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One generalizes an algebraic study of the electromagergtrgy tensor in the case where there exists
an induction. In particular, one defines singular induction

1. If space-time is referred to local coordinatésind endowed with a world-metric:
(1.1) ds’ = ggp dX" d¥¢

then consider a medium that occupies a domRAinin which there exists an
electromagnetic inductiomH(s, Gap) (%) that satisfies the constraint equations:

(1'2) Gaﬂua: ‘SHUP ua, IUG apua = H ap ua,
in whichu® is the unit velocity vector of the medium. One sets:
(13) Gpaup:Da, émup: Hg, Hpaup: E., |:| paup: B,,

and lett,z be the symmetric electromagnetic energy tensorishassociated with the
induction considered:

(1.4) tap = Tap— (1L —&1) Tap U Up, Tap = % 9ap (Goo H) = Gpa H.

2. The introduction of the associated electromagnetid {f@ in the manifold\74 that

is defined by the differentiable manifold that carriés and is endowed with the
associated metric:

() C.R. Acad. Sci. Pari&46 (1958), pp. 707.
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(21) d§2: ga/] an d)g, ga/] = gaﬁ— [1_8_]/;} UQ Uﬁ

will lead us to consider the case in which that fieddsingular in the sense of A.
Lichnerowicz €); i.e., such that:

¥ =0,

Mo

(2.2) Y=

N

E Eaf_ = _
FHﬂF =0, b=

N=

F.s

It that were true then the electrodynamical teng?gﬂzigaﬂ Fo,F”—-F,F%

could be put into the tensorial form:

(2.3) (f)aﬂ: 2,1,

in which &= ‘\/?E‘ = ‘\/ZH‘ and in whichl, is an isotropic vector inv,.
Equations (2.2) imply that for the induction one will have

O
(2.4) 1GyH? =0, 1G¥H”=0.
The electric field and induction vectdgs D are orthogonal to the magnetic field and

induction vector®8, H. Conversely, (2.2) is a consequence of (2.4). By tiefm such
an induction will be calledingular.

3. We shall study the proper values and directiongofelative togqs . In order to
do that, we consider the values of the componentoin a proper frame; i.e., an
orthonormal framesd(;) whoseeg, vector coincides withi. We set:

(3.1) X=J¢eE, Y={¢E,, z=¢E, L=JuH, M=JuH, N=JuH,.

It is easy to choose the proper frame that is callegblesuch thaky, e, are found in
the 2-plane that is defined by the vectBtD, B, H and whose directions will coincide
with the proper directions ofy() (a, b =1, 2). One will then have:

(3.2) Z=N=0, XY+LM=0.

In that framef,s will have the components:

() A. LICHNEROWICZ, Théories relativistes de la gravitation et de I'électromaigne¢ MASSON,
Paris, 1955; L. MARIOTThése Paris, 1957.
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2+ 2
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2_ 2
0 _¢ 2’7 0 0
(33) ¢aﬂ): ZZ_ 2 ]
0 0 i 0
2
2 2
Jauén 0 0o < 1
in which:
(3.4) F2=X2+2 n?=Y?>+M?2

In the regular case’t —n2# 0), tqp Will admit the four proper values:

24 92 24 2 2 2 2)\2
%:(eﬂ—l)‘( 4'7 i\/(sﬂ—l)z[gT”j +4€,U[5 2'7 j , S=-9=3(E =),
One recovers the well-known results &r= 1.

4. If &% — i = 0 then the induction will be singular, ade |/EE |= |/ #H |. The

four proper values will then begg = (su— 1), s1 =5 =55 = 0.
If &> 1, which corresponds to the study of the elexaignetic field in matter, then
S will be positive. The proper vectoYsthat are associated with the triple proper value

of zero are found in the space-like 3-plane whageation is./ &V ° + V2 = 0, while

the proper vectowW that is associated with the positive proper valwiebe oriented in
time and have the well-defined direction:

Jeuw3+wl=0, wl=w?=0,

i.e., the direction of the vectbr./ gz u +e;.
In that casetyz will translate into the tensorial equation:

top= 52 lo |,8,
or, upon normalizing:
tap= (g~ 1) E% Ay Ap.

We point out that the direction bbr A belongs to the con€, (ds® = 0), and that it is

orthogonal tcg, D, B, H.
(Facultés des Sciences, Besancon, Dijon)




