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Abstract. – Upon taking the spinorial mechanics of a material point as a point of departure, the author 
studies the case where the three-dimensional velocity of the latter is equal to that of light.  That condition is 
naturally realizable only if the rest mass is zero.  In this case, one obtains the description of an entire class 
of particles, among which, one finds the photon, and for which one describes some of their important 
characteristics. 
 
 
 1. – By means of a simple passage to the limit, all of relativistic mechanics can 
provide the description of properties of a particle that moves with the velocity of light, 
and which, consequently, presents some characteristics that are very close to those of a 
photon.  This is true, for example, for the spinorial mechanics of particles that we have 
developed, moreover (1). 
 Note that it does not suffice to make the velocity of a particle tend to c in order to 
automatically obtain the description of a photon, and this is true for several reasons, 
namely: 
 A priori, one must have several types of particles that move with the velocity of light, 
but which are different in other properties (for example, related to their spin), and the 
comparison is flawed because the information that we possess on the photon is expressed 
in terms of undulatory quantities (electromagnetic waves) that they are attached to, while 
the mechanical description that we imagine appeals to corpuscular notions.  Any 
reconciliation of these two viewpoints necessarily supposes the introduction of new 
hypotheses. 
 Nonetheless, the study of the limiting case is interesting in itself, and we shall sketch 
it out below.  As in the cited article, we confine ourselves to the “classical” form of the 
theory, not only in order to leave open any question of interpretation, but also, and above 
all, in order to obtain results that are independent of quantization, and which therefore 
submit to a test of our fundamental hypothesis. 
 In order to facilitate the discussion, in the following paragraph we will summarize the 
results that were already acquired. 
 
 

                                                
 (1) Jour. Phys. 15 (1954), 65.  
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 2. – Notations, fundamental equations, etc. − The fundamental hypothesis consists 
of assuming that the motion of a point is essentially described by spinorial variables, 
instead of by vectors xρ, as in classical relativistic mechanics. 
 For ease of formalism, we adopt the technique that is employed in the Dirac theory of 
the electron.  We let ξ denote a matrix with one column of elements ξ1, ξ2, ξ3, ξ4 that 
transforms like the Ψ of the Dirac theory, and which we call a spinor, to abbreviate.  The 
adjoint matrix will be defined by: 

ξ+ = 4iξ γ∗ɶ , 
 

where ξ ∗ɶ  is the transposed and conjugated matrix of ξ, and γ1, γ2, γ3, γ4 are 4×4 matrices 
that satisfy: 

γ ρ γσ + γσ γ ρ = 2δ ρσ. 
 

In general, the results are independent of the representation of the γ ρ; when we need it, 
we shall choose the usual representation: 
 

γ1 = 

i

i

i

i

⋅ ⋅ ⋅ − 
 ⋅ ⋅ − ⋅ 
 ⋅ ⋅ ⋅
 ⋅ ⋅ ⋅ 

,  γ2 = 

1

1

1

1

⋅ ⋅ ⋅ − 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 − ⋅ ⋅ ⋅ 

, 

 

γ3 = 

i

i

i

i

⋅ ⋅ − ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅
 ⋅ − ⋅ ⋅ 

,  γ4 = 

1

1

1

1

⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 
 ⋅ ⋅ − ⋅
 ⋅ ⋅ ⋅ − 

. 

 
 The spinors ξ, ξ+ define the particle and its motion.  The equations that they obey (see 
below) are established by starting with a Lagrangian that is chosen by reasons of 
simplicity and invariance.  The same is true in the Dirac theory, and since the simple 
elements are the same in the two cases, it is not surprising that some of the results of the 
two theories are formally identical. 
 By starting with the spinors ξ, ξ+, one may calculate the quantities that characterize 
the particle in spacetime.  The link between the spinorial space of the ξ and spacetime is 
given by the relation: 

(1)      
dx

d

ρ

τ
 = ξ+γ ρ ξ, 

 
where τ is the invariant parameter with respect to which one defines the motion. 
 Let λρ be the quantity of motion vector, which is timelike.  Define the invariant: 
 

(2)      λ = m0 c = ρ
ρλ λ− , 
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m0 being the “rest mass” of the particle. 
 With x4 = ict = ix0 and γ5 = γ 1 γ 2 γ 3 γ 4, we set the real quadratic spacetime quantities 
equal to: 
    Ω1 = − i ξ+ξ,  Ω2 = ξ+γ 5ξ, 
 
    uρ = ξ+γ ρξ,  wρ = i ξ+ i γ 5γ ρξ, 
 

    mρσ = i ξ+

2

i (γ ργ σ − γ σγ ρ ) ξ. 

 
 A certain number of algebraic identities exist between these quantities, among which 
we will need the following ones: 
 

(3)   2 4 1

4 4 1 4 2

,

,
q r r q qr p

p p qr p

w u w u m im

iw u iw u m im

− = − Ω − Ω
− + = − Ω + Ω

  (p, q, r = 1, 2, 3), 

 

(4)   

2 2 2 2 2 2
23 21 12 4 4 2

2 2 2 2 2 2
14 24 34 4 4 1

23 14 1 2

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( )( ) ,

m m m u w

m m m u w

m m i

 + + = − − − Ω
 + + = + + + Ω
 = Ω Ω∑

 

 

(5)   23 1 1 4

14 1 2 4

( ) ,

( ) .

m u w

m u w

 = + Ω
 = − Ω

∑
∑

 

 
Finally, the relations between the proper time ds of the particle and dτ is given by (loc. 
cit., eq. (5)): 

(6)    − c2 ds2 = ∑ (dxρ)2 = − 2 2 2
1 2( ) dτΩ + Ω . 

 
This being the case, the fundamental equations, in the absence of a field, are written: 
 

(7)    
, ,

, 0.

d d

d d
ddx

d d

ρ ρ
ρ ρ

ρ
ρρ

ξ ξλ γ ξ λ ξ γ
τ τ

λ
ξ γ ξ

τ τ

+
+

+


= − = +


 = =


 

 
 a) For λ ≠ 0, the general solution is: 
 
(8)   ξ = a exp [iλt] + b exp [−iλt],  ξ+ = b+ exp [iλt] + a+ exp [−iλt], 
 
where λρ , a, b are constants that satisfy: 
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(9)    
2

( ) 0, ( ) 0,

( ) 0, ( ) 0,

0.

i a i b

a i b i

ρ ρ
ρ ρ

ρ ρ
ρ ρ

ρ
ρ

λ λ γ λ λ γ
λ λ γ λ λ γ

λ λ λ

+ +

 + = − + =
 + = − + =
 + =

 

 
 If one takes four arbitrary complex constants and arranges them into a column ϕ then 
one can write: 

(10)   
( ) , ( ) ,

( ), ( ).

a i b i

a i b i

ρ ρ
ρ ρ

ρ ρ
ρ ρ

λ λ γ ϕ λ λ γ ϕ
ϕ λ λ γ ϕ λ λ γ+ + + +

 = − + = +
 = − + = +

 

 
 b) For λ = 0, one has the general solution as a function of four arbitrary constants 
that are arranged into the form of a column g: 
 
(11)   ξ = (1 – λρ γ ρ ⋅⋅⋅⋅ τ) g,  ξ+ = g+(1 + λρ γ ρ ⋅⋅⋅⋅ τ). 
 
 
 3. – Particles that move with the velocity of light. – We impose upon the preceding 
particle the single condition that its three-dimensional velocity be equal to that of light.  
One can see immediately that this condition entails another one: that the rest mass of the 
particle – m0, and therefore λ = m0c – must be zero. 
 We examine this question in detail, since we will need some results that correspond to 
several other studies.  One has (6): 
 

∑ (dx)2 = − 2 2 2
1 2( ) dτΩ + Ω , 

 
so if the velocity is equal to c then one must have: 
 

(12)   5
1 20, 0.iξ ξ ξ γ ξ+ +Ω = − = Ω = =  

 
As functions of the four components λ of the quantity of motion and four arbitrary 
constants that contain the solution (10), these conditions translate into: 
 
(13)   λ2ϕ +ϕ  = 0,  λ2ϕ+γ 5ϕ  = 0 
and 

λ ⋅⋅⋅⋅ λρ (ϕ +γ 5γ ρϕ ) = 0. 
Two cases are possible: 
 
 a) ϕ +ϕ  = ϕ +γ 5ϕ  = λρ ϕ +γ 5γ ρϕ  = 0, with λ ≠ 0, 
and 

 b) λ = ρ
ρλ λ−  = m0c = 0. 

 
 Consider case a).  Since ϕ +ϕ  = ϕ +γ 5ϕ  = 0, the identities (3) that were mentioned 
permit us to write the proportionality as: 
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5

ρ

ρ
ϕ γ ϕ

ϕ γ γ ϕ

+

+ = 5

σ

σ
ϕ γ ϕ

ϕ γ γ ϕ

+

+  = … 

 
One therefore has not only λρ ϕ +γ 5γ ρϕ  = 0, but also: 
 

λρ ϕ +γ ρϕ  = 0. 
On the other hand: 
 

2
ρλ∑  = − λ2  and ∑ (ϕ +γ ρϕ )2 = − 2 2

1 2( )Ω + Ω  = 0. 

 
These relations permit us to write a Lagrange identity from which one deduces the 
proportionality: 

ρ

ρ

ϕ γ ϕ
λ

+

 = 
σ

σ

ϕ γ ϕ
λ

+

 = … 

 

Consequently, since ∑ (ϕ +γ ρϕ )2 = 0, the sum: 
 

2
ρλ∑  = − λ2 = 0 

will likewise be zero. 
 Therefore, case a) reduces to case b), and one can conclude that in spinorial 
mechanics only particles of zero rest mass can attain the velocity of light.  “Zero rest 
mass” can say nothing more than this: One will always have the following relation 
between the components of the quantity of motion λk = pk and the energy λ4 = i λ0 = 
i(w/c) in that case: 

2 2 2
1 2 3p p p+ +  = 

2
w

c
 
 
 

. 

 
 

 4. – Particles of zero rest mass. – We remark, however, that if λ = 0 then it is the 
relation (11), and not (10), that is appropriate, and to which one must apply our 
conditions Ω1 = Ω2 = 0.  From (11), one deduces that: 
 

Ω1 = − i ξ+ξ = − i g+g,  Ω2 = ξ+ γ 5ξ = g+γ 5g – 2λρ ⋅⋅⋅⋅ g+γ 5γ ρ g = 0. 
 

Therefore, our conditions amount to restricting the generality of the constant g by 
imposing the following conditions upon it: 
 
(14)   g+g = 0, g+γ 5g = 0, and λρ ⋅⋅⋅⋅ g+γ 5γ ρ g = 0. 
 
One satisfies these conditions (14) by taking g to be the solutions of the equation: 
 
(15)     λρ γ ρ g = 0, 
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as one easily convinces oneself. 
 [We remark that these equations can be written in a form that presents an analogy 
with that of the case λ ≠ 0, namely: 
 

(16)     0

0

,

,

K
K

K
K

g g

g g

λ λ α
λ λ α∗ ∗

 =
 = ɶ ɶ

 

 
where g∗

ɶ  is the transposed and conjugated matrix to g, iλ0 = λ4, and αK are the Dirac 
matrices: 

αK = i γ4γK  (K = 1, 2, 3)  α4 = γ4].  
 
With this solution, and taking (11) into account, one has ξ = g. 
 All of the ξ, and therefore all of the spacetime quantities of a particle of velocity c 
(among which one must include the photon), are constants.  This solution is deduced 
from the general solution, which is valid for any λ: 
 

ξ = a exp [iλτ] + b exp [− iλτ], 
 
upon making λ = 0.  In this case, one can take g = a + b, and one has: 
 

λρ γρ g = 0. 
 

 We nonetheless remark that the g that satisfy the equations: 
 

λρ γρ g = 0 
 
depend upon only two arbitrary complex constants, instead of four, as in the case of λ ≠ 
0.  Since two of the four components g1, g2 are arbitrary, the other two are deduced, for 
example, by the operation: 

(17)     3

4

g

g
 = S 1

2

g

g
, 

 
with S = (1/λ0) (λ1σ1 + λ2σ2 + λ3σ3), where the σ are the 2×2 Pauli matrices; the 
existence of the relation: 

2
0λ  = 2 2 2

1 2 3λ λ λ+ +  

introduces two signs. 
 
 
 5. – Spatial disposition of various measurable quantities that are attached to the 
particle. – In the space of the various spacetime quantities, consider: 
 

ξ+A ξ = g+A g 
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that are attached to a particle of zero rest mass. 
 By virtue of (14) and paragraph 3, we may say that: 
 
 a) The velocity uρ = g+γ ρ g is proportional to λρ and to the vector: 
 

wρ = i g+ iγ 5γ ρ g, 
 
and the vectors uK, λK, and wK have the same support in space. 
 
 b) Consider the spin of the particle (loc. cit., § 11): 
 

1
2 mρσ  = − 1

2 ξ+ ⋅⋅⋅⋅ 1
2 (γ ργ σ – γ σ γ ρ) ⋅⋅⋅⋅ ξ, 

 
which is an anti-symmetric tensor, and, as is customary, separate the “spatial part” from 
the “temporal part,” which we call: 
 
(18)    µi = − 1

2 miK ,  iπK = 1
2 mK4 ,   (i, j, K = 1, 2, 3), 

 
respectively.  Since  g+g = g+γ 5g  = 0, the 
identities (4) and (5) give: 
 

(19) 

2 2, 0,

0.

K K K

K K K Ku u

µ π µ π

µ π

 = =


 = =

∑ ∑ ∑

∑ ∑
 

 
 The two “vectors” π and µ are equal, 
perpendicular to each other, and perpendicular 
to the direction of the velocity. 
 One can thus draw the associated figure of 
the vectors that accompany a particle that has 
the velocity of light in its motion, a figure that reproduces the general disposition of the 
electromagnetic field of a photon. 
 
 
 6. – Simple expressions. – We do not restrict the generality if we choose a frame 
such that the propagation takes place along the z axis, so u1 = u2 = 0, which entails that λ1 
= λ2 = 0. 
 The quantities that are attached to the photon have the following values as functions 
of two arbitrary complex quantities ξ1 and ξ2 : 
 
velocity (described with respect to τ): 
 

u1 = 0,  u2 = 0,  u3 = ± 2 1 1 2 2( )ξ ξ ξ ξ∗ ∗+ ,  u4 = 2i 1 1 2 2( )ξ ξ ξ ξ∗ ∗+ , 

 

 

π 

µ 
w 

u = velocity 

λ = quantity of motion 

dir. of propagation 
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velocity in ordinary space: 
 

V1 = 0,  V2 = 0,  V3 = ± c. 
 
Vector w, which is proportional to the velocity: 
 

w1 = 0,  w2 = 0,  w3 = − 2 1 1 2 2( )ξ ξ ξ ξ∗ ∗− ,  w4 = ∓ 2i 1 1 2 2( )ξ ξ ξ ξ∗ ∗− . 

 
Components of the spin: 
 
  1

2 m23 = 1 2 2 1( )ξ ξ ξ ξ∗ ∗+ ,   1
2 m31 = 1 2 2 1( )ξ ξ ξ ξ∗ ∗− ,  1

2 m12 = 0, 

 
  1

2 m14 = ∓ (1/i) 1 2 2 1( )ξ ξ ξ ξ∗ ∗− ,  1
2 m24 = ± 1 2 2 1( )ξ ξ ξ ξ∗ ∗+ , 1

2 m34 = 0, 

 
so, with the notation (18): 
 
  µ1 = 1 2 2 1ξ ξ ξ ξ∗ ∗+ ,   µ2 = (1/i) 1 2 2 1( )ξ ξ ξ ξ∗ ∗− , µ3 = 0, 

 
  π1 = ∓ (1/i) 1 2 2 1( )ξ ξ ξ ξ∗ ∗− ,  π2 = ± 1 2 2 1( )ξ ξ ξ ξ∗ ∗+ ,  π3 = 0. 

 
 The corresponding lengths are: 
 

2
Kµ∑  = 2

Kπ∑  = 1 1 2 24ξ ξ ξ ξ∗ ∗⋅ ⋅ . 

 
 

 7. – Some remarks. 
 
 a) In a general fashion, the basic equations provide the ξ only up to a factor, and a 
normalization is necessary.  For example, one can set, as is customary: 
 

1 2 2 1ξ ξ ξ ξ∗ ∗+  = 1. 

 
 b) Similarly, a corpuscle that has the velocity of light still remains characterized by 
the vector wK .  One easily sees that a particularly interesting case is the one in which: 
 

wK = 0  (K = 1, 2, 3), 
 
for the following reason: One has, in general (i.e., for arbitrary velocity): 
 

uρ m
ρK = − wK Ω2, 

 
so if wK = 0 then uρ m

ρK = 0.  Consider the frame in which the particle is at rest: u1 = u2 = 
u3 = 0.  Therefore, m4K = 0 in that frame, as is well-known.  Hence, a particle with wK = 0 
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is such that its spin reduces to its spatial components, and thus, to just a “vector,” in the 
rest system. 
 It is not impossible that this case is realized in nature exclusively, so the theory with 
wK ≠ 0 gives the general ideal case.  Be that as it may, we maintain that wK = 0 represents 
a particularly interesting case, and we have likewise imagined that this is true for the 
limiting case that is of interest to us here, and in which one can no longer speak of the 
“rest system.” 
 In this case, wK = 0 signifies that 1 1ξ ξ∗  = 2 2ξ ξ∗ , so the normalization condition 

becomes 1 1ξ ξ∗  = 1
2 , and one has simply: 

 
2
Kµ∑  = 2

Kπ∑ = 1. 

 
 c) In this same case, the values of the spacetime quantities are deduced from ξ1, ξ2 – 
i.e., ultimately from two angles ϕ1 and ϕ2, which represent the phases of ξ1, ξ2 . 
 The vectors µµµµ and ππππ are perpendicular to each other, and their collective azimuth 
around the direction of motion − as measured by, for example, the angle that µµµµ makes 
with the Ox axis − is equal to ϕ2 – ϕ1 . 
 One thus defines a sort of direction of polarization, as for photons, but which does 
not depend upon a wave. 
 We have called the tensor with the components 1

2 mρσ the “spin.”  Its length is zero: 

∑ mρσ mρσ = 0.  The length of the spin of particles with velocity c is zero. 
 Among these particles, one must likewise include the photon.  However, a 
comparison at this point is not possible, considering that the study of the photon has been 
made only as a function of the electromagnetic field that constitutes light, and that we 
have not further studied these fields in spinorial mechanics. 
 One must examine how that kind of mechanics is normally attached to the fields of 
these particles, which we shall do in the following article. 
 

_______ 
 

 
 
 


