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 The problem in the following considerations is that of extending the method of parametric 

representation that was introduced into the calculus of variations by Weierstrass and was 

constructed completely for the integral ( , , , )F x y x y dt   to the case of multiple integrals that 

contain first derivatives of the unknown functions. We shall address integrals over n-dimensional 

hypersurfaces in (n + 1)-dimensional spaces, and we will have to derive for them, on the one hand, 

the formal results in regard to the theory of the first and second variation and on the other hand, 

the main theorems of the more recent calculus of variations, namely, HILBERT’s independence 

theorem and the Weierstrass transformation of the total variation and Kneser’s transversality 

theorem that it implies. No weight will be placed upon achieving an arithmetically-rigorous basis. 

With a sufficient restriction of the concepts of “hypersurface” and “boundary of the hypersurface,” 

that would present no difficulties, but it would nonetheless require considerable space. 

 The methods of the parametric representation were already applied to double integrals by 

Kobb (Acta mathematica, v. 16, 17), and that theory is presented thoroughly in Kneser’s textbook. 

Now, it is remarkable that the quite complicated calculations of those authors can be simplified 

considerably by a simple device and can then be easily adapted to the general case of n-fold 

integrals. By just that device, one will succeed in expressing the transversality condition, the 

independence theorem, etc. very simply and clearly. 

 

 

I. 

 

 Let a hypersurface be given in the (n + 1)-dimensional space with the coordinates x0, x1, …, xn 

by the parametric representation: 

 

xi = xi (u1, u2, …, un)  i = 0, 1, …, n,    (1) 

 

and at the same, the determinant of the matrix: 
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


 

 

may not vanish anywhere. We denote that determinant as follows: 

 

ph = 

0 1 1

1 1 1 1( 1)

h h n

h

x x x x

u u u u

− +   

   −  .    (2) 

Now let  be a function of x0, …, xn and the derivatives xi / uk . We then consider the n-fold 

integral: 

J = 1, i
i n

k

x
x du du

u

 
 

 
  

 

when it is extended over the hypersurface. We would now like to consider only those functions  

for which that integral is independent of the choice of the parameter ui . In order to fix them more 

precisely, we would like to assume that our hypersurface is referred to a well-defined system of 

parameters. A positive normal direction will then be established by the associated ph, and in that 

way a positive and negative side of the hypersurface will be distinguished at every point. We shall 

now consider only those parameter transformations that do not switch the sides of the surface, i.e., 

ones whose determinant: 

1

1

( , , )

( , , )

n

n

u u

u u



 
 =      (3) 

 

is positive. In that way, the integral will go to: 

 

J   = 1, i
i n

k

x
x du du

u

 
  

 
  = 1

1
, i

i n

k

x
x du du

u

 
 

  
  . 

 

 One easily concludes from this that if one is to have J = J   for all hypersurfaces and all possible 

parametric representation then the identity: 

 

, i
i

k

x
x

u

 
  

 
 = , i

i

k

x
x

u

 
   

 
 

 

must exist. Now, instead of deriving relations between the derivatives of  with respect to /i kx u   

by performing various differentiations, as Kobb and Kneser did, we shall make the easily-verified 

remark that the identity above will be fulfilled if and only if  has the form: 
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, i
i

k

x
x

u

 
  

 
 = F (xi, pi) , 

 

in which F is a positive-homogeneous function of the pi such that: 

 

F (xi, k pi) = k F (xi, pi)  when k > 0 .    (4) 

 

That is what the device that was mentioned in the introduction consists of, and its immediate 

consequence consists of the convenience of having a function F with only 2n + 2 variables, while 

 includes (n + 1)2. It further follows from (4) that: 

 

F (xi, pi) = 
0

h

n

h p

h

p F
=

 ,          (5) 

0 = 
0

h k

n

h p p

h

p F
=

 ,         (6) 

 

when the indices ph mean derivatives with respect to the respective variables. Since the general 

solution of the equation: 

0

n

h h

h

p 
=

  = 0 

is given by: 

h = 
1

n
h

i

i i

x

u


=




  , 

 

it will follow from (6) that the (n + 2)(n + 1) / 2 quantities 
h kp pF  can be expressed in terms of n (n 

+ 1) / 2 new quantities rs = sr in the form: 

 

h kp pF = 
, 1

n
i k

rs

r s r s

x x

u u=

 


 
 .            (7) 

 

It should be pointed out that F, 
ipF , 

i kp pF  are invariant under parameter transformations, and ones 

of index 1, 0, − 1, resp., while the rs are again dependent upon the choice of the system of 

parameters. However, the following important relation exists for the transition to the new 

parameters 1u , …, nu  : 

rs
  = 1

, 1

n
sr

uu

u u


   

−

=

 
 

 
 ,                (8) 
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in which  is defined by (3). As long as the determinant of the  is non-zero, one can now regard 

the rs as subdeterminants of a system of quantities rs and obtain the result that the quadratic 

differential form: 

, 1

n

rs r s

r s

du du
=

  

 

will transform as follows under the transition to new parameters: 

 

, 1

n

rs r s

r s

du du
=

   = 
3

1

, 1

n

n
rs r s

r s

du du
−

−

=

  .    (9) 

 

 In order to express the ik in terms of the 
i kp pF , we proceed as follows: 

 We denote the subdeterminant of /i kx u   in ph by ( )

,

h

i kP  and set ( )

,

i

i kP  = 0. From the elementary 

rules for determinants, the following relations will then exist: 

 
( ) ( )

, ,

( ) ( )

, ,

0 0

( )

,

1

( )

,

1

0,

, ,

,

0 .

h i

i k h k

n n
h

n

sn
i k

k k

P P

x x
P p P p

u u

x
P p p

u

P

u

 
       

  

 
     

 

 

 

= =

=

=

+ =


  = = −
 


 
= − 




= 
 

 





   (10) 

 

In those expressions, ik = 0 when i  k, ii = 1. 

 With the help of the second equation in (10), one will get from (7) that: 

 

p p rs = ( ) ( )

, 0
i k

n

p p i r k s

i k

F P P 

=

 .    (11) 

 

Therefore, when ph  0, those formulas will allow one to calculate rs when one sets  =  = h. 

 With those preparations, we shall go on to the transformation of the first variation. We first 

have: 

J = 1 nF du du  . 

Now, we have: 

 

 F  = 
0

h h

n

x h p h

h

F x F p 
=

+  
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  = ( )

,

0 , 0 1
h h

n n n
h i

x h i k p

h i h k k

x
F x P F

u




= = =


+


    

  = 

( )

, ( ) ( )

, ,

0 , 0 1 , 0 1 , 0 1

( )h

h h

hn n n n n n n
pi k h h

x h i i k i p i k i

h i h k i h k i h kk k k

FP
F x x P x F P x

u u u
   

= = = = = = =

 
− − +

  
        . 

 

The second vanishes from the last equation in (10). If we then set: 

 

hp

k

F

u




 = 

h hx p p p

k k

x p
F F

u u 

 



  
+ 

  
  

 

and express 
k

p

u




 in terms of 

2
( )

,

r
rs

r s k s

x
P

u u

 

 
   then when we recall the relation (10), that will imply 

the simple final result that: 

 

F = ( )

,

, 0 1 0

( )
h

n n n
h

p i k i h h

i h k hk

F P x T p x
u

 
= = =


+ 


   ,     (12) 

in which: 

  T = 
0 , 0

i i

n n

x p rs rs

i r s

F d
= =

−   , 

(13) 

drs = 
2

,

r
h

r s r s

x
p

u u



 
  = − 

0

n
h h

h s r

x p

u u=

 

 
  = − 

0

n
h h

h r s

x p

u u=

 

 
  . 

 

The quadratic differential form: 

, 1

n

rs r s

r s

d du du
=

  = − 
0

n

h h

h

dp dx
=

  

 

transforms as follows under the transition to new parameters: 

 

, 1

n

rs r s

r s

d du du
=

    = 
, 1

n

rs r s

r s

d du du
=

  .    (14) 

 

 It follows from this and (9) that the expression T is absolutely invariant under parameter 

transformations. T = 0 is the differential equation of the extremal hypersurfaces. If we now 

substitute (12) in the expression for J then the first term can be transformed into an integral over 

the (n – 1-dimensional) boundary of the hypersurface by partial integration. If that is given by xk 

= xk (v1, …, vn−1) then one will ultimately get: 

 



Radon – The theory of maxima and minima of multiple integrals. 6 

 

J = 

0 1

0 1

0 1

1 1 11 1 1
0

0 1

1 1 1

np p p

n

n n

n i i n

i

n

n n n

F F F

x x x

x xx

dv dv T p x du duv v v

x xx

v v v

  

−

=

− − −

 

 +   

 

  

  .  (15) 

 

The sign on the first integral depends upon the choice of the parameters v1, …, vn−1 . 

 One sees from this that for a fixed boundary, if one is to have an extremum then it is necessary 

that T = 0, i.e., that the hypersurface must be an extremal. 

 By contrast, if all that is prescribed is that the boundary should lie on a given hypersurface K 

then the xi will not be zero on that boundary. However, one sees that the subdeterminants of the 

first row in the first term of (15) must then be proportional to the quantities 0, 1, …, n when we 

denote the direction parameters of the normal to K by k . Thus, a further necessary condition for 

an extremum with a variable boundary will be: 

 

0
h

n

p h

h

F 
=

  = 0 ,      (16) 

 

which we shall refer to as the transversality condition. 

 Here, we should connect with the theory of the second variation, but we shall only go so far as 

to remark that (for a fixed boundary) the second variation of an extremal hypersurface can be put 

into the form: 
2J  = 1( ) nw wdu du  , 

 

in which w =  
i ip x , and  is a linear self-adjoint second-order differential expression of the 

form: 

 (w) = A w − 
, 1

n

hk

h k h k

w

u u=

  
 

  
  .    (17) 

 

 The Jacobi transformation of the second variation that is associated with it and the connected 

considerations are developed in precisely the same way as when the integral has the form 

0 0
0 1

1

, , ,n n

n

x x
f x x dx dx

x x

  
 

  
  . We infer from that theory the theorem (1) that in order for a 

minimum (maximum, resp.) to occur, it is necessary that the quadratic form: 

 

 
 (1) Which was proved rigorously for n = 2 by Mason.  
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, 1

n

ik i k

i k

y y
=

      (17.a) 

 

must not be negative (positive, resp.) on the extremal hypersurface for any real system of values 

y1, …, yn . 

 If the determinant | ik | is non-zero then we can also discuss the form with the coefficients ik 

[cf., (9)], instead of the latter form, and it will be positive or negative or definite (indefinite, resp.) 

at the same time as the latter form. 

 

 

II. 

 

 We now turn to the second part of our considerations. Let a one-parameter family of extremal 

hypersurfaces be given that simply covers a subset of (n + 1)-dimensional space, which we will 

refer to as a field. p0, …, pn, 
0pF , …, 

npF  will then be single-valued functions of position in it when 

we understand p0, … pn to mean the values that are calculated for the extremal hypersurface that 

goes through the point x0, …, xn . One can immediately derive a differential relation that the 
0pF , 

…, 
npF  must satisfy then. Namely, if we let /

ip kF x   denote a differentiation in the sense that 
ipF  

will be thought of as a single-valued function of x0, …, xn then we will have: 

 

0

k

n
p

k k

F

x=




  = 

0 0
k hk k

n n
h

p x p p

k h k

p
F F

x= =

 
+ 

 
   

 = 
0 0 , 1

kk

n n n
k h h

p x rs

k h r s r s k

x x p
F

u u x= = =

   
+  

   
    

 = 
0 , 1

kk

n n

p x rs rs

k r s

F d
= =

−   . 

 

 However, that is nothing but the expression T, and it will vanish since the hypersurfaces are 

extremals. 

 We then have the relation: 

0

k

n
p

k k

F

x=




  = 0 ,      (18) 

but that says only that the integral: 

J   = 1

0
k

n

k p n

k

p F du du
=

      (19) 

 

has the same value over all hypersurfaces with the same boundary that lie completely in the field 

and whose parameters are 1u , … , nu  , and have a normal direction 0p , …, np . With that, we have 

arrived at the analogue of Hilbert’s independence theorem. 
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 That further implies the following transformation of J : Let a subset of an extremal be 

surrounded by a field such that the field itself belongs to an extremal field. We can then take the 

integral 1 nF du du  = J over the extremal and replace it with the integral J  , which is taken 

over an arbitrary hypersurface that lies completely in the field and has the same boundary as the 

extremal hypersurface. Let the integral 1 nF du du , when taken over the latter surface, be 

denoted by J , so we will then have: 

 

J = J J−  = J J −  = 0 0 0 0( , , , , , , , , )n n n nE x x p p p p du du  ,        (20) 

when we set: 

0 0 0( , , , , , , , , )n n nE x x p p p p  = 
0

( , ) ( , )
n

pF x p p F x p


 =

−  ,    (21) 

 

in which the p are the normals directions of the extremals, when regarded as functions of the field. 

 We now consider the curves of the field that are given by the differential equations: 

 

0

0

p

dx

F
 = 

1

1

p

dx

F
 = … = 

n

n

p

dx

F
 . 

 

Assuming that F  0, they will simply cover the field and shall be referred to as transversal curves. 

If one bounds an arbitrary region on an extremal hypersurface of the field then the transversal 

curve through its boundary will define a hypersurface that will be referred to as a transversal 

hypersurface. That will bound a certain region on each extremal hypersurface of the field, and 

when the integral 1 nF du du  is extended over that region, it will have the same value for all 

field extremals, which would follow from (15). That is the analogue of Kneser’s transversal 

theorem. When the Hilbert integral J   is extended over a transversal surface, it will have the 

value zero, since its integrand will vanish identically there. 

 We would now like to develop the consequences of the transformation (20). If we develop 

( , )F x p  in a Taylor series relative to the variables p  then when we assume the continuity of the 

derivatives
i kp pF  , that will give: 

( , , )E x p p  = 1
2

, 0

( ) ( ) ( , )
i k

n

k k i i p p

i k

p p p p F x p

=

− − ,   (22) 

when we set: 

ip  = ( )i i ip p p+  − ,  0 <  < 1 . 

 

 That further implies that: 

 

1 2( , , )E x k p k p  = 2 ( , , )k E x p p , k1, k2 > 0 . 
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 We can always introduce the direction cosines of the normal in question in place of p, p  in 

the following discussion of the sign of E then, i.e., we can replace pk with k = 
2

k

h

h

p

p
 and kp  

with = 
2

k

h

h

p

p
. We shall now make the following assumptions: 

 

 a) Let the quadratic form with the coefficients ik be positive-definite along the extremal 

hypersurface H that is surrounded by a field. 

 

 b) Let ( , , )E x p p  [ ( , , )E x   , resp.] be positive along the same extremal hypersurface for all 

systems of values (x, p) [(x, ), resp.] of the extremal H and every arbitrary system of values p  

[ , resp.], and let it vanish for only pi = ip  [i = 
i , resp.] (i = 0, 1, …, n). 

 

 ) It then follows from the second assumption that: If we are given an arbitrary number , 0 

<  < 1 then we can fix a neighborhood () of H inside of the field such that the E -function is 

likewise positive for all systems of values   that satisfy the relation i i

i

   < 1 – , and in the 

neighborhood () of each point. 

 

 We now consider the expression (22) for E to be a quadratic form with the variables p p−  and 

the coefficients ( , )
i kp pF x p . For x  = x, ip  = pi , those coefficients will go to ( , )

i kp pF x p , and 

after introducing the rs , the quadratic form will take on the value: 

 

, 0

( , )
i k

n

p p i k

i k

F x p y y
=

  = 
, 1

n
i k

rs i k

r s i kr s

x x
y y

u u=

 


 
    . 

 

 However, since assumption a) says that the rs are the coefficients of a definite form, the form 

( , )
i kp p i kF x p y y  will vanish only for yi =   pi and will be nowhere negative. It is then semi-

definite. The condition for that is that no root  of the equation: 

 

0 0 0 1 0

1 0 1 1 1

0 1

n

n

n n n n

p p p p p p

p p p p p p

p p p p p p

F F F

F F F

F F F







−

−

−

 = 0 
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is negative. Now, that equation has the root  = 0, which is a simple root, since the coefficient of 

 has the value 2

ik i

i

p  , where | ik | is the determinant of the ik . All of the remaining roots 

will then be positive. If we now go on from the ( , )
i kp pF x p  to the ( , )

i kp pF x p  then the root will 

remain  = 0, and the corresponding values of yi that make the form ( , )
i ki k p py y F x p  vanish 

will be proportional to the p , as one easily sees. When one chooses the x , p  [ p , resp.] to be 

sufficiently close to x, p, the latter form will be likewise semi-definite (positive) then. When the 

E-function is written in terms of the , from (22), it can therefore vanish only when: 

 

i i −  = 
i   = [ ( )]i i i   + −  ,    (23) 

 

in which  means a positive constant, or when 
i  = i . However, it follows from (23) that since 

2

i  = 2

i  = 1, one will have: 

  (1 )(1 )i i  −  −  = −  , 

  (1 )(1 )i i  −  −  =   
i i   . 

 

 However, those equations are incompatible, since  should be positive, but i i

i

   will be 

positive when the direction 
i  lies sufficiently close to i . It will then follow that: 

 

 ) One can determine a neighborhood ( )  of H and a positive number  < 1 such that 

( , , )E x    does not vanish in the neighborhood ( )  of H and for 1 > i i

i

   > 1 –  . 

 

 If we then apply the theorem that was proved in ) then it will follow that a neighborhood 

( )  of H inside of the field can be given in which the E-function vanishes for only pi = ip , and 

is otherwise everywhere positive. 

 The conditions a) and b) are then sufficient for the existence of a strong minimum. 

 One also succeeds in proving the necessity of the condition E  0, but that proof will be 

reserved for a later work. 

 In conclusion, let it be remarked that the form in which have treated the problem will give rise 

to a tangible extension of the concept of a surface integral, which will be suggested for the case of 

n = 2. It corresponds completely to Weierstrass’s generalization of the concept of a curve integral 

in the treatment of the problem of the integral ( , , , )F x y x y dt  . We cover the surface over which 

the integral is to be extended with a net of triangles whose sides have lengths that do not exceed a 

positive number  and whose angle is larger than a positive number  that is arbitrarily small, but 

fixed. Moreover, if the surface is one-sided, as we would like to assume, then a positive side will 

also be distinguished in each triangle, as long as that is true for the entire surface. If we now denote 

the projections of one such triangle onto the coordinate planes (their areas, resp.) by 1, 2, 3, in 



Radon – The theory of maxima and minima of multiple integrals. 11 

 

which, e.g., 1 is the projection onto the yz-plane, which is counted as positive or negative 

according to whether the positive side of the triangle points away from (towards, resp.) the yz-

plane, and form the sum: 

1 2 3( , , , , , )F x y z     ,             (24) 

 

which extends over all triangles, and in which x, y, z means an arbitrary point of the triangle in 

question, then we can show that when the surface has a continuously-rotating tangent plane [i.e., 

the functions x (u, v), y (u, v), z (u, v) are continuous, along with their first derivatives], that sum 

will converge to the integral 1 2 3( , , , , , )F x y z p p p du dv  for  = 0, but a fixed  . It would then be 

an obvious generalization of the definition of the surface integral to consider it to be limiting value 

of (24), when it exists. 

  

__________ 

 

 

 

 


