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Proper stresses and proper stress sources.

By. H. Reissner, Berlin-Charlottenburg.

Translated by D. H. Delphenich

The term “proper stresses” (also “self-stressesll)refier to those stresses that appear
in a body that is free of outer surface stressesratiee absence of volume forces.

Anséatze and assumptionsKirchhoff's theorem on the uniqueness of the solution of
the equations of elasticity does not contradict the plesgixistence of proper stresses,
since it is based upon the assumption that the existémpreper stresses is excluded.

In fact, a transformation of a space integral insmin of an outer surface integral and
a space integral appears in this proof, and this transfmmean only be performed
when one assumes that the components of the defomttiobe defined linearly from
the derivatives of the displacement of the vector.

Now, proper stresses arise precisely when:

1. Either the deformation tensor cannot be derived frocordinuous and single-
valued displacement vector, or:

2. The displacements are large enough that this demvaiandeed possible, but
nonlinear ), in which case, the more precise kinematical ralatio
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etc., with cyclic permutations, would be imperative
Only case 1 shall be considered in what follows.regard to case 2, it might be
mentioned {) only that it means a tilt from an unstressed timsito a stressed one, as,
e.g., for the overturning of a thin spherical shell

() Case 2 also involves a multi-valuedness in the eiaduckling process.
(®) See the general reference on proper stresssmgnyin this issue, pp. 58, as well.
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Proper stresses of the only kind that will be considarede sequel are then present
in a body when the deformation tensor of dilatationd shears does not satisfy the
consistency (i.e., compatibility) conditions.

The appearance of proper stresses in a body can basgmtaphenomenon when
local variations in density are provoked by variationseemperature, and indeed thermal
(proper) stresses, although they will appear only to tktene that no permanent
deformation comes about. However, permanent intstnaéses can also be produced in
a body — e.g., when the stresses that arise from tatope inhomogeneity lie above the
elastic limit, or when local variations of density appdae to chemical reactions or re-
crystallizations, as are produced in the so-called temgpgmiocess for steel, or finally,
when local deformations are left behind that are duesiding forces.

While the transient, temperature stresses below #stielimit that remain can, as is
known @), be calculated from dilatations alone, in the gdrese of permanent, internal
stresses, one will no longer be able to associate tvéh only dilatations as their
sources.

The permanent deformations that arise as a rescdissive temperature stresses or
load stresses will be, at the very least, variatidndeasity and, at the very most, non-
spherically-symmetric stretching and shearing.

In general, the calculation will also be possiblgp&rform in this general case only
under a certain assumption — which is generally satigfiedisely very often — namely:

I. The body is once more isotropic and homogeneous (with overbarred gjastici
constants E, G, and m) after the permanent deformation has set in.

This assumption should be understood to mean that, asyirother elastic stress
state, any anisotropy and inhomogeneity that might rasuit fhe stress are absent.

With that assumption, one will be able to calculatenust engineering applications,
although one must exclude certain cases that were smptabyLove in which the
material remains plastic without setting up or beconwgenbly inhomogeneous and
anisotropic after setting up. The former case shows uvg@latvely high temperatures —
e.g., for ice, as well — while the latter case musagsimed for the immense gravitational
stresses in the Earth’s interior.

Notations.
Gy, Oy, Oy The normal stresses, which will be abbreviatedrby
Tz, Tox Ty The tangential stresses, which will be abbreviated, and which

will represent the proper stress state in a bodyaitiqular.

Gt+o+ 0 =5S

() See, e.g., A. FoppWorlesungen iiber MechaniBd. V, pp. 293-308. — H. LorenElastizitat
Oldenbourg, 1913, pp. 583-591. — A. and L. Fogmianf und DrangOldenbourg, 1920, Bd. Il, pp. 266-
314. — H. WinkelFestigkeitslehreSpringer, 1927, pp. 482-494. — M. v. Laue, Zeitschrift fir texdine
Physik, 1930, pp. 385-394.
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& & & The stretching components, which will be abbreviated by

Wz Vox Wy The shear components, which will be abbreviateg;k@nd which
will give a deformation state that is derivable (compatiflem a
displacement vector.

%, °£y, O, The components of a permanent deformation that orggniat the
proper stresses, which is not derivable from a displaceweztor,
%% % Oty and which will be abbreviated By, °y.

O=5+5+4&
% =% +%, +°

u, v, w A displacement vector

E The modulus of elasticity

G The shear modulus

1/m The sectional contraction ratio (i.e., thReissonnumber)

‘o 'r The “fictitious” stress state that is derived from theformation

stateg, yon the basis dflooke’sstress-deformation relationship.

Under assumption (1), one can write the six stre$srd®tion relations oHooke’s
law in the following extended form:

1 1
E = &, +E[Ux —r—n(0y+az)]
(1)

_o 1
Yy = yyz+aryz

with cyclic permutations aof, y, andz
The deformation componentisand ythen refer to the deformation that is calculated
from a stress-free initial state.
The inverse of eq. (1) reads: When one denotes thatdilatoy® = & + & + &, as
usual, one will have:
o, =$(®— °9) +E(£X - %),
(m+1(m-2) mt+ 1 (2)

Tyz = G(yyz_ Oyyz)i
with cyclic permutations of, y, andz

Under the assumption that was made initially, itasvrobviously sufficient to next
ignore all volume forces and outer surface forcescesitheir effects will simply be
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superposed when only the final total stresses remain bilewelastic limit and the
deformations that are calculated by establishing an id&&ll iposition will preserve
their character as small magnitudes.

As is known, the equilibrium conditions will then dea

aa-x + aTXy + az-xz

=0, 3
ox o9y 0z ®)

etc., with cyclic permutations af y, andz

The condition of vanishing outer surface stresses witveseas the associated
boundary condition.

If one now substitutes eq. (2) into these equilibraonditions then they will take on
a form that represents the deformation compongngshat enter into a connected initial
state as something that results from the initial deféioms’s, %y .

In fact, that will yield:

0 0 0 0
m oo _ 2 30 0% 0% 0%,

- = , (3a)
m-20x m-2 0X ox 0y 0z

Au +

with cyclic permutations of, y, andz as the equations of elasticity.

The condition of vanishing outer stresses is formdlateilarly from eq. (2).

Here,’%, OWZ, etc., are to be regarded as functions that are lgnii@ependent of
position and each other, and if one so desires, alsaidns of time whose values must
not exceed certain absolute values, on the basie@&stumption I, but can be otherwise
arbitrarily discontinuous. As long as the continuunpdthpesis is admissible, one can
then start from a stress-free initial state and irapa@®itrary permanent deformations in
an arbitrarily small volume element, independentlyhef heighboring elements, with the
help of chemical, thermal, or mechanical experimeat@ngements.

These Anséatze obviously imply the following:

II. A proper stress state can always be regarded as originating in thetoatleffect
of the permanent initial deformatioffs, °y and elastic deformations in a connected,
originally stress-free body.

Two types of problems in engineering physics now arseety:

a) The initial deformationde, °y are given, and one seeks the stresses that they
produce.

b) The proper stresses are known by the deformationubfiatty-isolated volume
elements, with the help of the well-known method exftimns f), to a degree of
precision that increases with the smallness of thenwe element, and one asks
what the sources of the proper stresses were -hieeinitial deformationés, °y .

() See, e.g., A. Fépplpc. cit.— M. v. Lauejoc. cit.
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One cannot say, in general, how far one has to gheirsécond problem with the
reduction in size of the body in question in order tolmeacertain required accuracy, and
whether one even approaches a system of limit functadresl.

Only a certain vague knowledge of the continuity of¢heses of the proper stresses
can give one a clue to that.

Moreover, the resolution of a body into independehime elements by sectioning is
also coupled in experimental engineering with the linmitsuch a way that the forces that
are necessary for the sectioning can produce no pern@gfentnation that would negate
the result, and furthermore that it is difficult thagh sufficiently many measuring marks
to the outer surface of the body for the sectioning.

Determination of the proper stresses from the stress smes. Eq. (3) is definitive
for problema) . One can give it a somewhat more intuitive fornewlone introduces
certain “fictitious stresses,” namely, stresses Wald correspond to the deformatign
y—i.e., the displacement v, w — of the stress-free initial state in the absencmitél
deformationge, °y.

If one denotes these fictitious stresses &nand* 7 then eq. (3) can obviously be, in
turn, written in the following form:

+ + + 0 0 0 0
60X+6 Ty, 07,_Em| 1 0°© 0 5x+_16 Vo, 10°%,

= : 4
0x oy 0z m+ll m—2 0x 0x 20y 20z “)

etc., with cyclic permutation of y, andz, as the equilibrium conditions.

Now, since these fictitious stressSes *r are coupled with the desired proper stresses
o and 7 by way of the initial stresses or source streSsedr that correspond to the
imposed initial deformations or stress soufe8y by Hooke’slaw by the relations:

1l o=c-*g, r="r-"r
the fictitious stresses will be known immediatelg,well as the actual ones.
The fictitious stresses that are associated with pinoper stresses as a result of

conditions 1l and Ill are equal to the stressesttinauld appear in a body that was
initially free of deformations as result of theléoling fictitious volume force:

Em| 1 0°©, 0%, 10%, 10%,
m+ll m—2 dx d0x 20y 290z

(4a)

etc., with cyclic permutations of x, y, and z.
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With the help of this theorem, one canter alia, immediately answer the question of
when a proper stress state can be generated by densdtioverialone. Namely, this
corresponds to a result that is already known in a whwaedifferent form¥):

Only fictitious stress states that are derivable from a forcergal function can be
generated by pure density variations (e.g., by pure temperature variatioile
potential function of the fictitious volume force is then the demaitgtion °® itself, up
to the factor Em 3 (n — 2).

On the basis of the considerations above, one sangale the following meaning to
aminimal principlethat was expressed By Foppl and is suitable for the direct methods
of the calculus of variations.

The proper stresses that are installed in a bodystfr&e of volume and outer surface
forces for given initial deformatiorfg, °y make the deformation work (6) that is defined
by € —% and y -y (which coincides with the potential energy in this case, in the
absence of external forces) take a minimum. Thegefbe deformation quantitiesand
ywill be derivable from a displacement vector field avitl be defined by the relations
(1).

The proof of this follows from the fact that the ddpium conditions (3) for the
proper stresses and 7 lead to the following known expressions for the prifecipf
virtual work:

jdV(a& O+ Oy 08 + Or O& + Ty, Oz + Tox Ofiox + Txy Ofy) =0, (5)

under the assumption that the and dy must be derivable from a displacement vector in
agreement with eq. (2). The expression (5) will thendpeesented as the variation of
the following integral of the deformation work:

J d"{(ex %)+ (6, %) (6, %) 2+ O
m-2 (6)

+31(V = V) o WY 5 Y )

A remarkable special case of proper stresses is defindtelsystem of stresses that
was first treated byWeingartenand then byfimpe Volterra, andCesarq and are called
Volterra distortions(°).

In fact, whereas the proper stresses cannot be déroradhe displacement vectar
v, w without stress source¥;, %) there is the apparent exception by which stresses
without external forces are possible for a multi-valdegplacement vector in a multiply-
connected body. The displacement vector will then éxhipump for any circuit that
cannot be shrunk to a point without leaving the body.

() Love, Elasticity, 1927, pp. 168.
(®) See the survey that is presented in L&lasticity, Cambridge, 1927, pp. 221-228.
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The physical meaning of this is that one must think ohstaint layers
(Zwangsschichtgnas being pressed into surfaces that are positionedaaitpitand by
which the body will be converted into a simply-coneelcone, and that these constraint
layers push the two bounding surfaces apart, and thus mekeigplacement of the
original body discontinuous.

Weingartenhas presented and proved the interesting theorem thatfarné rigid
displacement of the two bounding surfaces with resfgeetich other will a deformation
state be possible that is derivable from a displacemeator, and thus satisfy the
compatibility conditions.

The state of stress and deformation, but not the sthtisplacement, is therefore
continuous and single-valued, and the positions of the reamstsurfaces will not be
derivable from it.

In light of our manner of thinking, thid/eingarten-Volterradisplacement state also
seems to be single-valued, and the stress stateengéberated by a distribution of initial
deformationge, °yover one or more wedge-like domains inside of the hbaybecome
infinitely thin in such a way that the extensidasvill become infinite in the direction of
the common surface normal, and the sh@grin a direction that is perpendicular to the
surface normal, in such a way tfigt dnand®y dnremain finite.

Weingarten’sheorem shows that the special case of the distsromly occurs when
the®s, and®y are compelled by a rigid displacement of the boundargsesf

Calculation of the stress sources from the stressesFor the evaluation of the
fabrication process of a work piece, it can be impuarta calculate the cause of the
proper stresses — viz., the tensor of stress soleee®l’y— from the proper stresses that
are mediated by the gradual sectioning of the body in questio

Although this problem that was denoted)yabove means only an inversion of the
first problem, and one has to add the six egs. (1) ofxtendedHookelaw and the three
egs. (3) for the six unknown stress compon@gt® and the three componentsv, w of
the displacement vector, nonetheless, the direplament of (1) and (3) seems to break
down for the solution of th&, %)

The path that arrives at determining equations for thesstsources from the so-
called compatibility conditions is passable, however.

If the initial deformations or stress sourc&s %y do not, in fact, satisfy the
consistency conditions, nor the stresgeg themselves, but the deformation components
&, yof the ideal initial state, as well as the assediatresse$o, *r that were called
fictitious above, then they must satisfy these six @@scy conditions.

As is known, the consistency relations re@d (

() See, e.g.Handbuch der PhysikGeiger-Scheel), Springer, 1929, Bd. VI, dt. Trefftz “Math.
Elastizitatstheorie,” pp. 64.
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0%, 0%, 0%, _
ay>  0x* 9xdy

2
265)( _i _ayyz+ayzx+ayxy :0’
dyoz 0Ox_ O0x 0y 0z

(7)

etc., with cyclic permutation of the y, andz

If one now substitutes the relations (1) (the diees o+ °g; *r= 7+ °r, resp., which
are equivalent to them) into (7) then when one dengtesg; + ¢; by s and®c;, + °q;, +
%4, by %, one will get:

0’0, 0’0, 1 (d*s a%s| ,0°T,
x 4 -~ + -~
ay> ox* m-1laxX oy 90Xy

%%, 0*°c 1 (0°% 08°° 0% °r
—_ x 4 y _ + -2 v |
ay* x> m-1{ X 0y 90Xy
0° °o 1 0°% 0 )Ea OZ-yz 0 OZ-yz 07 xy}
+ +

dy0z m-10YWz 0x dx 0y 0z

o, 1 od*s a(0r, or, Or,
=- - -— + + ,
oydz m-1loyz dx ox 9y 0z

etc., with cyclic permutations.

In this, the’o-and®r depend immediately upon theand®y linearly byHooke’slaw,
and can, if one so desires, be expressed directlymstef the latter.

Six mutually-independent second-order partial differentigliations for the six
unknown function®e and®y arise in this way, in which the proper stresses, whieh ar
perhaps given experimentally, play the role of perturbmmgctions. However, the
differential equations are not associated with any autdace conditions.

This apparent lack is connected with the arbitrarinefisaeirchoice of the manifold of
equivalent stress-source states, which will be estalolibklow.

The general solution of these equations (which is, bynaans, practicable, due to
the arbitrariness in the outer surface conditions)t medaps be achieved as follows:

One first sees immediately that’d, “yare the deformations that follow immediately
from the proper stresses bipoke’slaw then a possible stress-source system foPahe
and®ywill be given by:

(8)

ng — ng, 0

r,=r,, etc;

i.e., one obviously arrives at a possible initial statenvone makes the deformation that
corresponds to the proper stresses die off. Howewercould not use this solution for
the problem of the first part of this paper — viz., the mheit@ation of the stresses from
given stress sources — so one cannot expect that teealhygiven system of sources,
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which is equivalent to just one of infinitely many, wdbincide precisely with the
deformation tensor of proper stresses.

It also corresponds to the fact that one can supetpesparticular solution above
with any solution of the homogeneous system of difféaeatjuations (8) for th&, %y

For example, in the general case:

ng — fo +Ax eax+by+cz,
"= e+ (&% Af—;j CRlhh

etc., with cyclic permutation of y, zanda, b, ¢, where théd,, A, A,, & b, c are arbitrary
real or complex constants.
The superposed solution of the homogeneous equationgsodveaan arbitrary linear
expression irx, y, andz or a polynomial with certain relations between tbefficients.
Each of these systems of sources will generatsaime proper stresses.
Furthermore, for the axially-symmetric case of potardinates:

The compatibility equations then reduce to the form:

O°¢, 0%, 0%, _
022  or®> o0zor ©)
6£¢r
— ¢, =0,
or

which can be derived immediately from considering thieviong known relations:

_du _u _ow _0u ow
‘gl’__l £¢__l £Z__l MZ__+_
or r 0z 0z Or

A solution of the homogeneous eq. (9) is, e.g.:

& =Arcosaz

& = 2Ar cosaz
2

r
& =A COSF cosaz

2
Wz =A (E—Zaj r—sinaz.
a b

This solution [and every other solution of the log®neous equations (9)] can be
added to the solution:
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without changing the proper stresses.
The foregoing consideration then leads to the followiegprem:

One of the possible systems of stress-sources for a givem yfspeoper stresses is
the one that is associated with the system of proper stresdésdig’s law. One can
then add any solution of the homogeneous compatibility equd@ipfes the deformation
tensor to this system of sources without changing anything.

By contrast, for a prescribed system of proper stress sodec8gin a free body,
there is only one system of proper stresses, namely, the one tleteimined from the
equilibrium conditiong3) [(3a), resp] for vanishing outer surface stresses.

The aforementioneWeingarten-Volterradistortions can also obviously be generated
by sources that are continuously-distributed space, thstiethe superficially-distributed
stress sources, as for the stated authors, when omseshthe deformations that are
associated with the proper stress to be the sourca$. pBssibilities must be solutions of
egs. (7), (8), or (9).

One can also immediately give the superposed solutiorthef compatibility
conditions (7) that takes the one system of sourcéketmther one. Namely, it is the
compatible deformation state that is composed of thativedy-takenweingarternsource
wedge and the spatially distributed sources above.

Obviously, it is especially simple to carry over thgumments above to frameworks.

In ann-fold statically-indeterminate framework, the same esysbf proper stresses
can be generated in a known way by false (incompatgge)ions Ablangung in an
infinitude of ways according to the choice of the supetfs indicated terms, and one can
vary this manner of generation even further by superposingiosedefects
(Ablangungsfehlemnof all rods that will generate no proper stresses hyské/es alone.
The question of the origin of the system of proper sé®slso has a multi-valued answer
here.

Further questions:

1. It was established by the foregoing that one can ahgakibit infinitely many
proper stress source fields that are associated vgiea proper stress field — e.g., one
that is mediated by sections. One now asks whetherinantiat way, one can find a
distinguished representation (give invariants of the sofietd, resp.).

One sees immediately that there are the specias adgpure dilatation fields, as well
as pure form-changing fields, which differ fundamentalhg cannot be converted into
each other. The following examples of this might heigi

A pure dilatation source field is the field of a tempeara variation or a variation of
density that is produced by tempering, for which the elagtiiotit of the corresponding
proper stresses is not exceeded.

A pure form-changing source field is the field that is gatesl by the permanent
torsion of the external layers of a twisted rod, @resimpler, the field that arises when
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one twists two thin-walled tubes with respect to eatieroand attaches the ends to each
other.

From time to time, it is important in engineering phgsio know whether a
calculated proper stress state is produced by a pure ditataturce field or a pure form-
changing source field or by an essentially mixed field.

The source field that is immediately given by applyitapke’slaw will generally be
ostensibly mixed, and it would be important to have @moih for when a given source
field can be traced back to a pure dilatation field and wthean be traced back to a pure
form-changing field.

The question can thus be formulated as follows:

When is it possible to convert a stress source fieldy that is calculated in some
way into either a pure dilatation fieldx = & = & or into a pure form-changing
(dilatation-free) field>. € = 0 by superposing a deformation that is free of self-stresses
[from eq.(7)]?

2. There is often great interest in bringing a prope¥ss state to smaller stress
values by afterglowNachglihelh The process consists of exposing the body to a
uniform temperature change that rises very gradually and orre falls over a long
period of time, and which is, on the one hand, not so lngkeit changes the form and
crystalline structure of the body, but, on the othendhaintermittently reduces the
plasticity limit in such a way that the maximal shetress comes down everywhere to
the value that corresponds to the annealing temperature.

The associated question then reads:

Into which proper stress state does a given proper stress stataegothe plasticity
limit is lowered by a certain amount?

The answer will, in any case, depend upon whether onedutes the greatest
principal stress difference, followinilohr, or the quadratic mean value of the three
principal stress differences, followivg Mises.

The problem can be solved with no difficulty for maspherically-symmetric stress
states and many axially-symmetric ones, without going théodisplacement state that
leads from the original state to the desired one.

However, from a technical standpoint, it would alsalbsirable to give the solution
for the general case.

3. The non-fulfilment of the compatibility conditiofisr a form-changing field was
sometimes interpreted as a change of form in a body spiicea non-Euclidian line
elementY), in such a way that indeed, in place of the linenelet:

ds’ = dxé +dy? +d7Z,

aRiemanniarine element:

() SeeTrefftz[loc. cit, rem. ()].
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ds = O11 dx + 022 dy2 + 033 dZ + 201, dx dy+ 29,3 dy dz+ 2g93; dz dx

enters that is not transformable into the latter. one

The deformation componenésand ycan be expressed in terms of the variatidds
and ddx, 0 dy, 0 dz in the usual way for curvilinear, oblique coordinates by
differentiating these variations with respect to ¢tberdinates and, if the line element is
not Euclidian then they will no longer need to fulfiile compatibility conditions in
Euclidian space. On the contrary, the right-hand sidego (7), which is then non-
vanishing, must be employed in order to determine thdadisment vectoex, Jdy, oz,
and certain relations between the coefficigitsf the line element.

As a closer consideration shows, the non-fulfillmehthe compatibility conditions
can then be interpreted as a curvature of the geomigtidc fAny visualization of this
interpretation in space is, admittedly, not possibkaoalgh in many cases of superficial
form-changing fields, one might perhaps visualize itodlews:

The deformation components of a planar membrane witlstsesses are ones that do
not fulfill the compatibility conditions in the planbut in certain cases one will be able to
assemble the surface elements without stress wheplaoes them in a suitably curved
surface or allows the membrane to arch up from the plane

Up to now, it has not been shown, in general, howdikeovery of the associated
coefficientsgi of the non-Euclidian line element and thus, the given of the spatial
curvature — can benefit the physical problem.




