"Inductions électromagnétiques dans un milieu anisotrope relativiste," C. R. Acad. Sci. Paris **245** (1957), 1782-1785.

Electromagnetic inductions in a relativistic anisotropic medium

Note (^{*}) by **PHAM MAU QUAN**

Presented by Georges Darmois

Translated by D. H. Delphenich

The anisotropy of a medium is translated with the aid three automorphisms $\boldsymbol{\varepsilon}, \boldsymbol{\mu}, \boldsymbol{\sigma}$ of the tangent vector space at each point x of the space-time manifold V_4 , which represent the dielectric strength, the magnetic permeability, and the electric condition of the medium, resp. The Maxwell equations admit a triple system of characteristic manifolds that are each tangent to a cone of order two.

1. Let *D* be a domain in space-time V_4 that is referred to a local coordinate system (¹) (x^{α}) . One lets T_x denote the tangent vector space to V_4 at *x*. Let $ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$ be the world-metric, and let u^{α} be the unit velocity vector that is attached to each point *x* of the medium that is occupied by *D*. One recalls that a proper frame at the point *x* is an orthonormal frame whose basic vector $\mathbf{V}^{(0)}$ that is oriented in time and coincides with the vector $\mathbf{u}_{,}$ and the other three vectors $\mathbf{V}^{(i)}$, which are oriented in space define the tri-plane Π_x that is orthogonal to \mathbf{u} and which one calls the *space associated* with the time direction \mathbf{u} .

The electromagnetic field is defined by the given on V_4 of two antisymmetric tensor fields of order 2, $H_{\alpha\beta}$ and $G_{\alpha\beta}$. The electric and magnetic induction and field vectors **D**, **E** and **B**, **H**, resp., are defined by (²):

(1.1)
$$D_{\alpha} = G_{\rho\alpha} u^{\rho}, \quad E_{\alpha} = H_{\rho\alpha} u^{\rho}, \quad B_{\alpha} = \overset{*}{H}_{\rho\alpha} u^{\rho}, \quad H_{\alpha} = \overset{*}{G}_{\rho\alpha} u^{\rho},$$

in which one sets:

$$\overset{*}{H}_{lphaeta}=rac{1}{2}\,\eta_{lpha
u\gamma\delta}H^{\gamma\delta},\qquad \overset{*}{G}_{lphaeta}=rac{1}{2}\,\eta_{lpha
u\gamma\delta}\,G^{\gamma\delta},$$

in which $\eta_{\alpha\nu\gamma\delta}$ denotes the completely-antisymmetric tensor that is attached to the volume element form on V_4 .

^{(&}lt;sup>*</sup>) Session on 21 October 1957.

⁽¹⁾ Cf., J. rat. Mech. Anal. **5**, no. 3 (1956), 473-538.

 $[\]binom{2}{3}$ Greek indices vary from 0 to 3, while Latin ones vary from 1 to 3.

In order to express the relations between inductions and fields, we given each point x of V_4 two automorphisms $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ of T_x ; i.e., two linear maps of T_x to itself:

$$\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E}, \qquad \mathbf{B} = \boldsymbol{\mu} \mathbf{H}.$$

We denote the representative matrices of $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ by the same letters, and their elements $(\boldsymbol{\varepsilon}_{\beta}^{\alpha})$ and $(\boldsymbol{\mu}_{\beta}^{\alpha})$ define the components of two mixed tensors on V_4 that they are associated with.

2. Since $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ are automorphisms, the matrices $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ will be invertible. A given field will define a well-defined induction, and conversely, if one knows an induction then it will correspond to one and only one field that is its induction. One lets $\boldsymbol{\lambda}$ and $\boldsymbol{\tau}$ denote the inverse transformations to $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$, resp., or their representative matrices.

One infers from (1.1) that:

(2.1)
$$E_{\alpha} u^{\alpha} = D_{\alpha} u^{\alpha} = H_{\alpha} u^{\alpha} = B_{\alpha} u^{\alpha} = 0.$$

The fields and induction vectors are orthogonal to the unit velocity vector u^{α} : viz., they are vectors in the tri-plane Π_x . The automorphisms $\boldsymbol{\varepsilon}, \boldsymbol{\mu}, \boldsymbol{\lambda}, \boldsymbol{\tau}$ must make any vector in the tri-plane Π_x correspond to a vector in that tri-plane Π_x . We suppose, moreover, that **u** is a proper vector of the corresponding matrices. It will then result that $\boldsymbol{\varepsilon}, \boldsymbol{\mu}, \boldsymbol{\lambda}, \boldsymbol{\tau}$ leave **u** and Π_x invariant. In a proper frame, those two conditions are equivalent to $\boldsymbol{\varepsilon}_i^0 = \boldsymbol{\varepsilon}_0^i = 0$, $\boldsymbol{\mu}_i^0 = \boldsymbol{\mu}_0^i = 0, \ \lambda_i^0 = \lambda_0^i = 0, \ \tau_i^0 = \tau_0^i = 0$. One will note that if the matrices $\boldsymbol{\varepsilon}, \boldsymbol{\mu}, \boldsymbol{\lambda}, \boldsymbol{\tau}$ are symmetric then one of the preceding conditions will imply the other one.

One will be led to set:

(2.2) $\varepsilon_{\beta}^{\alpha} = \varepsilon \, \delta_{\beta}^{\alpha} + e_{\beta}^{\alpha}, \qquad \mu_{\beta}^{\alpha} = \mu \, \delta_{\beta}^{\alpha} + m_{\beta}^{\alpha},$ (2.3) $\lambda_{\beta}^{\alpha} = \lambda \, \delta_{\beta}^{\alpha} + l_{\beta}^{\alpha}, \qquad \tau_{\beta}^{\alpha} = \tau \, \delta_{\beta}^{\alpha} + t_{\beta}^{\alpha},$

in which ε , μ , λ , τ are scalars ($\lambda = 1 / \varepsilon$, $\tau = 1 / \mu$) and e^{α}_{β} , l^{α}_{β} , m^{α}_{β} , t^{α}_{β} are such that:

$$e^{\alpha}_{\beta} u^{\beta} = l^{\alpha}_{\beta} u^{\beta} = m^{\alpha}_{\beta} u^{\beta} = t^{\alpha}_{\beta} u^{\beta} = 0.$$

The medium considered is called *isotropic* if the transformations $\boldsymbol{\varepsilon}$ and $\boldsymbol{\mu}$ are homotheties. One will then have (¹):

$$arepsilon_eta^lpha = arepsilon\,\delta^lpha_eta\,, \qquad \mu^lpha_eta = \mu\,\delta^lpha_eta\,.$$

3. Starting from the constraint equations (1.2), which can be written explicitly as:

(3.1)
$$G_{\alpha\beta} u^{\alpha} = \varepsilon_{\beta}^{\rho} H_{\alpha\rho} u^{\alpha}, \quad \overset{*}{H}_{\alpha\beta} u^{\alpha} = \mu_{\beta}^{\rho} \overset{*}{G}_{\alpha\beta} u^{\alpha},$$

one can express the $G_{\alpha\beta}$ as functions of the $H_{\alpha\beta}$:

$$G_{\alpha\beta} = \tau H_{\alpha\beta} + (\tau - 1)(H_{\sigma\alpha} u^{\sigma} u_{\beta} - H_{\sigma\beta} u^{\sigma} u_{\alpha}) + (e^{\rho}_{\alpha} u_{\beta} - e^{\rho}_{\beta} u_{\alpha}) u^{\sigma} H_{\rho\sigma} + \varepsilon_{\alpha\beta\gamma\delta} u^{\gamma} \varepsilon^{\mu\nu\rho\sigma} u_{\nu} H_{\rho\sigma},$$

in which $\varepsilon_{\alpha\beta\gamma\delta}$, $\varepsilon^{\mu\nu\rho\sigma}$ are the Kronecker symbols.

4. The electromagnetic field $(H_{\alpha\beta}, G_{\alpha\beta})$ satisfy Maxwell's equations:

(4.1)
$$\mathcal{E}^{\delta} \equiv \frac{1}{2} \mathcal{E}^{\mu\nu\rho\sigma} \nabla_{\alpha} H_{\gamma\delta} = 0,$$

(4.2)
$$\mathcal{D}_{\beta} \equiv g^{\alpha \rho} \nabla_{\alpha} G_{\rho \beta} = J_{\beta},$$

in which the electric current vector J_{β} verifies the hypothesis that:

(4.3)
$$J_{\beta} = \delta u_{\beta} + \sigma_{\beta}^{\alpha} H_{\rho\alpha} u^{\rho},$$

in which δ is a scalar that represents the proper density of the electric charge, and $(\sigma_{\beta}^{\alpha})$ is a new automorphism that introduces the electric conductivity of the medium, such that the conduction current $\Gamma_{\beta} = \sigma_{\beta}^{\alpha} H_{\rho\alpha} u^{\rho}$ will satisfy the generalized Ohm hypothesis $\Gamma = \sigma$ **E**. One remarks that equations (4.1) express the idea that there exists a local vector potential for $H_{\alpha\beta}$.

5. The $\varepsilon_{\beta}^{\alpha}$, μ_{β}^{α} , σ_{β}^{α} are given functions of x^{α} , the field variables are the $g_{\alpha\beta}$, $H_{\alpha\beta}$, which verify the Maxwell-Einstein equations that correspond to the schema considered in the domain *D*. The Einstein equations must determine the $g_{\alpha\beta}$ and u^{α} ; in particular, consider the Maxwell equations, for which we study the Cauchy problem. We are given the values of $(H_{\alpha\beta})$ on the hypersurface *S* whose local equation is $x^0 = 0$, and we seek to determine the values of the oblique derivatives $\partial_0 H_{\alpha\beta}$ on *S*. The Maxwell equations are equivalent to the set of two systems:

(5.1)
$$\mathcal{E}^{k} \equiv \frac{1}{2} \eta^{0ijk} \partial_{0} H_{ij} + \Psi^{k} = 0,$$

(5.2)
$$\mathcal{D}_{i} \equiv \frac{1}{\mu} \{ (g^{00} - (1 - \varepsilon \mu) u^{0} u^{0}) \delta_{i}^{j} - \mu (e_{i}^{j} u^{0} - e_{i}^{0} u^{j}) u^{0} + \frac{1}{\varepsilon} (g^{0\alpha} e_{\alpha}^{0} u^{j} - g^{j\alpha} e_{\alpha}^{0} u^{0}) u_{i} + \frac{1}{2} \mu g^{0\lambda} \varepsilon_{\lambda i \gamma \delta} u^{\gamma} t_{\mu}^{\delta} \varepsilon^{\mu \nu 0 j} u_{\nu} \} \partial_{0} H_{0j} + \Phi_{i}$$

$$=\delta u_i+\sigma_i^{\alpha}H_{\rho\alpha}u^{\rho}$$

(in which Ψ^k and Φ_i are known quantities in *S*) and to the two identities that are verified on S:

(5.3)
$$\mathcal{E}^0 \equiv \frac{1}{2} \eta^{ijk0} \partial_i H_{ik} = 0,$$

(5.3)
$$\mathcal{E} \equiv \frac{1}{2} \eta^{\alpha} \quad \sigma_{i} H_{jk} = 0,$$

(5.4)
$$\mathcal{D}^{0} \equiv g^{0\beta} \mathcal{D}_{\beta} = \delta u^{0} + g^{0\beta} \sigma^{\alpha}_{\beta} H_{\rho\alpha} u^{\rho},$$

in which \mathcal{D}^0 does not depends upon $\partial_0 H_{\alpha\beta}$. One notes that (5.3) expresses the idea that the tensor H_{ij} that is induced on S is locally derived from a potential vector.

If the hypersurface S is not exceptional then equation (5.4) will provide a value for δ , equations (5.1) will determine the values of $\partial_0 H_{ij}$, and equations (5.2) will determine those of $\partial_0 H_{0i}$ on S. The calculations can be performed by means of successive derivations.

The characteristic manifolds of Maxwell's equations are necessarily such that:

(5.5)
$$\Omega \equiv \det (A_i^j) = 0,$$

in which the A_i^j represent the coefficients of $(1/\mu) \partial_0 H_{0j}$ in (5.2). An analysis of that equation will show that there generally exists a triple system of characteristic manifolds that are tangent to a second-order cone.

(Faculté des Sciences, Besançon)