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 The term “proper stresses” (also “self-stresses”) will refer to those stresses that appear 
in a body that is free of outer surface stresses and in the absence of volume forces. 
 
 
 Ansätze and assumptions.  Kirchhoff’s theorem on the uniqueness of the solution of 
the equations of elasticity does not contradict the possible existence of proper stresses, 
since it is based upon the assumption that the existence of proper stresses is excluded. 
 In fact, a transformation of a space integral into a sum of an outer surface integral and 
a space integral appears in this proof, and this transformation can only be performed 
when one assumes that the components of the deformation can be defined linearly from 
the derivatives of the displacement of the vector. 
 Now, proper stresses arise precisely when: 
 
 1. Either the deformation tensor cannot be derived from a continuous and single-
valued displacement vector, or: 
 
 2. The displacements are large enough that this derivation is indeed possible, but 
nonlinear (1), in which case, the more precise kinematical relations: 
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etc., with cyclic permutations, would be imperative. 
 Only case 1 shall be considered in what follows.  In regard to case 2, it might be 
mentioned (2) only that it means a tilt from an unstressed position to a stressed one, as, 
e.g., for the overturning of a thin spherical shell. 

                                                
 (1) Case 2 also involves a multi-valuedness in the case of a buckling process. 
 (2) See the general reference on proper stresses by Nemenyi in this issue, pp. 58, as well. 
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 Proper stresses of the only kind that will be considered in the sequel are then present 
in a body when the deformation tensor of dilatations and shears does not satisfy the 
consistency (i.e., compatibility) conditions. 
 The appearance of proper stresses in a body can be a transient phenomenon when 
local variations in density are provoked by variations in temperature, and indeed thermal 
(proper) stresses, although they will appear only to the extent that no permanent 
deformation comes about.  However, permanent internal stresses can also be produced in 
a body – e.g., when the stresses that arise from temperature inhomogeneity lie above the 
elastic limit, or when local variations of density appear due to chemical reactions or re-
crystallizations, as are produced in the so-called tempering process for steel, or finally, 
when local deformations are left behind that are due to loading forces. 
 While the transient, temperature stresses below the elastic limit that remain can, as is 
known (3), be calculated from dilatations alone, in the general case of permanent, internal 
stresses, one will no longer be able to associate them with only dilatations as their 
sources. 
 The permanent deformations that arise as a result excessive temperature stresses or 
load stresses will be, at the very least, variations of density and, at the very most, non-
spherically-symmetric stretching and shearing. 
 In general, the calculation will also be possible to perform in this general case only 
under a certain assumption – which is generally satisfied precisely very often – namely: 
 
 I.  The body is once more isotropic and homogeneous (with overbarred elasticity 
constants E, G, and m) after the permanent deformation has set in. 
 
 This assumption should be understood to mean that, as in any other elastic stress 
state, any anisotropy and inhomogeneity that might result from the stress are absent. 
 With that assumption, one will be able to calculate in must engineering applications, 
although one must exclude certain cases that were emphasized by Love, in which the 
material remains plastic without setting up or becomes noticeably inhomogeneous and 
anisotropic after setting up.  The former case shows up at relatively high temperatures – 
e.g., for ice, as well – while the latter case must be assumed for the immense gravitational 
stresses in the Earth’s interior. 
 
 
 Notations. 
 
σx, σy, σz The normal stresses, which will be abbreviated by σ 

 
τyz, τzx, τxy The tangential stresses, which will be abbreviated by τ, and which 

will represent the proper stress state in a body, in particular. 
 

σx + σy + σz = s  

                                                
 (3) See, e.g., A. Föppl, Vorlesungen über Mechanik, Bd. V, pp. 293-308. – H. Lorenz, Elastizität, 
Oldenbourg, 1913, pp. 583-591. – A. and L. Föppl, Zwanf und Drang, Oldenbourg, 1920, Bd. II, pp. 266-
314. – H. Winkel, Festigkeitslehre, Springer, 1927, pp. 482-494. – M. v. Laue, Zeitschrift für technische 
Physik, 1930, pp. 385-394. 
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εx, εy, εz The stretching components, which will be abbreviated by ε 
 

γyz, γzx, γxy The shear components, which will be abbreviated by γ, and which 
will give a deformation state that is derivable (compatible) from a 
displacement vector. 
 

0εx, 
0εy, 

0εz 
 

0γyz, 
0γzx, 

0γxy 

The components of a permanent deformation that originates in the 
proper stresses, which is not derivable from a displacement vector, 
and which will be abbreviated by 0ε, 0γ. 
 

Θ = εx + εy + εz 
0Θ = 0εx + 0εy + 0εz 
 

 

u, v, w A displacement vector 
 

E The modulus of elasticity 
 

G The shear modulus 
 

1 / m 
 

The sectional contraction ratio (i.e., the Poisson number) 

+σ, +τ The “fictitious” stress state that is derived from the deformation 
state ε, γ on the basis of Hooke’s stress-deformation relationship. 

  
 Under assumption (I), one can write the six stress-deformation relations of Hooke’s 
law in the following extended form: 
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with cyclic permutations of x, y, and z. 
 The deformation components ε and γ then refer to the deformation that is calculated 
from a stress-free initial state. 
 The inverse of eq. (1) reads: When one denotes the dilatation by Θ = εx + εy + εz , as 
usual, one will have: 

0 0

0

( ) ( ),
( 1( 2) 1

( ),

x x x

yz yz yz

Em Em

m m m

G

σ ε ε

τ γ γ

= Θ − Θ + − + − + 
= − 

   (2) 

 
with cyclic permutations of x, y, and z. 
 Under the assumption that was made initially, it is now obviously sufficient to next 
ignore all volume forces and outer surface forces, since their effects will simply be 
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superposed when only the final total stresses remain below the elastic limit and the 
deformations that are calculated by establishing an ideal initial position will preserve 
their character as small magnitudes. 
 As is known, the equilibrium conditions will then read: 
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x y z
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 = 0,    (3) 

 
etc., with cyclic permutations of x, y, and z. 
 The condition of vanishing outer surface stresses will serve as the associated 
boundary condition. 
 If one now substitutes eq. (2) into these equilibrium conditions then they will take on 
a form that represents the deformation components ε, γ that enter into a connected initial 
state as something that results from the initial deformations 0ε, 0γ . 
 In fact, that will yield: 
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with cyclic permutations of x, y, and z as the equations of elasticity. 
 The condition of vanishing outer stresses is formulated similarly from eq. (2). 
 Here, 0εx , 

0γyz , etc., are to be regarded as functions that are entirely independent of 
position and each other, and if one so desires, also functions of time whose values must 
not exceed certain absolute values, on the basis of the assumption I, but can be otherwise 
arbitrarily discontinuous.  As long as the continuum hypothesis is admissible, one can 
then start from a stress-free initial state and impose arbitrary permanent deformations in 
an arbitrarily small volume element, independently of the neighboring elements, with the 
help of chemical, thermal, or mechanical experimental arrangements. 
 These Ansätze obviously imply the following: 
 
 II. A proper stress state can always be regarded as originating in the collective effect 
of the permanent initial deformations 0ε, 0γ and elastic deformations in a connected, 
originally stress-free body. 
 
 Two types of problems in engineering physics now arise, namely: 
 

a) The initial deformations 0ε, 0γ are given, and one seeks the stresses that they 
produce. 

 
b) The proper stresses are known by the deformation of mutually-isolated volume 

elements, with the help of the well-known method of sections (4), to a degree of 
precision that increases with the smallness of the volume element, and one asks 
what the sources of the proper stresses were – i.e., the initial deformations 0ε, 0γ . 

                                                
 (4) See, e.g., A. Föppl, loc. cit. – M. v. Laue, loc. cit.  
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 One cannot say, in general, how far one has to go in the second problem with the 
reduction in size of the body in question in order to reach a certain required accuracy, and 
whether one even approaches a system of limit functions, at all. 
 Only a certain vague knowledge of the continuity of the causes of the proper stresses 
can give one a clue to that. 
 Moreover, the resolution of a body into independent volume elements by sectioning is 
also coupled in experimental engineering with the limits in such a way that the forces that 
are necessary for the sectioning can produce no permanent deformation that would negate 
the result, and furthermore that it is difficult to attach sufficiently many measuring marks 
to the outer surface of the body for the sectioning. 
 
 
 Determination of the proper stresses from the stress sources.  Eq. (3) is definitive 
for problem a) .  One can give it a somewhat more intuitive form when one introduces 
certain “fictitious stresses,” namely, stresses that would correspond to the deformation ε, 
γ – i.e., the displacement u, v, w – of the stress-free initial state in the absence of initial 
deformations 0ε, 0γ. 
 If one denotes these fictitious stresses by +σ and +τ then eq. (3) can obviously be, in 
turn, written in the following form: 
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etc., with cyclic permutation of x, y, and z, as the equilibrium conditions. 
 Now, since these fictitious stresses +σ, +τ  are coupled with the desired proper stresses 
σ and τ by way of the initial stresses or source stresses 0σ, 0τ that correspond to the 
imposed initial deformations or stress sources 0ε, 0γ by Hooke’s law by the relations: 
 
 III.    σ = 0σ − +σ, τ = 0τ − +τ, 
 
the fictitious stresses will be known immediately, as well as the actual ones. 
  
 The fictitious stresses that are associated with the proper stresses as a result of 
conditions II and III are equal to the stresses that would appear in a body that was 
initially free of deformations as result of the following fictitious volume force: 
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etc., with cyclic permutations of x, y, and z. 
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 With the help of this theorem, one can, inter alia, immediately answer the question of 
when a proper stress state can be generated by density variations alone.  Namely, this 
corresponds to a result that is already known in a somewhat different form (5): 
 
 Only fictitious stress states that are derivable from a force potential function can be 
generated by pure density variations (e.g., by pure temperature variations).  The 
potential function of the fictitious volume force is then the density variation 0Θ itself, up 
to the factor Em / 3 (n – 2). 
 
 On the basis of the considerations above, one can also give the following meaning to 
a minimal principle that was expressed by A. Föppl, and is suitable for the direct methods 
of the calculus of variations. 
 The proper stresses that are installed in a body that is free of volume and outer surface 
forces for given initial deformations 0ε, 0γ make the deformation work (6) that is defined 
by ε − 0ε  and γ − 0γ (which coincides with the potential energy in this case; i.e., in the 
absence of external forces) take a minimum.  Therefore, the deformation quantities ε and 
γ will be derivable from a displacement vector field and will be defined by the relations 
(1). 
 The proof of this follows from the fact that the equilibrium conditions (3) for the 
proper stresses σ and τ lead to the following known expressions for the principle of 
virtual work: 
 

∫ dV (σx δεx + σy δεy + σz δεz + τyz δγyz + τzx δγzx + τxy δγxy)  = 0,  (5) 
 
under the assumption that the δε and δγ must be derivable from a displacement vector in 
agreement with eq. (2).  The expression (5) will then be represented as the variation of 
the following integral of the deformation work: 
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 A remarkable special case of proper stresses is defined by the system of stresses that 
was first treated by Weingarten, and then by Timpe, Volterra, and Cesaro, and are called 
Volterra distortions (6). 
 In fact, whereas the proper stresses cannot be derived from the displacement vector u, 
v, w without stress sources 0ε, 0γ, there is the apparent exception by which stresses 
without external forces are possible for a multi-valued displacement vector in a multiply-
connected body.  The displacement vector will then exhibit a jump for any circuit that 
cannot be shrunk to a point without leaving the body. 

                                                
 (5) Love, Elasticity, 1927, pp. 168.  
 (6) See the survey that is presented in Love, Elasticity, Cambridge, 1927, pp. 221-228.  
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 The physical meaning of this is that one must think of constraint layers 
(Zwangsschichten) as being pressed into surfaces that are positioned arbitrarily and by 
which the body will be converted into a simply-connected one, and that these constraint 
layers push the two bounding surfaces apart, and thus make the displacement of the 
original body discontinuous. 
 Weingarten has presented and proved the interesting theorem that only for a rigid 
displacement of the two bounding surfaces with respect to each other will a deformation 
state be possible that is derivable from a displacement vector, and thus satisfy the 
compatibility conditions. 
 The state of stress and deformation, but not the state of displacement, is therefore 
continuous and single-valued, and the positions of the constraint surfaces will not be 
derivable from it. 
 In light of our manner of thinking, this Weingarten-Volterra displacement state also 
seems to be single-valued, and the stress state will be generated by a distribution of initial 
deformations 0ε, 0γ over one or more wedge-like domains inside of the body that become 
infinitely thin in such a way that the extensions 0ε will become infinite in the direction of 
the common surface normal, and the shears 0γ, in a direction that is perpendicular to the 
surface normal, in such a way that 0εn dn and 0γt dn remain finite. 
 Weingarten’s theorem shows that the special case of the distortions only occurs when 
the 0εn and 0γt are compelled by a rigid displacement of the boundary surfaces. 
 
 
 Calculation of the stress sources from the stresses.  For the evaluation of the 
fabrication process of a work piece, it can be important to calculate the cause of the 
proper stresses – viz., the tensor of stress sources 0ε and 0γ – from the proper stresses that 
are mediated by the gradual sectioning of the body in question. 
 Although this problem that was denoted by b) above means only an inversion of the 
first problem, and one has to add the six eqs. (1) of the extended Hooke law and the three 
eqs. (3) for the six unknown stress components 0ε, 0γ and the three components u, v, w of 
the displacement vector, nonetheless, the direct employment of (1) and (3) seems to break 
down for the solution of the 0ε, 0γ. 
 The path that arrives at determining equations for the stress sources from the so-
called compatibility conditions is passable, however. 
 If the initial deformations or stress sources 0ε, 0γ do not, in fact, satisfy the 
consistency conditions, nor the stresses σ, τ themselves, but the deformation components 
ε, γ of the ideal initial state, as well as the associated stresses +σ, +τ that were called 
fictitious above, then they must satisfy these six consistency conditions. 
 As is known, the consistency relations read (7): 
 

                                                
 (7) See, e.g., Handbuch der Physik (Geiger-Scheel), Springer, 1929, Bd. VI, art. E. Trefftz, “Math. 
Elastizitätstheorie,” pp. 64.  
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etc., with cyclic permutations. 
 In this, the 0σ and 0τ depend immediately upon the 0ε and 0γ linearly by Hooke’s law, 
and can, if one so desires, be expressed directly in terms of the latter. 
 Six mutually-independent second-order partial differential equations for the six 
unknown functions 0ε and 0γ arise in this way, in which the proper stresses, which are 
perhaps given experimentally, play the role of perturbing functions.  However, the 
differential equations are not associated with any outer surface conditions. 
 This apparent lack is connected with the arbitrariness in the choice of the manifold of 
equivalent stress-source states, which will be established below. 
 The general solution of these equations (which is, by no means, practicable, due to 
the arbitrariness in the outer surface conditions) must perhaps be achieved as follows: 
 One first sees immediately that if σε, σγ are the deformations that follow immediately 
from the proper stresses by Hooke’s law then a possible stress-source system for the 0ε 
and 0γ will be given by: 

0εx = σεx, 
0τyz = στyz , etc.; 

 
i.e., one obviously arrives at a possible initial state when one makes the deformation that 
corresponds to the proper stresses die off.  However, one could not use this solution for 
the problem of the first part of this paper – viz., the determination of the stresses from 
given stress sources – so one cannot expect that the physically-given system of sources, 
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which is equivalent to just one of infinitely many, will coincide precisely with the 
deformation tensor of proper stresses. 
 It also corresponds to the fact that one can superpose the particular solution above 
with any solution of the homogeneous system of differential equations (8) for the 0ε, 0γ. 
 For example, in the general case: 
 
 0εx = σεx + Ax e

ax + by + cz, 
 

 0γyz = σγyz + y z

c b
A A

b c
 + 
 

 eax + by + cz, 

 
etc., with cyclic permutation of x, y, z and a, b, c, where the Ax, Ay, Az, a, b, c are arbitrary 
real or complex constants. 
 The superposed solution of the homogeneous equations can also be an arbitrary linear 
expression in x, y, and z or a polynomial with certain relations between the coefficients. 
 Each of these systems of sources will generate the same proper stresses. 
 Furthermore, for the axially-symmetric case of polar coordinates: 
 
 The compatibility equations then reduce to the form: 
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which can be derived immediately from considering the following known relations: 
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 A solution of the homogeneous eq. (9) is, e.g.: 
 
 εϕ = A r cos az, 
 εr = 2Ar cos az, 

 εz = A cos 
2r

b
cos az, 

 γrz = A 
1

2a
a
 − 
 

 
2r

b
sin az . 

 
 This solution [and every other solution of the homogeneous equations (9)] can be 
added to the solution: 

0ε = σε,  0γ = σγ, 
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without changing the proper stresses. 
 The foregoing consideration then leads to the following theorem: 
 
 One of the possible systems of stress-sources for a given system of proper stresses is 
the one that is associated with the system of proper stresses by Hooke’s law.  One can 
then add any solution of the homogeneous compatibility equations (7) for the deformation 
tensor to this system of sources without changing anything. 
 
 By contrast, for a prescribed system of proper stress sources 0ε, 0γ in a free body, 
there is only one system of proper stresses, namely, the one that is determined from the 
equilibrium conditions (3) [(3a), resp.] for vanishing outer surface stresses. 
 
 The aforementioned Weingarten-Volterra distortions can also obviously be generated 
by sources that are continuously-distributed space, instead of the superficially-distributed 
stress sources, as for the stated authors, when one chooses the deformations that are 
associated with the proper stress to be the sources.  Both possibilities must be solutions of 
eqs. (7), (8), or (9). 
 One can also immediately give the superposed solution of the compatibility 
conditions (7) that takes the one system of sources to the other one.  Namely, it is the 
compatible deformation state that is composed of the negatively-taken Weingarten source 
wedge and the spatially distributed sources above. 
 Obviously, it is especially simple to carry over the arguments above to frameworks. 
 In an n-fold statically-indeterminate framework, the same system of proper stresses 
can be generated in a known way by false (incompatible) sections (Ablängung) in an 
infinitude of ways according to the choice of the superfluous indicated terms, and one can 
vary this manner of generation even further by superposing section defects 
(Ablängungsfehlern) of all rods that will generate no proper stresses by themselves alone.  
The question of the origin of the system of proper stresses also has a multi-valued answer 
here. 
 
 
 Further questions: 
 
 1. It was established by the foregoing that one can always exhibit infinitely many 
proper stress source fields that are associated with a given proper stress field – e.g., one 
that is mediated by sections.  One now asks whether, and in what way, one can find a 
distinguished representation (give invariants of the source field, resp.). 
 One sees immediately that there are the special cases of pure dilatation fields, as well 
as pure form-changing fields, which differ fundamentally and cannot be converted into 
each other.  The following examples of this might be given: 
 A pure dilatation source field is the field of a temperature variation or a variation of 
density that is produced by tempering, for which the elasticity limit of the corresponding 
proper stresses is not exceeded. 
 A pure form-changing source field is the field that is generated by the permanent 
torsion of the external layers of a twisted rod, or even simpler, the field that arises when 
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one twists two thin-walled tubes with respect to each other and attaches the ends to each 
other. 
 From time to time, it is important in engineering physics to know whether a 
calculated proper stress state is produced by a pure dilatation source field or a pure form-
changing source field or by an essentially mixed field. 
 The source field that is immediately given by applying Hooke’s law will generally be 
ostensibly mixed, and it would be important to have a criterion for when a given source 
field can be traced back to a pure dilatation field and when it can be traced back to a pure 
form-changing field. 
 The question can thus be formulated as follows: 
 
 When is it possible to convert a stress source field 0ε, 0γ that is calculated in some 
way into either a pure dilatation field εx = εy = εy or into a pure form-changing 
(dilatation-free) field ∑ ε = 0 by superposing a deformation that is free of self-stresses 
[from eq. (7)]? 
 
 2. There is often great interest in bringing a proper stress state to smaller stress 
values by afterglow (Nachglühen).  The process consists of exposing the body to a 
uniform temperature change that rises very gradually and once more falls over a long 
period of time, and which is, on the one hand, not so large that it changes the form and 
crystalline structure of the body, but, on the other hand, intermittently reduces the 
plasticity limit in such a way that the maximal shear stress comes down everywhere to 
the value that corresponds to the annealing temperature. 
 The associated question then reads: 
 
 Into which proper stress state does a given proper stress state go when the plasticity 
limit is lowered by a certain amount? 
 
 The answer will, in any case, depend upon whether one introduces the greatest 
principal stress difference, following Mohr, or the quadratic mean value of the three 
principal stress differences, following v. Mises. 
 The problem can be solved with no difficulty for many spherically-symmetric stress 
states and many axially-symmetric ones, without going into the displacement state that 
leads from the original state to the desired one. 
 However, from a technical standpoint, it would also be desirable to give the solution 
for the general case. 
 
 3. The non-fulfillment of the compatibility conditions for a form-changing field was 
sometimes interpreted as a change of form in a body space with a non-Euclidian line 
element (8), in such a way that indeed, in place of the line element: 
 

ds2 = dx2 + dy2 + dz2, 
a Riemannian line element: 
 

                                                
 (8) See Trefftz [loc. cit., rem. (7)].  
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ds2 = g11 dx2 + g22 dy2 + g33 dz2 + 2g12 dx dy + 2g23 dy dz + 2g31 dz dx 
 
enters that is not transformable into the latter one. 
 The deformation components ε and γ can be expressed in terms of the variations δ ds 
and δ dx, δ dy, δ dz in the usual way for curvilinear, oblique coordinates by 
differentiating these variations with respect to the coordinates and, if the line element is 
not Euclidian then they will no longer need to fulfill the compatibility conditions in 
Euclidian space.  On the contrary, the right-hand side of eq. (7), which is then non-
vanishing, must be employed in order to determine the displacement vector δx, δy, δz, 
and certain relations between the coefficients gik of the line element. 
 As a closer consideration shows, the non-fulfillment of the compatibility conditions 
can then be interpreted as a curvature of the geometric field.  Any visualization of this 
interpretation in space is, admittedly, not possible, although in many cases of superficial 
form-changing fields, one might perhaps visualize it as follows: 
 The deformation components of a planar membrane with self-stresses are ones that do 
not fulfill the compatibility conditions in the plane, but in certain cases one will be able to 
assemble the surface elements without stress when one places them in a suitably curved 
surface or allows the membrane to arch up from the plane. 
 Up to now, it has not been shown, in general, how the discovery of the associated 
coefficients gik of the non-Euclidian line element − and thus, the given of the spatial 
curvature – can benefit the physical problem. 
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