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The mechanics of wave motion in a medium are founded in conservation laws for the physical quantities
that the waves carry, combined with the constitutive laws of the medium, and define Lorentzian structures
only in degenerate cases of the dispersion laws that follow from the field equations. It is suggested that
the transition from wave motion to point motion is best factored into an intermediate step of extended
matter motion, which then makes the dimension-codimension duality of waves and trajectories a natural
consequence of the bicharacteristic (geodesic) foliation associated with the dispersion law. This process is
illustrated in the conventional case of quadratic dispersion laws, as well as quartic ones, which include the
Heisenberg–Euler dispersion law. It is suggested that the contributions to geodesic motion from the non-
quadratic nature of a dispersion law might represent another source of quantum fluctuations about classical
extremals, in addition to the diffraction effects that are left out by the geometrical optics approximation.
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1 Introduction

In order to define the foundations of wave mechanics, in the more general sense of the mechanics of phys-
ical waves in all of their natural manifestations, one must recognize that wave motion comes about as a
consequence of deeper assumptions about the nature of the medium in which the waves in question propa-
gate. In particular, whether one is dealing with waves in mechanical media or electromagnetic media, one
generally starts with a set of first-order partial differential equations for a field in the medium, which are
based in conservation laws for the physical quantities that are associated with the field, and a constitutive
law that describes the interaction between the medium and the field. Usually, one can combine the system
of first-order partial differential equations and the constitutive law into a single second-order partial differ-
ential equation for the field, which will be linear or nonlinear depending upon the nature of the constitutive
law.

One then settles upon a specific form for the field that would represent a “wavelike” solution and then
derives a dispersion law for that type of wave from the field equation. Various forms of such wave solutions
that one regularly considers are time-harmonic field solutions, such as some standing waves, the geomet-
rical optics approximation, plane waves, and waves with other geometric symmetries, such as spherical,
ellipsoidal, and cylindrical waves.

Although the mathematical theory of waves usually introduces a Lorentzian structure from the outset,
nonetheless, more generally, one finds that the possibility for wave-like fields must exist at this “pre-
metric” level of fields and constitutive laws, and in order to account for the appearance of the Lorentzian
structure, one must first examine the symbol of the second-order differential operator that defines the field
equation. One obtains a linear algebraic operator on wave fields whose determinant defines a characteristic
polynomial F [k] in the frequency-wave number covector k, which is also called just the wave covector
field. The vanishing or not of F [k] defines two classes of dispersion laws, which we then call homogeneous
and inhomogeneous, respectively.

One then finds that whether or not the motion of waves in the medium is governed by a Lorentzian
structure or something more algebraically involved than a quadratic dispersion polynomial depends entirely
upon the nature of the dispersion law, which, in turn, depends largely upon the nature of the constitutive
law. A Lorentzian structure usually follows from a degenerate case of a quadratic dispersion law that is
associated with a linear homogeneous isotropic medium, while in the more general cases the characteristic
polynomial can be quartic or sextic. Hence, one must realize that any medium that supports wave motion
has a deeper structure to address before one introduces a Lorentzian structure.

If one treats the relation k = dϕ that expresses the wave covector field k as the differential of a phase
function ϕ, not as a defining identity, but a first-order partial differential equation for ϕ, then when this
is combined with the dispersion law F [k] = const. one finds that one has used the geometrical optics
approximation to replace the second-order field equation for the wave function Ae−iϕ with a nonlinear
first-order partial differential equation F [dϕ] = const. for the phase function, which gives the shape of the
wave fronts; in this approximation, the amplitude functionA plays no role, as it is assumed to vary slowly
when compared to the time variation of ϕ.

As long as F [k] is independent of the phase itself, one finds that one is dealing with symplectic ge-
ometry of the spacetime cotangent bundle T ∗M . The characteristic polynomial F [k] plays the role of a
Hamiltonian function, although we shall reserve that term for physical case in which one is concerned with
energy directly. The characteristic vector field on T ∗M that is defined by F and the symplectic structure
then generalizes the geodesic flow that would follow from using a Lorentzian metric g(k, k) on T ∗M as
the source of F ; in the case of a homogeneous dispersion law, the resulting geodesics would then general-
ize null geodesics. One finds that there are terms in the geodesic equation that go beyond the Levi-Civita
terms and vanish for the case of a quadratic F .

Something else that one gets from F and the symplectic structure of T ∗M is a generalization of the
association of cotangent vectors with tangent vectors that one would obtain from a Lorentzian metric.
However, when F is not quadratic, this map from cotangent spaces to their corresponding tangent spaces
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208 D. H. Delphenich: On the pre-metric foundations of wave mechanics I

is not generally a linear isomorphism, as one expects from a metric, but a more involved homogeneous
algebraic diffeomorphism, such as a cubic polynomial map. Hence, the relationship between the charac-
teristic hypersurfaces in T ∗M and the ones in T (M) is no longer as simple as having both of them be
light cones in form or another. However, as we shall see, as long as F is a homogeneous function of k the
two hypersurfaces will still be related by a simple rule that has been long known in the quadratic context
by the projective geometers. We shall call this relationship between covectors and vectors “dimension-
codimension duality,” and regard it as describing the transition from wave mechanics to the mechanics of
extended matter; i.e., continuum mechanics. That is, the wave covector field k defines isophase hypersur-
faces of codimension one that describe the motion of wave fronts, while the associated velocity vector field
v(k) describes the congruence of curves defined by the motion of the individual points of the wave front,
and generalizes the geodesics of a Lorentzian structure.

Ordinarily, when one desires to relate the motion of matter waves, as it is described in quantum mechan-
ics, to the motion of points, as it is described in classical mechanics, one generally accomplishes this in
one step by virtue of the fact that the statistical interpretation of wave mechanics is based in the assumption
that the modulus-squared of the quantum wave function represents a probability density function for the
position of a pointlike particle. By Ehrenfest’s theorem, one then uses this probability density function to
define mean values of quantum observables, which are then presumed to describe the classical motion.

Another way of effecting the classical limit of quantum mechanics is to assume that wave mechanics has
an analogous relationship to point mechanics as wave optics does to geometrical optics. This suggests that
the classical limit is a short-wavelength (high-frequency) limit of wave mechanics, which might correspond
to the limit in which Planck’s constant h goes to zero.

If one wishes to be more objective about the nature of the density function in question, one might
consider that it could also describe a mass density or a charge density. The former case is referred to as
the “hydrodynamical” interpretation, while the latter case was suggested by the Pauli-Weisskopf treatment
of scalar mesons by the Klein-Gordon equation. Hence, there seems to be a need for an intermediate step
between wave mechanics and point mechanics that first converts the motion of waves to the motion of
extended matter.

One finds that when one is given a dispersion law this transition from wave mechanics to continuum
mechanics comes about naturally by way of the bicharacteristic (i.e., geodesic) foliation that is associated
with dispersion law. The ultimate passage from continuum mechanics to point mechanics can then be
achieved by the method of moments that is commonly used in classical mechanics.

We can summarize this sequence of transitions that take us from the basic field equations and constitu-
tive laws to the mechanics of points diagrammatically, as in Fig. 1:

Field eqs. 
Const. laws 

Wave 
mech. 

Cont.
mech. 

Point
mech.

Symbol Bicharacteristic 
foliation 

Moments 

Fig. 1 Transition from field equations to point mechanics

So far, we have only been talking about kinematics. It is in the association of energy and momentum with
frequency and wave number that one sees that the introduction of the Planck constant is more appropriate
to point mechanics than to continuum mechanics, and that more generally one might be dealing with a
density that only gives the measured constant h when it is integrated over the extended matter distribution.

As long as one is dealing with massless waves, the interpretation of the bicharacteristic foliation as
describing the motion of extended material objects is somewhat moot, since one does not have a non-
vanishing rest mass density function, or equivalently, a non-vanishing rest frequency. Hence, the method
of moments obviously cannot be employed. In a sequel to this article, we shall return to the same flow
of ideas that is described here when one wishes to include waves that describe massive matter, which
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are characterized by inhomogeneous dispersion laws. We shall then see that the appropriate geometry is
contact geometry, which is somewhat more general than symplectic geometry, although quite similar.

We now briefly summarize the contents of the remainder of this work. Section 2 is devoted to laying
the field-theoretic foundations for wave motion and deriving the resulting dispersion law. In Sect. 3, we
discuss the general nature of the geometry that is most intrinsically related to dispersion polynomials in the
case of massless waves, namely, symplectic geometry. We also discuss the geometric nature of dimension-
codimension duality when the dispersion law is not quadratic. In Sect. 4, we then examine the special forms
that the null geodesic equations take for various dispersion laws of interest to electromagnetism.

2 From field equations to dispersion laws

In order for wave motion to exist in a physical medium that medium must have a specialized structure
that amounts to the association of some sort of “elementary oscillator” to each point of the medium, along
with some mechanism that couples each oscillator to the other oscillators, at least in a sufficiently small
neighborhood of each point.

Of course, the very definition of an oscillator in its full generality could already lead to excessive com-
plications, since even one-dimensional oscillators can include a broad spectrum of possibilities, such as
nonlinearity, damping, and even the absence of strict periodicity, in the sense of a period for the oscillation
that does not change in time. For the present purposes, we shall not be concerned with the deeper analy-
sis of the elementary oscillators, though. The mechanism of coupling will take the form of a differential
conservation law for a dynamical quantity that is associated with a kinematical quantity by means of a
constitutive law.

2.1 Field equations

More specifically, one starts with a covector field ψ = ψμdx
μ that is defined on a subset T = R × Σ

of the spacetime manifold M – whose dimension n is at least two – that one calls the world-tube of the
motion. Note that we shall not introduce the usual causality conditions on the world tube of making it
timelike or lightlike since we shall take the position that causality is a consequence of wave motion, not a
prerequisite for it. That is, the characteristic submanifolds of the tangent spaces to M that define the local
causal ordering of the points of M come about as a corollary to more fundamental considerations about
the nature of the medium.

The differential of ψ:1

Dψ = ψμ,νdx
μ ⊗ dxν (2.1)

is a kinematical quantity that plays the role of a generalized velocity. Thus, Dψ will also be defined on the
world tube T. For the time being, we shall not pursue the unavoidable introduction of a linear connection
in order to make the definition ofDψ independent of the choice of coordinate system, or at least the choice
of local coframe. Rather, we shall assume that M is an open subset of Rn, so, for now, parallel translation
is globally defined by vector translation. Eventually, we will see that parallel translation emerges from the
connection that is associated with the dispersion law.

Since Dψ is a second rank covariant tensor field, one can polarize it into a symmetric part Dsψ and an
anti-symmetric part dψ:

Dsψ =
1
2
(ψμ,ν + ψν,μ)dxμdxν , dψ =

1
2

(ψμ,ν − ψν,μ)dxμ ∧ dxν . (2.2)

1 We shall use the notation Df for the differential of a map f :M → N , in order to avoid confusion with the exterior derivative
operator d. Since we will not explicitly introduce the Spencer operator, which also gets customarily notated by D, this should
not be a source of notational confusion within the present discussion.
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210 D. H. Delphenich: On the pre-metric foundations of wave mechanics I

The anti-symmetric part, which is the exterior derivative of the 1-form ψ, is a 2-form, and is, moreover,
globally defined even in the absence of a linear connection. However, in order to make the symmetric part
globally well-defined, one must introduce a linear connection and replace D with the covariant differential
operator that the connection defines. Since this will not affect the symbol, we shall not insist upon that
refinement, at the moment.

Along with ψ, we shall define our second fundamental kinematical quantity Φ to be either Dsψ or dψ,
and refer to a theory based on the former definition to be mechanical, while one that is based on the latter
is said to be electromagnetic. However, the latter case can also describe vorticity waves in a mechanical
medium.

In the usual theory of mechanical waves ψ is the displacement covector field u(x) = (xμ(y) −
xμ(x))dxμ that is associated with a deformation f : U → M,x �→ y = f(x). The field Φ = Dsψ is
its corresponding infinitesimal strain tensor field e = 1

2 (uμ,ν+ν,μ)dxμdxν .
In Maxwellian electromagnetism, ψ is the electromagnetic potential 1-form A = Aμdx

μ so Φ = dψ
represents the Minkowski field strength 2-form F = 1

2 (Aμ,ν −Aν,μ)dxμ ∧ dxν .
In relativistic hydrodynamics, if ψ is the covelocity 1-form u = uμdx

μ for a fluid motion then dψ is its
kinematical vorticity2 2-form Ω = 1

2 (uμ,ν − uν,μ)dxμ ∧ dxν , which is also known as its infinitesimal rate
of rotation.

We then associate either a second rank symmetric contravariant tensor field or a bivector field B with
Φ by means of a constitutive law. In the mechanical case, this is a diffeomorphism Cx: S0,2

x (M) →
S2,0

x (M) at each x ∈ M from the vector space S0,2
x (M) of symmetric doubly covariant tensors at x to

the vector space S2,0
x (M) of symmetric doubly contravariant tensors at x and the tensor Bx = Cx(ex) is

the infinitesimal stress tensor σx at x. In the electromagnetic case, it is a diffeomorphism Cx: Λ2
x(M) →

Λ2,x(M) from the vector space Λ2
x(M) of algebraic 2-forms at x to the vector space Λ2,x(M) of bivectors

at x, and the bivector Bx = Cx(Fx) is the electromagnetic excitation bivector hx at x.
If the constitutive law is linear then the diffeomorphismC is assumed to be a linear map in either case.

Hence, one will have, in general, the local expressions:

Bκλ =
1
2
CκλμνΦμν . (2.3)

In either the mechanical or electromagnetic case, we can propose that our second fundamental differen-
tial equation, besides the definition of Φ, is the conservation law:

δB = Bμν
,μ

∂

∂xν
= J, (2.4)

which makes sense regardless of whether Bμν is symmetric or anti-symmetric. The vector field J on T
represents a source current for the field B, which we denote by f in the mechanical case to indicate that it
then represents a momentum flux or force density.

In summary, we can write our fundamental equations as:

e = Dsu, δσ = f , σ = C(e), (2.5)

in the mechanical case, and:

F = dA, δh = J, h = C(F ), (2.5′)

in the electromagnetic case. In the mechanical case, σ = σij∂i∂j is the (symmetric) stress tensor.
In either case, we have a system of first order partial differential equations for ψ and B, combined with

a system of algebraic equations that couples Φ to B. They can be combined into a single second order
partial differential equation for u or A, resp., which takes the form:

f = �su ≡ (δ · C ·Ds)u, (2.6)

2 We are using the terminology of Carter [1] for relativistic hydrodynamics.
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or:

J = �aA ≡ (δ · Cd)A, (2.6′)

respectively. We shall then regard the second order differential operators �s and �a as generalized field
operators and refer to them generically by the symbol �C .

In local components, if ψ is a 1-form with components ψμ and the constitutive law C takes the most
general form with componentsCκλμν(x, ψ ) then the general field equation takes the form:

Cκλμν ∂2ψν

∂xλ∂xμ
+

(
∂Cκλμν

∂xλ
+
∂Cκλμν

∂ψα

∂ψα

∂xλ

)
∂ψν

∂xμ
= Jκ. (2.7)

Note that only the components of C affect the highest-order derivatives in the differential operator �C ,
even when C is inhomogeneous or nonlinear.

2.2 The representation of wave solutions

Solutions to the systems of partial differential equations in any of the forms that were given above do
not have to represent waves. Indeed, the systems may very well reduce to time-invariant systems whose
solutions represent equilibrium states or static field configurations. Hence, in order to pass from systems
of field equations to wave mechanics, one must first settle upon the exact nature of a wavelike solution to
one’s field equations.

For the sake of simplicity, we shall assume that the vector space V in which the wave function ψ :
M → V takes its values is a complex vector space. More generally, one might wish to make ψ a section of
a complex vector bundleE →M , but unless one is going to address the topological issues that originate in
the assumption that this bundle is not trivial, it is entirely sufficient for most physical purposes to consider
the trivial case, in which sections are merely vector-valued functions. However, the local issue of invariance
under a change of local frame field for the fibers of E is often unavoidable, along with the introduction of
a linear connection, if one is to define covariant derivatives of sections.

A particularly important case of wave solutions is given by the time-harmonic solutions, which have the
form:

ψ(t, xi) = e−iωtA(x), (2.8)

in which ω is a real constant that represents the angular frequency of the basic oscillation and A : Σ → V
is a function of the spatial position x ∈ Σ. Of course, this very construction implies that the spacetime
manifold M on which the wave function ψ is defined is space-time separable; i.e., M = R × Σ for
some “spatial” manifold Σ. Of course, making that very construction physically precise and meaningful is
fraught with subtleties, but for now we use the concept of space naively.

An important class of examples of time-harmonic waves is given by the class of (time-harmonic) stand-
ing waves. In such a case,A(x) defines the spatial shape of the wave envelope in which the wave oscillates.

In particular, when one is concerned with linear field equations with constant coefficients that involve
fields defined upon the vector spaceM = R×Rn, a particularly popular form for a wave function is given
by the plane wave solutions:

ψ(t, xi) = A0e
−iϕ(t,x), (2.9)

in which A0 ∈ V is a constant function on M . As for the expression ϕ(t,x), it takes the local form:

ϕ(t, x) = kμx
μ = ωt− kix

i (μ = 0, . . . , n, i = 1, . . ., n), (2.10)

in which ω and ki are real constants that represent the angular frequency of the basic oscillators that support
the wave motion and the spatial wave numbers of the wave itself, respectively.
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212 D. H. Delphenich: On the pre-metric foundations of wave mechanics I

One can then define the frequency-wave number covector – or simply wave covector, for short – by way
of:

k = kμdx
μ. (2.11)

The physical nature of the real function ϕ(t, x), which we call the phase function for the wave ψ,
is that its level hypersurfaces, which are then affine hyperplanes in R × Rn, represent constant-phase
hypersurfaces, which we then call isophases. The planes in Rn that one gets by fixing a value of the time
coordinate t are then the momentary wave fronts.

Plane-wave solutions are particularly useful in the case of linear field equations with constant coeffi-
cients, since one can use the Fourier transform as a means of expressing any other wave function in terms
of a linear combination of plane waves. One can even generalize this sort of construction to waves in ho-
mogeneous spaces that are more general than affine spaces, such as spheres; surface waves on planets or
stars would fall into this category.

It is interesting that even though plane waves are regarded as traveling waves, nevertheless, they are
time-harmonic, just as standing plane waves would be. Hence, the distinction between standing waves and
traveling waves is not as unambiguous for plane waves as it is for some other types of waves.

A more general form for a wave function is:

ψ(t, x) = A(x)e−iϕ(t,x), (2.12)

in which the function A : Σ → V is called the amplitude function, while the phase function is no longer
required to be a linear function of (t, x). Indeed, Σ does not have to be a vector space in order for this
definition to be meaningful. However, if we assume that ϕ approximated by a Taylor series about (0, 0, . . . ,
0) in the form:

ϕ(t, xi) = ϕ0 + kμx
μ + O2(t, xi), (2.13)

in which:

kμ =
∂ϕ

∂xμ

∣∣∣∣
0

, (2.14)

then we see that the initial choice of phase ϕ0 can be absorbed into the definition of the amplitude function
A(x) while the linear term reproduces the tangent plane to the isophase through the origin.

Often the phase function itself is space-time separable, in the sense that ϕ(t, x) = ωt−ϕs(x) for some
spatial function ϕs(x), which then allows us to define a special type of time-harmonic traveling waves
(2.8) for which:

A(x) = A0e
iϕs(x). (2.15)

The level surfaces of the function ϕs(x) then give the shape of the traveling wave, such as the aforemen-
tioned planes, as well as cylinders, spheres, ellipsoids, and the like. Such a wave is, of course, assumed to
have a shape that does not change in time, as opposed to dispersive waves, whose shape can change, as
well. One sees that the constant amplitude A0 plays no important role in the case of space-time separable
waves of the form (2.15), only the phase function.

When one wishes to get away from the necessity of defining waves on linear spaces, or at least, homo-
geneous spaces, a particularly useful way of representing waves is by means of propagating discontinuities
in kinematical or dynamical variables. For instance, shock waves involve finite jump discontinuities in ve-
locity vector fields that are also associated with impulsive jumps in the pressure function when one crosses
the singular hypersurface over which the jump occurs. This sort of construction goes back to the work of
Riemann, Rankine, and Hugoniot on the propagation of waves in gases, and was brought to a mathematical
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culmination by Hadamard [2], who then showed how the construction led into the subtleties of the Cauchy
problem for the system of partial differential equations that one is concerned with.

The particular form of the Cauchy problem that Hadamard was concerned with involved second-order
partial differential equations, so the Cauchy problem was defined by starting with the values of the wave
function ψ and its first time derivative ψt = ∂ψ/∂t on an initial (i.e., t = 0) hypersurface S in R×Σ. The
problem is then to find a unique wave function ψ on R × Σ that satisfies both the second-order equation
and the initial conditions.

Note that as long as the initial wave function ψ0(x) on S is assumed to be continuously differentiable,
one cannot specify the first partial derivatives of ψ with respect to the spatial coordinates on S arbitrarily,
which is why one can only specify the initial time derivative. The issue at hand is the extent to which one
can specify the second derivatives on S, as well, since assuming that ψ0(x) is C2 in the spatial coordinates
will again define those spatial second derivatives uniquely on S.

If one is to define an acceleration wave to be a jump discontinuity in the second partial derivative of ψ
with respect to t then it is clear that this particular derivative cannot be defined uniquely. When one includes
the constraint that ψ must satisfy the field equations on S, one finds that S can only be a characteristic
hypersurface for the field equations, in a sense that we shall clarify in what follows.

2.3 Dispersion laws

In order to derive a dispersion law from the field equation, in either form (2.6) or (2.6′) above, we must pass
to the “symbol” of the field operator �C . Hence, one must understand that dispersion laws are obtained
from differential linearizations of more general nonlinear situations.

In classical optics, this approximation is referred to variously as “the limit of geometrical optics,” “the
high-frequency (short wavelength) limit,” and “the eikonal approximation.” It starts by assuming that the
wave function ψ takes the form (2.12), which then makes:

dψ = e−iϕdA+ idϕ⊗ ψ. (2.16)

The approximation takes the form of assuming that the amplitude A(x) is slowly varying – so one can
regard dA as essentially null – and a rapidly-varying phase term exp(iϕ(x)), so the differential dψ takes
the form:

dψ = ik ⊗ ψ. (2.17)

Note that assumingA to be slowly-varying is equivalent to generalizing from plane waves to waves with
waves of the form:

ψ(t, x) = A0e
−iϕ(t,x), (2.18)

in which it is not necessary to assume the space-time separability of M in order to make the construction
meaningful. Hence, A0 plays not essential role, only ϕ.

If Δ : E → F is a differential operator from sections of a vector bundle E → M to sections of a
vector bundle F → M then its symbol is a bundle map σ[Δ] : T ∗(M) ⊗ E → F that takes any df ⊗ s to
Δ(fs)− fΔ(s) if f ∈ C∞(M). Hence, it is a linear algebraic map between the fibers T ∗

x ⊗Ex and Fx at
each point x ∈M . When one fixes a covector field k the map σ[Δ, k] takes sections of E to sections of F
linearly.

In the case of the differentialD, since D(fs) = df ⊗ s+ fDs, the symbol ofD is tensor multiplication
by a covector field k:

σ[D, k](s) = k ⊗ s. (2.19)

Notice that, except for the factor of i, (2.19) is essentially the expression (2.17) that one obtains from the
geometrical optics approximation.
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214 D. H. Delphenich: On the pre-metric foundations of wave mechanics I

By polarization, we then find that:

σ[Ds, k](s) = k ε s =
1
2

(k ⊗ s+ s⊗ k), (2.20a)

σ[d, k](s) = k ∧ s =
1
2
(k ⊗ s− s⊗ k). (2.20b)

Hence, the linear algebraic operator on sections of E that corresponds to symmetrized or anti-symme-
trized differentiation is symmetrized or anti-symmetrized tensor multiplication by k, respectively. By abuse
of notation, we shall denote any of the three maps σ[D, k], σ[Ds, k], σ[d, k] by ek : E → F and let the
context of its usage dictate the precise meaning implied.

The symbol of the divergence operator δ is:

σ[δ, k](Φ) = k(Φ) = ikΦ, (2.21)

i.e., interior multiplication by k.
In order to find the symbol of the second-order differential operator �C we would need to replace C

with its linearization DC if it is nonlinear to begin with, so we shall simply assume that C is linear, for
brevity. We then get that the total symbol is the composition of the three linear maps:

σ[�C , k] = ik · C · ek, (2.22)

in either the mechanical or electromagnetic case.
From (2.22), we find that the components of the linear operator σ[�C , k] are:

σμν [�C , k] = −Cμκλνkκkλ. (2.23)

In general, the bundle map σ[�C , k]: T ∗(M) → T (M) does not have to be invertible, and invertibility
will depend upon the choice of k. The definition:

F [k] ≡ det σ[�C , k] (2.24)

then defines a polynomial in k that one calls the characteristic polynomial of the differential operator �C . It
vanishes iff σ[�C , k] is not invertible, and the zero locus of F (k) is called the characteristic hypersurface
for �C . We shall call a k that lies in this hypersurface characteristic; in the event that F (k) is non-
vanishing, we shall call k non-characteristic. The algebraic equation in k:

F [k] =

{
0 k characteristic

const. k non-characteristic
(2.25)

that is defined in either case is then what we call the dispersion law for the wave medium in question and
the type of wave solution that has been chosen.

It is important to observe that although the classical mathematical theory of wave motion generally only
deals with the characteristic case, which corresponds to waves that carry no mass in physics, nonetheless,
the mechanics of massive matter waves seems to necessitate the consideration of inhomogeneous disper-
sion laws and non-characteristic wave vectors. However, since the treatment of non-characteristic wave
covectors requirements some subtle revisions to the basic formalism, we shall return to that study in an
article that is supplementary to the present one.

From (2.23), one can see that since k appears twice in σ[�C , k] this implies that the polynomial F [k]
will have a degree that is equal to 2n. It is, moreover, homogeneous in k of degree 2n. However, there are
some traditional reductions that get applied to the degree.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Berlin) 18, No. 4 (2009) 215

First, one generally deals with the case of time-invariant constitutive laws, so M takes the space-time
separable form R×Σ. This reduces our map σ[�C , k] to a map from T ∗(Σ) to T (Σ), and the polynomial
F [k] becomes a polynomial F [ω, ki] whose degree in ki is (2n − 1). For instance, when n = 4 the
polynomial in k is homogeneous and sextic.

Second, in the electromagnetic case, the map ek : Λ1(Σ) → Λ2(Σ), a �→ k ∧ a is not invertible for any
k, since its kernel is one-dimensional, namely, all a that take the form λk for some scalar λ ∈ R. This
is related to the fact that electromagnetic waves have no longitudinal modes of vibration, but are confined
to the E–B plane, which is the spatial part of the spacetime 3-plane that is annihilated by k. Hence, the
characteristic polynomial reduces to a homogeneous quartic polynomial in k in the electromagnetic case.

A case that is of interest in electromagnetism is the birefringent case of a dispersion law that is associated
with a certain type of anisotropy that is found in “uniaxial” media (see Landau, et al. [3]). Birefringence
refers to the fact that when F is quartic, if one fixes the spatial components ki of k then the remaining
polynomial F [ω, ki] is quadratic in ω2, and its roots can be shown to be real. This then implies that for
any spatial direction of propagation there will generally be two distinct positive values of ω, and therefore
two distinct values of the phase velocity ω/κ, where κ is the Euclidian norm of the spatial covector whose
components are ki. This leads to double refraction of a given light ray.

Birefringence is often associated with a factorization of the quartic polynomial F (k) into a product of
quadratic polynomials (which is called bi-metricity by Barcello, Liberati, and Visser [4]), so the completely
symmetric fourth-rank covariant tensor that is associated with F takes the form of symmetrized tensor
product of two Lorentzian metrics on T ∗(M):

F = g � g̃. (2.26)

The components of F are then obtained from those of g andg̃ by way of:

Fκλμν =
1
6

(
gκλg̃μν + gμλg̃κν + gνλg̃μκ + gκμg̃λν + gκν g̃μλ + gμν g̃κλ

)
. (2.27)

Although fourth-degree polynomials in more than one real variable do not always have to factorize into
products of quadratics, nonetheless, in the case of electromagnetic waves, it is widely known that as long
as the Lagrangian for the electromagnetic field F depends only upon the Lorentz invariants F ∧ F and
F ∧ ∗F , the characteristic polynomial will factorize, even in the nonlinear case (see [4, 5]).

A physical example in which non-factorization is the case is given by dispersion laws for “biaxial”
optical media, in which the birefringence – i.e., double refraction – is replaced by conical refraction (cf.,
ibid.).

In the case of an isotropic medium, the characteristic polynomial reduces to an appropriate power of a
quadratic polynomial law and one considers two possible dispersion laws:

gμνkμkν =

{
0 characteristic waves

ω2
0 non-characteristic waves.

(2.28)

Since the resulting quadratic form on k that this defines is assumed to be of normal hyperbolic signature
type (+1,−1, . . . ,−1), one sees that this is where the light cones3 finally originate, as well as the unit
proper time hyperboloids and mass shells.

Under the traditional Einstein-de Broglie hypothesis that the rest frequency ω0 is associated with a rest
mass m0 = �ω0/c

2, we see that characteristic waves are massless, while the matter waves of quantum
mechanics must be described by non-characteristic wave covectors, which will be focus of the sequel to
this article.

3 Of course, in the mechanical case, they are really sound cones.
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3 Geometric nature of massless wave motion

So far, the dispersion laws that we were considering took the form of smooth functions on the cotangent
bundle T ∗(M) to a manifoldM . Actually, we will eventually need to generalize slightly in order to handle
non-characteristic waves, and instead of T ∗(M) we will consider the manifold J1(M,R) of all 1-jets
of differentiable functions on M . This will make it clear that the geometry that is most intrinsic to the
description of wave motion is contact geometry, which deals with higher-dimensional contact elements
than the tangent vectors that one first encounters in differential geometry and point mechanics. However,
when dealing with characteristic (i.e., massless) waves it is sufficient to restrict one’s scope to the geometry
of T ∗(M), which is symplectic geometry.

Before we recall the rudiments of symplectic geometry, we first discuss the nature of phase foliations
that are obtained by starting with the non-zero covector field k and integrating the exterior differential
system k = 0 that it defines.

3.1 Phase foliations

Any non-zero 1-form k defines a sub-bundle of T (T) ⊂ T (M) of corank one by its annihilating subspaces.
That is, the algebraic solution of the exterior differential system:

k = 0 (3.1)

is a differential system on the world-tube T that is defined by a set of tangent hyperplanes in T (T). One
can then examine the integrability of this differential system.

By Frobenius’s theorem this differential system is completely integrable into a foliation of T by co-
dimension-one integral submanifolds iff:

k ∧ dk = 0 (3.2)

at all points of T.
The reason that one includes the adjective “completely” in the previous statement is that it is conceivable

that there might be integral submanifolds of the given differential system whose dimension is less than
the dimension of the tangent hyperplanes. The issue of finding the maximum dimension for an integral
submanifold then becomes important.

A sufficient condition for (3.2) to be true is that k be closed:

dk = 0. (3.3)

One can think of saying that the vorticity of the wave motion vanishes.
By the Poincaré lemma, this is locally equivalent to saying that k is exact:

k = dϕ (3.4)

for some differentiable function ϕ on T, which is unique only up to a locally constant function.
By de Rham’s theorem, this local condition is also globally true when T – hence, Σ – is simply con-

nected.
When k is exact, the integral submanifolds of the differential system on T that is defined by (3.1) are

the level hypersurfaces of the phase function ϕ.
More generally the foliation of T into “leaves” that consist of the integral submanifolds of the exterior

differential system (3.1) will be referred to as a phase foliation, and the leaves are then called isophases,
which generalizes our previous definition. In general, the isophase hypersurfaces in T will be quite dis-
tinct in character from the characteristic hypersurface in T ∗(T), even when T is contained in a vector
space, except insofar are the two hypersurfaces share a common tangent hyperplane. For instance, when
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ϕ(x) = kμx
μ = const. the isophases take the form of affine hyperplanes, which are then tangent to the

characteristic hypersurfaces. Similarly, one can give isophases the form of concentric cylinders, spheres
and ellipsoids, depending upon the symmetry of the coordinate system that one is using, which is usually
traceable to the symmetry of the source of the waves.

As the covector k ranges through all the points of the characteristic hypersurface in a given T ∗
xT it will

define a differentiable n − 1-parameter family of hyperplanes in TxT, whose envelope is then a charac-
teristic hypersurface in TxT, by definition. We will discuss the relationship between the two characteristic
hypersurfaces in more detail later when we consider what we will be calling “dimension-codimension”
duality.

The time evolution of the initial submanifold Σ in T defines a foliation of T into leaves that are each
diffeomorphic to Σ; they are the level surfaces of the submersion R×Σ → R, (t, x) �→ t, and are referred
to as simultaneity hypersurfaces, or isochrones. More generally, one can consider level hypersurfaces of a
proper-time function t : M → R whose differential dt is non-vanishing, although the nature of solutions
to the Cauchy problem generally implies the existence of a product decomposition R × Σ for T.

The intersections of the leaves of these two foliations are then the momentary wave fronts, which also
generalizes the previous definition.

One sees that when T is contained in a vector space, there exists a class of elementary waves for a
given polynomial F [k], which then amounts to isophase hypersurfaces that are obtained by projecting
the characteristic hypersurface in a typical tangent space onto the vector space itself. For instance, in
Minkowski space (R4, ημν) a light cone in any tangent space TxR4 projects into a light cone in R4

through the point x, and this light cone represents an expanding spherical momentary wave front whose
source is the point x, as long as one assumes that the constitutive properties of the medium are spatially
homogeneous. In the inhomogeneous case, the elementary waves have an idealized character that relates
only to the local behavior of wave propagation.

We now see that what the transition from the original field operator to its symbol has accomplished is
to replace the second-order field equation �Cψ = 0 with the pair of equations:

F [k] = 0, k = 0, (3.5)

the first of which is algebraic, but nonlinear, and the second of which is an exterior differential system
whose integral submanifolds define the isophase hypersurfaces. The generalized eikonal equation:

F [dϕ] = 0 (3.6)

is a nonlinear first-order partial differential equation for ϕ that represents the form that (3.5) takes when
one adds the integrability condition that k = dϕ.

3.2 Phase velocity

Although the fundamental object in wave kinematics is the wave covector k, instead of a velocity vector
field, as one would consider in fluid mechanics, one can still associate a spatial velocity with k by way
of the phase velocity. However, one must note that there is something subtle going on that is not usually
mentioned, namely, that the “space” that one is talking about is not a tangent vector space at each point
x ∈ M , but a (co)tangent projective space, namely, the projectivized cotangent space PT ∗

xM that one
obtains from T ∗

xM by considering the set of all lines through the origin. That is, a point [α] ∈ PT ∗
xM is

the set of all non-zero scalar multiples λα of a non-zero covector α ∈ T ∗
xM .

If {θμ, μ = 0, . . ., n} is a linear coframe for the vector space T ∗
xM , so the components of a covectorα �=

0 with respect to this coframe are αμ, then one can also refer to the ordered n+1-tuple (α0, . . . , αn) as the
homogeneous coordinates of the corresponding point [α] inPT ∗

xM . As long asα0 �= 0, one can then define
the ordered n-tuple (A1, . . . , An) with Ai = αi/α0 to be the inhomogeneous (or Plücker) coordinates of
[α]. Actually, since the n-dimensional projective space PT ∗

xM is projectively equivalent to RPn (the set
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of all lines through the origin of Rn+1), which is compact, as well as non-orientable one cannot cover it
with just one set of coordinates. Indeed, one needs to use the other n inhomogeneous coordinate systems
that one obtains by choosing each other non-zero homogeneous coordinate αi in succession in place of α0.

Now let us apply this construction to the non-zero 1-form k = kμdx
μ. If we regard (ω, k1, . . . , kn) as the

homogeneous coordinates of the point [k] ∈ PT ∗
xM then the corresponding inhomogeneous coordinates

(s1, . . . , sn), with:

si =
ki

ω
(3.7)

define what is sometimes called the slowness covector [6] associated with k. Of course, since PT ∗
xM is

not a vector space, but a projective space, one cannot define linear combinations, but one might still think
of the si as describing the projective 1-form [k], which represents the hyperplane k = 0 in TxM . One then
considers projective classes of covectors, instead of the covectors themselves, since replacing k with λk
for a non-zero scalar λ will not affect the isophase foliation, as one sees from (3.5). This depends crucially
upon the fact that we have used a homogeneous polynomial for F [k] and looked at its zero locus, instead
of a level hypersurface for a non-zero value of F [k].

One now sees that the si that we have introduced in a geometrically natural way are really the reciprocals
of the components:

vi
p =

ω

ki
(3.8)

of what is usually called the phase velocity vector. However, since taking the reciprocals of components of
vectors is hardly a geometrically natural operation, we see that it is the slowness covector that seems to play
the fundamental role. Although one could think of the coordinates si as having the character of indices of
refraction, this association would only be true in special cases of dispersion laws, since the principal indices
of refraction are associated with the choice of dispersion law by way of Fresnel analysis [3]; we shall more
to say about this shortly.

Note that, except for the constraintF [k] = 0 that we have imposed on the covector field k, the definition
of phase velocity has nothing to do with the nature of F itself, and can be defined for any non-zero k. Later,
we will show how the slowness covector relates to the group velocity vector, which is specific to the choice
of F and has an analogous projective-geometric definition.

3.3 Symplectic geometry

The manifold T ∗M has local coordinate charts of the form (xμ, kμ), so a 1-form α – i.e., a covector field
– on T ∗M takes the local form:

α = αμdx
μ + αμdkμ (3.9)

Note that all of the component functions will be functions on T ∗M , so their independent variables will
locally be (xλ, kλ). However, when one chooses a covector field k : M → T ∗M , one can always pull the
1-form α down to a 1-form k∗α on M whose local component form is αμ(xλ, kλ(x))dxμ.

The manifold T ∗M is equipped with a canonical 1-form θ that derives from the fact that any covector
on M pulls back to a covector on T ∗M under the projection T ∗M →M . This canonical 1-form is easiest
to understand in its local form:

θ = kμdx
μ. (3.10)

Hence, if k : M → T ∗M , x �→ k(x) is a 1-form on M then the canonical 1-form θ will pull down to
kμ(x) dxμ which is to say, k itself.
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A vector field X on T ∗M will take the local form:

X = Xμ ∂

∂xμ
+Xμ

∂

∂kμ
, (3.11)

in which all of the components are functions on T ∗M ,.
The second term in this decomposition:

Xv = Xμ
∂

∂kμ
(3.12)

can be defined independently of the choice of coordinate system, and is called the vertical part of X . In
general, a vertical tangent vector on T ∗M projects to zero under the differential of the projection π :
T ∗M →M .

Locally, the components (Xμ, Xμ) of a tangent vector X on T ∗M that is annihilated by θ will satisfy:

kμX
μ = 0, Xμ arbitrary. (3.13)

The set of all such hyperplanes defines a corank-one sub-bundle C(T ∗M) of T (T ∗M) which then
amounts to a differential system on T ∗M . By Frobenius’s theorem, its complete integrability into a codi-
mension-one foliation of T ∗M by integral submanifolds is governed by the vanishing of the 3-form:

θ ∧ dθ = −kμ dkν ∧ dxμ ∧ dxν (3.14)

Since this does not apparently vanish identically, we conclude that in general the sub-bundle C(T ∗M) is
not completely integrable.

One can next define a canonical 2-form Ω on T ∗M by way of:

Ω = dθ = dkμ ∧ dxμ (3.15)

Since this makes dΩ = 0, as well as Ω ∧ dΩ, we see that the exterior differential system Ω = 0 is
completely integrable; indeed, by definition, Ω is exact. The dimension for an integral submanifold of this
exterior differential system is given by the rank of the 2-form Ω. There are various ways of defining this
concept, but the ones that we shall use are the minimum number of 1-forms on T ∗M that are necessary to
express the 2-form Ω and the minimum integer r such that Ω ∧ . . . ∧ Ω = 0 when the exterior product has
r factors.

This rank turns out to be n (= dimM ), and such integral submanifolds of maximal dimension are called
Lagrangian submanifolds [6]. A section k : M → T ∗M will define a Lagrangian submanifold iff k∗Ω = 0.
This means:

0 = k∗Ω = k∗dθ = d(k∗θ) = dk . (3.16)

Hence, the section k defines a Lagrangian submanifold of T ∗M iff it is closed.
One sees that Ω defines a symplectic structure on the tangent hyperplanes in T (T ∗(M)) since it is a

closed and non-degenerate 2-form. Non-degeneracy implies that there is a canonical linear isomorphism
of each Tk(T ∗(M)) with its dual T ∗

k (T ∗(M)) that takes a tangent vector X at (x, k) to the covector iXΩ,
which locally looks like:

iXΩ = Xμdx
μ −Xμdkμ. (3.17)
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3.4 Characteristic vector field of a function on T ∗M

If one is given a differentiable function F : T ∗M → R then one can immediately define a 1-form on T ∗M
by way of dF . Since there is a canonical linear isomorphism of each cotangent space in T ∗(T ∗M) with
its corresponding tangent space T (T ∗M), we can associate a canonical vector field XF on T ∗M with dF
directly by way of:

iXF Ω = dF. (3.18)

Locally, this equation takes the form:

Xμdx
μ −Xμdkμ = F,μdx

μ + F ,μdkμ = F,μdx
μ + F ,μdkμ. (3.19)

We then deduce that the components of XF are obtained from:

Xμ = F ,μ, Xμ = −F,μ. (3.20)

We call the vector field XF that is associated with F in this way the characteristic vector field for F .
If one chooses to regard the function F as a Hamiltonian function for a conservative mechanical system
then it is also customary to refer to the characteristic vector field XF as the Hamiltonian vector field
associated with F . However, since we are still dealing with wave kinematics, not wave dynamics, it would
be confusing to use that terminology at this point. Of course, in conventional wave mechanics the difference
between the energy-momentum 1-form and the wave covector amounts to the multiplicative universal
constant �, but we shall have more to say about that issue in the second part of this study.

Since any vector field on a manifold defines a system of first-order ordinary differential equations by
way of the velocity vectors to its integral curves, one then has the following system of equations:

dxμ

dτ
=

∂F

∂kμ
,

dkμ

dτ
= − ∂F

∂xμ
, (3.21)

in which we are using τ for the curve parameter.
Because the functions F that we shall be concerned with are already “characteristic” for the second-

order field operator �C , we shall refer to the one-dimensional foliation of T ∗M by the integral curves of
XF as the bicharacteristic foliation for F . (Since the term “characteristic” is used in the context of both
first-order and second-order differential equations, one must be careful to point out when the terminology
is and is not consistent.) Eqs. (3.21) are then referred to as the system of bicharacteristic equations, and
amount to the canonical – or Hamilton – equations that are associated with the Hamiltonian H .

For a given F , the local flows of the vector field XF will have the property that they preserve the 2-
form Ω – hence, the symplectic structure, – and are therefore referred to as canonical transformations,
so any characteristic vector field is the infinitesimal generator of a one-parameter family of canonical
transformations. To verify the asserted property of XF , one need only take the Lie derivative of Ω with
respect to XF , using Cartan’s formula for LX :

LXΩ = iXdΩ + diXΩdiXΩ = d(dF ) = 0. (3.22)

(Here, we suppress the subscript F for ease of notation.)
The system (3.21) of ordinary differential equations is also defined by the initial-value problem associ-

ated with the first-order partial differential equation in the function ϕ on M :

F [dϕ] = F (xμ, ϕ,μ) = 0. (3.23)

when one uses Cauchy’s method of characteristics (see Duff [8], Arnol’d [9], Courant and Hilbert [10]);
this equation is one form of the Hamilton-Jacobi equation for the functionϕ, as well as the eikonal equation
when F represents a dispersion polynomial.
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An initial-value problem for this first-order equation – which is also a form of the Cauchy problem – is
defined by fixing x0 = τ0 and a functionϕ0(τ0, xi) on the initial submanifold Σ inM that is locally defined
by x0 = τ0. One then looks for a solution ϕ to (3.23) that is defined for all other values of x0 and agrees
with y0 on the initial submanifold, while being constant on the bicharacteristic curves; i.e., ϕ(τ , xi(τ )) =
ϕ(τ0, xi(τ0)) = ϕ0(τ0, xi). Hence, a solution will always be defined on a world tube of the form R×Σ. In
effect, the solution of a partial differential equation gets converted into the solution of a system of ordinary
differential equations. One also sees that the initial submanifold Σ cannot be tangent to the characteristic
hypersurface, or else the bicharacteristic flow would take points of the initial submanifold to other such
points. Hence, one must define the initial-value problem on a “non-characteristic” submanifold of M . The
points of the initial submanifold will then propagate along the bicharacteristics in a manner that sweeps
out R × Σ. However, one must note that the submanifold dϕ : M → T ∗M is tangent to the characteristic
vector field XF on T ∗M .

3.5 Dimension-codimension duality

One of the advantages of defining a Lorentzian metric g on T (M) is that it allows one to define a linear
isomorphism from each tangent space TxM to each corresponding cotangent space T ∗

xM that takes a
tangent vector v ∈ TxM to a tangent covector ivg = (gμνν

ν)dxμ; often, this isomorphism is referred to
as “lowering the index of vμ.”

The question arises of how to generalize this process when one starts with a characteristic polynomial
F [k] instead of a Lorentzian metric. As it turns out, one can still define a diffeomorphism of each TxM
with T ∗

xM , but if the degree of F [k] is r then the diffeomorphism will be a homogeneous polynomial
homogeneous of degree r − 1, which will only be linear when r = 2; we shall have more to say about
homogeneous function the next section.

In order to define this map, consider the sequence of maps:

T ∗(M) XF−−→ T (T ∗) Dπ−−→ T (M).

The composition of the two maps is then (Dπ ·XF ) : T ∗(M) → T (M), k �→ Dπ(XF (k)).
Hence, if k is a covector in T ∗

xM then we are associating a vector v(k) in TxM whose local components
take the form:

vμ =
∂F

∂kμ
(x, k). (3.24)

Similarly, a covector field k(x) on M goes to a vector field v(x) that has the local components:

vμ(x) =
∂F

∂kμ
(x, k(x)). (3.25)

Since 1-forms – i.e., covector fields on a world tube T define codimension-one foliations – when they are
integrable – and vector fields, or rather, line fields – which are always integrable – define one-dimensional
foliations of T, we that this association of a 1-form on T with a vector field amounts to a sort of “dimension-
codimension” duality between the foliations in question.

This association of lines and hyperplanes is distinct from the Poincaré duality #: T (M) → Λn−1(M),
v �→ ivς that one gets from choosing a volume element on an orientable M . This duality, which is not
dependent upon any choice of F , is based in the fact that a given tangent line can either be generated by a
single non-zero tangent vector or annihilated by n− 1 linearly independent tangent covectors, which then
collectively define a non-zero n− 1-form by exterior multiplication.

We can use dimension-codimension duality for a choice of F to define the aforementioned characteristic
hypersurface in TxT that corresponds to the characteristic hypersurface F [k] = 0 in T ∗

xT by defining the
function G[v] on T (T ) to be:

G[v(k)] = F [k]. (3.26)
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The characteristic hypersurface in TxT is then defined by G[v] = 0.
In the geometrical optics of electromagnetic waves, the hypersurface F [k] = 0 in T ∗

xT – or rather, its
image in PT ∗

xT – defines what amounts to a generalization of the Fresnel wave (or normal) surface, while
the characteristic hypersurface G[v] = 0 in PTxT defines the corresponding Fresnel ray surface. In the
case of an electromagnetically linear, isotropic, and homogeneous medium, the hypersurfaces are both the
familiar light cones of relativity theory. In the next section, we shall see that some of their properties still
persist when F is homogeneous, but not necessarily quadratic.

Physically, we are suggesting that if the fundamental kinematic objects of wave mechanics are isophases
then the passage to the corresponding bicharacteristic curves is another form of the geometrical optics ap-
proximation. Hence, one should probably regard the geometry of waves as being more physically funda-
mental than the geometry of curves, which pertains to geometrical mechanics, in the same way that wave
optics is potentially richer in scope than geometrical optics.

3.6 Group velocity

When a specific choice of F has been made, dimension-codimension duality associates a velocity vector
v(k) in TxM with each wave covector k in T ∗

xM . The components of v(k) with respect to a natural frame
field are vμ(kν) = ∂F/∂kμ when k = kμdx

μ.
It is interesting to carry out a procedure that is analogous to the one that we described above in Sect. 3.2

that resulted in the slowness covector. That is, now, instead of considering the projective space PT ∗
xM of

all lines through the origin in T ∗
xM , we consider the projective space PTxM of all lines though the origin

in TxM . Just as T ∗
xM is the dual of the vector space TxM , similarly, the projective space PT ∗

xM is dual to
the projective space PTxM , which is also projectively equivalent to RPn. Now, if v = vμ∂μ is a non-zero
tangent vector in TxM then we regard the n+ 1-tuple (v0, . . . , vn) as the homogeneous coordinates of the
line [v] in PTxM and (−v1

g , . . . ,−vn
g ) with vi

g = −vi/v0 as its inhomogeneous coordinates.
The reason that we include the minus sign is that when one substitutes ∂F/∂ω for v0 and ∂F/∂ki for

vi one finds that what one is dealing with is:

vi
g = − ∂F/∂ki

∂F/∂ω
=

∂ω

∂ki
, (3.27)

as long as one can solve the dispersion law F [k] = 0 for ω, which, by the implicit function theorem, is
equivalent to the assumption that v0 is non-zero; however, this is also necessary if we are to define the vi

g ,
to begin with. Now, we see that the inhomogeneous coordinates vi

g for the tangent line [v] also define what
is commonly called the group velocity vector [11] for the wave motion, although we now see that what we
are dealing with is a line, not a vector. Unlike the phase velocity, which is defined by k alone, the group
velocity vector depends upon the choice of dispersion law, and thus upon the particular constitutive law of
the medium.

Just as the isophase foliation is defined by the projective equivalence class [k], and not by the specific
choice of representative covector k, similarly, the null geodesic congruence that is obtained by the integrat-
ing the velocity vector field v defined by the projective equivalence class [v] and not the specific choice
of v, as long as it is non-zero. Hence, the integral submanifolds in either case are sensitive to the projec-
tive geometry of hyperplanes and lines, not the linear geometry of covectors and vectors, respectively. In
the case of a line field [v(x)], the effect of changing the representative vector field v(x) is to change the
parameterization of the curve, but not the set of points that it traces out.

One finds that there is an important relationship between si and vi
g that is true for any homogeneous

dispersion polynomial F . First, let us review some of the elementary facts about homogeneous functions
on vector spaces.

By definition, a function F : V → R, where V is a vector space, is called homogeneous of degree r iff
for any scalar λ ∈ R, one has:

F (λv) = λrF (v) (3.28)
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for every vector v ∈ V .
Examples of homogeneous functions of degree r include homogeneous polynomials of degree r, the

quotient of a homogeneous polynomial of degree r + k over a homogeneous polynomial of degree k,
and the 1/kth power of a homogeneous polynomial of degree rk. In particular, any linear functional on
R3 is homogeneous of degree 1, but the usual Euclidian norm

√
x2 + y2 + z2 represents a homogeneous

function that is of degree 1, but not linear.
A fundamental property of any homogeneous function f – of any degree – on a vector space V is that

since it will take the same value f(v) all along the line [v] as it does for the non-zero vector v, f will define
a function f [v] on the projective space PV of all lines through the origin on V by setting f [v] = f(v)
for any v that generates [v]. Conversely, under the projection V − {0} → PV , v �→ [v], any function
on PV can be pulled back to a homogeneous function in V . This is most easily expressed in terms of the
homogeneous and inhomogeneous coordinates for PV :

f(x0, . . ., xn) = f̃(X1, · · · , Xn) = f̃

(
x1

x0
, · · · , x

n

x0

)
. (3.29)

For example, the inhomogeneous quadratic polynomial aX2 + bX+ c corresponds to the homogeneous
one ax2 + bxy + cy2 when one sets X = x/y. The Minkowski space light cone c2t2 − r2 = 0 becomes
the sphere R = 1 when one regards Minkowski space as the space of homogeneous coordinates for RP 3

and sets the inhomogeneous coordinate equal to X i = xi/ct, which then represents a sphere of radius one
light-second if one regards the space of observation as RP 3.

One can show that a homogeneous function must be continuously differentiable and that when one
differentiates (3.28) with respect to λ, one can deduce Euler’s formula:

F (v) =
1
r
dF (v), (3.30)

or, in kμ coordinates on V :

F (kμ) =
1
r

∂F

∂kμ
kμ. (3.31)

Since this implies that dF is homogeneous of degree r − 1 – hence, differentiable – a further iteration
of Euler’s formula gives:

∂F

∂kμ
=

1
r − 1

∂2F

∂kμ∂kν
kν ≡ γμνkν (3.32)

and substituting this back into (3.30) gives:

F (kμ) =
1

r(r − 1)
∂2F

∂kμ∂kν
kμkν =

1
r
γμνkμkν (3.33)

Note that when r = 1, one has γμν = 0.
If r is a positive integer then one can continue this process until one reaches:

F (kμ) =
1
r!

∂rF

∂kμ1 · · · ∂kμr

kμ1 · · · kμr , (3.34)

as one would expect from the theory of Taylor series.
Now, let us start with the fact that if F [k] = 0 and F is homogeneous of degree r in k then, from Euler’s

formula, one must have:

kμν
μ = kμ

∂F

∂kμ
= rF [k] = 0. (3.35)
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If k = ωdt− kidx
i and vμ = v0∂0 + vi∂i then this gives:

kiv
i = ωv0, (3.36)

and dividing both sides by ωv0 gives:

siv
i
g = 1. (3.37)

We can interpret this as meaning that if one regards F [k] as a polynomial on RP 3∗, instead of R4∗

then the characteristic hypersurface F [k] = 0 defines a surface F [s] = 0 in RP 3∗ that generalizes the
Fresnel normal surface that pertains to the electromagnetic case. Similarly, the characteristic hypersurface
G[v] = 0 in R4 defines a surface G[vg ] = 0 in RP 3 that generalizes the Fresnel ray surface; these two
surfaces are related by (3.37) as long as F is homogeneous. This projective-geometric relationship between
the Fresnel wave surface and the Fresnel ray surface was known in the quadratic case since the early part
of the Twentieth Century (cf., Kommerell [12]), although eventually interest in the projective-geometric
aspects of physical spacetime seemed to dwindle in favor of Riemannian geometry. Hopefully, the fact that
projective geometry seems to be the natural pre-metric setting for wave motion will rekindle some of that
early enthusiasm.

One must observe that when F [k] is a homogeneous polynomial of degree r, the corresponding function
G[v] will not generally be a polynomial, although it will be a homogeneous function of degree r/(r − 1),
since the function v(k) will be a homogeneous polynomial of degree r − 1, which means that its inverse
k(v), which one must assume exists, will be homogeneous of degree 1/(r−1). Of course, in the quadratic
case (r = 2), matters are simplified, since v(k) is linear, as well as its inverse, which makesG[v] quadratic
along with F [k]. Hence, a light cone in a tangent space corresponds to a light cone in a cotangent space.

4 Null geodesics for homogeneous characteristic polynomials

In this section, we shall be concerned with the form that Eqs. (3.21) take when the function F is homo-
geneous4 of degree r in the coordinates kμ; i.e., on the fibers of T ∗M . As we shall see, they essentially
generalize the geodesic equations that one obtains for the metric γμν in the quadratic, Lorentzian case.

In the case of a function F on T ∗M that is defined to be homogeneous of degree r on the fibers, one
can use (3.32) and (3.33) to put Eqs. (3.21) into the form:

dxμ

dτ
= γμνkν ,

dkμ

dτ
= − 1

r

∂γκν

∂xμ
kκkν . (4.1)

We shall show that the bicharacteristic vector field that they define on T ∗M generalizes the geodesic
flow that a metric would define.

In these equations, one must be careful to note that although we are using a standard component notation
borrowed from Riemannian geometry, nonetheless, the component functions γμν are defined on the total
space of T ∗M , not the base space M , as usual. This has the effect of making γμν = γμν(xα, kβ), in
general. Hence, the metric that one defines by γ = γμνdkμdkν does not pertain to covectors in the fibers
of T ∗M , but covectors in a sub-bundle of T ∗(T ∗M). In order to convert this γ into a doubly covariant
tensor field onM one must “pull it down” by means of a specified covector field k onM . That is, one must
fix the coordinates kμ in the component functions and replace the dkμ with (∂kμ/∂x

ν) dxν . The resulting
metric on T (M) has the components:

γμν(x) =
∂kα

∂xμ

∂kβ

∂xν
γαβ(x, k). (4.2)

4 Hopefully, one has noticed, by now, that there are considerable grounds for confusion in the inconsistent use of the words
“characteristic” and “homogeneous.”
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This does, of course, imply that the resulting metric will depend upon the choice of k.
Homogeneity, combined with (4.1), implies that:

0 = kμ
dxμ

dτ
= γμνkμkνγμν

dxμ

dτ

dxν

dτ
, (4.3)

under the assumption that the matrix γμν is invertible with an inverse that is described by γμν . Hence,
the covector kμ and the vector dxμ/dτ are both isotropic for the metric γ defined by F . This implies that
dxμ/dτ – hence, the integral curve through it – lies in the hyperplane that is annihilated by kμ.

We should point out that what we are doing is essentially a generalization of what one does in the
geometry of Finsler spaces [13,14], which generalize Riemannian geometry by defining a positive definite
function on T (M) that is homogeneous of degree one, and thus generalizes a Euclidian norm on the
tangent spaces. The reason that we are not trying to force the formalism into that template is the fact that
we are not generally dealing with a positive definite function for a dispersion polynomial, so taking the
rth root to obtain homogeneity of degree one might give imaginary values, not non-negative real ones, and
differentiation of F tends to produce unwanted zero denominators. However, one can use Finsler geometry
as a heuristic guide for the formulation of one’s definitions.

In particular, we further specialize F by demanding that the matrices of components γμν be invertible,
so that we are indeed dealing with something that can possibly define a metric.

This allows us to differentiate the first equation in (4.1), and we get:

d2xμ

dτ2
=

(
∂γμν

∂xκ

dxκ

dτ
+
∂γμν

∂kκ

dkκ

dτ

)
γκν

dxκ

dτ
+ γμν dkν

dτ
. (4.4)

Substituting from the second one gives:

d2xμ

dτ2
= − 1

2
γμν

(
∂γνλ

∂xκ
+
∂γκν

∂xλ
− 2
r

∂γκλ

∂xν

)
dxκ

dτ

dxλ

dτ
+ γλν

∂γμν

∂kκ

dkκ

dτ

dxλ

dτ
, (4.5)

in which we have also switched upper and lower indices on γ according to the usual rule.
This results in a system of second-order ordinary differential equations for xμ of the form:

d2xμ

dτ2
+ Γμ

κλ

dxκ

dτ

dxλ

dτ
= Bμ

κλ

dxκ

dτ

dxλ

dτ
+ Cμκ

λ

dkκ

dτ

dxλ

dτ
, (4.6)

in which we have introduced the notations:

Γμ
κλ =

1
2
γμν

(
∂γνκ

∂xλ
+
∂γνλ

∂xκ
− ∂γκλ

∂xν

)
, Bμ

κλ =
(

1
r
− 1

2

)
γμν ∂γκλ

∂xν
, Cμκ

λ = γλν
∂γμν

∂kκ
.

(4.7)

The expressions Γμ
κλ(x, k) take the form of the components of the Levi-Civita connection for the metric

γ, except that, as before, they will be functions on a local coordinate chart on T ∗M , not a local coordinate
chart on M . The coefficients Bμ

κλ clearly vanish when F is homogeneous of degree 2, such as a metric
tensor, and thus represent a correction to the Levi-Civita connection.

The components Cμκ
λ also define a contribution to parallel translation that vanishes only for homoge-

neous F of degree 2, except that they act on both the dkμ/dτ , as well as the dxμ/dτ . This contribution is
referred to as the Cartan connection in Finsler geometry.

Since the contributions from the non-vanishing of the Bμ
κλ and Cμκ

λ also express the deviation of the
proper acceleration of the curve from geodesic motion, we might regard them as one source of “quantum
fluctuations about the classical extremals” that originates in the deviation of the spacetime electromagnetic
dispersion law from a quadratic one, as might be a consequence of vacuum polarization. This would be in
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addition to the diffraction effects that are omitted by the geometrical optics approximation, which has long
been recognized as being closely related to the classical limit of the quantum wave equations.

One should be careful not to conclude that we have succeeded in decoupling the xμ coordinates from
the kμ coordinates in our system of differential equations. One cannot fix the kμ arbitrarily in order to
determine the Γμ

κλ and Cμκ
λ as functions of the xμ, since we had to make use of the equation:

kμ = γμν(x, k)
dxν

dτ
(4.8)

in order to obtain (4.4). Hence, the equations for kμ are still coupled to the equations for the xμ by way of
the γμν(x, k), which depend upon both sets of independent variables.

The characteristic polynomials that are of most direct interest to physics are the ones that follow from
the procedure described in Sect. 2 when one starts with some – generally empirically defined – constitutive
law for the medium. Hence, they are generally homogeneous polynomials in k of degree 2, 4, and 6. We
shall now specialize the above formulae for the quadratic and quartic cases.

4.1 Quadratic characteristic polynomials

Most commonly in the physics of waves one deals with a quadratic dispersion law of Lorentzian form:

gμνkμkν =

{
0 characteristic waves,

ω2
0(x) non-characteristic waves,

(4.9)

with:

gμνkμkν = ω2 − α2κ2 = ω2 − α2(x)gij(x)kikj . (4.10)

The last term defines a Euclidian metric on Σ∗ by way of gs = gij∂i ⊗ ∂j .
We have deliberately chosen not to include the factor c2 to serve as a units conversion constant, as

is customary, since the velocity of propagation of waves in a general wave medium is a property of the
medium that must be derived from the dispersion law, and does not always lead to a unique constant, such
as c, but only when the constitutive law of the medium is assumed to be linear (in the field strengths or
infinitesimal strains), homogeneous, and isotropic. Hence, we have simply replaced that conversion factor
with the coefficient α2, which is assumed to be a differentiable function on M .

As long as one is concerned with characteristic wave motion, for which F [k] vanishes, one can represent
a quadratic dispersion law as a degenerate form of a homogeneous dispersion law of degree 2n in which:

F [k] = (g(k, k))n. (4.11)

Since the zero locus of F [k] is then identical with the zero locus of g(k, k), one can simply replace a
polynomial of the form (4.11) with a quadratic one of the form F [k] = g(k, k).

If we return to Eqs. (4.9) then we see that with r = 2, the metric components γμν coincide with the gμν

above – i.e., they are not functions of k – the components Bμ
κλ and Cμκ

λ vanish, and the components Γμ
κλ

then represent the usual Levi-Civita connection that is associated with g. Hence, the geodesics that one
obtains are the usual null geodesics of general relativity.

Now, let us compute the group velocity line field vg that one obtains from the dispersion law and
compare it to the phase velocity.

In the characteristic case, the dispersion law reduces to the linear form:

ω = ακ = α
√
gijkikj . (4.12)
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The spatial group velocity line field (v1
g , . . ., v

n
g ) that is defined by such a dispersion law is obtained

from:

vi
g =

∂ω

∂ki
=
α

κ
gijkj ≡ αni, (4.13)

in which we have introduced the spatial unit vector:

ni = 1/κki = 1/κgijkj . (4.14)

Hence, we can think of the scaling function α as being equal to:

α(x) = vg ≡
√
gijvi

gv
j
g, (4.15)

which makes it play the role of c only in the direction of propagation that is defined by ni.
From (4.13), one sees that the group velocity line field is collinear with the wave number line field (k1,

. . . , kn) that one obtains from the 1-form k by means of the metric g.
Now, from (4.12), one also computes the phase velocity components to be:

vi
p =

ω

ki
=
ακ

ki
=

α

ni
. (4.16)

As one sees, these components are not as geometrically meaningful as those of the slowness covector:

si =
1
α
ni =

1
ακ

ki. (4.17)

4.2 Factored quartic characteristic polynomials

When dealing with dispersion laws of even degree higher than two, one can make use of the fact that a
common form that such homogeneous polynomials take in physics is the product of quadratic factors. As
pointed out above, this factorization is universal to a broad class of nonlinear electrodynamical theories.

For instance, in the quartic case one might be dealing with a law of the form:

0 = F (k) = g(k, k)ḡ(k, k) = gαβ ḡκλkαkβkκkλ. (4.18)

In this expression, we have suppressed the total symmetrization of the components as unnecessary, since
the factored form is more convenient to work with. One generally assumes that the individual second-rank
tensors g and ḡ are each of Lorentzian type.

Of particular interest is the case in which “extraordinary” Lorentzian metric ḡ differs from the “ordi-
nary” one g only by a small perturbation:

ḡ = g + ε. (4.19)

This situation might represent quantum fluctuations about a classical metric if the fluctuations were due
to – say – vacuum birefringence resulting from vacuum polarization in the realm of high electromagnetic
field strengths. For instance, the dispersion law that results from the Heisenberg–Euler Lagrangian (see [4,
15]), which represents a one-loop effective Lagrangian for a photon field F when one takes into account
the formation of electron-positron pairs at high energy or high background field strengths, takes the form:

F (k) = (η(k, k) + ε1T (k, k))(η(k, k) + ε2T (k, k)), (4.20)

in which η represents the Lorentz scalar product on Minkowski space and T represents the Faraday stress-
energy-momentum tensor field that is associated with F .
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For the situation that is described by (4.18), one would then have a dispersion polynomial of the form:

F (k) = g(k, k)2 + g(k, k)ε(k, k). (4.21)

One sees that the quadratic case treated previously can be regarded as obtained from the degenerate case
in which g = ḡ (i.e., ε = 0) by a redefinition of F to (g(k, k)ḡ(k, k))1/2.

The dispersion law for the characteristic wave case then decomposes into two distinct sub-cases: g(k, k)
= 0, while ḡ(k, k) is arbitrary, and the opposite case. Since the two metrics appear symmetrically, it is

sufficient to treat either case as generic.
One sees that the geodesics of F include the degenerate possibilities of null geodesics for g and null

geodesics for ḡ, which brings one back to the quadratic case. However, there is also the possibility of null
geodesics that can move from one light cone to the other, as long as they intersect.

The characteristic equations for a quartic F of the form (4.21) take the form:

dxμ

dτ
=

1
2

[ḡ(k, k)gμν + g(k, k)ḡμν ]kν ≡ γμν(x, k)kν (4.22a)

dkμ

dτ
= − 1

4

[
ḡ(k, k)

∂gκλ

∂xμ
+ g(k, k)

∂ḡκλ

∂xμ

]
kκkλ = − 1

2
∂γκλ

∂xμ
kκkλ, (4.22b)

into which we have introduced the notation:

γμν(x, k) =
1
2

[k̄2gμν + k2ḡμν ] (4.23)

to connect with the formalism of Sect. 4.1.
Note that although we are making the Finslerian assumption that the matrix γμν is invertible, it should

be clear that the inverse component matrix to γμν does not have as elementary a form as the matrix being
inverted.

In the perturbed degenerate quartic case, these equations take the form:

dxμ

dτ
=

{
k2gμν +

1
2

[ε(k, k)gμν + k2εμν ]
}
kν ≡ γμνkν + δγμνkν , (4.24a)

dkμ

dτ
= − 1

2
k2 ∂g

κλ

∂xμ
kκkλ − 1

4

[
ε(k, k)

∂g
κλ

∂xμ
+ k2 ∂ε

κλ

∂xμ

]
kκkλ, (4.24b)

which makes:

γμν(x, k) = k2gμν +
1
2

[ε(k, k)gμν + k2εμν ] (4.25)

in this case.
Something that becomes immediately clear is that when the perturbation ε vanishes the right-hand

sides of the characteristic equations vanish identically for null congruences, regardless of the nature of g.
Consequently, one sees that it is more illuminating to use the quadratic dispersion law that is defined by g,
rather than the quartic one that is defined by its square.

We naturally wish to contrast the form that the geodesic equations take in both cases above with the form
that they take in the more familiar quadratic case. Since we have already developed the general formalism
for homogeneous functions of k above, we need only compute the components Bμ

κλ and Cμν
κ that we

defined previously.

Bμ
κλ = − 1

8
[
k̄2gμν + k2ḡμν

] ∂γκλ

∂xν
(4.26)
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Cμν
κ = γκλ[gλν ḡμα + ḡλνgμα]kα. (4.27)

In the case (4.21) of a degenerate quartic characteristic polynomial that is perturbed by a quartic poly-
nomial, the components take the form:

Bμ
κλ =

1
4
k2gμν ∂γκλ

∂xν
− 1

8
[
ε(k, k)gμν + k2εμν

] ∂γκλ

∂xν
(4.28)

Cμν
κ = 2γκλg

λνgμαkα + [ελνgμα + gλνεμα]kα. (4.29)

In the case of the Heisenberg–Euler dispersion law, which takes the general form under consideration,
with the unperturbed metric being the Lorentz metric ημν on Minkowski space, since the perturbation
originates in the polarization of the electromagnetic vacuum in the realm of high field strengths, one sees
that the right-hand side of (4.6) gives one a tangible origin to the concept of “quantum fluctuations about
a classical extremal.” Of course, the actual computations are quite elaborate to carry out and difficult to
interpret.

So far, we have only associated a kinematical quantity, namely, the velocity vector field v, for the
motion of extended matter with a kinematical quantity, namely, the frequency-wave number 1-form k, for
its motion as a wave. We should also wish to associate dynamical quantities, as well. However, since the
usual process one encounters in wave mechanics seems to depend crucially upon the de Broglie relations,
which equate the energy-momentum 1-form p with �k, an association that actually assumes that the wave
function is describing the motion of a point, we shall defer further discussion until the sequel to this article.

5 Summary

In this part of the present two-part study, we have considered some of the issues that are associated with
describing the motion of wavelike solutions of field equations that one defines by means of conservation
laws for the fields and a constitutive law for the medium in which the fields exist. We first showed that the
same set of general field equations can describe mechanical waves and electromagnetic waves.

When one chooses a specific form for massless wavelike solutions of the field equations, the second-
order field equation is replaced by a homogeneous polynomial equationF [k] = 0 for the physically accept-
able wave covector fields k that one calls the dispersion law for the medium and a set of first-order linear
partial differential equations k = dϕ for the phase function of the wave motion. The level hypersurfaces of
the phase function describe the motion of initial wave fronts.

By hypothesis, the function F on the cotangent bundle T ∗M of the spacetime manifold M , when
combined with its natural symplectic structure, defines a characteristic vector field on T *M whose flow
generalizes the null geodesic flow that one obtains when F is quadratic, as in the Lorentzian metric case.
The geodesic equations include terms in addition to the Levi-Civita terms that vanish when F is quadratic
and represent one source of “quantum fluctuations about classical extremals,” in addition to the diffraction
effects that are omitted by the geometrical approximation. This is consistent with the fact that the dis-
persion law that is associated with the Heisenberg–Euler effective Lagrangian for electromagnetic waves,
which includes the quantum contribution from vacuum polarization is actually of the quartic form, not the
quadratic one that one obtains for linear and isotropic electromagnetic media.

Along with the change in the null geodesic equations, one also must contend with the fact that the
diffeomorphism between cotangent spaces and corresponding tangent spaces that one obtains from F , and
which we are calling “dimension-codimension duality,” is not generally a linear isomorphism, as it is in the
quadratic case, but a homogeneous polynomial map. However, as long as F [k] is a homogeneous function
of k, one will always find that the relationship k(v) = kμv

μ = 0 is valid when v is the velocity vector that
is associated with the wave covector k by this duality.

One finds that the usual Fresnel analysis comes about when one passes from the vector bundles T ∗M
and T (M) to their projectivizations PT ∗M and PT (M); i.e., the sets of lines though the origins of their
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fibers. The projection of k is the slowness covector s, whose components are reciprocals of the phase
velocity components, while the projection of v gives minus the usual group velocity vector. As long as F
is homogeneous, one always has s(vg) = 1, which was known in the quadratic case.

In the sequel to this article, we shall address the manner in which the analysis of the foregoing pre-
sentation must be altered if one is to account for the motion of massive waves and their inhomogeneous
dispersion laws.
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