonical 

system, resp.) from an ostensibly-different viewpoint, namely, the theory of transformation groups. 

The limit formula of the calculus of variations will also imply those arguments directly, and in 

particular, mediate its connection with the previous results. 

 If we keep the abscissas x2 (x1, resp.) of both points of the point-pair constant in the extremal 

integral I [§ 1, eq. (4)] then I will take the form of a function of four variables I (y2 , z2 ; y1 , z1), or 

as we would like to write it: 

 

(22) I (Y, Z ; y, z) . 

 

When we consider (3) and further set yf   =  , zf   =  , the limit formula from the calculus of 

variations will imply that: 

 

(23)    I =   Y +   Z –   y –   z . 

 

 From Lie’s theory, that fundamental relation says that the extremals of our variational problem 

can be regarded as the trajectories of a contact transformation. The function (22) characterizes that 

contact transformation, which we initially considered to be a function of two points on the 

trajectory. If we give only a point and the associated tangent in order to fix the extremal instead of 

two points then the characteristic function I will take the form of a function of y, z, , and  : 

 

(22*) I (Y, Z, y, z) = I (, , y, z) . 

 

 
 (1) S. Lie, “Die Störungstheorie und die Berührungstransformationen,” Christiania, Arch. for Math. og Naturw. 2 

(1877), pp. 129. 
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 With that argument, the defining equations of the associated infinitesimal contact 

transformations will be identical to the canonical system (5). In order to verify that directly, we let 

the two points (Y, Z) and (y, z) on the extremal move infinitely-close to each other. From (23), we 

will then have: 

 

(24)      I = d ( y +  z) , 

 

and I will become: 

( , , , , )
dy dz

H y z x dx
dx dx

    
  

+ +  
  

 

in this case. We will then get: 

 

( , , , , )
dy dz

H y z x
dx dx

    
 

+ + 
 

= 
d

dx
( y +  z) 

or 

 

(25)    
d d dy dz

y z
dx dx dx dx

 
   + − −  = H ( y +  z) , 

 

from which the canonical system (5) will emerge immediately. 

 The two functions that always appear next to each other in the theory of contact 

transformations, one of which characterizes the finite transformations, while the other 

characterizes the infinitesimal transformations, are I and H here. The former can then be defined 

by the latter when one puts the integral into the form (6) and determines it as the extremal integral. 

 

 5) The transformation of the canonical system into itself. Poisson’s theorem. 

 

 Any point of the five-dimensional space (x, y, z, , ) is associated with a certain point y0, z0, 

0, 0 in an arbitrary hyperplane x = x0 by means of the extremal of the system (5) that goes through 

it. One must now ask, in the spirit of Lie’s theory, whether there are one-parameter groups that 

leave the canonical system (5) invariant, i.e., permute the associated extremals amongst each other. 

(In order to do that, it would obviously suffice that they only permute the points at which the 

extremals meet the hyperplane x = x0 , because a transformation group that permutes those initial 

values amongst each other will, at the same time, permute the extremals amongst each other, since 

they are indeed determined by the initial values.) Let: 

 

(26)   
( , , , , ) , ( , , , , ) ,

( , , , , ) , ( , , , , ) ,

y x y z z x y z

x y z x y z

       

       

= =


= =

a b

m n
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be the infinitesimal transformations of the group that act upon a point in space. From pp. 19, y = 

a, z = b, p = m, k = n must then be a system of solutions of the Jacobi equations (21). Furthermore, 

the relative integral invariant: 

dy dz +  

 

must also remain a relative invariant under the transformation, i.e., by means of (26), one must 

have: 

 

(27)      ( dy +  dz) = dg  , 

 

in which g is an arbitrary function of x, y, z, ,  . We will then have: 

 

(27*)    m dy – a d + n dz – b d = d (g –  a –  b) . 

 

Hence, if we set: 

 

(28)     g –  a –  b = Q (x, y, z, , )  

 

then we will have: 

(29)   m = 
Q

y




, n = 

Q

z




 ; a = − 

Q






, b = − 

Q






. 

 

 In order to accomplish the desired permutation of the extremals amongst each other, the 

transformation (26) must then have the form: 

 

(26*)     

, ,

, ,

Q Q

y z

y Q z Q

 

 

 

   

 
= =  


  = − = −

  

 

 

in which the function Q is to be determined such that: 

 

(30)   p = 
Q

y




, y = − 

Q






 ; k = 

Q

z




, z = − 

Q






 

 

is a solution of the Jacobi equations (21). However, if: 

 

 =  (x, a) , y = y (x, a) ,  =  (x, a) , z = z (x, a) 

 

are any solutions of the canonical system that include the parameter a then: 
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p = 
a




, y = 

y

a




 ; k = 

a




, z = 

z

a




 

 

will also be solutions of the Jacobi equations (21). From (16*), the relation must then exist for any 

system of solutions of (5) that includes one parameter a that: 

 

Q y Q Q z Q

y a a z a a

 

 

       
+ + +

       
 = const., 

i.e., one must have: 

 

(31)      
Q

a




 = const. 

 

for all x as soon as one replaces y, z, ,  with any solutions of the canonical system (5) that include 

the parameter a. However, it follows from this that Q itself must also remain constant along the 

integral curves of the system (5), so Q (x, y, z, , ) = const. must be an integral of the canonical 

system. Conversely, when Q is an integral of (5), (30) will represent a solution of the Jacobi 

equations (1). Knowing an integral of the canonical system (5) and knowing an infinitesimal 

transformation of the system into itself are therefore equivalent to each other. 

 Finally, as a corollary to that, one gets Poisson’s theorem: If we have two integrals Q1 (x, y, z, 

, ) = const. and Q2 (x, y, z, , ) = const. then: 

 

p1 = 
1Q

y




, y1 = − 1Q






 ; k1 = 1Q

z




, z1 = − 1Q






, 

p2 = 
2Q

y




, y2 = − 2Q






 ; k2 = 2Q

z




, z2 = − 2Q






 

 

will be two systems of solutions to the Jacobi equations, and we will find the new integral: 

 

(32)   1 2 1 2 1 2 1 2Q Q Q Q Q Q Q Q

y y z z   

         
− + −   

         
 = const. 

from them. 

 

 

 

 

 

 

 

 
 (1) H. Poincaré, Les méthodes Nouvelles de la mécanique celeste, t. 1, pp. 168.  
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§ 3. 

 

Integrating a given first-order partial differential equation  

by means of an extremal integral. 

 

 Hamilton’s process that was described in the first section for integrating the Euler-Lagrange 

equations by reducing them to the integration of his two partial differential equations, which 

Jacobi then further developed, can generally be regarded as something that only complicates the 

problem. That is because in the theory of first-order partial differential equations, one prefers to 

think that, conversely, it is a great advance when the integration of the partial differential equations 

can be reduced to the integration of a system of ordinary differential equations. Now, Jacobi 

achieved precisely that goal of the theory of partial differential equations when he inverted 

Hamilton’s line of reasoning and succeeded in integrating a given first-order partial differential 

equation (which might not include the function itself): 

 

(1)  
V

x




 = , , , ,

V V
H x y z

y z

  
 

  
 

 

in such a way that it would be regarded as the Hamilton-Jacobi differential equation of a 

variational problem that is determined by it and demanded that this variational problem should be 

solved by a direct study of the Euler-Lagrange equations in the sense of § 2. 

 If we would now like to expound upon that conception of things then we cannot couple it with 

the usual interpretation of an integral of equation (1) as a hypersurface (M3) in four-dimensional 

(x, y, z, V)-space. Rather, it would seem preferable to interpret such a solution as a covering of the 

three-dimensional (x, y, z)-space. 

 According to Lagrange, in the general theory of first-order partial differential equations, one 

asks what the complete (general, resp.) integral would be. It is easy to choose extremal fields such 

that the value of the extremal integral (Hilbert’s independence integral, resp.) exhibits such a 

covering of space that corresponds to the complete, or also general, integral in the Lagrange sense. 

 With the function H (x, y, z, , ) that is given in the differential equation (1), we can next 

derive the integrand in the extremal integral ( , , , , )f y z y z x   by setting: 

 

(2)  y  = − 
H






, z  = − 

H






, 

 

solving those equations for  and , and then getting: 

 

(3)     ( , , , , )f y z y z x   = − 
H H

H 
 

 
− +

 
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by substituting the calculated values. We can then find the variational problem of the Euler-

Lagrange equations that belongs to the function (3). In what follows, we shall assume that its 

integral curves, viz., the extremals, are determined as in § 2. 

 The value of the extremal integral that is extended from an arbitrary fixed point P0 (x0, y0, z0) 

to any point P (x, y, z) of the region considered: 

(4)  V (x, y, z ; x0, y0, z0) = 

0 0 0

, ,

, ,

( , , , , )

x y z

x y z

E f y z y z x dx   

 

gives such a covering of space that must be referred to as a complete integral. That is because the 

constants x0, y0, z0 can be determined in such a way that this integral includes a given “element” 

x1, y1, z1, V1, 
1

V

x

 
 

 
, 

1

V

y

 
 

 
, 

1

V

z

 
 

 
  that satisfies the partial differential equation. (Moreover, 

the value of V1 does not matter at all, since an integral of the differential equation (1) is determined 

only up to a constant.) Namely, if we lay an extremal through the point x1, y1, z1 with a direction 

1( )y , 1( )z  such that: 

1

V

y

 
 

 
 = 

1( )yf   , 
1

V

z

 
 

 
 = 1( )zf   

 

then we need only to choose the point P0 along that extremal such that we will have: 

 
1 1 1

0 0 0

, ,

, ,

( , , , , )

x y z

x y z

E f y z y z x dx   = V1 

 

in order to have fulfilled all conditions, since 
1

V

y

 
 

 
 takes the correct value automatically as a 

result of the partial differential equation (1) (1). 

  Now in order to represent an arbitrarily-given complete integral V (x, y, z, a, b) as a covering 

by means of the extremal integral, we next give fixed values to the constants a and b such that we 

will obtain a certain particular integral V (x, y, z). As was just explained, we can construct an 

associated complete integral V (x, y, z ; x0, y0, z0) for every element of that particular integral. The 

set of all those complete integrals will imply the particular integral from which started in such a 

way that x0, y0, z0 will be certain functions of x, y, z : 

 

(5)    x0 = x0 (x, y, z) , y0 = y0 (x, y, z) ,  z0 = z0 (x, y, z) . 

 

 Now since that particular integral, as well as each of the complete integrals that are constructed 

in that way, satisfy the Hamilton-Jacobi equation (1), the functions (5) must satisfy the total linear 

differential equation: 

 
 (1) Cf., on this, J. Hadamard, Calcul des variations, t. 1, pp. 160-163. 



Prange – The Hamilton-Jacobi theory for double integrals. 26 
 

0 0 0
0 0 0

0 0 0

V V V
dx dy dz

x y z

  
+ +

  
 = 0 , 

or 

(6)    
0 0 0 0 0 0( ) ( ) ( )y z y zf y f z f dx f dy f dx   

 − − + +  = 0 . 

 

The points x0, y0, z0 will then fill up a surface that intersects the family of extremals transversally; 

the family of extremals then define a general independence field. If we now let the parameters a 

and b vary arbitrarily in the complete integral V (x, y, z, a, b) then the surface that is determined 

by equation (6) will likewise vary with those parameters. We will then get a two-parameter family 

of initial surfaces, and therefore also a two-parameter family of independence fields, as we already 

introduced them in § 1, and that covering will yield the most general complete integral. 

 With Lagrange, we can go from the complete integral to the general one in such a way that 

we select a one-parameter family from the two-parameter family of transversal surfaces and 

construct their envelope. In that way, we will get a certain new surface to which one of the 

transversal families of extremals belongs. The covering of space that is thereby determined 

corresponds to the general integral, so it will contain an arbitrary function that will come into play 

when we select a one-parameter family from the two-parameter family of transversal surfaces. 

 Therefore, the integration of the partial differential equation (1) is, in fact, reduced to the 

integration of a system of ordinary differential equations, namely, to the Euler-Lagrange 

equations: 

(7)      

( ) 0,

( ) 0,

y y

z z

d
f f

dx

d
f f

dx






− =


 − =


 

 

which make it possible for one to know the family of extremals. The extremals are nothing but the 

so-called characteristics of the partial differential equation, which is a fact that also emerges 

formally and immediately when we replace equations (7) with the associated canonical system: 

 

(8)  

, ,

, ,

d H dy H

dx y dx

d H dz H

dx z dx









 
= = −  


  = = −

  

 

 

with which, we have achieved precisely the form of the equations for characteristics that Cauchy 

gave. All properties of the characteristics, or as one says more intuitively, the “characteristic 

strips,” must also emerge clearly from our extremals, except that we must correspondingly replace 

our interpretation of the integral of (1) as the “tangent plane to the hypersurface” with the “gradient 

of the covering.” Any integral curve of (7), along with its direction coefficients, will determine 

that gradient, since we have: 
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V

y




 = 

yf  , 
V

z




 = zf  , 

 

and V / x is obtained from the given partial differential equation (1). If two different space-

coverings have an element in common, i.e., they have the same value and the same gradient at 

some point in space, then they will have an element in common all along the entire characteristic 

that runs through that point, because the two associated independence fields must obviously have 

the entire extremal in common, since such a thing is established uniquely by its starting point and 

initial direction. 

 Finally, we shall address the determination of a two-parameter family of characteristics in such 

a way that the associated integral of (1) reduces to a given function V =  (y, z) for x = x0 . In our 

way of looking at things, that “Cauchy problem” takes the form of giving a covering of space that 

assumes the given value V (x0, y, z) =  (y, z) in the plane x = x0 . In order to solve that, we must 

lay extremals in space that start from the individual points of the plane x = x0 and whose directions 

y , z are determined in such a way that we will have: 

 

(9)      
yf  = 

y




, zf  = 

z




 . 

We will then have: 

(10)   V (x, y, z) =  (y0, z0) +

0 0 0

, ,

, ,

( , , , , )

x y z

x y z

E f y z y z x dx   

 

(in which y0 and z0 are functions of x, y, z), which is a function that will certainly reduce to  (y, 

z) for x = x0 . We must now show that the function V (x, y, z) satisfies the partial differential 

equation (1). If we calculate its partial derivatives then when we consider the fact that we must 

substitute: 

0

0

x

y




 = 0 , 0

0

x

z




 = 0 , as well as  

0( )yf   = 
0y




, 0( )zf   = 

0z




, 

 

in those equations here, from equations (17*) in subsection 5) (pp. 9), we will have: 

 

(11)    

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

( ) ,

,

y z y z

y y

z

y z y zV
f y f z f f y f z f

x y x z x y x z x

y z y zV
f f

y y y z y y y z y

y z y zV
f

x y z z z y z z z

   

   

   

   

 



        
   = + + − − − + = − − 

         

        
= + + − + = 

         

       
= + + − +

        
.zf 










 
 = 
  
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 Since the very meaning of the function f in equation (3) implies that it is precisely the partial 

differential equation (1) that will arise upon eliminating y  and z  from those three equations, we 

will see that (10) is, in fact, the solution to the Cauchy problem. With that, we have simultaneously 

shown that the extremal field that is constructed from the initial conditions (9) is an independence 

field. A. Mayer (1) first constructed a general independence field by construction in that way, 

moreover. 

 

___________ 

 
 (1) A. Mayer, “Über den Hilbertschen Unabhangigkeitssatz,” Math. Ann. 62 (1906), pp. 341, et seq. 



PART TWO 

 

The variational problem for the double integrals. 

 
Chapter One. 

 

The variational problem with one unknown function. 

 

 

§ 1. 

 

The variational problem and the equation between  

the partial functional derivatives of the extremal integral. 

 

 1) The variational problem and the Euler-Lagrange equation. 

 

 The basic variational problem here reads: 

 Determine the unknown function z = z (x, y) in the double integral of a given function f (zx, zy, 

z, x, y): 

(1)   I = 
( )

( , , , , )x y

S

f z z z x y dx dy   ( , ), ,x y

z z
z z x y z z

x y

  
= = = 

  
 

 

such that the double integral will be an extremum. In that way, the double integral is thought to be 

extended over a given region S in (x, y)-plane with the (analytic, free of double points) boundary 

curve C. Let the values of the function z (viz., the boundary values) be initially given as fixed on 

that curve C as functions of the arc-length s : 

 

(2)      z = z (s) on C . 

 

 The calculus of variations then yields a first condition for the occurrence of an extremum in 

the form of demanding that the function z (x, y) must satisfy the Euler-Lagrange equation: 

 

(3)    ( ) ( )
x yz z zf f f

x y

 
+ −

 
 = 0 , ,

x yz z z

x y

f f f
f f f

z z z

   
= = =     

 

 

 We shall assume (although this has probably not been proved at this level of generality) that 

in general there is one and only one surface z = z (x, y) that satisfies equation (3) and goes through 

the given space curve (2), and in that way contains no singular points in the interior of the region 

S. 
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 Here, the calculus of variations also calls any surface that succeeds in satisfying equation (3) 

an extremal, such that we can formulate our assumption as follows: One and only one extremal 

goes through every space curve in the region of space considered.  

 

 2) The extremal integral as a line function. The line functions and their functional derivatives. 

 

 Conversely, we now imagine that a closed space curve L is given in a suitable region of space 

and that an extremal is laid through it. We calculate the value of the integral (1) when it is extended 

over the region over the extremal that is bounded by L (which will be suggested by the symbol E 

in the formulas). That “extremal integral” will have a well-defined value for every given space 

curve, so it is a line function: 

 

(4)     I [L |] = ( , , , , )x yE f z z z x y dx dy  . 

 
 Volterra (1), who introduced such line functions into analysis, considered the “simple” line function as a simplest 

special case of a line function. We will arrive at its definition in the following way: We imagine that two space curves 

L1 and L2 are given that have a curve segment l in common. If we suppress the segment l then a new closed space 

curve L3 (which might also be analytic, etc.) will arise from L1 and L2 . Now, if a line function S [L|] assumes the 

values S [L1|], S [L2|], S [L3|] for the three curves L1 , L2 , L3 , resp., then Volterra called it “simple” when the relation: 

 

(5)      S [L3|] = S [L1|] + S [L2|]  

 

existed. The extremal integral I [L|] is not a simple line function, in general, since the value of the extremal integral 

depends upon the extremal, and they are entirely independent of each other due to the arbitrariness in the curve segment 

l. Meanwhile, one can give an example of a simple line function. One imagines that three functions of position in 

space A (x, y, z), B (x, y, z), and C (x, y, z) are given and that they satisfy the condition: 

 

(6)      
A B C

x y z

  
+ +

  
 = 0 . 

 

From Gauss’s theorem, when the surface integral: 

 

(6*)  Adydz Bdzdx C dxdy+ +  

 

is taken over an arbitrary integration surface, it will be independent of that integration surface, so it initially represents 

a line function. However, that line function is simple because due to the independence of the value of the integral on 

the integration surface, we can deform an arbitrary integration surface that is laid through L3 in such a way that it goes 

through the curve L1, as well as the curve L2, without changing the value of the integral. We will then, in fact, have: 

 

S [L3|] = S [L1|] + S [L2|] . 

 

Volterra had also proved that, conversely, any simple line function must be represented by means of three functions 

of position in the given way as an integral that is independent of the surface. 

 

 
 (1) V. Volterra, “Sur une généralisation de la théorie des fonctions d’une variable imaginaire,” Acta math. 12 

(1889), 233-252. 
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 Volterra adapted, above all, the concept of the derivative to line functions as a consistent 

expansion of the concept of the derivatives of an ordinary function of several variables. His line 

of reasoning was the following: We focus on a well-defined point on the space curve L and vary 

the space curve in a certain neighborhood of that point in such a way that we subject each of its 

points to a certain displacement x that is parallel to the x-axis. The line function will once more 

have a well-defined value [ |]S L  for the space curve L  thus-varied. Volterra defined the 

expression: 

(7)      
[ |] [ |]S L S L

x d 

 −


, 

 

in which the denominator is the area of the surface patch that is bounded by both L  and L, while 

 is the arc-length along L. The boundary value that this expression tends towards when x, as 

well as the length , become infinitely small in any way in the neighborhood of the point in 

question, at which x was non-zero, shall be independent of the type of passage to the limit. 

Volterra then called it the “functional derivative with respect to the x-axis”: Sx . He defined 

functional derivatives along the y-axis and the z-axis – viz., Sy (Sz, resp.) – analogously. If we 

interpret those three functional derivatives as components of a vector then every point on the space 

curve will be assigned a certain vector (Sx , Sy , Sz) by Volterra’s operation. If we vary the curve L 

by displacing each of its points by the line segment x, y, z then, as Volterra showed, the 

variation of a line function S [L|] will be given by an integral over L in the following way: 

 

(8)     S [L|] = ( )x y z
L

S x S y S z d   + + . 

 

 For a displacement of the space curve L into itself, one must obviously have S = 0, so it will 

then follow that: 

(9)  
x y z

dx dy dz
S S S

d d d  
+ +  = 0 , 

 

i.e., the vector Sx , Sy , Sz will be perpendicular to the curve L. 

 We can then replace the vector Sx , Sy , Sz with the vector product of the unit vector 
dx

d
, 

dy

d
, 

dz

d
 and another vector  Syz , Szx , Sxy , such that: 

(10) 

,

,

.

x zx xy

y xy yz

z yz zx

dz dy
S S S

d d

dx dz
S S S

d d

dy dx
S S S

d d

 

 

 


= −




= −



= −

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 Only the component of the vector Syz , Szx , Sxy , whose components we would like to call 

functional derivatives with respect to the coordinate planes, that is normal to the space curve is 

well-defined, while its tangential components are still arbitrary and can be established at will. 

Upon introducing that new vector, equation (8) will go to: 

 

(11) S [L|] = 
yz zx xy

L

dy dz dz dx dx dy
S z y S x z S y x d

d d d d d d
      

     

      
− + − + −      

      
 . 

 

 There are many advantages to the fact that with the Volterra representation, which is 

distinguished by its symmetry, the components of the vector are not independent in the first 

representation, and they are not determined completely in the second. Hadamard (1), and in 

conjunction with him, P. Lévy (2), gave up the complete symmetry in order to avoid that flaw. 

They imagined that a space curve L was always given by its projection onto the (x, y)-plane, i.e., a 

plane curve C, and then assigned it the ordinates z = z (s) that belonged to each of its points, in 

which s means the arc-length along C. A line function will then be a function of the plane curve C 

and the function z (s) : 

 

(12)     S [L|] = S* [C, z (s)|] . 

 

 The appearance of the auxiliary condition (8) above will be avoided by always performing the 

variation of the plane curve C in the (x, y)-plane perpendicular to that curve, so the variation of the 

space curve L will then be characterized when one is given two displacement components n (s) 

and z (s). If the associated functional derivatives of S [L|] are equal to nS 
 ( zS 

, resp.) then the 

expression for the variation of S* will read: 

 

(13)     S* = ( )n z
C

S n S z ds  + . 

 

 If compare formulas (11) and (13), while observing that: 

 

(14)     

2

,

,

1 ,

dx dy
x n n

dn ds

dy dx
y n n

dn ds

dz
d ds

ds

  

  




 = = −



= =



  =  +  
  

 

then we will find that: 

 
 (1) J. Hadamard, “Mémoire sur le problème d’analyse rélatif à l’équilibre des plaques élastiques encastrées,” 

Paris, Mém. sav. étrang. 23 (1908). 

 (2) P. Lévy, “Sur les équations intégro-différentielles définissant des fonctions de lignes,” Paris, Thesis, 1911; 

“Sur l’intégration des équations aux dérivées fonctionelles partielles,” Palermo circ. mat. Rend. 37 (1914), 113-168.  
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n zS n S z  +  = yz zx xy

dy dz dx dz dy dx
S z n S n z S n

ds ds ds ds ds ds
    

   
− + − − +    

   
. 

 

 With that, the connection between the Hadamard-Lévy functional derivatives and the 

Volterra derivatives with respect to the coordinate places is given by the two relations: 

 

(15)    

,

.

n xy yz zx

z yz zx

dz dx dy
S S S S

ds ds ds

dy dx
S S S

ds ds





  
= − +   


 = −


 

 

 3) The limit formula in the calculus of variations and the functional derivatives of the extremal 

integral. 

 

 In order to now arrive at the functional derivatives of the extremal integral that was introduced 

in equation (4), we can start from the “limit formula” for the double integral. Gauss (1) first 

exhibited the principle for the derivative of such a limit formula in an example, and Poisson (2) 

then developed it in general. We shall derive it in the following way: 

 We imagine that a certain space curve has been given and lay an extremal through it. Along 

with that, we consider a space curve that is close to the given one, once more lay an extremal 

through it (for the sake of simplicity), and then imagine that the points of the two extremal surface 

patches are in one-to-one correspondence with each other in an arbitrary way, but that the points 

of the boundary of one correspond to points of the boundary of the other. The connecting line 

segment between two corresponding points has the components x, y, z , such that a point x, y, 

z on the starting extremal is associated with the point x + x, y + y, z + z on the neighboring 

extremal. In order to exhibit the limit formula, it will then be convenient to consider x, y, and 

therefore z, as well, to be functions of two parameters u and v. With that, x, y, z, and therefore 

the coordinates of the neighboring extremal surface patch will take the form of functions of u and 

v. In that way, depending upon the way that the relation between both surface patches is presented, 

u and v will run through the same domain of values both times depending upon whether one is 

dealing with the starting extremal or the neighboring one. 

 In order to introduce the parameters u and v into the integral (1), with Hadamard (3), we now 

form the two-rowed determinants: 

 

(16)   (yz) = 

y z

u u

y z

v v

 

 

 

 

 , (zx) = 

z x

u u

z x

v v

 

 

 

 

 , (xy) = 

x y

u u

x y

v v

 

 

 

 

 , 

 
 (1) C. F. Gauss, “Principia generalia theoriae figurae fluidorum in statu aequilibrii,” (1830), Werke 5, pp. 60 

 (2) S. D. Poisson, Paris, Mém. de l’acad. royale d. sc. 12 (1832), pp. 290.  

 (3) Cf., M. Fréchet, loc. cit. (on pp. 1 of this treatise), p. 188. 
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so we will have: 

(17)     zx = ( )

( )

zy

xy




, zy = ( )

( )

xz

xy




, 

and therefore: 

(18)  f (zx, zy, z, x, y) = 
( ) ( )

( ) ( )

, , , ,
zy xz

xy xy

f z x y
 

 

 
  
 

 = 
( )

1

xy
( (yz) , (xz) , (xy) , z, x, y) , 

 

where F is homogeneous of degree one in the three determinants. The integral (1) will then take 

the form: 

 

(19)    I = 
( ) ( ) ( )( , , , , , )zy xz xyF z x y du dv   . 

 

 If we would now like to calculate the variation of this integral (19) under the transition from 

an initial extremal to a neighboring one then that will greatly simply the integral (1) by the fact 

that the domain of integration of the u, v will not change under that variation. We then get: 

 

(20)  I = 
( ) ( )

( )
( ) ( ) ( ){ }

xz xy
zy

xy xz xy z x yF F F F z F x F y du dv 


     + + + + + . 

 

 If we partially integrate the first three terms in that and consider the fact that the double integral 

drops out of the resulting expression (since the initial surface was an extremal) then the relation 

(20) will go to: 

 

(21) I = 
( ) ( ) ( )zy xz xyL

dy dz dz dx dy dx
F z y F x z F x y d

d d d d d d
        

     

      
− + − + −      

      
 , 

 

in which the integral over the given boundary L extends over the piece of the extremal that we 

started from. Finally, if we would like to once more return to x and y as independent variables then 

we would first get: 

 

(22)     
xzf  = 

( )zy
F , 

yzf  = 
( )xz

F  

 

by differentiating (18) with respect to (zy) [(xz) , resp.]. Furthermore, from the homogeneity 

property of F, one will have: 

 

(23)   
( )xy

F  = 
( ) ( )

( ) ( )

( ) ( ) ( )
xz yz

xz yz

xy xy xy

F
F F 

 

  
− −  = 

x yx z y zf z f z f− − . 

 

(21) will then go to the “boundary formula”: 



Prange – The Hamilton-Jacobi theory for double integrals. 35 
 

(24)  I = ( )
x y x yx z y z z z

L

dy dx dy dz dz dx
f z f z f x y f z y f x z d

d d d d d d
      

     

      
− − − + − + −      

      
 . 

 

 Upon comparing that with formula (11), we can infer from that boundary formula that the 

Volterra derivatives with respect to the coordinate planes are: 

 

(25)   Iyz = 
xzf , Izx = 

yzf , Ixy = 
x yx z y zz f z f f+ − , 

 

for the extremal integral I [L], and in that way we can impose the indeterminacy that appears (cf., 

pp. 20) in a certain way. We will soon return to its formal expression. 

 
 Moreover, that convention comes about in such a way that the functional derivatives of the Hilbert independent 

integral, which represents a simple line function, will become merely functions of position (cf., pp. 51). 

 

 From the relations (15), the (Hadamard-Lévy) derivatives of the extremal in the form 

[ , ( )]I C z s
 that is analogous to (12) will read: 

 

(26)   

,

.

x y x y

x y

n x z y z z z

n z z

dz dx dy
I z f z f f f f

ds ds ds

dy dx
I f f

ds ds





  
= + − − +   


 = −


 

 

 One sees that here it is convenient to replace the coordinates x and y with the natural 

coordinates along the curve C. Namely, if we introduce the natural derivatives: 

 

(27)    

,x y

x y

dz dx dy
z z

ds ds ds

dz dy dx
z z

dn ds ds


= +


 = − +


 

 

into f in place of zx and zy, by which, it might go to ( , , , , , )s n sf z z z x y x  (1), then it will follow 

immediately that: 

(28)    

,

.

x y

x y

z z

s

z z

n

f dx dy
f f

z ds ds

f dy dx
f f

z ds ds










= +



 = − +



 

 
 (1) x, y, xs determine the line element of the curve C along which the natural derivatives of z are constructed. That 

line element is also determined by the curve C and the arc-length s that belongs to the point in question. However, the 

notation f (zs, zn, z, C, s) can give rise to the misunderstanding that f  is regarded as a line function. 
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 Since one has: 

 

(29)             
x yx z y zz f z f+  = 

s ns z n zz f z f+ , 

 

moreover, the relations (26) will take the form: 

 

(30)     
,

,

n

n

n n z

z z

I z f f

I f





 = −


= −

 

 

and the variation of the extremal integral itself will ultimately be (1): 

 

(31) [ , ( )]I C z s 
 = [( ) ]

n nn z z

C

z f f n f z ds − −  . 

 

 The disadvantage of the derivatives (25) in comparison to the derivatives (30) that they are not 

mutually independent emerges clearly here. That is because if the space curve L [C, z (s)] that 

determines the line function is given then we will likewise know that: 

 

dz

ds
 = x y

dx dy
z z

ds ds
+  , 

 

and therefore, a relation between the partial derivatives of the extremals that go through L. 

 

 4) The equation for the partial functional derivatives of the extremal integral. 

 

 We can infer from equations (25) [(30), resp.] that the integration of the Euler-Lagrange 

equations for given boundary values will be achieved, in principle, when the extremal integral 

[ |]I L  is known as a function of the boundary curve L. That is because we can then construct the 

functional derivatives of I [L|] for each point on the boundary curve, then calculate the direction 

cosines of the tangent plane to the extremal surface that goes through L for each point of the 

boundary curve, and thus construct the extremal by a method that goes back to Cauchy (by a 

power series). We know a priori that this must imply a surface that is free of singularities in the 

interior of the region that is bounded by the curve L. 

 In order to derive some advantage from that argument, it is necessary for us to find the extremal 

integral I [L|] by a direct determination, which does not assume any knowledge of the extremals 

that we indeed required in order to be able to define I [L|]. Such a direct approach can be given by 

a generalization of Hamilton’s train of thought on pp. 5. If we solve the first two equations (25): 

 

 
 (1) The signs deviate from the corresponding formulas of the first section by the fact that the direction of the 

interior normal is chosen to be positive, while previously dx was counted as positive when it pointed outward from 

the integration interval (cf., pp. 5). 
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xzf  = Iyz , 
yzf  = Izx 

 

for zx and zy and introduce the function: 

 

(32)    H (z, y, y, Iyz, Izx) = 
x yx z y zz f z f+  − f 

 

by substituting the calculated values of zx and zy then from the third of equations (25), that will 

imply the equation: 

 

(33)     Ixy = H (z, x, y, Iyz, Izx) 

 

between the partial functional derivatives of the extremal integral I [L|]. 

 It follows immediately from: 

 

H (z, x, y, Iyz, Izx) = zx   + zx    − f (zx, zy, z, x, y) 

that 

zx = 
H






, zy = 

H






. 

 

For the functional derivatives, we will then get the further condition equations for each point of L: 

 

(33*) 
dz

d
 = 

H dx H dy

d d   

 
 + 

 
 , 

 

in which one substitutes  = Iyz,  = Izx . That is the analytical statement of the condition that we 

subjected the Volterra functional derivatives to in (25) above in order to eliminate the 

indeterminacy that is present in them (1). 

 On the other hand, if we take the Hadamard-Lévy approach and consider that the derivative 

dz / ds is known along the curve L = [C, z (s)], as well as z (s), then we will need only to eliminate 

dz / dn from equations (30) in order to obtain a partial functional differential equation for the 

extremal integral. If we then calculate zn from the equation: 

 

− 
nzf  = zI

, 

and if we introduce the function: 

 

(34) ( , , , , , )z s sK I z z x y x
 = 

nn zz f f− , 

 

while substituting the calculated values, then, from the first equation in (30), the partial functional 

differential equation will now read: 

 
 (1) The basic meaning of that condition is discussed in M. Fréchet, loc. cit. (pp. 1), pp. 194. 
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(35) nI
 = ( , , , , , )z s sK I z z x y x  . 

 

 In order to now investigate the question of the extent to which the extremal integral is 

determined by equations (33) [(35, resp.], we would like to do something different from the 

determination of the extremal integral I [L|] by the boundary curve on pp. 30. Somewhat vaguely, 

one cares to say that the general integral of a second-order partial differential equation like (3) 

depends upon two arbitrary functions (1). In order to allow two such functions to enter into the 

definition of the extremal integral (4), instead of doing what we have done up to now, we would 

like to imagine that a space curve L is given, along with its two L1 and L2, which we would like to 

assume do not intersection [and similarly for their projections onto the (x, y)-plane]. From the 

theorems that were assumed on pp. 29 on the solubility of the boundary-value problem for the 

Euler-Lagrange equation, one and only one extremal is determined by those two space curves L1 

and L2 that is free of singularities (2) in the interior of the region that is bounded by the two curves 

L1 and L2 . The extremal integral would then seem to be a function of the two space curves L1 and 

L2 , which collectively define the boundary line L of the doubly-connected region. If will then 

fulfill equation (33) [equation (35), resp.], along with its functional derivatives, for each point of 

both boundary curves. 

 It will become immediately clear from this that not just any line function that satisfies equation 

(33) [(35), resp.] can play the role of the extremal integral in the solution of the boundary-value 

problem for the Euler-Lagrange equation (3) (in the older sense of pp. 29) for a curve L. That is 

because if we imagine that a fixed space curve L0 is given then an extremal will likewise be 

determined by L0 and L, and the associated value of the extremal integral, which also appears as a 

line function of L, along with its functional derivatives, will fulfill equation (33) [(35), resp.]. 

However, the tangent planes along L to that second extremal have nothing at all to do with the 

tangent planes to the extremal that solved the boundary-value problem for the curve L in the older 

sense, namely, in such a way that the region that is enclosed by L is simply connected or 

singularity-free. The complication will be that of selecting the extremal integral precisely from the 

set of solutions to the partial functional differential equation. 

 We can get around that complication in a way that is analogous to what Jacobi did in the 

problem of the simple integral by going from the two Hamilton equations to the Hamilton-Jacobi 

equation. We would like to fix a certain curve L0 in the region of space in question and think of all 

closed space curves L in the region as being connected to L0 by an extremal. The value of the 

extremal integral: 

 

(36) I = 
0

( , , , , )
L

x y
L

E f z z z x y dx dy  , 

 

which extends from L0 to L, associates each space curve L with a certain numerical value. It thus 

defines a line function. It satisfies equation (33) [(35), resp.], and indeed when we regard the initial 

 
 (1) Cf., É. Goursat, Leçons sur l’integration des équations aux dérivées partielles du second ordre, t. 1, Paris 

(1896), pp. 31. 

 (2) Cf., an example in É. Picard, Traité d’analyse, t.2., 2nd ed., Paris (1905), pp. 86. 
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curve L0 as arbitrary, it will represent a complete integral of that equation, which agrees with the 

definition that was given by P. Lévy (1). Knowing that complete integral will lead immediately to 

the integration of the Euler-Lagrange equation (3), because if we have constructed the derivative 

0zI   along L0 = [C0, z0 (s0)] then we will know the normal derivative dz / dn for the extremal along 

L0 . If we set: 

 

(37) 
0zI   =  (s0) , 

 

in which  is an arbitrary function, then we will have found the general extremals of the Euler-

Lagrange equation in so doing. Of course, the solution to the boundary-value problem for two 

given curves [C0, z0 (s0)] and [C, z (s)] will demand that  (s0) is determined along C0 such that the 

extremal goes through L = [C, z (s)]. 

 

 5) The “function field” of the extremals and the partial functional differential equation. 

 

 The tool that we just employed in order to simplify the integration of the partial functional 

differential equation was that of selecting those members of the set of all extremals of the given 

variational problem that depend upon two arbitrary functions that go through a fixed curve L0, 

which defines a set that depends upon only one arbitrary function. However, we can also imagine 

a set of extremals that depend upon an arbitrary function in a more general way. 

 We bound a certain region in space in such a way that we let x and y vary in an annular surface 

in the (x, y)-plane that is bounded by two closed curves 0C   and 1C  , while the inequality z1 < z < 

z0 might exist for z. In that region, we would like to imagine a set of extremals that are given such 

that one and only one extremal goes through any closed curve L that lies in the region and does 

not contract to a point. That property is analogous to the one that serves as the definition of an 

extremal field for a family of extremals that depend upon only one parameter. Here, we would like 

to call a set of extremals that possess the required property with the similar name of “function 

field,” which is a name that should express the idea that one curve is necessary for one to 

characterize the individual extremals in the set. 

 We can define a line function on such a function field with the help of the value of the extremal 

integral: We need only to imagine that an initial curve L0 = [C0, z0 (s0)] is given along each extremal 

in the function field along which the extremal integral is to be extended. The two determining 

pieces C0 and z0 (s0) that belong to L0 are constrained to each other, since L0 should always lie on 

the extremal that is determined by L, such that the variation z0 of z0 is determined by the variation 

n0 of C0 . In so doing, it will always be assumed that L0 varies continuously when L moves 

continuously in the function field in any way. 

 We would now like to examine when the line function thus-defined: 

 

(38)    W [L|] = 
0

( , , , , )
L

x y
L

E f z z z x y dx dy   

 
 (1)  P. Lévy, loc. cit. (pp. 1 (4)), pp. 156, et seq., as well as § 3 of this chapter. 
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satisfies the partial functional differential equation (35). In order to determine the functional 

derivatives of W, we would like to apply the boundary formula from the variational calculus (31). 

In so doing, we should observe that the boundary of the surface patch on the extremal consists of 

the two curves L0 and L. In the integration in formula (31), which extends over the entire boundary, 

the curve C [C0, resp.] that belongs to L and L0 is traversed in the opposite sense. If we would 

prefer that C0 is traversed in the same sense as C then the sign of the associated integral must be 

changed, and will then get: 

 

(39)  W = 
0

0 0 0{( ) } {( ) }
n n n nn z z n z z

C C
z f f n f z ds z f f n f z ds   − − − − −   . 

 

 In that way, z0 , and as a result, n0, as well, will be determined when one is given z and n 

along L, since [C0, z0 (s0)] is indeed a line function of L. The variations z0 and n0 will possess 

the following form: 

(40)   

0 0 0 0 0 0

0 0 0 0 0 0

( ) { ( , ) ( , ) } ,

( ) { ( , ) ( , ) } .

C

C

z s z s s n z s s z ds

n s n s s n n s s z ds

    

    

  = +



 = +





 

 

 When we introduce those expressions into (39), that will give the values: 

 

(41)   
0

0

0 0 0

0 0 0

{( ) } ,

{( ) }

n n n

n n n

n n z n z z

C

z z n z z

C

W z f f z f f n f z ds

W f z f f n f n ds

 

 





  = − − − −



 = − − − −





 

 

to the functional derivatives of W [L|] = [ , ( )]W C z s
. 

 One can see from this that the value of the extremal integral (38) will yield a solution to 

equation (35), and thus to equation (33), as well, only when the integral that appears in (41) 

vanishes for all variations n0, z0 . Those associated variations must always fulfill the condition: 

 

(42)    
0 0

0 0( )
n n

C C

n z zz f f n f z − −  = 0 

 

then. If we revert back to the coordinates x and y in that relation by means of equations (14) and 

(27), (28) then it will take the form: 

 

(42*)   

0 0 0

0 0 0

0 0 0

0

0 0 0

0

( ) ( ) ( )

( ) ( ) ( ) 0,

x x x

y y y

L L L

x z y z z

L L L

x z y z z

dy
f z f x z f y f z

ds

dx
z f x f z f y f z

ds

  

  

 − − + 

 − − + − + =
 
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and since the curve L0 can be taken arbitrarily along the extremal in question, that will imply the 

following two equations: 

 

(43) 

0 0 0

0 0 0

0 0 0

0 0 0

( ) ( ) ( ) 0,

( ) ( ) ( ) 0.

x x x

y y y

L L L

x z y z z

L L L

x z y z z

f z f x z f y f z

z f x f z f y f z

  

  

 − − + =


− + − + =

 

 

 If we solve that system then that will imply the following condition for the components of the 

displacement along L0 : 

 

(43*)   x0 : y0 : z0 = 0 0 0( ) : ( ) : ( )
x y x y

L L L

z z x z y zf f z f z f f+ − . 

 

 If a parametric field (so a one-parameter family of surfaces) were selected from the function 

field then the partial derivatives of the extremals zx, zy in those equations (43*) would be functions 

of the position p (x, y, z), q (x, y, z) in the region of space considered. The equations would then 

determine a two-parameter family of curves that cuts through the family of surfaces and fills up 

the region of space simply and without gaps, just like the one-parameter family of field extremals. 

We would like to call the curves of that two-parameter family the “transversals” of the field. 

 
 Just as a family of transversals can be determined for each parametric field from equations (43*), every such field 

is also an “independence field,” i.e., the Hilbert independence theorem will be true for it. The Hilbert integral: 

 

I

 = { ( , , , , ) ( ) ( ) }x p y qf p q z x y z p f z q f dx dy+ − + −  

 

is independent of the integration surface, so it represents a line function (like the value of the extremal integral), and 

is, in particular, a simple line function. Its functional derivatives (according to Volterra): 

 

yz
I


 = fp ,  zx

I


 = fq ,  xy
I


 = p fp + q fq – f ,  

 

which are merely functions of position, satisfy the partial functional differential equation (according to Volterra) (33). 

The independent integral then represents a solution to that differential equation. 

 If we consider a parametric field from which we arrive at the independent integral to belong to a family of fields 

then the slope functions p and q will depend upon the parameters of the family (e.g., the parameter a), in addition to 

x, y, z. Therefore, the independent integral itself is also a line function that depends upon the parameter a. 

Differentiating I

 with respect to a will yield the relation: 

 

I

a





= ( ) ( )

p q

x y

f f
z p z q dx dy

a a

  
− + − 

  
 , 

from which, it will emerge that: 

I

a





= const. = b 

along the individual extremals of the field. 
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 That theorem is identical to the generalization of Jacobi’s theorem for simple integrals that given by M. Fréchet 

(loc. cit., pp. 196, et seq.). However, that formal adaptation is of no help in the solution to the boundary-value problem 

for the Euler-Lagrange equation (3). (Confer no. 6 on that). 

 

 6) The function fields and the boundary-value problem for the Euler-Lagrange equation. 

 

 One can easily construct a function field that satisfies the condition (42). In order to do that, 

we need only to imagine that a surface is given over a certain doubly-connected region in the (x, 

y)-plane. A certain curve L0 on the surface belongs to each closed curve C0 in the given region 

(which cannot be contracted to a point), and dz / ds and z / n, which indeed refer to the surface, 

have well-defined values at each point of L0 . The normal derivative zn for an extremal can then be 

calculated for each point of L0 from equation (42), so the extremal itself can then be constructed. 

The set of all extremals that are obtained in that way does, in fact, represent a function field, and 

the value of the extremal integral that belongs to each space curve L will define an integral of the 

partial functional differential equation. 

 Naturally, a solution to the boundary-value problem for the Euler-Lagrange equation cannot 

be achieved for a fixed function field, since only one arbitrary function is available in it. In order 

to address the boundary-value problem, we must imagine that a set of function fields is given that 

depends upon yet another arbitrary function. We can perhaps imagine that, instead of the surface 

that we just used, we have a set of such surfaces, whose individual members are always 

characterized when we are given a certain function  (t) of the parameter t, where the parameter t 

might vary within a certain interval, say from 0 to 1. For each choice of the function  (t) in the 

interval 0  t  1. The value of the extremal integral is then a functional that depends upon the 

function  (t), in addition to the curve L : 

 

(44) I = 
1

0
[ , ( ) |]I L t  . 

 

 If we vary the function  (t) then the initial curve L0 of the individual extremal in the function 

field will go to a new curve 0L . In that way, the displacements of its points will be given by: 

 

n0 (s0) = 

1

0 0

0

( , ) ( )n s t t 

  ,  z0 (s0) = 

1

0 0

0

( , ) ( )z s t t 

  . 

 

 As a result, from the boundary formula for the calculus of variation, when we fix the curve L, 

the functional derivative of I with respect to  (t) will be given by: 

 

I = 
0

0 0 0{( ) }
n nn z z

C
z f f n f z ds  − −  . 

 

Therefore, that derivative will have the same value for all curves L that lie on the same extremals 

of the function field, so it will be a function of only t for the individual extremals I : 
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(45)     
1

0
[ , ( ) | ; ]I L t t   = c (t) . 

 

 In order to now solve the boundary-value problem for the Euler-Lagrange (3) for two given 

curves L1 and L2, we first imagine that the values of the extremal integral that belong to the two 

curves have been established for fixed  (t): viz., I1 = I [L1,  (t) | ] and I2 = I [L2,  (t) | ] . For the 

functional derivatives with respect to  for the same parameter t, we will get from (45) that: 

 

(I1) = c1 (t) ,  (I2) = c2 (t) . 

 

 Should both curves lie on one and the same extremal, then one would need to have c1 (t) = 

2 ( )c t , so: 

(I1) − (I2) = 0 , 

 

from which the function  (t) is determined. The boundary-value problem is then solved by that, 

because when we compute the functional derivatives of the extremal integral that are defined with 

the calculated function  (t) along L1 or L2, we will get an equation for the normal derivative of 

the desired extremal. 

 

 

§ 2. 

 

Integration theory of the Euler-Lagrange equation and the associated canonical system. 

 

 The Euler-Lagrange equation: 

 

(1)      ( ) ( )
x yz z zf f f

x y

 
+ −

 
 = 0 , 

 

which arises from the variational problem: 

 

(2)  I = ( , , , , )x yf z z z x y dx dy  = extrem., 

 

is a second-order partial differential equation that is distinguished by the fact that it includes the 

second derivatives of the unknown function z (x, y) only linearly. 

 

 1) The associated first canonical system. 

 

 In the previous section, we first established the arbitrary functions that appear in the general 

solution of (1) by prescribing the extremals though which a given space curve went and demanded 

that the surface patch on the extremal that was bounded by that space curve was free of 

singularities. We then generalized the simplest form of the boundary-value problem by giving two 
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space curves and demanded that an extremal would be determined in such a way that it went 

through both space curves and had no singular points in the interior of the doubly-connected region 

that was bounded by both space curves. 

 By contrast, in the spirit of the general theory of integration for partial differential equations, 

one seeks to establish a certain integral surface by prescribing only that it should go through a 

given space curve, but it should possess a given plane as the tangent plane at each point of that 

space curve, so it should contact a given developable surface along the space curve. Analytically, 

that geometrically-formulated condition means that one knows the value of z = z (s0) (from which, 

we will simultaneously know the derivative dz / ds0 along C0) along a given closed curve C0 in the 

(x, y)-plane, as well as the normal derivative dz / dn of the extremal. Cauchy showed that an 

integral surface is generally determined uniquely by those prescribed initial values and has further 

worked out how it could actually be exhibited by a power series as an extension of the process that 

one refers to as the “calcul des limites” for ordinary differential equations (1). 

 One might then imagine that in order for one to work through that problem, it would be 

convenient to resolve the second-order partial differential equation into a system of first-order 

partial differential equations in a manner that is analogous to how one replaced the Euler-

Lagrange equations with the canonical system in § 2 of the previous chapter. If we would like to 

formally adapt the line of reasoning there to the present problem (2) then we would have to apply 

the Legendre transformation to the present problem, and therefore introduce new variables  and 

 by the relations: 

 

(3)       = 
xzf ,  = 

yzf . 

 

If one calculates zx and zy from those two equations: 

 

(3*)    zx = p (, , z, x, y) , zy = q (, , z, x, y) 

 

and introduces the new function: 

 

(4)      H (, , z, x, y) = p fp + q fq – f , 

 

which will coincide with equation (32) of § 1 when one substitutes those values, then one will have 

the relations: 

H






 = p , 

H






 = q , 

H

z




 = − 

f

z




, 

 

and the Euler-Lagrange equation (1) will then go to the system: 

 

 
 (1) É. Goursat, loc. cit. (pp. 38), t. 1, pp. 24-28.  

 (2) V. Volterra, “Sulla equazioni differenziali che provengono da questioni di calcolo delle variazioni,” Roma, 

Acc. Lincei Rend. (4) 61 (1890), pp. 43.  
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(5)  

, ,

,

x y

x y

H H
z z

H

z

 

 

 
= =  


 + = −

 

 

 

which we (with Volterra) would like to call the first canonical system. 

 That is equivalent to the Euler-Lagrange equation (1), as one easily convinces oneself. 

However, in the question of the existence of an integral and fixing the arbitrariness that is inherent 

to it, which one can resolve with the help of the method that was given by Cauchy and S. von 

Kowalewski, it can be shown, as one would expect, that one cannot give the values of z, , and  

arbitrarily along a curve C0 in the (x, y)-plane. One can, perhaps, prescribe only z and one of the 

other two functions  or , or also a certain combination of both of the initial values. However, 

insofar as z, , and  cannot be given arbitrarily, all of the advantage that the introduction of the 

canonical system brought with it in the previous chapter, namely, the clarity of the geometrical 

representation of the solutions, will be lost. There, a well-defined extremal started from each point 

in space. By contrast, if one would like to interpret the solutions of the system (5) as surfaces (M2) 

in a five-dimensional space of (x, y, z, , ) here then an extremal would not go through every 

curve in space, but only through those curves that satisfy a certain condition. 

 

 2) The second form of the canonical system. 

 

 We can get around the difficulty that consists of the fact that z (s) is known along with dz / ds 

on a closed curve C in the (x, y)-plane, which is obviously precisely the same one that was present 

in the previous section for the functional derivatives of a line function (according to Volterra), in 

a way that is similar to what we did with the latter. In order to construct the integral surface from 

the curve C0 on which z and dz / dn are given as functions of arc-length, perhaps up to a second 

closed curve C in the (x, y)-plane, which might be encircled by the curve C0 (to have a concrete 

case in mind), we would like to imagine that the region between the two curves C0 and C is filled 

up simply and without gaps by a one-parameter family of curves C that includes C0 and C. 

Furthermore, we construct the family of orthogonal trajectories to that family of curves C , which 

likewise fills up the region between C0 and C simply and without gaps, and whose parameter we 

would like to denote by . 

 If we introduce the parameters  and  of those two families of curves as coordinates in the (x, 

y)-plane: 

 

(6)      x = x (, ) , y = y (, ) 

 

then z will also go to a function of  and  : 

 

(6*)      z = z (, ) , 

 

and we will have: 
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(7)     f (zx, zy, z, x, y) = ( , , , , )f z z z    , 

 

such that the variational problem (2) now reads: 

 

(8)     I = ( , , , , )f z z z d d       = extrem. 

 

 The functional determinant  of the x, y with respect to ,  in that will be: 

 

(9)       = 
2 2 2 2( )( )x y x y   + + , 

 

due to the orthogonality of the new coordinate lines. 

 The Euler-Lagrange equation (1) will then take on the form: 

 

( ) ( )z z zf f f
  

 
 +  − 

 
 = 0 

 

in the new coordinates, or after substituting  from (9): 

 

(10)  

( ) ( )

( ) ( )

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1 1

0.

z z

zz

z

f x y f x y
x y x y

ff
x y x y f

x y x y

 



   

   

   

   

 

 

 
 + +  +  + +


 

+  + +  + − =  + +

 

 

 With the use of the orthogonality property of the parameter lines: 

 

(11)     x  x + y  y  = 0 , 

 

one immediately verifies that: 

 

(12)  

( )

( )

2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2

2 2

1
( )( ) ,

1
( )( ) ,

y x x y
x y x y x y x y

x y

y x x y
x y x y x y x y

x y

   

       

  

   
       

  

 

 

− 
+ = +  = − + + 

 +


− + = +  = + + + 
  +

 

 

in which  is the radius of curvature of the curve C at the point in question, and  is that of the 

associated orthogonal trajectory. The Euler-Lagrange equation (10) then takes on the form: 
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(13) 

( ) ( )2 2 2 2

2 2 2 2

2 2 2 2

1 1

1 1
0.

z z

z z z

f x y f x y
x y x y

f x y f x y f

 

 

   

   

   

 

 

 

 
 + +  +
 + +

−  + +  + − =

 

 

 Let us introduce the natural coordinates of the arc-length along the parameter lines into this 

relation! If the arc-length along the curve C is denoted by s, and the one along the orthogonal 

trajectories is denoted by n then we will have: 

 

(14)   ds = 
2 2x y d  + ,  dn = 2 2x y d  + , 

 

and therefore: 

(15)   zs = 
2 2

z

x y



 +
 ,  zn = 

2 2

z

x y



 +
, 

as well as: 

(16)   
szf  = 

2 2

zf x y
  + ,  

nzf  = 2 2

zf x y
  + . 

 

 Upon introducing those new quantities, (13) will be put into the form: 

 

(17) 
1 1

( ) ( )
n s n sz z z z z

s n

f f f f f
n s  

 
+ − + −

 
 = 0 . 

 

 In addition, we can now easily free ourselves of the arbitrariness in the choice of the curve 

parameter C again. If we consider any curve C in the (x, y)-plane and construct a neighboring 

curve C  to it, by measuring out the increment n along C, which is a function of the arc-length s, 

then we can always consider those two curves to belong to a family of curves C, like the one that 

we just employed. It follows immediately from this that under the transition from C to C : 

 

(18)    z = zn n , as well as 
nzf  = nzf

n
n





 . 

 

On the other hand, the radius of curvature of the orthogonal trajectory of the family that was 

introduced, which includes C and C , must be: 

 

(19) 
1

n
 = 

n






 , 
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in which   is the angle between the normals at two associated points of C and C . That angle is 

identical to the angle that the tangents to C and C  define at the point in question, so: 

 

(20)   = 
d n

ds


 = n , 

which will then imply that: 

(19*) 
1

n
 = 

n

n






 . 

 

 If we write ( , , , , , )n s sf z z z x y x  for f  with the use of natural coordinates in the manner of pp. 

35 and denote the curvature of the curve C by k = 1 / s then (17) will go to: 

 

(21)    ( )
nzf  = − ( ) ( )

n nz z z

d
f n k f f n

ds
 + + . 

 

 From there, we will now move on to the canonical system by introducing the derivative of f  

with respect to zn : 

(22)  − 
n

f

z




 =   

 

as a new unknown. We use that equation to calculate zn as a function of , z, zs, and s along C and 

introduce the new function: 

 

(23) K (, z, zs, x, y, xs) = 
nn zz f f− , 

 

by replacing the calculated values of zn, in agreement with equation (35) of § 1. For every point of 

the curve C, we will then have: 

 

K






 = − zn , 

K

z




 = − 

f

z




 ,      

s

K

z




 = − 

s

f

z




 , 

 

so we will find from equations (18) and (21) that: 

 

(24)    

,

( ) ( ) ,
sz z

K
z n

d
K n k K n

ds

 


   


= − 


 = −  +  +

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with which, we have arrived at the system of equations that belongs to the Euler-Lagrange 

equation (1), and which we would like to call the second canonical system. Formally, it is the 

Euler-Lagrange system that belongs to the variational problem: 

 

I = −  [ ( , , , , , )]n s sz K z z x y x ds n   +   , 

because that will read: 

zn + 
K






 = 0 , 

( )
s

d K K
n ds n ds n ds

ds z s z


   



  
+ − 

  
 = 0 , 

 

and will go to (24) when we consider the fact that: 

 

 ds = − k  ds n 

in the second equation. 

 We can also regard the system (24) as a system of two total functional differential equations, 

since its form and its integration are essentially determined, on the one hand, by the curve C that 

we started with, and on the other, by being given n, which mediates the transition to the 

neighboring curve. 

 If we interpret the solutions to the system in a four-dimensional (x, y, z, )-space then a certain 

surface (M2) will go through every closed space curve (M1) of the R4 that is given by way of: 

 

C, z (s),  (s), 

 

which will satisfy the system (24) and thus represent an extremal to our variational problem. Of 

course, for the actual exhibition of the extremals of the system, we must once more convert it back 

to a differential system by giving a certain family of curves C in the (x, y)-plane and thus replacing 

the variation that is determined by n with a differentiation with respect to . At each point of a 

curve C, z (s),  (s), once we know dz / ds and d / ds, the system (24) will yield  / n and 

/z n  , and with that, we will know the tangent planes to the developable surface along the curve. 

It is clear from this that the extremal can be achieved by a direct generalization of the Cauchy-

Lipschitz process, as well as by adapting the method of successive approximations for ordinary 

differential equations to the general problem that we have here. 

 

 3) Adapting the concept of a “relative invariant.” 

 

 Even in the present simple problem, it would be appropriate to show how the concepts whose 

development proved to be appropriate to the theory of the simple integral can be adapted to the 

problem of double integrals. Of course, its full meaning will first become apparent in problems 

with several independent functions. 
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 In order to next adapt the concept of relative invariant, we couple it with the boundary formula, 

as we found it in equation (24) of the previous section, and consider the expression: 

 

(25) 
( )

( )
x x x yx z x z z z

dy dx dy dz dy dx
f z f z f x y f z y f x z d

d d d d d d
      

     

      
− − − + − + −      

     
 , 

 

in which the integral extends over a closed curve  that lies completely on an extremal, and the 

derivatives zx, zy are the direction coefficients of the extremal that goes through , while x, y, z 

mean arbitrary increments. 

 If we now imagine that the extremal in question belongs to a one-parameter family of extremals 

that defines a field in the ordinary sense of the word then it will be a parametric field in the 

terminology that was chosen here. We would like to lay an arbitrary tubular surface through the 

closed curve  that cuts each extremal of the field along one and only one closed curve. It is clear 

from the property of the field that we will get a family of curves  on the tubular surface that fills 

up that surface simply and without gaps. We can then introduce the parameter , together with the 

arc-length  of the curves on the tubular surface as coordinates. If we then integrate the expression 

(25) for  from 1 to 2 then we will get a double integral that extends over the region of the 

tubular surface that is bounded by 
1  and 

2 : 

 

(26)   

2

1

)

.

x y

x y

x z y z

z z

x dy y dx
d f z f z f

d d

z dy y dz x dz z dx
f f d

d d d d







 


   

   


       



 
− − − 

 

   
+ − + −    

   

 
 

  

 If we refer the tubular surface to the coordinates x and y then that double integral will go to: 

 

(26*)    
x yx z y z

z z
f z f z f dx dy

x y

 

 

   
+ − + −   

    
 . 

 

The double integral extends over the region on the tubular surface that belongs to the region in the 

(x, y)-plane, and  z / x,  z / y are the direction coefficients of the tubular surface. 

 We lay a second tubular surface through the two curves 
1  and 

2  that define a closed 

surface of the type of a torus together with the first one. The second surface will be cut by the 

extremal family of the field along curves 
  that also covers it simply and without gaps as a one-

parameter family, and in that way, 
1  and 

2  would coincide with 
1

  [
2

 , resp.], and the 

curves  and 
  are associated with each other by the two field extremals that go through them. 

 The extremal integral I [cf., § 1, eq. (4)] that extends over the piece of the field extremal that 

is bounded by  and 
  has a well-defined value that is a function of only . For its derivative, 

(25) will imply that: 
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I


 = ( )

x yx z y z

x dy y dx
f z f z f

d d

 

   

 
− − − 

 
  

+
x yz z

z dy y dz x dz z dx
f f d

d d d d

   


       

   
− + −    

   
 

 − ( )
x yx z y z

x dy y dx
f z f z f

d d

 

   

 
− − − 

 
  

+
x yz z

z dy y dz x dz z dx
f f d

d d d d

   


       

   
− + −    

   
, 

 

in which the integration is performed in the same sense for both curves. If we integrate that 

equation for  from 1 to 2 and consider that 
1

I , as well as 
2

I , vanishes then we will get: 

 

(27) 
2

1

( )
x yx z y z

x dy y dx
d f z f z f d

d d





 
 

   

  
− − − +  

  
   =  

2

1

(d f d






 


−  . 

 

 We can express that fact by saying that we call the integral: 

 

( )
x yx z y z

x dy y dx
f z f z f

d d

 

   

 
− − − 

 
 +

x yz z

z dy y dz x dz z dx
f f d

d d d d

   


       

   
− + −    

   
 

 

the element of a relative integral invariant, so that is then identical to saying that the Hilbert 

integral (26*) for this simple problem for any parametric field of extremals will vanish when it is 

extended over a closed surface, in such a way that the Hilbert independent theorem will be true 

for any parametric field. 

 

 4) The Jacobi equation. 

 

 In the previous section, the transition from a relative integral invariant to an absolute one led 

to certain properties of the Jacobi equation that is associated with the Euler-Lagrange equations. 

For the present simple problem, it is meaningless to speak of an absolute integral invariant, but 

nonetheless we would also like to direct our attention to the Jacobi equation that belongs to (1). 

 It arises, in its own right, as the Euler-Lagrange equation of the second variation of the 

integral (2): 

 

(28)     I = ( , , , , )x y z x y dx dy z z , 

where 

 

(28*)   2 = 2 2 22 2 2
x x x y y y x yz z x z z x x z z y z z x z z y z zf f f f f f+ + + + +z z z z z z z z z , 
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and one imagines that the values of its coefficients for z and its derivatives have be replaced with 

the values on an arbitrary extremal. It reads: 

 

(29)     ( ) ( )
x yx y

 
 +  − 

 
z z z  = 0 . 

 
 We can prove a theorem for its integration that is similar to the theorem of Jacobi that was mentioned on pp. 19. 

An extremal of equation (1) will be established when the values of z, as well as dz / dn, are given on any curve C0 in 

the (x, y)-plane as functions of the arc-length s0 : 

 

(30)      z = z0 (s0) , zn = 
00

( )
n

z s  . 

 

The functional values z (x, y) on the extremals that belong to an arbitrary point in the (x, y)-plane appear to depend 

upon the two functions (30). If we vary them then we will get the variation of z in the form: 

 

(31)    z =  
0 0 0 000

0 0 0 0 0 0 0 0( , ; , , , ) ( , ; , , , )
nz n z n n

C
z x y C z z s z z x y C z z s z ds + , 

 

in which 
0zz  and 

0nzz  are the functional derivatives of z with respect to the two functions (30) at the point s0 on C0 . 

Now, since introducing the extremal z (x, y, z0,
0zz ) into equation (1) will make that equation into an identity, the 

variation of that identity will show that this z will satisfy the Jacobi equation (29), under sufficient assumptions, 

when the starting extremal z (x, y ; C0, z0,
0zz )  is substituted for z and its derivatives in its coefficients. Now, since z0 

and 
0nzz  are arbitrary functions of the parameters s0 , due to the linear character of the Jacobi equation, the functional 

derivatives are also solutions: 

 

(32)    z(1) =  
0 00 0 0( , ; , , , )z nz x y C z z s , z(2)  = 

00
0 0 0( , ; , , , )

nz nz x y C z z s  , 

 

and indeed solutions that include one arbitrary parameter s0 . 

 

 As a further point, we would like to stress that the Jacobi equation (29) is self-adjoint. That is 

because if we set the left-hand side of (29) equal to L (z) then we will immediately have: 

 

z(1)  L (z(2)) = ( ) ( )( 2) ( 2) ( 2) ( 2) ( 2)

(1) (1) (1) (1) (1)( )
x y x y

x y
x y

 
 +  −  +  + 

 z z z z z
z z z z z  , 

 

and it will follow from this that when z(1) and z(2) are two solutions of L (z) = 0 : 

 

( ) ( )( 2) (1) ( 2) (1)

(1) (2) (1) (2)

x x y yx y

 
 −  +  − 

 z z z z
z z z z  = 0 . 

 

By integrating that expression over a doubly-connected region in the (x, y)-plane that is bounded 

by the two curves C1 and C2 : 
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 (2) (1) (2) (1)

1

(1) (2)

x x y yC

dy dx dy dx
ds

ds ds ds ds

    
 − −  −     

    
 z z z z

z z  

 

= (2) (1) (2) (1)

2

(1) (2)

x x y yC

dy dx dy dx
ds

ds ds ds ds

    
 − −  −     

    
 z z z z

z z  . 

 

 If we also introduce the coordinates  and  of pp. 45 in the (x, y)-plane here in order to arrive 

at the second canonical system that belongs to equation (29) then the function  will take the form: 

 

2  = 2 2 22 2 2z z z z z z z z z z z zf f f f f f
            + + + + +z z z z z z z z z , 

 

and after introducing the natural coordinates n and s, when we set: 

 

f = − 
n

 z  

 

and introduce the function K in place of the function f  for the coefficients, we will get the 

associated canonical function X = 
nn  − zz  in the form of: 

 

(34)  2 2 2 2 2 2
2 2 2

2 2 2

2 ( , , , , , )

2 2 2 .

s s

s s s

s s s

X x y x

K K K K K K

z z z z z z  

     
= +  + +  +  +

        

f z z

f f z z f z z z z
 

 

That implies that the second canonical system that is associated with the Jacobi equation (29) is: 

 

(35) 

2 2 2

2

2 2 2 2 2 2

2 2

,

,

s

s

s s

s s s s

K K K
n

z z

d K K K K K K
n k n

ds z z z z z z z z

 
  

  
 

    
= − + +  

     


         
= − + + +  + + +                  

z f z z

f f z z f f z z

 

  

which will then represent the Jacobi system that is associated with the system (24) in its own right, 

as one can also derive immediately from (24) by variation. 

 Naturally, this system, like equation (29), is self-adjoint, because we have: 

 

 [(z(1) f(2) − z(2) f(1)) ds] = [z(1) ( f(2) − k f(2) n) + f(2)  z(1) – z(2) ( f(1) − k f(1) n) − f(1)  z(2)] ds 

 = − 
2 2

(2) (1) (1) (2) (1) (1) (1) (2)

2
( ) ( )s s

s s

d K K
n ds

ds z z




    
− + −   

     
f z f z z z z z  
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for two systems of solutions z(1), f(1) [z(2), f(2), resp.] of (35), which is a relation that follows 

immediately from the fact that the integral over a closed curve C will be: 

 

(36)     (1) (2) (2) (1)( )
C

ds− z f z f  = const. 

 

That result agrees precisely with (33). 

 

 5) The concept of a “contact transformation” of a line function. 

 

 If we lay any surface through a closed space curve 1 = (C1, z1 (s1)) and introduce a one-

parameter family of curves into it that fills it up simply and without gaps then we can associate 1 

with a certain curve 2 in the family. Since the surface can be laid through 1 arbitrarily and the 

family of curves can likewise be chosen arbitrarily on it, we can obviously associate 1 with an 

arbitrary curve 2 . 

 We would like to specialize that association by demanding of the surface that mediates the 

transition from 1 to 2 that it should be itself an extremal of a given variational problem, say, the 

variational problem that belongs to the integral (2) itself. We would like to call such a 

transformation of the curve 1 = (C1, z1 (s1)) to the curve 2 = (C2, z2 (s2)) a “contact 

transformation,” and indeed on the following grounds: When the extremal integral I is taken over 

the surface patch on the extremal in question that is bounded by the two curves 1 and 2, it will 

be a function of the two curves 1 and 2, which collectively define the boundary line of the 

extremal surface patch: I [1, 2 | ] . If we fix the two curves C1 and C2 in the (x, y)-plane for the 

following consideration then I will seem to be a functional of the two functions z1 (s1) and z2 (s2) : 

 

(37)     I = I [z1 (s1), z2 (s2)] , 

 

and when we also set ( )
nzf−  = , from equation (31) in the previous section, the basic formula of 

the calculus of variations will imply: 

 

(38)    I = 
2 1

2 2 2 1 1 1
C C

z ds z ds   −  . 

 

 That equation is obviously the analogue of equation (23) on pp. 20 and gives us the basis for 

why we call the transformation a contact transformation, in analogy with the terminology that was 

used there. The line function I characterizes the contact transformation. From (37), the associated 

extremal is therefore thought of as being determined by the two boundary curves 1 and 2. Instead 

of that, we can also fix them in such a way that we also give 1 (s1), in addition to z1 (s1), and in 

that way we will get I as a functional of the latter two functions: 

 

(39)    I = I [z1 (s1), z2 (s2)] = I [z1 (s1), z2 (s2)] . 
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 We will then speak of an “infinitesimal” contact transformation when the curves 1 and 2, 

and therefore C1 and C2, are infinitely close to each other. We would then like to denote the 

transition from the curve C1 to C2 with the notation n that we have applied up to now. In order to 

avoid confusion in formula (38), might replace  with the symbol d  : 

 

(38*) d I  = 
2 1

2 2 2 1 1 1
C C

d z ds d z ds  −  . 

 

If we let C1 and C2 move close together then we will get: 

 

(40)  d I  = − ( )
C

d z ds    = − [ ( ) ]
C

d z d z k d z n ds      + −  , 

 

in which k is the curvature of the curve C. Now, for that case, one has: 

 

I = ( , , , , , )n s s
C

f z z z x y x n ds , 

and therefore: 

 

(41)     d I  = ( )
C

d f n ds . 

 

Setting (40) equal to (41) will then yield: 

 

− [ ( ) ]
C

d z d z k d z n ds      + −  =  ( )
C

d f n d z ds    +  

= 
C

z
d f n ds

n


 



 
 + 
 

  = − 
C

d K n ds , 

 

when one recalls equation (23). Therefore: 

 

[( ) ]
C

k n d z z d ds     − −  = s
C

s

K K K
d d z d z n ds

z z
 



   
  + + 

   
 , 

 

or after partially integrating the second term on the right: 

 

[( ) ]
C

k n d z z d ds     − −  

(42) 

= 
C

s

K d K K
n d n n d z ds

ds z z
   



      
 − −   

      
 . 

 



Prange – The Hamilton-Jacobi theory for double integrals. 56 
 

Upon comparing the coefficients in that and considering the arbitrariness of d z  and  d  , we 

will conclude that: 

(43)    

,

.
s

K
z n

d K K
n k n

ds z z

 


   


= − 


    = − + +       

 

 

We then obtain the second canonical system, i.e., the differential equation of the extremals of the 

variational problem, as the defining equations of an infinitesimal contact transformation. 

 Whereas the finite contact transformations were characterized by the line function I, it is the 

ordinary function f (the function K that it determines, resp.) that is characteristic of the infinitesimal 

transformation. By their very nature, those two expressions I and f do not seen as consistent with 

each other as the corresponding functions I and H (f, resp.) for ordinary contact transformations. 

 

 6) The transformation of the set of all extremals into itself. 

 

 That difference will become noticeable when we ask what the analogue of the transformation 

of the canonical system might be. An extremal is established uniquely by a curve in R4 [C, z (s), 

( )s ], so it will determine two functions z0 (s0) and 0 (s0) on a hypersurface C = C0 as “initial 

values.” We would like to permute the initial functions on C0 in such a way that an arbitrary pair 

of functions z0 (s0), 0 (s0) will be associated with another pair of functions by a transformation 

group with the one parameter . Therefore, on an arbitrary curve C, the functions z (s) and  (s), 

which belong to any extremal, will go to other functions that belong to the transformed extremal 

under the transformation. In that way, every point with the arc-length s along C will be assigned 

certain variations of the functions z (s),  (s), namely, z (s),  (s). Naturally, those variations 

depend upon all values of the functions z (s) and  (s) along C, and will perhaps possess the form: 

 

(44)    
[ , ( ), ( ) |; ] ,

[ , ( ), ( ) |; ] ,

z C z s s s

C z s s s

  

  

=


=

a

m
 

 

which will then represent the analytical expression for the transformation. 

 The condition on the functionals a and m then follows that they must be solutions: 

 

(45)   z = a [C, z (s),  (s) | ; s] , f = m [C, z (s),  (s) | ; s] 

 

to the Jacobi equations (35). In order to further establish that, we must observe that the expression: 

 

C
d z ds   

 

must remain the element of a relative integral invariant under the transformation, so we must have: 



Prange – The Hamilton-Jacobi theory for double integrals. 57 
 

(46)     
C

d z ds    = d W  , 

 

in which W is understood to mean a line function W [C, z (s),  (s) | ]. We will then have: 

 

[ ]
C

d z d ds + m a  = d W  

or 

 

(47) [ ]
C

d z d ds − m a  = 
C

d W ds  − 
  a  . 

 

If we then set: 

 

(48)    W −
C

ds  a  = Q [C, z (s),  (s) | ] , 

 

and if Qs and Q are the partial functional derivatives of Q at the point s : 

 

(49)   Qs = Qs [C, z (s),  (s) | ; s] , Q = Q [C, z (s),  (s) | ; s] , 

 

then it will follow from: 

[ ]
C

d z d ds − m a  = [ ]s
C

Q d z Q d ds  +  

that: 

 

(50)     m = Qs , a = - Q . 

 

 If we now have any extremal z (C, s),  (C, s) (1) then we can always regard them as belonging 

to a family of extremals. If  is the parameter of such a family then: 

 

z = 
z

a




, f = 

a




 

 

will be a solution of the Jacobi equation, and therefore from (36) the relation will exist that: 

 

s
C

z
Q Q ds

a a


  
+   

  = const., 

i.e.: 

Q

a




 = const. 

 
 (1) The curve C and the arc-length s together determine the point considered in the (x, y)-plane directly, so only 

the variables x and y will enter here.  
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Thus, the condition that: 

 

(51)     Q [C, z (s),  (s) | ] = const. 

 

must also be fulfilled for every extremal z (C, s),  (C, s), which is fact that we express by saying 

that we shall call the line function Q an integral of the canonical system (24). 

 In order to invert that argument, we show the following: If there are two expressions A (C, s), 

B (C, s) such that the relation: 

 

(52)     [ ]
C

A B ds +  z f  = const. 

 

is true for the solutions z (C, s), f (C, s) of the Jacobi equations (35) then: 

 

(53)     z = B (C, s),  f = − A (C, s) 

 

will be a solution of the Jacobi equations. That is because we have: 

 

  0  = [ ]
C

A B ds + z f  

 = [ ( ) ]
C

A A B B A B k n ds     + + + − + z z f f z f  

 

 = 
2 2 2

2
( ) ( ) s

C
s

K K K
A k A n B k B n A n

z z
    

  

    
− + − − + +  

      
 z f f z z  

 + 
2 2 2 2 2 2

2 2s s

s s s s

d K K K K K K
B n k n ds

ds z z z z z z z
 

  

           
− + + + + + +                       

f z z f f z z  

 

or after partially-integrating some of the terms: 

 

2 2 2 2 2 2

2 2s s
C

s s s s

d K K K K K K
A A B B n k A A B B n ds

ds z z z z z z z
  

  

           
− − + + + − − + +                       

 z  

+ 
2 2 2

2 s

s

K K K
B A B B n ds

z z
 

  

     
− − −   

       

f = 0 . 

 

From that formula, we conclude that the integrand of (54) must vanish as a result of the 

arbitrariness of n on C, and then further deduce that the following equations must be true: 
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B = − 
2 2 2

2 s

s

K K K
A B B n

z z


  

   
− + + 

     
, 

 

A = − 
2 2 2 2 2 2

2 2s s

s s s s

d K K K K K K
A B B n k A A B B n

ds z z z z z z z
 

  

         
− + + + − − + +                  

, 

 

which then give equations (35), and the assertion above is proved. 

 If we now have an integral of the canonical equations (24), in the sense that was defined above: 

 

Q [C, z (s),  (s)] = const. 

then the relation: 

 

{ [ , ( ), ( ) |; ] [ , ( ), ( ) |; ] ( )}z
C

Q C z s s s Q C z s s s s ds + f  = const. 

 

will obviously be true for the Jacobi equations (35), and therefore: 

 

(56)     z = Q , f = − Qz 

 

will be a solution of the Jacobi equations, as we just proved. 

 With that, we ultimately have the direct analogue of Poisson’s theorem, because from two 

integrals of the canonical equations: 

 
(1) [ , ( ), ( ) | ]Q C z s s  = const.,  

(2) [ , ( ), ( ) | ]Q C z s s  = const., 

 

we will get two systems of solutions to Jacobi’s equations: 

 

z(1) = (1)Q , f(1) = − (1)

zQ , 

z(2) = (2)Q , f(2) = − (2)

zQ , 

and from that, according to (36): 

 

(57)    (2) (1) (2) (1){ }z z
C

Q Q Q Q ds −  

 

will be a new integral. 
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§ 3. 

 

Integrating partial functional differential equations by means of extremal integrals. 

 

 The train of thought that was presented in the first section can also be inverted for the problem 

that was treated in this chapter, and the integration of certain partial functional differential 

equations can be achieved in such a way that one reduces that problem to the solution of a 

variational problem in realm of double integrals, i.e., one solves the Euler-Lagrange equations 

(cf., § 2) directly. 

 Of course, that way of thinking would accomplish very much less here, insofar as the partial 

functional differential equation that appears in § 1 is not by any means the most general of its kind, 

while in § 3 of the first section the basis for the argument would cease to be meaningful, namely, 

that the most general first-order partial differential equation could be regarded as the Hamilton-

Jacobi equation of a variational problem. Nonetheless, it would seem that this inversion would 

not be meaningless here for the special class of partial functional differential equations from the 

systematic standpoint. 

 The problem to be solved here reads: One knows of a line function V [L | ] that is defined for 

all closed curves of a region of space in question that a relation exists between its Volterra 

derivatives with respect to the coordinate planes for each point of an individual curve: 

 

(1)  Vxy = H (x, y, z, Vyz, Vzx) , 

 

while the indeterminacy in the Volterra derivatives is established by the condition: 

 

(1*) 
dz

d
 = 

H dx H dy

d d   

 
+

 
 ( = Vyz,  = Vzx). 

Determine that line function. 

 In order to solve that problem, we will exhibit the integrand of a variational problem as a 

function H by setting: 

zx = 
H






, zy = 

H






, 

 

which is possible, due to (1*), and after eliminating  and , defining the function: 

 

f (zx, zy, z, x, y) = 
H H

 
 

 
+

 
− H . 

 

Just as in § 1, that function f belongs to a function f (zs, zn, z, x, y, xs), and from that we can define 

a function K (, zs, z, x, y, xs) as the one that is associated with H, such that the equation: 

 

(2) 
nV   = K (

sV  , zs, z, x, y, xs) 
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will enter in, along with (1), with no auxiliary condition (1). 

 We will obtain a complete integral of (1) or (2) when we extend the extremal integral from a 

fixed curve L0 along all curves L of the region of space considered: 

 

(3)  V [L, L0 | ] = 
0

( , , , , )
L

x y
L

E f z z z x y dx dy  , 

 

and in that way, the curve L0 can again be retroactively regarded as arbitrary. In fact, among all of 

the line functions, we can easily find one of them that includes a given element L = (C, z (s)), V, 

,zV   and 
nV  , which must naturally satisfy equation (2). We need only to determine the function 

( )nz s  along L from the relation: 

(4)  
n

f

z




 = − ,zV   

 

and lay the extremal through L that possesses the normal derivative zn . We must then choose the 

curve L0 along that extremal in such a way that the value of the extremal integral (3) takes the 

required value V precisely. The derivative 
nV   takes the correct value by itself since the element 

fulfills the differential equation (2). The line function (3) then, in fact, represents a complete 

integral since it apparently depends upon the arbitrary space curve L0, so on two functions of one 

variable, such that the complete integral of (2) will depends upon only one arbitrary function of 

one variable. 

 In order to represent an arbitrarily-given integral V [L | ] with the help of a function field of 

extremals, we imagine that we have determined the totality of curves L0 = (C0, z0 (s0)) for which 

we have: 

V [L | ] = 0 . 

 

If we assume that it is possible to determine an implicitly-given line function (2) then a certain 

function z0 (s0) will be given on any curve C0 . We then lay the extremals whose normal derivatives 

are determined from the relation (4) through all curves L0 . The function field thus-constructed 

then implies a covering of space by curves by way of the extremal integral that coincides with the 

given integral V [L | ] because the functional derivatives satisfy the given equation (2) since: 

 

0
0 0 0{( ) }

n nn z z
C

z f f n f z ds − −  = 
0

( )LV  = 0 , 

 

and the integral reduces to the given integral V [L | ] for the set of all curves L0 (
3). 

 

 (1) Meanwhile, K is not the most general function of its kind. Indeed, each K belongs to a f , but the latter must 

satisfy the condition that the derivative xs must drop out under the substitution of zx and zy for zs and zn , so 
s z n zs n

z f z f+  

must be independent of xs . 

 (2) Cf., V. Volterra, Leçons sur les fonctions de lignes, Paris (1913), Chap. 4.  

 (3) For the unique determinacy of the integral, cf., P. Lévy, loc. cit. (pp. 1), pp. 149, et seq. 
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 If the given integral were to depend upon an arbitrary function of one variable 
1

0
( )t , in addition 

to L : 

(5)      V = V [L, 
1

0
( )t  | ] , 

 

so it is a complete integral, then the set of all curves L0 would also depend upon that function. We 

then get a set of function fields that depend upon an arbitrary function 
1

0
( )t  and would represent 

the most general complete integral of (2). 

 The solution of the partial functional differential equation (2) is then reduced to the integration 

of the Euler-Lagrange equation: 

 

(6)  ( ) ( )
x yz z zf f f

x y

 
+ −

 
 = 0 . 

 

We will refer to the extremals that it determined as characteristics of equation (2). They are 

identical to the “charactéristiques de première espèce” that P. Lévy introduced, which are also 

obtained formally when we replace equation (6) with the associated second canonical system (1): 

 

(7)     

,

( ) ( ) .
sz z

K
z n

d
z K n k K n

ds

 


   


= − 


 = −  + +


 

 

 As an essential property of the characteristics, we have the fact that they are fixed uniquely by 

an element of an integral of (2) since we know of that element of the extremal, not only the curve 

L through which it goes, but also the normal derivative along that curve. There will then be two 

integrals of (2) with an element in common that are both common and is common to the whole 

characteristic that it determines. 

 Finally, we would like to treat a problem that is a direct generalization of the “Cauchy 

problem” for ordinary first-order partial differential equations. Let a closed curve C0 be given in 

the (x, y)-plane, and then the cylinder with C0 as its base whose generators are parallel to the z-

axis. Moreover, a certain line function  (z0 (s0)) might be given that possesses a certain value for 

all closed curves z0 (s0) on the cylinder that cannot be contracted to a point. Determine the integral 

of equation (2) that assumes the value  precisely for the curves L on the surface of the cylinder. 

 In order to solve that problem, we define the functional derivative z for every function z0 (s0), 

which is then a certain function of the arc-length s0, and then determine the function zn (s0) from 

the equation: 

 

 
 (1) P. Lévy, loc. cit., pp. 152.  
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(4*) 

0n

f

z

 
 

 
 = − 0 . 

 

If we then lay the extremal (or as we can also say, the characteristic) through each curve z0 (s0) 

whose normal derivative is equal to zn (s0) then we will have the required integral in the expression: 

 

(8)     V [L | ] = 
0

[ |] ( , , , , )
L

x y
L

L E f z z z x y dx dy +   . 

 

That is because it reduces to  [L0 | ] for L = L0 , but we further have that its variation is: 

 

V = 
0

0 0
0 0 0 0 0{( ) } ( )

n n nz n z z z
C C C

z ds z f f n f z ds f z ds    + − − +    . 

 

Thus, if we recall (4*) then: 

Vn = 
nn zz f f− , Vz = −

nzf . 

 

However, those expressions satisfy equation (2), since it emerges from them precisely by 

eliminating zn, as was explained in the first section. 

 

_________



CHAPTER TWO 

 

The variational problem with two unknown functions. 
 

 

§ 1. 

 

The variational problem and the partial functional differential equation. 

 

 The problem in the previous chapter shall now be generalized by assuming that we are starting 

with not one, but two, unknown functions in the variational problem. The treatment of the problem 

that was posed generally follows a parallel course to what was done in the previous section and 

can then be achieved more concisely here. By contrast, at some points, the more general character 

of the present problem will emerge conspicuously. 

 

 1) The variational problem and the Euler-Lagrange equations. 

 

 The basic variational problem now reads: Determine two unknown functions z (x, y) and t (x, 

y) such that the integral: 

 

(1)     I = ( , , , , , , , , )x y x y

S

f z z z t t t t x y dxdy  

 

is an extremum. In so doing, let the values of the two functions z and t be initially fixed on the 

boundary curve C of the domain of integration S in the (x, y)-plane: 

 

(2)      
( ) ,

( ) ,

z z s

t t s

= 


= 
 on C . 

 

 The first condition for the occurrence of an extremum is that the functions z (x, y) and t (x, y) 

must satisfy the two Euler-Lagrange equations: 

 

(3)     

( ) ( ) 0,

( ) ( ) 0.

x y

x y

z z z

t t t

f f f
x y

f f f
x y

 
+ − =  


  + − =

  

 

 

 We would like to interpret the four variables that we are dealing with here as coordinates of 

the points in a four-dimensional (linear) space (R4) and call the one-dimensional manifolds in that 

space “curves,” the two-dimensional ones “surfaces,” and the three-dimensional ones 

“hypersurfaces.” 
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 A space curve in R4 through which the desired surface z = z (x, y), t = t (x, y) [which is again 

called an extremal, as a solution to the differential equations (3)] must go is given by equations 

(2). Here, as well, we assume that in general there will be one and only one extremal that goes 

through a given space curve (C, z (s), t (s)) = L and is singularity-free in the interior of the region 

of the (x, y)-plane that is bounded by C. 

 

 2) The extremal integral as a line function and its functional derivatives. 

 

 If we now imagine that conversely a closed space curve L is given in a certain region of R4 

then it will determine a unique extremal. The extremal integral: 

 

(4)  I [L | ] = ( , , , , , , , , )x y x yE f z z z t t t t x y dx dy   

 

will then be a line function on R4 . We can once more deduce the functional derivatives from the 

boundary formula of the calculus of variations them, and we shall proceed to their derivation 

directly. 

 We vary the space curve L that determined the value of the extremal integral. In that way, we 

will get a neighboring space curve L  through which we likewise lay an extremal. We define a 

one-to-one correspondence between those two extremal surface patches such that points on the 

boundary will again correspond to boundary points. The line that connects corresponding points 

of the two extremal surface patches represents a “four-vector” of the first kind (1) in R4 whose 

components we would like to denote by x, y, z, t. If we again introduce x, y as functions of 

two parameters u and v, with which z and t, as well as the coordinates of the points of the 

neighboring extremal x + x, y + y, z + z, t + t, will also be functions of those parameters, then 

the two extremal surface patches are constructed over the same region in the (u, v)-plane. The 

variation of the region of the independent variables will then be avoided in the variation of the 

extremal integral. 

 If we again denote the two-rowed functional determinants of the variables x, y, z, t with respect 

to u and v by (xy), (zx), (yz), (tx), (yt) then we will have: 

 

zx = 
( )

( )

zy

xy




 , zy = 

( )

( )

xz

xy




 , tx = 

( )

( )

ty

xy




 , ty = 

( )

( )

xt

xy




 , 

 

and we will further have (2): 

 

 
 (1) Vector calculus in four-dimensional space is developed thoroughly in A. Sommerfeld, “Zur Relativitätstheorie, 

I. Vierdimensional Vektoralgebra,” Ann. Phys. (Leipzig) (4) 32 (1910), pp. 749; “II. Vierdimensionale 

Vektoranalysis,” ibid. 33 (1910), pp. 649. 

 (2) It should be noted that the determinant (zt) does not appear in the subdeterminants , nor does it enter into F. 

One will then have 
( )zt

F


  0. 
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f (zx, zy, z, tx, ty, t, x, y) = 
( )

1

xy
 ((zy), (xz), (ty), (xt), (xy), z, t, x, y) , 

 

in which F is again homogeneous of degree one in the subdeterminants . As a result, the integral 

(1) will take the form: 

I = ( ) ( ) ( ) ( ) ( )( , , , , , , , , )zy xz ty xt xyF z t x y du dv      , 

and we will get: 

 I = 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )[
zy xy ty xt xyzy xz ty xt xyF F F F F        + + + +  

 + Fz z + Ft t + Fx x + Fy y] du dv 

 

for the variation of I. Upon partial integration and recalling the Euler-Lagrange equations, that 

will imply: 

 

 I = 
( ) ( ) ( )zy xz zyL

dy dz dz dx dy dt
F z y F x z F t y

d d d d d d
       

     

      
− + − + −      

     
  

 +
( ) ( )xt xy

dt dx dy dx
F x t F x y d

d d d d
     

   

   
− + −    

   
. 

 

By returning to the original quantities, we will then get the relation: 

 

  I = ( )
x y x yx z y z x t y t

L

dy dx
f z f z f t f t f x y

d d
 

 

  
− − − − −  

 
  

(5) 

x y x yz z t t

dy dz dz dx dy dt dt dx
f z y f x z f t y f x t d

d d d d d d d d
        

       

       
+ − + − + − + −        

       
 

 

as the boundary formula of the calculus of variations. 

 In analogy with what we did in the previous section, we define the functional derivatives of a 

line function S [L | ] on R4 to be the components of a four-vector Sx, Sy, Sz, St . The variation of the 

line function S [L | ] has the form: 

 

(6)      S = ( )x y z t
L

S x S y S z S t d    + + + , 

 

from which it emerges that we have: 

 

(7)  x y z t

dx dy dz dt
S S S S

d d d d   
+ + +  = 0 , 
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i.e., that the four-vector Sx, Sy, Sz, St must lie on the normal hyperplane to the space curve L at the 

location  in question. 

 It follows from (7) that the four-vector Sx, Sy, Sz, St can be regarded as a vector product that is 

constructed from the four-vector dx / d, dy / d, dz / d, dt / d and a six-vector: 

 

{ Syx, Szx, Syz, Stx, Syt, Szt} 

in the following way: 

(8)    

x yx zx tx

y xy zy ty

z xz yz tz

t xt yt zt

dx dz dt
S S S S

d d d

dx dz dt
S S S S

d d d

dx dy dt
S S S S

d d d

dx dy dz
S S S S

d d d

  

  

  

  


= + +


 = + +


 = + +


 = + +


  (S = − S). 

 

 Naturally, the components of the six-vector are not determined uniquely by equations (8), but 

the general solution when 
yxS , … is a special solution will be: 

(8*)     Syz = yx

dt dz
S c d

d d 
 + − , etc., 

 

in which the additional terms are determined from the two-rowed determinants in the matrix: 

 

a b c d

dx dy dz dt

d d d d   

 , 

 

where we understand a, b, c, d to mean arbitrary constants (for each point  of L). If we introduce 

the expressions (8) for the components of the four-vector into equation (6) then it will take the 

form: 

(9)  

.

yx yz zx
L

yt tx zt

dy dx dy dz dz dx
S S x y S z y S x z

d d d d d d

dy dt dt dx dz dt
S t y S x t S t z d

d d d d d d

      
     

      
     

      
= − + − + −      

     

     
+ − + − + −      

     


 

 

 Upon comparing the two formulas (5) and (9), we will get: 

 

(10) Ixy = 
x y x yx z y z x t y tz f z f t f t f f+ + + − ,     Iyz = 

xzf ,    Izx = 
yzf ,    Iyt = 

xt
f ,    Itx = 

yt
f , 
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for the extremal integral as the (Volterra) derivatives with respect to the coordinate planes, while 

Ist will prove to be identically zero. In that way, a certain degree of arbitrariness is imposed upon 

the four of them, and in particular, one has set a = 0, b = 0.  

 If we would like to avoid the indeterminacy that is present these (Volterra) derivatives from 

the outset then we must appeal to the Hadamard-Lévy picture. In place of the curve L, we will 

then have to choose its projection C onto the (x, y)-plane to be the integration path for the curve 

integral in formula (5). When we replace x and y with n using formula (14) on pp. 32 and 

introduce the natural derivatives 
dz

ds
, 

dt

ds
 , , resp.

dz dt

dn dn

 
 
 

 of the functions z (x, y) and t (x, y) as 

an extension of equations (27) and (28) on pp. 35 and 36, those formulas will take the form: 

 

(11)   I   = {( ) }
n n n nn z n t z t

C
z f t f f n f z f t ds  + − − − . 

 

 We then get the functional derivatives (according to Hadamard-Lévy) of the extremal integral 

in the form of: 

(12)    

,

,

.

n n

n

t

n n z n t

n z

t z

I z f t f f

I f

I f







 = + −


= −


= −

 

 

They are expressed in terms of the (Volterra) derivatives with respect to the coordinate planes, 

which would emerge from the derivative, in the following way: 

 

nI  = xy yz zx yt tx

dz dx dy dt dx dy
I I I I I

ds ds ds ds ds ds

   
− + − +   

   
 , 

(13) 
zI  = yz zx

dy dx
I I

ds ds
−  , 

 
tI
  = yt tx

dy dx
I I

ds ds
−  . 

 

 3) The equation for the partial functional derivatives of the extremal integral. 

 

 In the same way as in the previous section, knowing the extremal integral as a line function on 

R4 will also achieve the integration of the system (3) of Euler-Lagrange equations here. In 

particular, for a given space curve L, we can give the extremal that goes through it and includes no 

singular points in the region bounded by L. That will then come down to being able to calculate 

the extremal integral directly, and we will find the Ansatz for that in a way that is analogous to 

what we did in the previous section. That shows that the extremal integral I [L | ] will satisfy a 

partial functional differential equation. 

 If we use the (Volterra) functional derivatives as a basis then, from the relations (10), we can 

calculate the four partial derivatives zx, zy, tx, ty from: 
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xzf  =  , 
yzf  =  , 

xt
f  =  , 

yt
f  =  , 

 

and upon eliminating those derivatives, we can define the function: 

 

(14)   H (z, t, x, y, , , , ) = 
x y x yx z y z x t y tz f z f t f t f f+ + + − . 

 

We will then have: 

H






 = zx , 

H






 = zy , 

H






 = tx , 

H






 = ty , 

 

and when we now set: 

 = Iyz ,  = Izx ,  = Iyt ,  = Itx , 

 

from the first of the relations (10) between the partial functional derivatives of the extremal 

integrals, the following equation will exist: 

 

(15)    Ixy = H (z, t, x, y, Iyz, Izx, Iyt, Itx) , 

 

whereby the two quantities c and d in the functional derivatives (according to Volterra), which 

are still arbitrary, are fixed by the auxiliary conditions: 

 

(15*)    

,

.

dz H dx H dy

d d d

dt H dx H dy

d d d

    

    

 
= +  


 

 = +
 

 

 

 If we appeal to the (Hadamard-Lévy) derivatives then we must calculate the normal 

derivatives zn and tn from the relations: 

 

zI  = − 
nzf , 

tI
  = − 

nt
f , 

and construct the function: 

 

(16) ( , , , , , , , , )z t s s sK I I z z t t x y x   = 
n nn z n tz f t f f+ −  

 

by substituting the calculated expressions then the partial functional differential equation: 

 

(17)     
nI  = ( , , , , , , , , )z t s s sK I I z z t t x y x   

 

will emerge. 
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 When we adapt the argument that posed in the previous section for the equations that were 

analogous to (15) and (17) to the present equations, that will imply that the extremal integral (when 

we imagine it as being determined by the space curve L, as we have up to now) is not the only 

integral of that partial functional differential equation, and the complication will arise of selecting 

precisely that special solution from among the set of all solutions. 

 In order to get that complication out of the way, we would like to consider two curves L0 and 

L and assume that they are connected by an extremal that is in the interior of a (doubly-connected) 

region without singularities and bounded by those curves. The extremal integral: 

 

(18) I [L, L0 | ] = 
0

( , , , , , , , )
L

x y x y
L

E f z z z t t t x y dx dy   

 

that is extended over that double-connected region satisfies equations (15) [(17), resp.] for each 

point of the two curves L0 and L, along with its functional derivatives. 

 If we keep the curve L0 fixed and vary L then the set of all extremals that can be drawn from 

L0 to all curves L will define a function field. The extremal integral (18) exhibits a covering of 

space by curves in the function field that defined an integral of the partial functional differential 

equation. If we also vary the curve L0 then the function field and the associated curve covering 

will also vary, such that we will get a set of integrals that depends upon an arbitrary curve in R4 . 

As we will explain more precisely later on (§ 3), the function field will define a complete integral 

of equation (15) [(17), resp.] once L0 is regarded as variable. 

 We can now solve the boundary-value problem for the Euler-Lagrange equations (3) by 

means of such a complete integral when we imagine that two curves L0 and L are given as the 

boundary and choose the given curve L0 to be the initial curve of the line function (18). From the 

boundary formula of the calculus of variations, the functional derivatives of the extremal integral 

I will always remain the same at each point of L0 as long as the curve L remains on one and the 

same extremal of the function field. If we then form those derivatives with respect to the functions 

z and t and set them equal to new arbitrary functions  and  : 

 

(19) 
zI  =  (s0) , tI

  =  (s0) 

 

then every choice of those functions  (s0) and  (s0) will correspond to a well-defined extremal. 

Should the extremal go through the given curve L, in particular, then the curve L would have to be 

introduced into the derivatives (19) of I, and the functions  and  could then be determined from 

equations (19). With that, we will know the normal derivatives of the desired extremal on L0, and 

we can then construct it from L0 . 

 

 5) [sic] The function field of the extremals and the partial functional differential equation. 

 

 Instead of the special function field that consists of all extremals that start from a given curve 

L0 in R4, we can imagine that we are given a more general function field that is subject to only the 

condition that one and only one extremal of the function field should go through each curve L in 
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the region considered. If we imagine that an “initial curve” L0 is determined on each extremal of 

the function field then the extremal integral: 

 

(20) W [L | ] = 
0

( , , , , , , , )
L

x y x y
L

E f z z z t t t x y dx dy   

 

will produce a covering of the space by curves. 

 In order to look for the condition for the line function W [L | ] = W [C, z(s), t (s)] thus-defined 

to satisfy the partial functional differential equation (17), we form the variation: 

 

(21)  W = {( ) }
n n n nn z n t z t

C
z f t f f n f z f t ds  + − − −  

− 
0

0 0 0 0{( ) }
n n n nn z n t z t

C
z f t f f n f z f t ds  + − − − , 

 

in which L0 = [C0, z0 (s0), t0 (s0)], and the variation of L0 is determined by that of L, so the relations 

will exist: 

(22)  

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

( ) { ( , ) ( , ) ( , ) } ,

( ) { ( , ) ( , ) ( , ) } ,

( ) { ( , ) ( , ) ( , ) } .

C

C

C

z s z s s n z s s z z s s t ds

t s t s s n t s s z t s s t ds

n s n s s n n s s z n s s t ds

      

      

      

   = + +



  = + +


  = + +








 

 

 One then gets the functional derivatives of the line function W [L | ] from (21) as: 

 

nW  = 
0

0 0 0 0{( ) }
n n n n n nn z n t n z n t z t

C
z f t f f z f t f f n f z f t ds    + − − + − − − , 

 
zW  = − 

nzf  −
0

0 0 0 0{( ) }
n n n nn z n t z t

C
z f t f f n f z f t ds    + − − − , 

 
tW  = − 

nt
f  −

0
0 0 0 0{( ) }

n n n nn z n t z t
C

z f t f f n f z f t ds    + − − − . 

 

 Therefore, if the line function W [L | ] is to satisfy the partial functional differential equation 

(17) then the integral in those formulas must vanish. That will happen when the curve L0 satisfies 

the condition: 

 

(23)   0 0 0

0 0 0( ) ( ) ( )
n n n n

C C C

n z n t z tz f t f f n f z f t  + − − −  = 0 . 

 

When we revert to the coordinates x and y, that will take the form: 

 

0 0 0 0

0 0 0 0

0

( ) ( ) ( ) ( )
x x x x x x

L L L L

x z x t y z x t z t

dy
f z f t f x z f t f y f z f t

ds
    − − − + + +   
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− 0 0 0 0

0 0 0 0

0

( ) ( ) ( ) ( )
y y y y y y

L L L L

x z x t y z y t z t

dx
z f t f x f z f t f y f z f t

ds
    − + + − − + +

 
 = 0 . 

 

Due to the arbitrariness in the curve L0, it will then follow from this that one has the two equations 

for the directions of advance (1): 

 

(23*) 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0.

x x x x x x

y y y y y y

L L L L

x z x t y z x t z t

L L L L

x z x t y z y t z t

f z f t f x z f t f y f z f t

z f t f x f z f t f y f z f t

   

   

 − − − + + + =


− + + − − + + =

 

 

 6) The function fields and the boundary-value problem for the Euler-Lagrange equations. 

 

 There are always function fields that fulfill the condition (23). We will get one when we 

imagine that a hypersurface is given inside of the space R4 that lies over the region of the (x, y)-

plane that is bounded by two curves C1 and C2 and construct all extremals in such a way that they 

are “transversal” to that hypersurface, i.e., in the following way: We draw all closed curves on the 

hypersurface that cannot be contracted to a point on it. Let L = (C, z (s), t (s)) be any of those 

curves. We will then know the derivatives dz / ds and dt / ds on it immediately. The hyperplane at 

a point in question whose trace in the (x, y)-plane is normal to the projection C cuts out a two-

dimensional surface from the given hypersurfaces on which z / n (for constant t) and t / n (for 

constant z) are determined. When we then lay an extremal through L such that the normal 

derivatives zn (s), tn (s) are calculated from the equations: 

 

(24)    
( ) 0,

( ) 0,

n n n

n n n

n z n t z

n z n t t

z f t f f n f z

z f t f f n f z

 

 

 + − − =


+ − − =

 

 

the condition (23) will be fulfilled for every extremal on the initial curve. Hence, the curve 

covering through the extremal integral in the function field that is constructed will define a solution 

to the partial functional differential equation (17). 

 In order to arrive at a solution to the boundary-value problem for the Euler-Lagrange 

equations, we must have a complete integral of equation (17) at our disposal. We will obtain such 

 
 (1) If we were to select a parametric field from the function field then the coefficients of the increments in these 

equations would be functions of position, i.e., functions of x, y, z, t. The two equations would then represent two total 

linear differential equations for the two functions x and y of the variables z and t. In order for them to be completely 

integrable and determine a two-parameter family of curves, namely, the transversals of the field: 

 

x = x (z, t, , ) ,  y = y (z, t, , ) 

 

(where  and  are two parameters), two integrability conditions that are easy to give must be fulfilled. That suggests 

the question of whether those two integrability conditions, together with the differential equations for the slope 

functions of the field (which are also derived immediately from the Euler-Lagrange equations here), say that the 

parametric field is an “independence field,” as was true in the first section. Meanwhile, certain terms appear in the 

integrability conditions that make it seem that the answer to that question is not very simple. 
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a thing in a function field that depends upon two arbitrary functions  (u) and  (u) in a certain 

interval (say, from 0 to 1), e.g., that would be fulfilled in the example above when the hypersurface 

depends upon those two functions. 

 In general, let: 

(25)     I = 
1 1

0 0
[ , ( ), ( ) |]I L u u   

 

be a curve covering of a function field that represents a complete integral of (17). Naturally, the 

extremals, as well as the initial curves L0, will then vary with  (u) and  (u). If we fix a certain 

curve L then we will get the variation of 
1 1

0 0
[ , ( ), ( ) |]I L u u   with  (u) and  (u) from the boundary 

formula of the calculus of variations: 

 

(26)   

0

1

0

0 0 0 0

{ }

{( ) } ,
n n n nn z n t z t

C

I I I du

z f t f f n f z f t ds

   

    

= +

= + − − −





 

in which: 

(27)   

1

( ) ( )

0 0 0 0 0

0

1

( ) ( )

0 0 0 0 0

0

1

( ) ( )

0 0 0 0 0

0

[ ( , ) ( , ) ] ,

[ ( , ) ( , ) ] ,

[ ( , ) ( , ) ] ,

n n s u n s u du

z z s u z s u du

t t s u t s u du

 

 

 

    

    

    








=  + 





=  + 


 =  + 








 

 

such that the functional derivatives of I with respect to  and  will be: 

 

(28)   
0

0

( ) ( ) ( )

0 0 0 0

( ) ( ) ( )

0 0 0 0

{( ) } ,

{( ) } .

n n n n

n n n n

n z n t z t
C

n z n t z t
C

I z f t f f n f z f t ds

I z f t f f n f z f t ds

  



  



  

  

 = + − − −



= + − − −





 

 

Those derivatives will have the same value for all curves L that lie on the same extremal as long 

as the abscissa u with respect to which the functional derivatives are taken is fixed. The extremals 

are then characterized by the equations: 

 

(29)  
1 1

0 0
[ , ( ), ( ) |]I L u u    = 

( ) ( )c u
,  

1 1

0 0
[ , ( ), ( ) |]I L u u    = 

( ) ( )c u
. 

 

 The boundary-value problem for two given curves L1 and L2 is the dealt with in the older way 

on pp. 43. For one of the function fields, we form the two values: 
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I1 = 
1 1

1
0 0

[ , ( ), ( ) |]I L u u        and      I2 = 
1 1

2
0 0

[ , ( ), ( ) |]I L u u   . 

 

Should the two curves L1 and L2 lie on the same extremal, then the equations: 

 

(30)    (I1) − (I2) = 0 , (I1) − (I2) = 0 

 

would have to exist for all values of u in the interval from 0 to 1.  From that, we would calculate 

the functions  (u) and  (u) in the interval from 0 to 1, and we would have then determined the 

function field in which the extremal that goes through L1 simultaneously goes through L2 . 

 

 

§ 2. 

 

The Euler-Lagrange equations and the associated canonical system. 

 

 1) The Euler-Lagrange equations and the canonical system. 

 

 If we would now like to treat the Euler-Lagrange equations: 

 

(1)      

( ) ( ) 0,

( ) ( ) 0

x y

x y

z z z

t t t

f f f
x y

f f f
x y

 
+ + =

 

 
+ − =

 

 

 

from the standpoint of the general theory of integration then the boundary-value problem that was 

the center of focus in § 1 will be replaced with the problem of determining an extremum such that 

not only are the values of the functions given: 

 

(2)      z = z (s) , t = t = t (s) 

 

along a given curve C, but they must also possess prescribed normal derivatives: 

 

(2*)     
dz

dn
 = zn (s) , 

dt

dn
 = tn (s) . 

 

Such an extremal can be constructed by Cauchy’s process des calcul des limites, because from (2) 

and (2*), the four first-order partial derivatives zx, zy, tx, ty are known along C, in addition to z and 

t. 

 By applying the Legendre transformation: 
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(3)     = 
xzf ,  = 

yzf ,  = 
xt

f ,  = 
yt

f , 

 

we can convert the system (1) of two second-order partial differential equations into the following 

canonical system of six first-order partial differential equations: 

(4)  

, ,

,

, ,

,

x y

x y

x y

x y

H H
z z

H

z

H H
t t

H

t

 

 

 

 

 
= =  


 + = −

 


 
 = =

 


 + = −
 

 

in which we have introduced: 

 

H (z, t, x, y, , , , ) = 
x y x yx z y z x t y tz f z f t f t f f+ + + −  , 

 

in agreement with equation (14) on pp. 69. 

 We again have the complication with this first canonical system that the values of all six 

unknown functions cannot be given arbitrarily on a plane curve C, but they must satisfy two 

integrability conditions. 

 In order to avoid those auxiliary conditions, we introduce a second canonical system. In order 

to do that, we appeal to the natural derivatives zs, zn, ts, tn of z and t on C, under which, f will go to 

the function ( , , , , , , , , )s n s n sf z z z t t t x y x . 

 If eliminate the derivatives zn and tn by means of: 

 

 = − 
nzf ,  = − 

nt
f  

and introduce the new function: 

 

K (, , z, zs, t, ts, x, y, xs) = 
n nn z n tz f t f f+ − , 

 

in agreement with equation (15) on pp. 69, then we will get the second canonical system: 
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(5)     

,

( ) ( ) ,

,

( ) ( ) .

s

s

z s

t t

K
z n

d
K n k K n

ds

K
t n

d
K n k K n

ds

 


   

 


   


= − 




= − + +


 = −
 

 = − + +


 

 

That system can be regarded as a system of four total functional differential equations, so the 

extremals can be determined by the Cauchy-Lipschitz process or the method of successive 

approximation in that way of looking at things. 

 

 2) The characteristic “relative invariant” and the independence field. 

 

 The following considerations are again initially connected with the Euler-Lagrange equations 

themselves. We draw a closed curve L and consider the integral that extends over L: 

 

 R [L | ] = ( )
x y x yx z y z x t y t

L

dy dx
f z f z f t f t f x y

d d
 

 

 
− − − − − 

 
  

+ 
x y x xz z t t

dy dz dz dx dy dt dt dx
f z y f x z f t y f x t d

d d d d d d d d
        

       

       
− + − + − + −        

       
, 

 

which is coupled with the boundary formula (5) on pp. 66, and in which the x, y, z, t initially 

mean arbitrary increments. 

 We then imagine that parametric field of extremals is given: 

 

(7)     z = z (x, y, a, b) , t = t (x, y, a, b) 

 

and intersect that field with a certain (tubular) hypersurface. The extremals of the field cut the 

hypersurface in a certain curve, and we would like to think that the hypersurface is determined 

such that all intersection curves are closed curves. (That assumption shall just express the addition 

of the word “tubular.”) From the fundamental property of the field, the hypersurface of intersection 

curves will be filled up by extremals simply and without gaps. In that way, the curves of the two 

two-parameter families of curves are in one-to-one correspondence with each other by way of the 

extremal of the field that connects two associated curves. 

 On the first hypersurface, we imagine that a one-parameter family of curves has been selected 

from the two-parameter family that defines a closed surface (M2) in the (three-dimensional) 

hypersurface. Let the parameter for that one-parameter family be . On the second hypersurface, 

that one-parameter will be associated with a one-parameter family of curves that likewise defines 

a closed surface. 
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 Two associated curves L1 () and L2 () of the two families of curves bound a certain surface 

patch on the field extremals that connect them, so the associated value of the extremal integral 

takes the form of a function of  : 

 

I () =  
2

1

( )

( )

( , , , , , , , )

L

x y x y

L

E f z z z t t t x y dx dy





    
( , , ( ), ( ))

( , , ( ), ( ))

z z x y a b

t t x y a b

 

 

= 
 

= 
 . 

 

From the boundary formula in the calculus of variations, its derivative with respect to  is: 

 

(8)     
I


 = 2 1[ ( ) |] [ ( ) |]R L R L   

 
− . 

 

If we integrate that equation over the closed surface of the curve L () then: 

I


  = 0 

and that will imply that: 

2[ ( ) |]R L 


  = 1[ ( ) |]R L 


 , 

 

i.e., the following integral is constant: 

 


( )

( )
x y x y xx z y z x t y t z

L

x dy y dx z dy y dz
f z f z f t f t f f

d d d d


   


       

   
− − − − − + −   

   
   

 

+ 
y x yz t t

x dz z dx t dy y dt x dt t dx
f f f d

d d d d d d

     


           

     
− + − + −      

     
 = const., 

 

no matter how the tubular hypersurface might lie in the field. We express that fact by saying that 

we call the integral (6) the element of a “relative integral invariant.” 

 When we select a one-parameter family L (a) from that two-parameter family of intersection 

curves of the field with the hypersurface then we will, at the same time, select a one-parameter 

family of extremals from the field (7) that fills up a certain three-dimensional (curved) space 

simply and without gaps. Naturally, that three-dimensional space includes the two-dimensional 

surface T that is defined by the curves L (). If we define the curved three-dimensional space in 

ordinary linear three-dimensional space then the surface T will be either mapped as a closed surface 

again, so a type of toral surface, or its map will be a non-closed (i.e., bounded) surface. In the 

former case, the constant in (9) is equal to zero, as was explained on pp. 50, while in the latter 

case, it will generally be non-zero. 

 If we introduce x and y as integration variables in formula (9) then we will get: 
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(10) 
x y x yx z y z x t y t

z z t t
f z f z f t f t f dx dy

x y x y

   

   

       
+ − + − + − + −       

       
  = const., 

 

and the Hilbert integral that appears on the left extends over a closed surface. We then find that 

the field in question (7) is an independence field if and only if the constant in the formula (9) is 

also equal to zero for all closed surfaces of the second kind. 

 It further emerges from the argument above that we can, with no loss of generality, choose the 

surface T that carries the curves L () in the relative integral invariant (9) in the argument above 

such that it lies on a “cylindrical hypersurface C,” i.e., on a hypersurface that consists of the planes: 

 

x = const., y = const. 

 

 that might lie through the individual points of a closed curve C in the (x, y)-plane. For such a 

cylindrical hypersurface C, formula (9) will assume the simpler form: 

 

(11)   
x y x yz z t t

C

dy dx z dy dx t
f f f f ds

ds ds ds ds

 


 

    
− + −    

    
   = const. 

 

 The given field will be an independence field if and only if the constant in that formula is equal 

to zero for any one-parameter family of curves L () that defined a closed surface on the cylindrical 

hypersurface C. 

 

 3) The associated “absolute integral invariants” and the “Jacobi equations.” 

 

 If we write formula (11) in the form: 

 

x y x yz z t t

C

z t dy z t dx
ds f f f f

ds ds

   


   

    
+ − +    

    
   = const. 

 

then we can convert the inner integral, which represents a curve integral over the curve a = a (), 

b = b () in the plane s = const. on the cylindrical hypersurface, into a double integral using 

Stokes’s theorem: 

x x x yz t t t

C

z t z t dy
ds f f f f

b a a a b b ds

          
+ − +              

   

− 
y y y yz t z t

z t z t dx
f f f f da db

b a a a b b ds

          
+ − +               

 = const. 

 

and thus obtain an “absolute integral invariant.” Therefore, the element of that invariant: 
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(12)   

x x x x

y y y y

z t z t

C

z t z t

f f f fz t z t dy
ds

a b a b b a b a ds

f f f fz t z t dx
ds

a b a b b a b a ds

        
+ − − 

        

         
− + − −  

           


 

 

will be constant, no matter how the curve C might be chosen, as long as we remain on a certain 

extremal of the field. 

 The relation (12) expresses a property of the Jacobi equations that belongs to the Euler-

Lagrange equations (1). If  (zx, zy, z, tx, tx, t, x, y), as the second variation of the function f, is the 

following quadratic form with 21 terms: 

 

(13)  2 = 2 2 2 2 22 2
x x x y y y x xz z x z z x y z z y t t x zz zt ttf f f f f f f+ + + + + +  +z z z z t z z t t  

 

then the Jacobi equations will read: 

 

(14)    

( ) ( ) 0,

( ) ( ) 0.

x y

x y

x y

x y

 
 +  −  =  


   +  −  =

  

z z z

t t t

 

 

 We will immediately get two systems of solutions to the Jacobi equations (14) from the 

derivatives of the functions (7) that define the field in question with respect to the parameters: 

 

(15)   z(1) = 
z

a




, t(1) = 

t

a




; z(2) = 

z

b




, t(2) = 

t

b




. 

 

One further sees directly that: 

xzf

a




 = (1)

x


z

, xzf

b




 = (2)

x


z

, etc. 

 

From equation (12), the following relation exists between two systems of solutions of the Jacobi 

equations (14): 

    (2) (2) (1) (1)

(1) (1) (2) (2)( )
x x x xC

dy

ds
 +  −  −  z t z t

z t z t  

(16) 

− ( 2) ( 2) (1) (1)

(1) (1) (2) (2)( )
y y y y

dx
ds

ds


 +  −  −  


z t z t

z t z t  = const. 

 

i.e., the Jacobi system (14) is self-adjoint. 
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 The solutions (15) of the Jacobi equations that were just employed are only a special case of more general 

solutions that can be obtained as solutions to the Euler-Lagrange equations that do not depend upon parameters, but 

on arbitrary functions. If we have a system of solutions of equations (1) that depend upon two arbitrary functions 

0 0
( )z s , 

0 0
( )t s  on a fixed curve C0 in the (x, y)-plane: 

 

(17)    z = Z (x, y ; C0, z0 (s0), t0 (s0)) , t = T (x, y ; C0, z0 (s0), t0 (s0)) 

 

then the variations: 

(18)     
0 0

0

0 0
0

0 0 0

0 0 0

( ) ,

( )

z t
C

z t
C

z Z z Z t ds

t T z T t ds

  

  

 = +



= +





 

 

will represent solutions of the Jacobi equations, and due to their linear character, the functional derivatives will also 

be themselves solutions. The solutions (15) are included in (18), and they will be produced when we select a two-

parameter family like (7) from the set of functions (17) that defines a parametric field. 

 

 It still remains for us to give the canonical form equations of (14). If we introduce the natural 

derivatives along the curve then the quadratic form (13) will take the form: 

 

(19)   2   = 2 2 2 22 2
n n n s n sz z n z z n s z z s zz zt ttf f f f f f+ + + + +  +z z z z z z t t . 

 

If we then introduce the new variables: 

 

(21)[sic]    f = − 
n

 z , w = − 
n

t  

 

and define the canonical function: 

 

  2 X (f, w, zs, z, ts, t, x, y, xs) 

(21)  

= 
2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2
2 2s s

s s

K K K K K K K

z z z z t t  

      
+ + + + + + +

        
f f z z w z zt t  

 

by eliminating zn and tn , which is likewise a quadratic form with 21 terms, then we will get: 
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(22) 

,

,

,

s

s

X
n

d X X
n k n

ds

X
n

d X X
n k n

ds

 

  

 

  


= − 


     

= − +  +    
    


 = −

 


    = − +  +       

z
f

f f
z z

t
w

w w
t t

 

 

as a second canonical form of the Jacobi equations (14). That system is self-adjoint, i.e., one has: 

 

(23)   (1) (2) (2) (1) (1) (2) (2) (1){ }
C

ds− + − z f z f t w t w  = const. 

 

for any two solutions of the system (22). 

 
 

 

 4) The canonical system as a contact transformation. The transformation of the set of all 

extremals into itself. 

 

 We can regard the canonical system (5) as an infinitesimal contact transformation in the realm 

of line functions in the same way as in the previous section for the variational problem with one 

dependent variable, and the extremal integral plays the role of the characteristic line function in 

that. Here, we have the following relation for the extremals: 

 

(24)   d I  = 
2 1

2 2 2 2 2 1 1 1 1 1( ) ( )
C C

d z d t ds d z d t ds      + − +  , 

 

from the boundary formula for the calculus of variations, in which one has: 

 

(25)    d I  = 
2

1

( , , , , , , , )
C

x y x y
C
E d f z z z t t t x y dx dy  . 

 

Upon contracting the curves C1 and C2, it will follow from this that: 

 

(26)    − ( )
C

d z d t ds   +  = 
C

d f n ds , 

 

and by a conversion that is analogous to the one on pp. 54, we will find that: 

 

(27)  { ( )}
C

d z z d d t t d k d z d t ds            − + − − +  = 
C

d K n ds , 
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such that we will obtain precisely the second canonical system (5) by comparing the coefficients 

in (27). 

 If we further look for the transformation group that permutes the individual extremals of the 

set of extremals amongst themselves in the same way as on pp. 56 then we will get infinitesimal 

displacements for the individual points of a curve [C, z (s),  (s), t (s),  (s)] that lies on a certain 

extremal in the form of: 

 

(28)   

[ , ( ), ( ), ( ), ( ) |; ] ,

[ , ( ), ( ), ( ), ( ) |; ] ,

[ , ( ), ( ), ( ), ( ) |; ] ,

[ , ( ), ( ), ( ), ( ) |; ] ,

z C z s s t s s s

t C z s s t s s s

C z s s t s s s

C z s s t s s s

   

   

   

   

=


=


=
 =

a

b

m

n

 

in which: 

 

(29)    z = a ,      f = m ,      t = b ,      w = n 

 

must be solutions of the Jacobi equations (22). It will follow from the fact that the relative integral 

invariant whose elements is: 

( )
C

d z d t ds  +  

 

must remain such a thing under the transformation that the functional on the right-hand side of 

(28) must be derivable from a line function: 

 

Q [C, z (s),  (s), t (s),  (s) | ] 

as its functional derivatives: 

(30)    

[ , ( ), ( ), ( ), ( ) |; ] ,

[ , ( ), ( ), ( ), ( ) |; ] ,

[ , ( ), ( ), ( ), ( ) |; ] ,

[ , ( ), ( ), ( ), ( ) |; ] .

z

t

Q C z s s t s s s

Q C z s s t s s s

Q C z s s t s s s

Q C z s s t s s s





 

 

 

 

=


=


= −
 = −

a

b

m

n

 

 

 The two conditions (29) and (30) collectively say that one must have: 

 

(31)    Q [C, z (s),  (s), t (s),  (s) | ] = const. 

 

for a variation of the curve [C, z (s),  (s), t (s),  (s) | ] on the same extremal, i.e., that the line 

function Q must be an integral of the canonical system (5), with the terminology on pp. 58, and 

that entire argument can also be inverted. 

 Finally, as an analogue of Poisson theorem, one again has the theorem that a new integral can 

be derived from two integrals of the canonical system: 

 



Prange – The Hamilton-Jacobi theory for double integrals. 83 
 

(32)    
(1)

(2)

[ , ( ), ( ), ( ), ( ) |] const.,

[ , ( ), ( ), ( ), ( ) |] const.

Q C z s s t s s

Q C z s s t s s

 

 

 =


=
 

 

That is because for the systems of solutions of the Jacobi equations: 

 

z(1) = (1)Q
, f(1) = − (1)

zQ , t(1) = (1)Q , w(1) = − (1)

tQ , 

z(2) = (2)Q , f(2) = − (2)

zQ , t(2) = (2)Q
, w(2) = − (2)

tQ , 

 

which one gets from (32), (23) will imply the relation: 

 

(33)   (1) (2) (2) (1) (1) (2) (2) (1){ }z z t t
C

Q Q Q Q Q Q Q Q ds   − + −  = const. 

 

 

§ 3. 

 

Integrating partial functional differential equations by means of an extremal integral. 

 

 Here as well we would like to briefly go into the inversion of the argument in § 1 as part of a 

systematic treatment of the subject, so the reduction of the integration of a partial functional 

differential equation to the solution of an associated variational problem by a direct study of its 

Euler-Lagrange equations. 

 One then deals with the determination of a line function V [L |] from the equation: 

 

(1)     Vxy = H (x, y, z, t, Vyz, Vzx, Vyt, Vtx) 

 

when the auxiliary conditions: 

 

(1*)   

[ ,

, ]

yz zx

yt tx

dz H dx H dy
V V

d d d

dt H dx H dy
V V

d d d

 
    

 
    

 
= + = =  


 

 = + = =
 

 

 

fix the functional derivatives completely. In place of it, we can also eliminate the auxiliary 

conditions for the functional derivatives and use the equation: 

 

(2)     
nV   = ( , , , , , , , , )z t s s sK V V z z t t x y x   

 

as our basis, although the function K in that must satisfy certain conditions. 

 In analogy to what was done on pp. 60, we can use the Legendre transformation on H (K, 

resp.) to determine a function f (zx, zy, z, tx, ty, t, x, y) that we will then choose to be the integrand 
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in a variational problem. The associated extremal integral will represent a complete integral of (1) 

[(2), resp.] for an arbitrary initial curve L0, which is analogous to what was said on pp. 61. 

 The fact that every integral V [L | ] of those equations can be represented by the value of the 

extremal integral in a function field follows from the fact that an integral is determined uniquely 

when we know its value on a cylindrical surface that belongs to a curve C0 in the (x, y)-plane: 

 

(4)  V [C0, z (s), t (s) | ] =  [z (s), t (s) | ] . 

 

 Namely, if we form the functional derivatives of  with respect to z and t, determine the 

functions zn and tn from the equations: 

 

(5)      −
nzf  = z , −

nt
f  = t , 

 

and lay the extremal of the variational problem that belongs to the function (2) through each curve 

z (s), t (s) that belongs to C0 , and whose normal derivatives are the functions zn (s) and tn (s) that 

were just determined, then we will have a well-defined function field, and the curve covering of 

that field will provide us with the desired solution to the partial functional differential equation (1) 

in the form: 

(6)   V [L | ] =  [(C0), z (s), t (s) | ] + 
1

9

( , , , , , , , )
L

x y x y
L
E f z z z t t t x y dx dy  . 

 

That line function does, in fact, reduce to the desired functions (4) for C = C0, and will satisfy 

equation (1), which would follow from the boundary formula for the calculus of variations, in a 

manner that is analogous to what was done on pp. 72. It will then follow immediately from the 

uniqueness of an integral that any given integral of (1) can always be represented as a curve 

covering of a function field. At the same time, the process shows that an integral that still includes 

arbitrary functions can be represented by a family of function fields that correspondingly vary with 

those arbitrary functions. We can also obtain a “general” integral from such a “complete” integral 

that depends upon two arbitrary functions by assuming that an arbitrary functional relationship 

exists between the two arbitrary functions, and then construct the “envelope” (1) of the family of 

function fields that then depends upon an arbitrary function. The integration of equation (1) is the 

reduced to the determination of the extremals of the associated variational problem, namely, the 

“characteristics” of the given equation. 

 In conclusion, we would like to derive yet another property of the function fields that represent 

integrals of the partial functional differential equations (1) that is, in a certain sense, an analogue 

of the theorem of A. Mayer that was mentioned on pp. 18. 

 If we select a parametric field: 

 

(3)     z = z (x, y, z, b) , t = t (x, y, a, b) 

 

 
 (1) P. Lévy, loc. cit. (pp. 1), pp. 156.  
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from the function field then a line function that is defined in the function field will go to a function 

of the plane curve C and the two parameters a and b. 

 The line function (4) that is considered for a fixed curve C will become a function of the two 

parameters  (a, b). If the function field is determined in the way that was given on the previous 

page then we will have: 

 

  
a




 = 

0
x x y yz t z t

C

z t dy z t dx
f f f f ds

a a ds a a ds

        
+ − +    

       
 , 

(4) 

  
b




 = 

0
x x y yz t z t

C

z t dy z t dx
f f f f ds

b b ds b b ds

        
+ − +    

       
  

 

in the parametric field that we now consider. It then follows that: 

 

(5)   
0

0,

x x x x

y y y y

z t z t
C

z t z t

z t z t dy
f f f f

b a a a a a ds

z t z t dx
f f f f ds

b a a a a a ds

          
+ − +              

          
− + − + =              


 

 

which is a relation that says that it will follow from the argument on pp. 79 that the parametric 

field is an “independence field.” The function fields that lead to integrals of equation (1) then 

possess the property that every parametric field that is selected from them is an independence field. 
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