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Summary: Displacement functions or stress functions may be used to sabte éloundary-value
problems. In the first case, the fulfilment of the comgasilonditions is secured beforehand by deriving
the strain field from a displacement, and the displacementiéunis adapted afterwards to the equilibrium
condition. In the second case, the derivation of the stildsfifom stress functions guarantees beforehand
the fulfilment of the equilibrium condition, while the compaitipilcondition is to be satisfied by
subsequent adaptation. The topological properties of displacemeribfimbave been repeatedly studied
from a geometric viewpoint, especially in connection with dislocaltieary; the present paper contains a
corresponding study of stress functions from a static viewpotns shown that in order for the elastic
field to be representable by stress functions in a spatial dorhaini$¢ devoid ofexternal forces and
sources of external stress (briefly: an "unperturbed domah#)rtumber of bounding surfaces plays the
same role that the connectivity does for the representatioriraih by displacement functions. In
particular, a representation by stress functions is impossiblenmbliply-bounded domain if the external
forces are not in equilibrium on any individual surface; this alsdiappfor example, to the isolated single
force, which ido be regarded as the limiting case of an assembly of forces onimitelgismall hole. The
stress functions that are given for this case in the plane and i space tdbe the stress functions of a
state of internal stress whose singular stress sources welttedmihen deriving the stress field; the
intentional introduction of such "fictitious supplementary strésseskes it possible to construct more
solutions of this kind. A relation that is known for the plane annularagorbetween the boundary
conditions for zero stress functions and the conditions for vanishinggrifolstates of distortion is
extended into space for multiply-connected domains. As examspiess functions are set up for the
isolated force and a double force with a moment in the "pierced"datles and Schaefer's stress functions
for the problems of Boussinesq and Cerutti on the half space avealéya different method.

1. Introduction. Basic topological concepts.

a) Problem statement and notations.The goal of this paper is to compare and
contrast the topological properties of the solutiorlattic problems by stress functions
and displacement functions, as one gets in a genedity-form immediately from the
geometry and statics of the general elastic continuWe consider the solution in a
connected spatial region of the continuum in whose ionteéhere are neither external
forces that act there nor any sort of sources of prsipesses?, 30, 31] that lie there. In
addition, the elastic properties of that region mightdobitrarily anisotropic and vary
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from position to position. It will only be assumedtthide quadratic form of the elastic
energy in it is positive-definite. Such a region and thste stress and dilatation fields
in its interior shall be called “unperturbed).( Special solutions in special coordinate
systems will enter in the background in this context\aitidoe treated only as examples.
For that reason, the coordinate-free symbolic natd@p will mostly be employed here
fg)*r the vector and tensor equations, since it seems bediesuited to such investigations
()

In detail, vectors will be denoted by German symbolbyoones that have an arrow
overhead. One also includes the tensors of rank doand s of the elasticity constants

(elasticity coefficients, resp.) and the identity tenscof rank two. In rectangular
Cartesian coordinates with the summation conventighieai

alb=ab the scalar product of the vectars (a) andb = (b),
axb=(g5k g b the vectorial product,

ab=(ab) the dyadic product

B =(5) the tensor transpose @ = (53)

MW = g v the double scalar product (1.1)

The use of | as an index will characterize the 8rstlar of a tensor. The location of
the symbolic O-vector in the formula will be determined by the rules vafctor
multiplication. Therefore, all terms with the sasealar, vectorial, or dyadic products
that are included in subordinate brackets will be diffeated with no regard for the
sequence. By contrast, the effect of differentiat®nnterrupted by a super-ordinate
bracket or the sign of the double scalar multiplicatems long as no deviation from that
rule is made known by being coupled by an arrow. Therdiffeation shall also remain
under the other factors when an individual factor to iferéntiated is denoted with a
vertical arrow.

In regard to the analytical nature of the functidveg eippear, it shall be assumed only
that they are single-valued and differentiable suffityeroften, up to isolated
singularities, and that the singularities are arrargyeth that one can approximate them
by differentiable functions arbitrarily well. That ispe must also allow, in particular,
isolated jumps, simple and double covering, etc., whoseteanalytical treatment
Schwartz [28] has laid the foundations of in the theory of distritss. In what follows,
we will not distinguish between the differentiatiorf tgood” functions and the
corresponding operations on distributions. It is obvida the admissibility of those
operations in each individual case must still be testgmhiticular (). Corresponding
assumptions shall also be true for the bounding surtzdbe spatial regior3fg].

()  This terminology has nothing to do with the moviperturbations 33, 34] that are defined in
other places and in other contexts.

(")  Solutions for the isotropic medium in general coordmatan be found iBrdicka [29]. For
general stress functions, cf., the survey papé&ruésdell [27].

(") Another method of treating topological questions emeinges the properties of special function
classes$lobodianskii [32]). That path leads to far-reaching statements for dpgpi@s of solutions, but

it is less general and does not allow the relatigrssta statics and geometry to emerge as clearly.
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Nothing will be assumed about the physical origin ofstinesses in the spatial region
in question beyond the restriction to static problenite boundary of the unperturbed
region can be identical with the outer surface of ast& body. However, one can just
as well treat an unperturbed slice of a larger, or @viamte, elastic body. The stresses
in the region in question can arise as load stressesefxtermal forces or also as proper
stresses of proper stress sources in other parts bbthe

b) Stress functions and four-potentialThe mutually-independent work Givyther,
Finzi [27], andKrutkov [29] that derived the stress field(t) from a symmetric stress

function tensory(r) (v is the position vector):

o=0x y xO=Ink y (1.2)
ensured that the equilibrium condition would bdilfed:

O0o =Divog =0 (1.3)

in the absence of external forces in the entirealorof validity of (1.2) ). Now, in the

event that the outer surface of that spatial dongimot already identical with the outer
surface of the total elastic body, one thinks & tlomain as being excised from it, and
the new outer surface will carry the forces thatr@quired to establish equilibrium. One

will then have that the forcdP on a infinitesimal surface patch that is represetty the
vectord f, which is perpendicular outward, will be:

dP=dj Oo =df Onk y =df OO0 x y x 0), (1.4)

and fromStokes the forceP on a finite, simply-bounded, and simply-conneqgi&te of
the outer surface will be:

P=[ dfQ0x x xO)=¢ dey xD. (1.5)

Now, from a known argument in vector analysist thél imply the vanishing of the
total force on a simply-connected outer surfacenwvbee can contract the integration
contour to a regular point of the outer surfacevhich the stress functions are also
differentiable. However, from our assumptions, hsacpoint must always exist. For
multiply-connected outer surfaces, one employspibesibility of converting the entire
outer surface into a simply-bounded, simply-conegécsurface with the aid of the
canonical decompositiod]. If one now defines the contour integral aroumzt
boundary then the cut curves will run in oppositedaions to each other (cf., e.g., Fig.
8a, pp. 24); the contour integral must then vanisider very general assumptions about
differentiability along the cut curves. The reaul of all forces on a boundary surface is
zero then, from the validity of (1.2), and indepenmidly of the connection number of the
bounding surface.

() For an introduction to the differential operators Inkf,IDiv, and Rot, cf.Kréner [2].
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FromPeretti [22] or Glinther [13], the moment of the force that acts upon a simply-
bounded and simply-connected patch of the outer surface is:

M :_de 0 x y x 1) % (v —to) =—<J5dt|:{)_(+ (xx0) x (r —o), (1.6)

in which vy is the position vector to the arbitrarily-chosen fixederence point for the

moment. The vanishing of the resultant moment will tiieliow from the same
argument as above, so in total, one will have thestamg of the resultant dyname on
each closed outer surface of a spatial domain in which {d2ye. In other words: A
stress field that can be represented by (1.2) can carmgsultant force and no result
moment between two separated individually-closed outdaces of the same elastic
body.

The analogue in the theory of vector fields definesthece-free current vector(r)
of an incompressible fluid, which is know8q to always be representable as the rotor of
a vector potentigB:

b =01 xB. 1.7)
One then has:
@df&zo (1.8)

there for any closed outer surface, independently of iteextion number. That is, the
net effect of all sources that are enclosed by a dloseer surface must vanish, and it can
be exchanged with a flux field that can be represente@llyy), indeed, with a fluid
between different outer surfaces of the same spdtatain, but no additional fluid
masses being added or taken away.

The definitive topological criterion for (1.2) and (1.3xhen the number of bounding
outer surfaces of a spatial domain, independently afaheection number.

c¢) Displacement functions and potentiallt is known [, 9, 26] that the derivation of
the (elastic) extensioa from the displacement vector(x) by:

£ = 2(Ou +u ) = Defu, (1.9)
will guarantee the fulfillment of the compatibility aditions ():
n=Inke=0xgx=0. (1.10)
Similar to the way that in the theory of vectord®lthe Ansatz:

b =0V (1.11)

() The distinction between elastic, total, and supplemgstaain b, 6, 7] breaks down in a flux-free
region (up to some assumptions that are yet to be dextussThe special way of characterizing elastic
strain can be temporarily preserved.
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ensures the absence of vorticgslp, 35
Oxp=0 (1.12)

Now, conversely, the fulfilment of (1.12) guarantees ftii&llment of (1.11) only in a
simply-connected domain, while in multiply-connected domtin, potentiaV will be
multiple-valued in some cases; i.e., it cannot benddfiin a physically-sensible way.
The number of bounding outer surfaces plays no roleerdpologically-decisive step in
the proof, namely, stretching a simply-connected surfaaei$ completely internal over
the contour integral in question. For simple-connectivatye can (cf., Fig 2) always go
around all bounding surfaces and avoid the external regioife that is not possible for
any closed curve for multiple-connectivity (Sec. 1).

Corresponding statement are true for stretching anthdeament 1, 2, 3, 6, 8, 21, 30,
31, 43], along with other things. It is only for a simptpnnected domain that the
equation (1.10) guarantees the existence of a realizable-sialgled displacement, and
thus one that is physically sensible and requires noopetations. The definitive
topological criterion for (1.9) and (1.11) is then the @mtion number of the spatial
domain, independently of the number of bounding outer sw.face

d) Basic topological concepts and basic operatich3.he topological characteristics
of a bounded spatial domain, or also one that extenddingy, that are essential for the
present problem are, from the above, the connectiorbauand the bounding number.
In a spatial region, simply-connected and simply-bound®ll snean that one can
contract any closed curve in the external region to iat pathout intersecting the internal
region, and at the same time, bring two arbitrary pamtbe external region to a single
point without piercing the internal region in so doing.

~U

< >
Figure 1. Doubly-connected region with Figure 2. Douldy+tzied region with two
two closed curves in external space points inreadtepace (cross-section)

We define the connection number of an arbitrary spdtatain to be one plus the
number of closed curves (“circuits”) in the externgioa that can be made to overlap
another closed curve or divided up into simpler circuitcantracted to a point (i.e.,
“irreducible circuits”) without cutting through the intexl region either. The full torus is
drawn as an example of a doubly-connected domain in Figslone can learn from a
comparison with the topology of closed surfacés37], a simply-bounded,n(— 1)-
connected spatial region will be bounded by a surfageofisn and connection number
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2n + 1 (i.e., a “pretzel”): The connection number of ititernal region is equal to that of
the exterior region, so in the example of Fig. 1, tlmanection number of the
“unbounded” infinite medium is equal to that of the hollmsus.

We define the bounding number of an arbitrary spatgibreto be the number of
points in the external domain that cannot be brought tegétto a single point without
crossing the internal region in so doing. An exampla aloubly-bounded region is
illustrated in Fig. 2. From the above definition, iisviously simply-connected, since
all of the closed curves in the external region arsh ah the internal region can be
contracted to a point. Obviously, the bounding numbersis afual to the number of
bounding closed outer surfaces. However, an exchangeeoéxiernal and internal
region is not possible in this case, since for any regse application, the internal region
must be connected in the sense that two arbitrary poiriteeanternal region must be

capable of beipg transferred to each other along a pathi¢ls completely within the
internal region ).

Figure 3a. Doubly-bounded and doubly- Figure 3b. Doubly-conthecté doubly-
connected domain (cross-section) bounded domain (crossrye

Multiple connectivity and multiple boundedness can apmearthe same spatial
region at the same time, as the examples in Figdll 8hew. In addition, Fig. 3a gives a
topological picture of an infinite medium with a loyl torus that is better suited to the
applications, since the infinite elastic medium mosthyers into it as a limiting case of
the internal region of a very large, simply-conneaater surface (). The connection
numbers of the individual bounding surfaces in the saméaorregre obviously
independent of each other. In order to determine the lbmymndimber, one must simply
count the closed bounding surfaces, and in order to deteth@éneonnection number of
the entire region, the genera of the individual boundurfases must be added, while
one is added to the result.

a) b)

Figure 4. Further examples of multiple boundedness antipheutonnectivity for the same region.
a), b) Doubly-bounded, triply-connected.

() The distinction between multiply-connected (“cycJicand multiply-bounded (“periphrastic”)
domains is found already Maxwell ([44], pp. 18).

(") That corresponds to the topological structure of mepace ¢, pp. 262).
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c) Triply-bounded, triply-connected.

In order to reduce the bounding number, one must dridle in the region and draw a
“connecting hose” from one bounding surface to anothen ti@ reduction to simple
boundedness, obviousfy— 1 connecting hoses will be required fop-fold bounded
region, independently of the connectivity of the individoaler surfaces. If one does not
introduce any more than these absolutely necessarilyecting hoses then the
connection number will not be changed in that way. ®ldgeirreducible circuits then
continue to exist, and a new one can be introduced onlyayyovan extra connecting
hose that couples bounding surfaces that are already tedrteceach other one more
time. The geometric form of the connecting hose lsitrary, within very broad
restrictions; it can be contracted over a singular saréa also a singular line, as in Fig.
5.

Figure 5. Doubly-bounded region with Figure 6. Doubly-corettcegion
a flattened connection hose. with a separating surface.

If one has reduced the bounding number of the spatialirdgicone by way of a
connecting hose then its boundary will correspond tapcddly to a pretzel of genus
and connection 12 + 1, wheren is the sum of the genera of the original bounding
surfaces; from our definition, the spatial domain widritbe ( + 1)-connected. It can be
reduced to simple connectivity by meansnafimply-connected separating surfaces that
span the irreducible circuits in the external regian,isaillustrated in Fig. 6 with the
example of the torus, and as is also known from tkeattire that was cited in ¢). The
reduction to simple connectivity and simply bounding by thesgription is also easy to
perform in the examples of Figs. 3 and 4. An extensicarlvdrarily-high connectivity
and bounding numbers then seems possible with not furthiemasions.

The meaning of these basic topological operationfuisithated by b) and c). For a
vector field that is free of sources and vortices igieen spatial region, multiple-
connected vortex lines in external space can make theatden from a potential
impossible, and for multiple-boundedness, the non-vargdiotal effect of the sources in
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the individual subsets of the external space can madedéhivation from a vector
potential impossible. It is only by reducing to simple cotedmess and simple bounding
that the simultaneous derivation from a potential aothfa vector potential will become
possible, at least formally. Corresponding statemetitsbe true for an unperturbed
stress field and an unperturbed extension field in a gepatial region. For multiple
connection, dislocation lines of type 1 and 2 in extespalce can make the derivation
from displacement functions impossible, and for midtipoundedness, the derivation of
force systems with non-vanishing dynames from strasgifins in the individual subsets
of the external region can become impossible. lomy by reducing to simple
connection and simple bounding that the simultaneouvalem from displacement
functions and stress functions will be possible, at ieamally.

The following section will address the explanation, firemd application of those
laws.

2. Displacement functions and stress functions in simplgonnected
and simply-bounded domains.

The assumed existence of an unperturbed stress amd fsdtei will imply their
single-valuedness in relation to boundary-value problemistlae essential existence of
single-valued stress and displacement functions. r€kalt will be compared with
known theorems from the theory of vector fields.

a) Displacement functions and potentials.The compatibility condition is fulfilled
with the Ansatz (1.9) for the elastic extension. hdeo to fulfill the equilibrium
condition (1.3) with the stress that is calculatednftbe strain by way dflooke's law:

g =cllg, (2.1)

the displacement must satisfy the differential equation:
Div (cll Defu) = 0. (2.2)

We shall prove the single-valuednesscof Defu directly with the inclusion of the

case in which the outer surface of the unperturbed regiont the outer surface of the
elastic body, but the forces on the unperturbed regitirbeviconverted into proper stress
sources or external forces on other perturbed subsetse dbtal body. If we exclude
unstable cases then the linear functional relationship:

Bo - giic_:(t,t')m(t')df' —n[{cDefu) =0 (2.2a)

will be true as the equilibrium condition on thetemusurface of the region with the
outward-point unit normal vectar; in which the inequality:
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<_|’><j>u(t) [C(r,¢') (') df df'> 0 (2.2b)

is assumed for the functional. Equality shall applyyomhen either the second-rank
tensorC(t,t") or the displacement vectarvanishes at each location on the integration

surface, or in the event that the rest of the heawt fixed at any location in space, when
the displacement () corresponds to a rigid motion on the outer sexfac

We shall now calculate, froausss theorem:

%jumiv(gmef u)dr+%<]5 df u @, —gSgr, ) O(t) df —u [ dDef u)}
(2.3)
= 3 df 9, Gt 33 §u(r) [C(r, ) Gu(x') df df 3 [ Def u (EIDefu o .

The left-hand side of this vanishes from (2.2) éa®a). On the right-hand side, the
double surface integral cannot be negative, fror2b)2 and the volume integral is finite
and positive wherever Dafdoes not vanish.

If one now replaces u in (2.3) with the differenmetween two solutions with the
same outer surface force densify then the first integral on the right-hand sidelwil
vanish from (2.2a). Hence, Def must also vanish in the interior of the regiond am
least one of the conditions under which the equaigjn can appear in (2.2b) must be
true foru™ on the outer surface. Q. E. D. The usual boundahye problem with “forces
given on the outer surface” is included in thatgffor C(x,t')= 0. The extension to the

case of displacements that are given on the outdace is trivial, and ultimately the
proof can be extended with no difficulty to the &@s which either the displacements or a
boundary condition of type (2.2a) is true in filjtanany sub-surfaces of the total
surface. (cf., 1], pp. 170)

However, if the difference Daf vanishes then the difference vectormust also

itself vanish, up to a rigid motion, since fr@@esaro([1], pp. 222):

u ()=
u” (vo) 2 (t — o) % [Dxu_l:to+j.dt' {Def u () +[Def u ()x0x(x'—v)}. (2.4)

(0" means differentiation with respect to the integratvariablet’.) The integrand

vanishes here, and therefore the integral, as \&ed, all that will remain will be the
terms in front of the integral, which representigidr motion that is meaningless for
elastic strain. The single-valuedness of the goilut of (2.2) in relation to the boundary-
value problem is thus proved, up to a rigid motion.

Spatial single-valuedness follows from the vamghof the incompatibility; (2.2).

To prove this, we insert the elastic straninto Cesards formula [cf., (2.4)] and drop



Rieder — Topological questions in the theory of stress ifumst 10

the inconsequential terms in front of the integral. Wiethen find that the displacement
vector:

w0 = [ Qe(x) +[e(x) <01 x(x' -9} (2.5)

exists and is spatially single-valued precisely when eaakour integral (2.5) witkp = ¢

vanishes in an unperturbed region. However, each su¢bwaran be converted into a
surface integral usin§tokess theorem; ife lies on the contour then:

b (x) = fdv' Te(v) +(&(¥) xO) x(x'~9)

(2.6)
[ ¥
= [dF @O0 g(v) +(0'xg(x) x0) (' =}
|
and after a recalculation that is performed in ppéndix:
b (r) = <j>dt' B()* ('~ ). (2.7)

However, in a simply-connected, connected, unpleetliregion, every closed curve can
be spanned by a simply-connected surface thaehégely in the interior, and sincg

will vanish there, according to (1.10p, (r) must also vanish. The spatial single-
valuedness af is thus ensured. Q. E. D.

Intuitively, the assumption (1.10) means that asthdistributions of dislocations of
the same type as stress-fildge structual curvatures can enter into the interibthe
unperturbed region, so for arrangements of singdikslocations, that would mean only
small-angle grain boundaries of types 1 and 2 antfstallographic dislocations or quasi-
dislocations 2, 31] (). In such cases; will no longer mean the total dislocation, but

only the contribution of the dislocation field toetelastic strain.
The analogous case in the theory of vector fieldmmely, the gradient vector — is
generally known, such that we can skip a specedqmtation of it.

b) Stress functions and vector potentialThe equilibrium condition (1.3) is fulfilled
with the Ansatz (1.2) for the (total-) stress. ohdler to fulfill the compatibility condition
(1.10) by the strain that is calculated from thresg usingHooke’s law:

£ = sy, (2.9)

() Therefore, such distributions of dislocations will betregarded as perturbations here, in contrast to
the far-reaching questions that are posed in the the@gssferatcontinua (the continuum theory of lattice
fields, resp.)2, 6, 21, 30, 31, 33, 34].
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the stress function tensgr must satisfy the differential equation:
Ink (stlnk x) = 0. (2.10)

Now, the single-valuedness of= Ink y already follows from the single-valuedness of

& = Defu that was just proved. Nevertheless, we shall cartyhe proof one more time

especially for the case of given forces on the osteface, since the formulas and
concepts that are introduced in it will be necessaother places.
Using a double application Gfausss law, we convert:

3 [ x k(s ink x)] dr
(2.11)
= 1 x Tdfx(sMinky) x 0] =3 §( ¥ <0 M Tk x) x d] +3 [ink y MMk x .

The left-hand side vanishes, due to (2.10), wink ibtegrand of the volume integral on
the right-hand side is positive and finite whenegedoes not vanish completely.

We couple the examination of the outer surfacegral to the static interpretation of
the stress functiong and y x [J, which, according t&chaefer[10], are to be regarded

as the sectional moment and sectional force omsahtgon with the vectorial elemedit

of a rigid “crustal shell” that replaces the ouarface to the region. That will also yield
an intuitive interpretation for formulas (1.5) afid6) ofPeretti andGunther, along with

it. Now, let y~ be the difference between two solutions of the esdbmundary-value
problem with given forces on the outer surfaceontthe form of (1.5) and the analogous

construction of equations (1.6) and (2.6-7), we tnmasv conclude that a necessary and
sufficient condition for the vanishing of the diféece of the forces on the outer surface

must be thaty™, along with its first normal derivatives, must beé like a deformator on
the outer surface, as long as it is statically irequ(), such that one can write:

() That means a restriction on the components and degsatiat appear in (1.5) and (1.6). Other
pieces of the stress function tensor (besides the senan s [lIhk ) obviously do not enter into the outer

surface integral of (2.11), etc. In detail, that meany i@t the values of:

nxy (2.11a)
are determined on the outer surface by statics. Otranslthe derivatives that are determined by statics
from:

nxy x L. (2.11b)
An essential simplification comes about for planar boundarfaces by way of the identity transformation
(only y is differentiated):

O=00m—-{x%xn)%xn.

All terms, up to the first one, already drop out herd&wite boundary conditions for (2.11a); thus, only the
normal derivatives for a section:

nllnxyxn (2.11b
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Y =30 +2A° 1), (2.12)

in which®(™ is determined uniquely on the outer surface by:
A (r) = [dv' @y (x) +(x(x) x0) x(x' =)} . (2.12a)
%

The normal derivatives come into play by way of lde term in (1.6). From (1.9), one
can also set:
slink y' =3 (0w +u 0) (2.13)

on the outer surface. One now integrates the expresander the outer surface integrals
of (2.11) over a simply-connected piece of the outeasarfand after a conversion that is
performed in an Appendix, one will find that:

3 [ ¥~ mdfx(sfink x7) x0] =4 [(x~ x0) O sk x) x df
(2.14)
= %cﬁdt[ﬂ—Z(Def A7) QOxu")+2(Def AU xA™ )+ OxA™)x Oxu”)}.

Since one can always contract the integration eontlm a simply-connected outer
surface to a point, the vanishing of the outerasgfintegrals in (2.11) will follow from
that, and therefore the single-valuedness of thesstfield g= Ink y for the given

boundary-value problem.
One can see thay itself is determined uniquely, up to an irreleveeformator, by

repeating the same argument with the special tensor
§_ = (sj_kl ) = (dk 4)1 (215)
with which, (2.10) will go to the equation:

Ink Ink y"=0, (2.16)

which is certainly valid for vanishing™. With the auxiliary condition:

OOy =0, (2.17)
one will have:
AA Y =0. (2.18)

are determined by statics on the outer surface. \Alérgfer to the conditions for (2.11a-b) as thetist
boundary conditions.” The symmetry requirement can be addéuat. The componemt Oy [n is not

included for planar boundary surfaces at all.
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The fulfillment of the auxiliary condition (2.17) be guat@ed, along with the boundary-
conditions. Sinceg =0, Y~ can correspond to only a deformator on the outer surfac

whose vanishing, along with that of its normal derivegjvwill ensure that (2.17) is
fulfilled. However, the entire stress functign, along with its normal derivatives on the

outer surface, will then vanish, and what will remainGartesian coordinates is the
homogeneous biharmonic boundary-value problem, whose sirlgte@eas known to be
zero.

Before we go on to the existence proof for the stfeaction tensor, we first work
through the analogous problem in the theory of vect@dsfi;mamely, the existence proof
for the vector potential of a source-free vector figldnd in fact by constructing such a

vector potential. Now, since the operation “rot” danno way be represented as a
gradient construction, one should not expect that ¢éa¢ov potential can be represented
as a path-independent line integral from the outses pbssible to give it the form of a
line integral at most when the path of integration|s® astablished uniquely through
each point (cf., Prob. 15, pp. 109Rhillips [35]). However, one is then dependent upon
the form of the region, since the path must run cotafylen the interior. We then
employ another path that was likewise chos&biips, namely, the construction of the
vector potential using thBiot-Savart law. As is known, the vector potential for the
vector fieldv that is source-free in infinite space is:

%:imxj& dr', (2.19)
ar [e—t"|
from which, one will get th&iot-Savart law:
- ijm dr (2.20)
4r?  |e—t'}

by simply performing the differentiations. Theagtation must be extended over all
space.

If a source-free vector field is defined only infiaite region, and its normal
component does not vanish on the entire outer caitfaen one must continue it source-
free into the external space or, intuitively spagkiclose the flux tube over the external
region. From a suggestion Bhillips, that can perhaps come about by a source-free and
vortex-free continuation of the vector field toimfy ([35], pp. 196): However, it is more
preferable for the present problem to introduce &bpendix) a surface-singular closing
flux on the outer surface, which is always possib@ne will not need to consider the
entire external space for bending and topologitatations.

One can solve the corresponding problem for strekkthat satisfies (1.3), namely,
the determination of the associated stress fun¢gasor y, by a double application of

(2.20). One first decomposes into constant right-vectors and by calculating ¥betor

potential of the left-vectors from (2.20), one wgkt the asymmetric first-order stress
function:



Rieder — Topological questions in the theory of stress ifumst 14

¢ =xx0, (2.21)

and indeed in all of infinite space. If one has introducksing fluxes for the left-
vectors on the outer surface by this calculation thenfitst-order stress function tensor
will arise there. One now decomposes it into consiltrvectors and calculates the
vector potential for the new right-vectors, from whione will obtain the (second-order)
symmetric stress function tensgy. Now, since no further integrations need to be

performed, one can isolate the field of stress funstion the outer surface and set it
equal to zero in the external space. Upon differangjat, that discontinuity on the outer
surface will lead to simple and double singular stredsilolisions that can be interpreted
intuitively as the stress state in an infinitely-tsimell that envelops the whole region and
maintains the stress state in the enclosed elastigcibquace of the outer surface forces,
which drop out. The load stress state of the elastity hhat is enclosed by the outer
surface of the region is then replaced with the prgperss state of the elastic body,
which is then extended to the “crustal hull.” Thestal hull is obviously the elastic
analogue of the singular outer surface flux in the thebvectors.

When it becomes necessary to calculate direcysthess state in the crustal hull or
any statically-equivalent stress state in a shell,aamealso perform the calculation of the
stress function tensor in a single integration steprder to do that, one sets:

x=Inky, (2.22)
with the auxiliary condition:

00y =0, (2.23)
and then obtains the equation:

Mw: ag, (2.24)

as long asz is symmetric and (1.3) is fulfilled in all of space, whadn be arranged by
the addition of singular stress state on the crusthl Qe gets the solution:

X(@®)=-——Ink[le—+' | g )T, (2.25)
8r

or after performing the differentiations and from a cosis that is given in the
Appendix:

X(©)=-— {—Hé(r’)—al(r')u—

[e =" e

1,T(t—t')xé(t')x(t—t')}dr', (2.26)
-t

in which one naturally has:

Qe

=g (2.27)

due to the symmetry of the stress tensor.
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One can regard the crustal hull as a kind of statimtspart toSchaefefs crustal
shell [10]. The forces and moments are equal and opposite otalkcshells and crustal
hulls. However, whereas for the crustal shell, #sgmmetric stresses and moment
stresses of the gener@bsseratcontinuum R1] are allowed, and even requisite, along
with the ordinary stresses, since otherwise the crgsil could not replace the actual
elastic body, in general, for the crustal hull thaadsled later on, from the Ansatz (1.2),
only stresses that can be realized by singular simpte double coverings with
symmetric stresses are allowed. Moreover, one caunasthe elastic properties of the
crustal hull arbitrarily. From the remarks in conjunatioith (2.21), there is no doubt
regarding the existence of such singular stress states.

¢) Summary.— An unperturbed stress and strain field in a simply-eotead and
simply-bounded spatial region can be derived from digptent functions, as well as
stress functions, which are determined uniquely in their agit, up to inessential
contributions (rigid rotation, deformator, resp.).

3. Displacement functions in multiply-connected and mulply-bounded domains.

In this section, we will study the extent to which thequeness and existence proofs
of § 2 for displacement functions must be modified for genezgions. In essence,
things that are known will be repeated in it. Howetleg,theorems shall be summarized
once more for the sake of comparison with the propesfiegress functions, and will also
be partially interpreted from other viewpoints.

First of all, the uniqueness proof (2.4) for the displaeet vector that relates to an
elastic strain that is given as a deformator witheén unchanged, since the integrand will
also vanish in that case. By contrast, the uniquenes$ fhiatorelates to the boundary-
value problem is valid only for the contributiofl of the outer surface forces, which are

either given directly or can be determined later ftbengiven displacements on the outer
surface [the linear relation (2.1a)]. That is becausmaf the elastic strain can be
derived formally from a vector field using (1.9) in the entire unperturbed regiomo

longer needs to be the actual displacement, sincepdsial uniqueness is no longer
guaranteed for multiple connectivity. That follows frq&7) and the existence of
contours that are entirely inside the internal regind eannot be spanned by simply-
connected surfaces without them extending into therradt@egion. However, (1.10)
does not have to be fulfilled then; henaggx) must not vanish eitheru (xr) can then be

multiple-valued; a simple conversion of (2.7):
b () =[df' () xx' +vx [[df B(x)] (3.1)

will give one information about that kind of mulgpvaluedness. After a complete
circuit, the first part of this yields the constddisplacement jump” of th&/olterra
distortion state of the first kind (i.e., ordinatiglocations), while the second will give the
rigid rotation (“rotation jump”) of théVolterra distortion state of the second kind,
corresponding to a small-angle grain boundary & uhperturbed regior2| 3, 30, 31,
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43]. The displacement jump then represents the “mofhevitile the rotation jump
represents the sum of all incompatibility lines thatqaethe surface. From the rules of
kinematics, the splitting of the rigid motion jumpana displacement and a rotation can
be altered by a new choice of coordinate origin or thediuiction ofc — o in place of.
Naturally, a multiple-valued displacement is not reddle, and thus physically
meaningless. One solves the contrary case by intraglacirsupplementary straig®,

which extends the elastic strain= £"to the total strain® that is derived from a true,
single-valued displacement [2, 5, 6, 7]

= Defu®= g% +£F. (3.2)

The physical origin and meaning of the supplementary steairbe given more precisely
by means of a more precise knowledge of the history efniaterial (e.g., plastic
deformation, uneven heating, magnetization, elecatifim) (). However, since only
stress and elastic strain are of interest at theengnthey can also be regarded formally
and varied at will around a deformator that is derived faosingle-valued vector field, as
long as one only drops the displacement jump and rotatiop in comparison to the
elastic strain, so for any circuit in the entire utpdryed region, one will have:

[ of O x €2 () x 0 x(x' =) + [ of B * (¢ =) = 0, (3.3)

in which the integral is extended over a simplytwested surface that spans the contour.
One solves the equation:

Div [c[(Def u-£°)]=0, (3.4)
instead of (2.2), with the outer surface condifich (2.2a)]:

u e Def u-£)]= Po ~ $C(r,v') ik (') o (3.42)

and then subtracts the supplementary steginin order to determines®. This will
happen most simply when one sets the supplemestiain equal to zero everywhere, up
to a singular surface, as in Fig. 6, pp. 7, whevéli become infinite, like a sort dbirac
delta function, and one must avoid that surfacthénderivation of the total strain from
the displacement field. The elastic strain wi@thbe identical with the total strain, up to
the singular surface.

If one addresses the part on the right-hand dide.4):

q = Div (cI£®) (3.9)
or
Q =n [QcIE?), (3.5a)

() In general, the supplementary strain also makes ss<fi@e contribution to the total displacement
[2, 30, 31], but it is not interesting in the present context.
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resp., then it can be regarded as the “internal forositg& [6] and the inhomogeneous
differential equation:
Div (c[Def u)=-gq (3.6)

will enter in place of (2.2), with the outer suacondition:
u QcDef u)=Q +Po - giic_:(r,t')m(t')df'. (3.6a)

Since these relations are linear, the contributibthe outer surface forces to the stress
and strain fields can be separated from the catioib of theVolterra distortion state.
Likewise, the subdivision of the problem into a soamion problem in an infinite
medium (i.e., inhomogeneous differential equati@md a boundary-value problem
(homogeneous differential equation with boundanydition) is always possible].

Duhamel andNeumann have already solved the heat-stress problem byogmg
the internal force density back in 184Q]([pp. 58). If one assembles the supplementary
strain on a singular surface then the internaleatensity will degenerate into a double-
layer;Burgers [2, 8] has determined the stress field of a ring diglocawith the help of
that picture.

The uniqueness proof that relates to the boundalye problem for the displacement
will not be affected by a multiple boundary, sinbe boundary condition (2.2a) are also
valid on the outer surface of a cavity. The sahmegtis also true for the proof of spatial
uniqueness, since in a simply-connected regiomyesinply-connected surface that is
bounded by a circuit can also be shifted completeyde the internal region by a
suitable deformation when the boundary is multiple.

The analogue in the theory of vector fields isiobsly the potential in a multiply-
connected, source-free region, in which the halehe pretzel can be crossed by vortex
filaments. The methods of magnetic or electric idedayers that correspond to the
introduction of singular supplementary strain dd need to be dealt with any further
here.

4. Stress functions in simply-connected, multiply-boundedomains.

Once one assumes the existence of a stress fanetisor, the uniqueness proof in §
2 can be adopted with no changes. Equations (@.@.18) are valid, moreover, for the
internal region and each individual outer surfan® the topologically-definitive step in
the proof — namely, the contraction of the inteigratircuit to a point — will be true due
to the simple-connectivity in each individual ouserrface. By contrast, the existence
proof will be affected by multiple connectivity. #ress function will exist only when
the forces on each individual outer surface areguilibrium. Nevertheless, a substitute
solution can always be given, but it is generathp@®yable only with certain restrictions.
We shall next consider the analogous case in g@ylof vector fields.

a) Vector potential in multiply-bounded domains.From 82, the exhibition of a
vector potential by (2.20), and therefore, dueh® known uniqueness up to a gradient,
the exhibition of a vector potential at all, is pilde only when the flux tubes can be
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closed in the external space. However, if one fieds, a point source in a cavity then
that closure in the external space will no longer besiptes at the very least, a singular
flux tube must penetrate the vortex-free and soureerégion.
Examples are easy to give. In the plane, the vgatential in, say, polar coordinates
p, ¢[19:
Byp=¢t (4.1)

leads to the flux field of the planar point-source:
vy =rotB, = ¢p (4.2)

in each arbitrary annular region around the origin, Withexception of a separation line
along which the jump i, which is required to preserve the single-valuedne$3,pfs

laid. In the flux picture, that separation line canriierpreted as a singular flux tube that
includes the backflow of the fluid that passes throughatteular region. In spatial
cylindrical coordinateslp], the same field can be interpreted as the flux afexdource
along thez-axis with back-flux that is singular on a surface. #eo vector potential for
the same flux vector is:

, z
B = e (4.3)

Its singularity is a vortex filament that goes tonitfy in both directions and is linearly-
decreasing in magnitude at the origin. It obviously represgmsinflux from the
infinitely-distance cylinder ends, which exhausts the sufipiy the line-source, except
at the center at the origin. This example showddpelogical multiple-valuedness of a
planar structure when considered spatially. If onegines that the cylinder ends are
both closed then one will have double-connectedness. c&meven present the spatial
structure as a simply-connected and simply-bounded bodlpbiyg one end and leaving
the other one open, but that way of looking at things sningless in practice, especially
since one would be led to a divergent vector potential.

In spatial spherical coordinatesp, & [15], the vector potential:

= cot? ey :i ey (4.4)
r ro

B,

will lead to the flux field of the spatial point-source:

1
UZ :F Cr (45)

in each hollow spherical region around the origin, @fo B9, Prob. 13, pp. 109). The
singularities to be avoided lie on the positive and negataxis, as one will see from the
second form of (4.4), which is a mixture of the cylindriaad spherical coordinates.
There are singular vortex tubes of different signtfer vector potential, and therefore
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singular flux tubes for the flux vector through whicle thoint-source is fed. If one
discards one of those flux tubes in favor of the otmer by adding a new vortex filament
along the entirg-axis then the singularity of the new vector poteritia4.5)

B, = (ﬁ+_lj e (4.6)
rop

will lie along only the positive-axis. In general, in order to represent a gradient in a
multiply-connected source-free region as a vortea wéctor potential in the region, one
must drill through it enough times that the various ostefaces will unite into a single
one. The flux tubes can then be closed by means afaheecting hoses that are so
arranged, as long as that is not possible already imdihadual surfaces.

b) Stress functions in multiply-connected domain3he non-vanishing productivity
of the sources in a cavity in the theory of vectoldSecorresponds to a result dyname in
the theory of elasticity. A representation by striegsgctions is not possible when not
every individual outer surface of the unperturbed regidausd to be in equilibrium. In
the other case, there will be a contradiction whem applies the train of thought in18
to the individual outer surfaces. The existence proof (2.2@Fklso break down,
since the multiple boundary of the unperturbed regiomealonger be surrounded with a
connected crustal hull that does not penetrate thenaiteegion. The presentation of a
stress function tensor from which the actual stressavimlibw from (1.2) is possible ff,
and generally only if, one removes a sufficient numbecarfnecting hoses from the
unperturbed region as in1&d (cf., Fig. 5, pp. 7). The uniqueness proof (2.11-18) is true
for simple-connectivity independently of the bounding numlsénce the individual
integration circuits can be contracted to a point acheouter surface; it will first be
perturbed for multiple-connectivity (cf., 8). By contrast, the existence proof is
independent of the connection number.

Now, in order to find a stress function tensor in an ctopeed region that has been
drilled through, we make use of the possibility of rejpigdhe given external forces with
fictitious internal forcesq, 6, 7, 38|, and thus with the divergence vector of a fictitious
supplementary stress field“”. These fictitious internal forces will then be eqilavi to

the actual external forces, not relative to the ltastitotal stress, but probably relative to
the displacement that enters in. We then assumcétentis equilibrium stress:
g’=Inky, (4.7)

which is coupled with the total stregs’ that actually occurs by the relation:

KO4 g, (4.8)
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o®” will then be calculated by the method that was develdpedhe proper stress

problem (cf., 8& and8), and g“" will once more be subsequently subtracted. The load-

stress problem will then be replaced by a fictitious prefress problent.

Now, there are infinitely many fictitious supplementatsess fields for a given field
of external forces; i.e., the total stress fieldt thetually appears, but with the opposite
sign, will belong to them. However, the practical adage of these auxiliary quantities
is that due to the greater solubility of the fictitiqueper stress problems, one also gets
to deal with simpler tensor fields. Since we are &dtad in only the unperturbed region
itself in the present case, when the fictitious iraéiforces possess the same resultant
dyname as the actual external forces only on eactidlgil outer surface, and thus, for
each individual bounding surface, it will even sufficedoe to have:

- CJSde_TKD: gﬁmdf (4.9)
and
$dF @ x (t —v0) == $P X (v — o) dif. (4.10)

Equilibrium will then be established by the fictitiousemal forces on each outer
surface, and the rest of the problem can then be resatva boundary-value problem by
the method of stress functions. One will obtain sbéution of (4.9-10) that is most
convenient for applications by contracting the fictitiosgpplementary stresses to
singular lines that one removes from the stress ledion by differentiation, just as one
does with the singular backflow lines in (4.1-6). Théitfmus supplementary stress will
then be restricted to infinitely-thin connecting hosesavben the individual bounding
surfaces and will no longer be recognizable in the stifelks when one replaces its
values at the exceptional places with the boundaryegain the approximation that
prevails in the neighborhood, as one usually does. Qifrsep the fictitious
supplementary stresses will once more appear immediatedn one seeks to construct
new solutions by continuous superpositions of such solutitihsne would then like to
contract the fictitious supplementary stress once nibem that would require the
solution of an additional proper stress problem.

If one would then like to examine the singularitiestlod fictitious supplementary
stress field, or — what amounts to the same thing —sitgularities of the fictitious

() The fictitious supplementary stresse$” cannot be confused with the supplementary stregSes
that arise in reality, such as heat strain, magrteigisn, plastic deformation, etc., which are connected
with the supplementary strain hy°= -cg°, and yield the total stress®= ¢g° +g” when combined

with the strain-induced stress” [5, 7]. There exists no reasologc. cit, for the introduction ofg™” and

g®”, since only proper stresses will be considered, whileis identical tog® here, due the fact that® =

0 in the unperturbed region, and thus does not need tdrbduced specially. In regard to that, one should
also confer the example that was cited in anothered&8} of a horizontal place with diffusive dilatation
centers in a gravitational field.

The load-stress problem with volume forces can aksamlade tractable with the help of fictitious
supplementary stresses. The known special case in wacholume forces are derived from a potential
[27] is distinguished by the fact that the determinatioa @ttitious supplementary stress field is possible
with no special integration.
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equilibrium field, then one can no longer employ the stined-out stress field for that,

but one must immediately return to the stress functiddee then proceeds similarly to
what one does in the theory of vector fields, in whica determines the boundary value
of the contour integral:

S=¢de B (4.11)

by contracting the contour around the singular line, aleiig the strength of the vortex
line of the vector potential, i.e., the singular fline of the flux vectors. In the theory of
elasticity, the boundary-values of integrals (1.5) and (ih.®eretti andGunther enter
in place of (4.11), and their application in the intewdrthe elastic body can be based
upon the following Gedankenexperiment:

We appeal to the known definition of the total stresspaling to which:

dP =df Oo®, (4.12)

is the force that one must apply to every arbitrarignted surface elemedf of an edge

to any arbitrary intersection surface in the interiértlee stressed body in order to
maintain the given stress state. If we now imaginediheh a finite cut has actually been
made completely in the interior and that the forcas #ine required to maintain the stress
state have been applied to both edges of the cut (Fig. @)thlae will mean nothing
besides a new closed outer surface in the interior whodace loading possesses the
resultant dyname. One can then also replace the tbstribution by a closed crustal hull
as in 82 b. The fact that the enclosed cavity is infinitdiyatplays no role in this case.
If we then replace the total stress with the figtis equilibrium stress that is derivable
from a stress function tensor using (4.7) then, accgrtinSchaefer[10], all of the
surrounding material can be replaced with a crustal, sl the assumptions have been
made for the application of th@eretti-Gunther contour integral (1.5-6) for the
calculation of the forces and moments on the endlgsetion of the edge of the cut. If

one contracts the integration circuit to a regular tpoing®" then the integral will tend to

zero. However, by contracting to the piercing pointaodingular line, one can infer
conclusions about the type of fictitious singular supplaany stresses from the
boundary value of the resultant dyname.

Figure 7. The interpretation of stress functions @itterior.
————— cut surface ———————crustal shell (hull, resp.)

c) Planar problems in a spatial contexh regard to the peculiarities of planar stress
(distortion, resp.) problems, we must especially cardide case in which the connecting
hose does not contract to a singular line, but to gufan surface whose boundary can
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partially lie at infinity. We first consider Fig. 5, pp. Since equation (2.10) will be
valid everywhere in the unperturbed domain, with the ei@emif the singular surface
that is bounded by the curved rectanglBCD, one can calculate a fictitious elastic
strain:

&= sMnk y (4.13)

that is coupled to the fictitious equilibrium stress (4y)Hooke's law, which must,
however, be identical with the total straig® that actually appears in the entire
unperturbed region, when only the following assumptiongudifided:

1. The elastic strain in the outer surface of theeffetl connection hose must be
equal on both sides of the singular surface. By theireoty of the elastic
constants, it will suffice for that to be true whek Iy has the same boundary

value on both sides. If we next exclude the boundarhefcurved rectangle
ABCD then aVolterra state of distortion state can still remain; i.eslatation
lines of type 1 and 2 traverse the boundary of the singutéace.

2. Obviously, theVolterra distortion state must also vanish, since otherwhse t
assumption of simple-connectivity of the unperturbedoregvould no longer be

fulfilled. The two pieces of the bounda®B and CD will then penetrate the
original simply-connected region and make it doubly-coretecHowever, by the
continuity of the elastic constants, dislocation dimall make themselves known
at those places by means of infinitely-high boundaryealffor the stress. If the
curved rectangle lies completely at finite points thesill suffice in that case to
also extend the continuity requirement for the boundatyes of Ink y to the

boundary.

3. However, that simple criterion will break down whine unperturbed region
degenerates into an infinitely-long hose that is closedhaih ends and the two

bounding lines AB and CD go off to infinity in both directions. Their stress
fields will then no longer exhibit discontinuities atiferpoints, and one will have
only the possibility of calculating the displacemend aotation jumps that are
present by (2.7) and (3.1); i.e., one must proceed preciselyn the case of
double-connectedness and consider the infinitely-long hospeaasat both ends.
That is, one can now no longer distinguish betweeltiptetconnectedness and
multiple-boundedness.

That is true especially for planar problems, as wast@wiaut before in conjunction
with (4.3). By introducing théiry stress functions, which are independentz,othe
planar state of distortion will appear to be the stsdate of an infinitely-long cylinder,
and the planar stress state can be interpreted irathe way when one alters the elastic
constants without abandoning isotropy in such a way tmatstress component;,
produces no further elastic strain. In fact, the inegoaditions for the load-free
boundary of a planar annulus were presentetMiayell [16] on the basis of the single-
valuedness requirement for the displacements. Tttetlfat, fromPrager [17], they
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appear as the natural boundary conditions for the vamg@tiproblem, in addition, will
also become comprehensible from a theore@abnetti [20] (cf., [2], pp. 62) that says
that the energies of the proper stresses and the tiess san be added independently of
each other. The exclusion of dislocations will tiheimg with it simply the vanishing of
the proper stress component of the elastic energy.

The stress state of a plate can, in principle, bardagl as a section of the stress state
in an infinitely-long cylinder, in general, due to outwaehting stresses that increase
beyond all limits only under all kinds of imaginative asptions about the loading and
the E-modulus. What makes more sense is the introductioneopliate stress functions
by Schaefer[19] as the jump in a null-stress function field (i.e deformator field). In
that way, one will restrict the essential part of gtress function field to the singular
jump surface. If one now carries the integration eontaway to both sides of the
singular surface 19|, Fig. 1) then one will decide in favor of the conceptdouble-
connectivity for a planar annulus, and the same conedfilso correspond to equation
(25) inSchaefer[18] for a plate with an unloaded boundary. By contrastcdmse of the
disc with rigid inclusions, which is analogous accordinfl&), can be regarded as a case
of double-connectedness (cf., 5, as well as double-boundedness. The second
interpretation is expressed by saying that every pathistatove or below the singular
surface is forbidden, and a path in the surface through thdusnwill be regarded as
penetrating the interior region.

5. Stress functions in multiply-connected domains.

In the foregoing section, it was shown that it i$ alavays possible to exhibit a stress
function tensor in multiply-bounded unperturbed regionhjlenthe proof of single-
valuedness will not be affected by multiple-boundedne€anversely, the existence
proof will not be affected by multiple-connectedness, esiacmultiply-connected outer
surface can be surrounded by a closed crustal hull [c21)2t seg. By contrast, the
proof of single-valuedness will break down, since from (2.4, decisive step in the
proof, namely, the contraction of the integration cantm a point will not longer be
possible for multiple-connectivity. A more detailed exaation will show that, as could
be expected, this is based upon the possibility Ublkerra distortion state appearing.
An analogy thatSchaefer examined many timesl$ 19 39] between null-stress
functions and distortions can be extended to a spateln that way.

a) The uniqueness proof for multiple-connectednegs.glimpse at (2.14) will show
that the null-stress functions and the difference veactof the displacements will appear

in precisely the same way in the contour integral ofgéeerating vecto2l”. We then
combine the analogous equations for and u~ once more and observe that due to
multiple-connectivity, neither the spatial single-values of2l” nor that ofu” can be
assumed, sa no longer must be an unconditionally physically-zsble, single-valued

displacement. The axis of the rotational jump willtgmugh the point with the position
vectorry, instead of the origin, as we have done up to now. didpacement field:
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W () = [ Be(x) +(£Tx) XD X(¥' ~9) 5.1)

is associated with the displacement jump around a @epircuit of the edge 1 of the
cut to edge 2:

u (t) =u,—-u;=b, +9 X (v —1p), (5.2)

with
by = [df Tink £ (@) (' ~t,) (5.3)

and
2 =- j df' nk £ (¢).. (5.4)

If one lays the circuit on the outer surface of tegion then due to the compatibility
condition (1.10), the expressions (5.2-5.4) willnigh when the circuit encloses the
interior region as in Fig. 8b. Only a circuit anouthe external region as in Fig. 8c can
deliver a displacement and rotation jump.

)

Figure 8. The crustal shell of the doubly-connected r?gio

a) Circuit around the outer surface, after canomieabmposition.

b) Circuit around the internal region.

c) Circuit around the external region.

d) Extension to simply-bounded shells by a surface that motecut the interior (cross-
section).

Correspondingly, the vector:
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& () = [dv Bx(v) +(x () x0) x(x' -9} 5.5)

can jump by the negative moment relative to
M (t)= A;-2A; ==M; = P"x (t —to) (5.6)

after a complete circuit from the cut edge 1 to theedge 2, from which, according to
Peretti [22] andGlnther [13]:

Mg ==[df' [ink x~ ()% (t' %) (5.7)

is the moment relative tg , and:
p= j df' nk ¥~ (t') (5.8)

is the force on the surface patch that is boundeithé circuit. If the forces that act upon
the outer surface are in equilibrium then (5.6-58)st vanish for a circuit that is defined
by a canonical decompositiod][(cf., Fig. 8a for the torus), when it yields therrect

loading on the outer surfac®:;(above all, that will be true for the differenemsor y~.

However, these expressions also vanish for aitiocuthe outer surface around the
external region (Fig. 8c). One then cuts up theeoaurface of the torus into such a
circuit and spans a cut edge with a simply-conrkateloaded surface (Fig. 8d), which
then extends the dissected toral outer surfaces tiora simply-connected surface that is
bounded by the other cut edge, so (5.6) will yigid to sign) the resultant dyname of all
forces on that surface on that cut edge, and therefero. 20 can then jump only on a

circuit around the internal region (Fig. 8b). Fréig. 6, pp. 7, (5.6) will then once more
give (up to sign) the dyname that the cut-edge ihdtaversed in the positive sense
experiences from the other cut-edge for a cut sarfaFor higher connectivity numbers,
one previously makes the pretzel doubly-connected Isuitable decomposition and
applies the same argument to the remaining hole.

In this analogy, one has the following correspacés:

b, « -M; and ? o -P". (5.9)

The quantities on the left-hand sides can be nom-paly for a circuit around the
external region, while the quantities on the rightd sides can be non-zero only for a
circuit around the internal region.

The contour integral (2.14) will now be taken aotihe boundary to the simply-
connected surface that one obtains by a canonaadrdposition 4] of the multiply-
connected outer surface to the region, and indasdjsual, in the positive sense of

() In the case of a multiple boundary, one must, if necgsbave previously reduced the region to a
simple boundary by means of connection hoses.
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traversal, which makes the surface that is being circuipest lie to the left (Fig. 8a).
The entire circuit can then be composed of double c#caite of which encloses one-
half of the internal region (viz., double circé}, while the other one encloses one-half of
the external region (viz., double circij. The two sub-circuits of a double circuit will
run in opposite directions. The numeration of the sub-circuits will be chosen for
each double circuifA such that circuit from 1 to 2 around the external regiefmes a
right-handed screw with the circuit around the innerargivhich leads from sub-circuit
1 of the double circuiB to sub-circuit 2 (Fig. 8a). For a higher connectivitynier, the
double circuitsA andB will be associated with each other pair-wise in suetag that
each double circui will penetrate the hole in the pretzel that enclosedadssciated
double circuitB.

The contribution of a double circuit will certainly vahiwhen the vectof¥™ andu™
have the same values on both sub-circuits. It is whign M ~(r) [6 (v), resp.] are non-

zero that it will contribute to (2.14). For the doublecuit A, the sub-circuit 1 will be
traversed in the positive sense, while sub-circuit 2lveiltraversed in the negative sense.
Since the vectoRl™ cannot jump between these two edges, it will follow nviome

substitutes (5.2) in (2.14) that:

LA = 1 de £-2(Def 27) IOx(w; —u3)] +2[Def (u; —u)] QOx2A)
+(@x20) 00 x (u; —uy) ]}
(5.10)
= 1 dr g2 (Def A7) [Oxb"(r)) ~2(Def b (x)) {O*A")
+(@x20) x[Oxu (1))}

For the double circuiB, the sub-circuit 2 will be traversed in the pagtsense, while for
sub-circuit 2, it will be traversed in the negatsense. Since the vector cannot jump

between these two edges, it will follow upon substg (5.6) in (2.14) that:

LB = %Cﬁdt {-2[Def (A, —2A)] Q0 xu”) +2(Def u”) PO x(A; —A)]
+[0x (2, -2,)) O0 xu7)}
(5.11)
= 1§ de {2 (Def M") [{0xu") ~2(Def uw )X M~ (r))

— (@ xM () x (@ xw)}

Now, for all circuits, the vectodr certainly always lies tangential to each surfde t
spans a circuit, so, from (5.2), one will have:

dv (Defb (r) =0 (5.12)

for the double circuifA, and from (5.6), one will have:
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dv Def M "(x) =0, (5.13)
and furthermore, for each surface that is spanned by theedoiudlit A, one will have:

Oxb(t)=20, (5.14)
and for each surface that is spanned by the double d#:cuit

O xM ™ (v)= 2P. (5.15)
Substitution in (5.10) and (5.11) will yield:

LA = %Cﬁdt {2 (Def A7) 20— (OxA x207}

(5.16)
:%cﬁdtlﬂ]ﬁl’ D =-iM ()
for the double circuifA and:
LB = %(j}dt {2 (Def u ) 2P -2 P x (Oxu)}
(5.17)

== 1¢de My (P =-3b7(x) (P,

in which t is chosen to be the intersection point of the teable circuits. If one sets
that equal to the moment reference paejrthen from (5.6), (5.16) will imply:

Ly =-iM, D, (5.18)
and from (5.2), (5.17) will imply:
L2 =-1Pb,. (5.19)

A simultaneous jump i andu for the same circuit will not happen, as was shown
already; however, it would make no contributiontiie integral, anyway. From (5.12-
15), one will then have:

L' =-3¢de [P x0)=0, (5.20)

due to the constancy of the integrand. For moae ttouble connectivity, one does the
same thing for each hole in the pretzel. For abo&al decompositiond], there will
always exist amg that is common to all double circuits.
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Now, the physical interpretation is simple: The suiralb L) +L] means nothing

more than the work that is done by constructing\tbkerra distortion state, up to sign.
If we substitute that result in (2.11) then it will fol¥ that {):

3| x” Oink(s ik 7] dr
(5.21)
== 1) (P By, + Mg, ;) +4[ Inky” MBnk x~ o,
A

in which the sum extends over all holes in the z@let The equation says that proper
stresses from ¥olterra distortion state can remain even for vanishingndauy loading
on each hole ().

b) The boundary-value for multiple-connectedness=rom (5.21), a solution that
fulfills all static boundary conditions can be inded for every hole in the pretzel can
include the proper stresses ofValterra distortion state. They must thereupon be
examined and, if necessary, reduced by the additiansuitable proper stress field for
the pure load stress state. Now, since it no Ibhgppens, as in the proof of uniqueness,
that the entire outer surface of the pretzel i€wmnavigated, it will no longer be
necessary for all circuits to go through one p¢aanonical decompositiod]), as in the
uniqueness proof, and one can now construct theciwaits of typeA andB at the
individual holes on the pretzel, independentlyhef other holes. In what follows, we will
require only single circuits that define a righntlascrew for the same hole (cf., the
accompanying sketch to Fig. 8a).

Now, let a solution of the boundary-value probleke the form of a stress function

tensor )_(1 that correctly recovers the outer surface loadif@ne will then establish a

distortion state that possibly exists when one t#uibss the associated elastic strain
snk )_(1 in Cesards formula (5.1) and integrates for each hole ie fnetzel over a

circuit around the external region (tyBg in which one then defines:
bt (x) = gﬁdt'mgt) [Mhk x'(t) H $v) Thk x{ ) xO] (v’ -9}, (5.22)

in whicht is a point on the circuit. If one placeson the circuit then one can determine
the quantitiess andd® by a comparison with (5.2-45 ().

()  The connecting hoses that are endowed with fictitsoyplementary stresses in multiply-bounded
regions (&4) are left out of the volume integration.

(")  The physical content of (5.21) was known already frbem dround-breaking paper Ublterra
[43]. What is new is its connection with the theory @éss$ functions. Furthermore, tWelterra paper
differs from the standpoint of modern proper stress themty by the fact the compatibility is not
expressly included in the definition of regular straat.(cit, pp. 404), but is obviously assumed to be self-
explanatory.

Hokk

() There is a differen, for each individual hole in the pretzel then. Howetarthe sake of clarity,
we shall avoid introducing a special index for the holalper (e.g.ro1) in what follows.
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The problem of determining a proper stress state with equdl opposite
displacement and rotation jumps can likewise leadtor@eboundary-value problem with
stress functions now. One must replace the boundargvatith null-stress functions for
the generating vect@'~ whose jump properties are to be determined on a camnind

the internal region by, (typeA) on each hole such that:
bb=-b, and o' =-20m (5.23)

In the general case, that can happen in such a waypiieasolves the boundary-value
problem for any vector fiel@l that is defined in the external region with undetermined
jump vectorsl\ﬁ0 and P along a circuit around the internal region through Due to the

linearity of all equations, this general solution can b@ear combination of two times
three linearly-independent components of the jump vectibr@ne then applies (5.22) to
that general solution and decomposes it according to th&) one will get a
displacement and rotation jump on the cir&iss a function of the jump vectorsfto

the associated circut, and thus, a linear relation:

bo = bo(MO, |5)
(5.24)
2 =0(M,,P).

If the coefficient determinant of that equilibrium sst does not vanish, which can be
assumed on all physically-sensible cases, then tladiorecan be inverted to:

I\7|.0:|\7|.0(b01‘0)1
(5.25)
|5 = ﬁ(bo , D).

Substitution of (5.23) will then yield the desired vectetdi2l*, and since the boundary-

value problem for the components ofi, and P was solved already by linear
superposition of the individual component solutions ofstiness function vector fielg,
such that:

X=X +x° (5.26)

will be the desired solution of the boundary-value prollea is free of the proper stress
of the Volterra distortion state. One can regard this process asee-tlimensional
extension of the method of solution tldager [17] gave in conjunction with his eqgs.
(14-16). The exchange of the external and internal regaod the physical meaning of
2L andu corresponds to the disc-plate analogy thahaefer[18] formulated in space.

Moreover, if one contracts the outer surface of agam Fig. 8 to a singular circle whose
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radius one subsequently extends to infinity then theioakhip to the stress function of
the rod that is subjected to a dyname 8Bwtaefer[39] will become obvious.

¢) Null-stress functions for special AnséatzdJp to now, no further assumptions have
been made about the generating vegtaf the null-stress functions, other than the given

jump locations and the necessary differentiability prigge That is entirely permissible
when equation (2.10) is solved directly in the interngiae and (1.2) is employed to
calculate the stress. By contrast, if one repld@e80) with any simpler differential
expression that guarantees the fulfillment of (2.10) daylyhe simultaneous fulfillment
of an auxiliary condition or a special Ansatz fgr then, in general, those auxiliary

conditions should also be observed for the null-stfesctions. Obviously, one can later
add an arbitrary deformator that is defined in the wholeriott to x, as long as one

employs the original equation (1.2) for the calculatdrihe stresses. However, when
the auxiliary conditions are given, Ink can often be replaced with a simpler differential

expression, which does not by any means need to vanisim farbitrary deformator. A
more important case is that of multiply-connectedaegjiwhen the deformator, with a
multiple-valued generating vect®, is initially defined only in the exterior, and the

“null-stress function” that it is derived from actualBads to zero stresses only in the
exterior, while in the interior the proper stress stgscribesvolterra distortions and
can therefore no longer be a pure deformator. The mefor in external space must
then be specialized in such a way that by determining dhedary conditions on the
outer surface of the region, it will, at the sanmeetj also guarantee the preservation of the
auxiliary conditions (the special Ansétze, resp.) invthele interior.

In isotropic, homogeneous media, we will mainly emplog bipotential equation as
a replacement for (2.10). In particular, we cite:

1. TheAiry stress function in the plane. The auxiliary conditiere consists of
saying that only thezcomponent of the stress function tensor is non-vanisaimng
depends upon only andy, in addition. As is known, the only associated nuksst
functions are linear functions afandy. There are no other deformators that fulfill the
auxiliary conditions. For the behavior of they stress function in a planar annulus, cf.,
Prager [17].

2. The stress functions of the plate according¢haefer[18, 19]. According to
Schaefer[19], for an ordinary plate (i.e., one that is freeQdsseratmoment stresses
that are perpendicular to the plane of the plate)sthess function®; and®, (and the
Airy stress functiomPs) can be regarded as the components of the generating géetor
null-stress function field, which is independentzobut is defined only in the upper half-
space. lIts continuation into the lower half-space vélset to zero. For that reason, the
incompatibilities will not vanish in the boundary plane= 0, but will yield singular
simple and double coverings that correspond to thespéate disc stress states. One can
regard this derivation as the limiting case of Fig. 11, ppwB&h gives a representation

of a singular loading on the curv€)(by a stress functiory® that is defined in the
external space ofB) when the surfaceF] degenerates to the plaze= 0, and B)
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degenerates to the disc (plate, resp.). A singular Igaulitside of the curveC) will be
given when one makes the upper half-space doubly-connectetedys of a singular
curve D) (a “bar,” Stang@ [19]) and introduces the corresponding multiple-valuedness
of 2 [19]. The considerations of this section can be adaptarali, when one carries
out the passage to the limit in Fig. 11 with multiply-cacted @) (cf., on this L8]).
When there are no load®; and®, can be derived from a biharmonic functid,[19]
with help of the disc-plate analogy for isotropic, h@®oeous plate materials.

One will get information about the permissible naitess function most rapidly when
one introduces the distributiafi®(2), d(2), d®(2) (cf., Appendix).

One then writes:

x=Defl (x,y) 692, (5.27)

and one will then get by differentiation:

og=01 X Y X O
=0@(2) e x DefA x £+ dY(Z) (¢ x DefA x O + 0 x DefA x ¥)

(5.28)
= 0W(2) DR (& x OA O + A x e x O).

The first term includes the bending moment, while #ead one includes the transverse
forces and disc stresses. Since both dyads in thedsdraoket are composed of the

same vectors, that expression can vanish onlylfer2; i.e., only a vector fiel® that
corresponds to a rigid rotation is allowedd], eq. (24d)).

3. TheKrdner-Marguerre solution in space2b, 12, 2]. We employKrbner’s
formulation (R], (11.18)), which uses a tensor:

Z:i()(— L )(llj (5.29)
m

(G = shear modulusn = transverse contraction number) that is derivedhfthe stress
function tensor, in place of the latter tensor.e Kinoner-Marguerre auxiliary condition
then reads:

O0y=0 (5.30)

when one employs the bipotential equation, and éllguaranteed with certainty when
one prescribes (5.30) as the boundary conditioneaaeinds it to the broader boundary
condition:

n D00 = 0. (5.31)
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Since (5.30) and (5.31) are homogeneogs, they can also bel@dson each individual
outer surface of a multiply-bounded regioh (From the validity of (5.30Kroner ([2],
(11.23)) gives the simplified formula for the stresses:

m
m-1

g =26 [AZ+ (O0y —Ay,l)] (5.32)

instead of (1.2), and writes out those equationsylmdrical coordinates &, § 32), in
addition. As one easily sees, it is sufficienttha

)_(O: Defi = 2G ZO (5.33)
for a null-stress function when the generating @ect

A=0OA+0x A (5.34)

can be derived from harmonic potentidl@nd A. Such potentials also suffice for the
generation of each prescribed spatial multi-valesdrof the vecto®(. If the jump on

any simply-connected, double-edged cut-surface (£f6)] is given by:
- M(t)=2—2A1=—- M, —Px (t —to) (5.35)
then one prescribes, e.qg., the boundary valuedliga 1 and the boundary values:

A=-t DMO,
(5.36)
A= 1(t—to) X [P x (t —to)]

on edge 2, and solves the associated harmonic boumdlue problem in the infinite
external space to the two edges of the cut. THestrass function (5.33) is continuous in
the cut-surface then, as one can easily derive fleentheorem on equivalent cuts in
Volterra ([43], Chap. Ill). ThePoissonequation is only a special case of the general
equation, which is satisfied by the displacemehts\olterra distortion. For more than
double connection, one must superimpose the sokifar the different cut-surfaces.

In conclusion, we shall give the necessary anéicgerit conditions ford. We see

directly from (5.30) and (5.32) th& must be harmonic, and d# must be at most a
constant.

() One sees this, e.g., when one reduces the domaisirtgly-bounded one by drilling holes in it and
lets the diameter of the connecting hoses go to zErdtitious supplementary stresses that remain in the
connecting hose (8) will then have no effect, since, by definition, thepve the outer surface of the
connecting hose force-free.
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4. TheSchaeferAnsatz in spacelp, 11]. With the Ansatz11] ():

X=0-01+Ql,
AQ :%(D O +AO), (5.40)
2O =0

(m = transverse contraction number)

Schaefer[10] presented, e.g., the stress functions for the probtEnBoussinesgand
Cerutti on the half-space. Here, we prefer a somewhat amrantageous form that is
an extension to proper stress problems that was alsm diy Schaefer (") and will
emerge from (5.40) by the substitution:

O=y-3 ¢l [¢=0-0 1, resp.]. (5.41)
One will then have:
X=y+Ql
20 =" (o m-aw), (5.42)
m-1" -
Ay =0.

One will get the stress from this:

g=Inky=Ink ¢-AQ | +00Q

(5.44)

= - 00w- ¢ 0 + 00y —ilmwzmm +00Q.
Y-y ol 2

That expression must vanish for a null-stress func@?. One must next be able to

represent such a null-stress function as a deformatae otherwise, from (5.42%)
would be harmonic, and the first equation in (5.44) would gigerdradiction. We then
set:

°= Def2 (5.45)

and obtain the condition:

Ink y = - A Defl —%ADDZ[HDDQ:O (5.46)
— m_

from (5.44), and with the second equation in (5.42), onegeill

() One should notice the partially-opposite sign convestfor X inthe various papers. The one used

here agrees witl2] and [LO], while it is opposite to]1] and 7).
(") Oral communication.
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(nkx ) = -2 A+ A0 = —2 A0 = 0, (5.47)
= m-1 m-1
as well as:
AQ =0, (5.48)

It is then necessary and sufficient that the defosmattthe generating vector of the null-
stress function should be harmonic; i.e., one arratesssentially the same criterion as
one arrives at foKrbner-Marguerre stress functions. Additionally, from (5.46), one
must demand tha® must be at most a linear function in Cartesian coatds. In
practice, one will usually set it equal to zero.

6. Planar annulus with a resultant dyname on its boundary.

Foppl [23] has given théAiry stress functions for numerous examples of this type.
From 84, no representation b&iry stress functions is possible in such cases, unless a
fictitious proper stress state appears, at least, argalar line, which will be suppressed
from the stress calculation. In the simple exangdfl¢he isolated force, we shall show
that this fictitious proper stress state can actualhfied using known methods involving
the stress function itself, and its extension to noomaplicated examples will be possible
with no difficulty then.

As is known, one obtains th&iry stress function by restricting the stress function
tensor to &zcomponent that is independentzaind setting:

Xz=—F XYy =—F (0 9); all othery; = 0, (6.1)

or with the employment of the basis vectis ¢

Y=—Ftet (6.2)

One will then have:
oF . oF
xO=t| —i—j 6.3

X [ o o Jj (6.3)
in Cartesian coordinates and:

xyx=¢t 1a—Fep —a—Fe¢ (6.4)

= pOoP op

in cylindrical coordinates, with the basis vectegses, £. The circuit of thePeretti line

integrals (1.5-6) degenerates into an infinitely-long (@&dhleifen that is perpendicular
to the stress plane; in a spatial context, it theldyia force and a moment per unit length
of a cylindrical strip that is spanned by two parallelsthe z-axis, while in a two-
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dimensional context, it will yield a force and a momnalong an arbitrary connecting line
between the points of intersectiBpnandP, . In Cartesian coordinates, one ge}s (

MOI {F (%2, y2) =F (X1, y1)

oF oF oF oF
—— (e=X)—— (Y2=Yo) + —| (Xa=X) +——| (y1~Yo)} (6.5)
OX|p, ay|p, 0X g 0y g,
and
P = {6_F _oF }i_{a_': _OF }j, (6.6)
oy ., ay| 0x . x|
and in cylindrical coordinates, one will ge): (
Mo ={F (02 ¢2) —F (01, ¢1)
oF 1 oF .
——| [P~ mcos @2~ o) ———| osin (@2~ o) (6.7)
610 P, pZ a¢ P,
oF 1 oF .
——| [o—mcos@r—po) + ——| msin(@— o)}t
and
- 1 0F 1 0F oF oF
p=—5 - - _‘ €1, (6.8)

¢ ¢ — e, +
p, 08| 7 pog| " op| *° ap|,

resp. As usual, the point on the boundary linnéoright of the outward-pointing normal
will be provided with the index 1; on the intermait-lines, the normal that points to the
other cut-edge will enter in place of it.

The mathematically simplest cavities in the plare (in agreement withoppl [23],
pp. 94) the ones that one can contract to a pand,therefore infinitely-small recesses
around the point of application of single forcesycé-couples, with and without
moments, singular angular moments, etc., whosassfreld was determined 6ppl
with the help ofAiry stress functions. It is preciseoppl’s derivation of the stress
function of a single force in complete plane thabvss very intuitively the meshing of
multiple-connectivity and multiple-bounding in tpéane (cf., 8c). Foppl started with
the stress function of the single force on a wealy® pulled it apart on the slotted plane.
When viewed spatially, this corresponds to the awtiy hollow cylinder — i.e., to a
doubly-connected spatial domain with a separatiméase, which is the best known case
in the theory of isolated dislocations, [43]. In fact, FOoppl also found an edge
dislocation at the point of application for thederin that domain whose stress field must

() The other components of the moment diverge to undetedntines due to the infinite length of the
cylindrical strip. For that reason, we have reddrthem to the “center plane” of the infinite cylinderd
replaced them with a “princip&auchy value” of zero.
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be subtracted. It ultimately follows for an isolafedce K in the negativex-direction at
the origin (Fig. 9) that one will have the stress figrct

F= ﬁ(p¢sin¢—m—_lplnpcos¢j. (6.9)
2r 2m

After discarding the dislocation, we now considex tomplete plane that is punctured at
the point of application for the force to be a diyaponnected, but doubly-bounded
region, and must therefore demand spatial sindlgedaess of the stress function. That
is ensured for the second terms in (6.9) with mbh&r assumptions. However, in the
first term, we must reduce the angldor every value op to lie between two values that
are at most Zapart, so the barriers must be at least pieceshffexentiable functions of
p.  That happens most simply when one can bend tigde @ back by 27 into a
piecewise-smooth curve that cuts any circle arddrahly once; the connecting hose (8
4) is then distinguished by a place wheérgimps. Moreover, the connecting hose can be
chosen arbitrarily, in contrast to the spatial egle®s of the following section. One can
also introduce several connecting hoses (jump ilmesifor @) without altering the form
of the solution (6.9) in any way.

That singularity also appears in the derivatives:

oF _ K
o 2m {¢ in ¢——(Inp+1)005¢}
(6.10)
10F _ K
,06¢ . {¢cos¢+ S|r¢+ ,0 Ino S|r¢}

It first vanishes in the stresses that are smoetlee@t the singular location.

y
)
%2
P2
i X
-Ki

Figure 9. The isolated force in the plane.

Now, Foppl showed that the equilibrium condition was fulfilley integration over
the stresses on a circle around the point of agmic of the force and found that the
resultant of all forces that act upon the circuégion in the neighborhood of it was the
force that is equal and opposite toK- (Fig. 9), as it also must be, since the jump
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singularity would go away by differentiation2d], 8 23, (15)). By contrast, equations
(6.7-8), which are derived from theeretti-Glnther integrals, must give zero for a
closed circle when thairy stress function is continuous, along with its first daives
(Fig. 9), since the contributions & and P, will then cancel when one moves them
together on the circle. In reality, one will get fenilimiting values when one lets the
pointsP; andP; in Fig. 9 move together into the singularity that besthe rayp = @.

The sign of these limiting values depends upon whetimer r@gards them as
boundary points of the dashed circle (Fig. 9) or the cutk@singular line. In one case,
one will get the forces that are exerted on the dashedby its neighborhood in the
interior, as integrating over the stresses d&jpl [23], while in the other case, one will
get the dyname that is carried through the connecting imseder to preserve the
isolated force at the origin. The numberingRafand P, in Fig. 9 corresponds to the
second way of looking at things. One will get:

$r—1=-211 (6.11)
and for a moment reference pogpimidway betwee®; andP; on the singular line:
M,=-K msind ¢, (6.12)

just as, from (6.8):
P=K (- cos® ¢ + Sind eg) = — K1, (6.13)

1D
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Fig. 10. The fictitious supplementary stress to the tiedlforce
(The elastic deformation outside of the singularityuppressed)

so the dyname that is statically equivalent to thsieg force.

T “\\ T ]
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The associated fictitious proper stress staté) (8§ especially simply to interpret for
® = 0, so along the line of action for the given fonsaere the moment vanishes. The
fictitious supplementary stress on the singular line, wheéplaces the real external force
for the stress function, will then correspond to apdntompression. One can think of it
as arising, e.g., from the cutting process that was thesiaila Eshelby [24] in perhaps
the following way: First, a moderately-wide slit ismreved from both sides of the
singularity line (Fig. 10a). Now, all of the materialith the exception of the strip
between the slits, is stiffened up to complete rigjdand from Fig. 10b, the strip is
compressed by a rigid plunger from the outside until tbeeaientioned slit will be filled
up completely as a result of the transverse strdins welded in that position. The
compressive stress that arises in the strip is equéletdidtitious supplementary stress
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c“"”. If one now once more solidifies the remaining miatéhen the same stress state

will exist there as if a force were acting upon the ehnihe singular strip. However, the
compressive stress will continue to prevail in thegslar strip itself, since we have
verified that in (6.13).

A similar simple result follows fo® = 77; in this case, the singularity lies on the
negativex-axis, and in place of the pressure in the singular sinp, will now find a
tension, such that to compensate, material must benisped on both sides of the
transverse contraction. The singular will be moneglecated for all of the remaining-
values. Along with the simple, constant compressiorteasion, one will also have
shearing stresses, and a double-covering of tension amgression that increases
linearly outward, which, on the one hand, cancelsnternal forces that are required by
the shearing stresses on the outer surface of theecbon hose, and on the other hand,
produces the moment (6.12). The fictitious supplementaegssthen corresponds to the
stress state in a thin bar that can be curved arbgtraribrder to adapt it to the more
complicated problems, in addition. In the next sectwes,shall employ the principle of
constructing a fictitious supplementary stress that dessribed here to the problem of
exhibiting the stress function tensor of an isolatedean space.

A term that is proportional to the polar angke= arctany / x also appears in
Schaefer’'s 19 stress functionsgb; and ®, for a plate loaded with a dyname. An
interpretation of the kind that was described is genenmaippssible, sinc&; and®d, are
introduced as components of the generating vector afuhestress functions in external
space, and will — in contrast to tAgy stress functions — first become the components of

a spatial stress function tensor in an infinitely-laytinder when one multiplies by z*.

However, since that way of looking at things leadsttesses that diverge linearly at
infinity, it is less suitable for the spatial represgion of the plate (cf., 8c).

Fig. 11. The “bar model” for a load singularity on theer surface.

By contrast, if one adopts the viewpointStthaefer[19] then the stress function will
be represented symbolically by (5.27). It will consisthe product of the deformator
and aHeaviside step function, and will then be spatially single-valuebhe fictitious
proper stress state is now first defined in the b&)ytHat is extended by the bdd)(and
the surfaceR) (Fig. 11), so it is no longer to be regarded as a putehap problem).
FromSchaefer[19], the Airy stress function can also be regarded as a compondm of t

() Cf., on this, pp. 30, no. 2.
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vector2l in (5.27). The interpretation that is employed herg¢hefzzcomponent of a

stress function tensor is, however, simpler, andHat reason it should be preferred for
topological considerations.

7. TheKroner-Marguerre stress function tensor for
an isolated force in infinite space.

For this problem, all of infinite space is unperturbedcept for the point of
application of the force at the origin, where an indély-small cavity of unperturbed
region has been removed. The unperturbed domain — vizpuihetured space — is
therefore doubly-bounded, and the load on a boundary wile lmwnon-vanishing
resultant, such that from & that load stress problem cannot be solved directly with
stress functions, but must be replaced with an equivpleyper stress problem. From §
4, the associated fictitious supplementary stress wilhbused in a singular connecting
hose at the point of application of the force, andstiness function will only be valid in
the “drilled-out space” then.

The simplest fictitious proper stress state for thae is clarified by Fig. 10 when one
no longer regards the figure as a picture of a planangement, but as a cross-section
through a rotationally-symmetric structure. Furthermasemechanical production will
result in precisely the same way as was described irumotiign with (6.13). The
mathematical structure proceeds by the following stepsHicf 10, page 37):

1. According taKroner [2], the stress functions of a simple displacementldipoe
determined from the stress function tensor of a disitmtaing by passing to the
limit.

2. The stress function tensor of a dilatation cewittbe constructed from the stress
functions of three mutually-perpendicular displacenu#nles.

3. The simple displacement dipole and the dilatatiemter will be combined into
am (internal) force-dipole?].

4. A uniform distribution of force-dipoles along the pwsi z-axis will yield the
desired stress function field of the isolated forcee Simgularity of the fictitious
proper stress state in the connecting hose will beiegrnkith the help of the
Peretti-Gunther integral.

5. Finally, one can also derive the stress functield fof a double force with a
moment and higher singularities from that by differ@tidn. The singularity in
the connecting hose can also be determined from thenignitalue of the contour
integral here.

The exclusion of higher singularities (cfSternberg and Eubanks [40]) is
guaranteed for the isolated force by the type of passatpe fonit that was described in
Para.1l. We shall employ the form for theréner-Marguerre stress function tensor
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(5.29) in cylindrical coordinates that was givenkagner in ([2], 8 32). The agreement
with the stress field of the isolated force that m®wn in the literature and was written
out explicitly by Trefftz [26] can be verified with no difficulty with the help olhe
formula thatKroner gave in (], in conjunction with (V.30)). We shall now perform
the steps in detail.

1. The stress function tensor of a displacementleéip&romKroner ([2], (11.107),
theKroner-Marguerre stress function tensor (5.29) is that of a clossthdation loop:

g:—sin{bxmgmt'—th'}sym; (7.1)

in which ¢ is the position vector of a point on the dislogatioop, andv means the
Burgers vector with the sign convention Krdner [2]. For a circular dislocation loop
with radiusR around the origin in they-plane and th&urgers vector:

b=Db¢, (7.2)

one will have, in particular 2], (V.38)):

- — b r_ 1 Sym.
y= 8—n{e><D<j>|t t lepde}™

(7.3)
=- {exTf(p2) e
in which, fromFranz andKréner ([41], (8)) ():
f(o 2 = ;‘2 R\ﬁf_R{Z 1-K)K (K- (2K)E (¥, (7.4)
with the complete elliptic integraks (k) andK (k), and:
_ 4pR
I = Repp+Z (7.5)

We now contract the dislocation loop around thgiori At the same timeé also tends to
zero withR, and one will get:

f(p,z):nRzgz F?; r=yp°+7° (7.6)

() In([2], (V.39)), the pre-factor is incorrect, and equatif@} (V.41)) must be multiplied by — 1/2 on
the right.
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from a development of the elliptic integral up to thartb power ink ([42], pp. 75), in
whichF is the planar surface that is enclosed by the distotéop.
The stress function tensor ofzadisplacement dipole of strengb¥ follows from

that:
» _ bF1 z
Z —8—7TF{€p€p+r—2€¢€¢}. (77)

From the sign convention &froner [2] for the Burgers vector of the circuit-pair in the
supporting sketch in Fig. 8a, pp. 24, a positiweill imply a displacement dipole that can
be generated by the removal of material from the chgion surface, and for negatike

a displacement dipole that can be generated by filling ateral in the dislocation
surface [“negative” (“positive,” resp.) displacement dipole

2. The stress function tensor of a dilatation centaiith the transformation

formulas:
p?=7 +_,a2 sirt @,
cotg = 'OSIZn¢, (7.8)

X = p COS¢,

one will get the unit vectors of a cylindrical coordinagstem with thex-axis as an axis:

Op® _ e,psSin’ g+e,psing cogp +e,z

e .= ,
7007 | \ Z2+ p?sin?g

(7.9)
—-Ocotg” _ —e,zsing —e,zC0P +¢,0 SirY
e .= = ,
? |Ocotg" | \ 22+ p?sin’g
and making the substitution:
(sin @, cosg) || (cosg, — sin @) (7.10)

in that will give the unit vectorspm,e¢m of a cylindrical coordinate system with tize

axis as its axis. The stress function tensor efdiatation center will then follow by
addition:

bF 1 X ' 7z
- XX+ yy+ ZZ: -
V=yieyTry —87”{epuepﬁ—rze¢ue¢u+epmepm+—r2e¢me¢m+epep+—rZe¢e¢ . (7.11)

An elementary intermediate calculation, which W&l skipped here, will yield:
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p pz

1+F 0 '
Z‘EE—F% 0o 1 0 (7.12)

2

Pz g, 0

in matrix notation with the coordinate sequejpce, z Negativeb will yield a positive
dilatation center, while positive will produce a negative one (viz., a “compression
center”). That stress function tensor obviously remtssa counterexample to the
suggestion thaKroner ([2], pp. 157) expressed in a provisional form about the stress
states that can be expressed in terms of gplgnd )34 . Since thekroner-Marguerre
stress function tensor is determined uniquely, up to ataohpart (i.e., up to constant
components in Cartesian coordinates), from the uniquetiessems in bipotential
theory, the remaining components of (7.12) cannot be madeanish. Kroner'’s
suggestion is not applicable.

3. The stress function tensor of the force dipoleonKroner ([2], (11.151)), the
displacement dipole can be defined by passing to limit feodislocation loop that is
defined by the tensor:

Q =~lim (Fi by), (7.13)

which we can restrict to its symmetric part for thespre problem. FrorKroner ([2],
(1.153)), in a homogeneous medium, the (internal) fatipele can be replaced with:

P
and by isotropy, that will give:

P = 26[Q+ﬂj, (7.15)
- m-2

1
Ie)

o, (7.14)

We now require a force-dipole of the form:

P=P¢t¢, (7.16)
and in order to do that, form a combination of mm@e displacement-dipole and a
dilatation center:

Q =Att+BlI, (7.17)

which will lead to the force-dipole:

p= 2G(Aee+ Bl + A+3B|j.

—— (7.18)

By a comparison with (7.16), we will get:



Rieder — Topological questions in the theory of stress ifumst 43
P
A:i, . — (7.19)
2G 2G(m+1)

From (7.13), we now setbF = A in (7.7) and -bF =B in (7.12) and add them. That
implies the stress function tensor of the forcesti{7.16):

1 &2_ m 1 pz
m+1r> m+1 17
y=—r1 0 p__M 0 (7.20)
167G r m+1
2
1 ,0_22 0 1 o P~
m+1r m+1 r?

4. The stress function tensor of the isolatedeforA definition of the displacement-
dipole that is equivalent to (7.13) upon restrigtio the symmetric tensor follows from

the supplementary straig® [5, 6, 7, 33, 34]:

Q=lim [ £%dr, (7.21)
v)

from which, one can derive a corresponding deénitior the force-dipole fromb] ([7],
(1.5)) from the supplementary streg$:

[ H Q
P = m(i)g dr. (7.22)

If we now replace the supplementary compressiasstin the proper stress state in the
excised cylinder of Fig. 10, pp. 37, with the sighanged, with a (fictitious)
supplementary tension-stress:

g“"=ot ¢t (7.23)
in a cylinder with a base surfaBearound the positive-axis then that will correspond to
a distribution of force-dipoles:

R F=_gFre (7.24)
dz
The internal force:
KE:UFE:—EE%;P (7.25)
Z

will then appear on the base surf&ci thexy-plane. The isolated force of magnitude
in the positivezdirection can then be replaced with a distributioi infinitesimal
fictitious force-dipoles:
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dP=-Kdz (7.26)
along the positivez-axis. One must now calculate the stress functield fof such a
dipole at the locatioz on thez-axis with the help of (7.20) and integrate over the entir
positivez-axis. We then make the following substitutions ir2Q7-

- K dzfor P,
z—zforz

r'=. p°+(z-2)* forr,

and integrate over all positivé. That will show that the integral of 11/ is
logarithmically divergent. However, frolroner’s formulas (B], pp. 156), it is also
permissible in cylindrical coordinates to add agsy constants to the components of the
principal diagonal, except that these constantst roesthe same foy,, and jzs . A
glimpse at (7.20) will then show that one can regla

71 . (11
.([Fdz’ with .[(—,—Z,_%jdz’,

(7.27)

0

although the constants are also essential fortther mntegrals. With:

]:(1— ,1ljdz’:—ln (r—2,
o\ ' =3

2

T'O—Zdz’ =—+1,
0

r'

= IN

(7.28)

r

Ip(z'; 2) 4y =_P
r
0

one will then get the stress function tensor of w@ated forceK in the positivez-
direction in cylindrical coordinates:

1 (E+1]——m nr-2z) 0 —=~
m+1\r m+1 m+1r
K z m
K ——— 0O -|—=+1|-———In(r-2z) O
4 16 (r ] m+1 ( ) ’ (7.29)
L p 0 1 (In(r—z)+z]
m+lr m+1 r
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in which only the singularity along the positize@xis (connecting hose) is to be adopted.
Naturally, one must be able to lay the singularity alargdjfferent curve, but the tensor
(7.29), whose symmetry is suited to the problem, is icdytdhe simplest solution.

In order to examine the singularity with the line intégi@.5) and (1.6), one will
require the stress function tenspritself. From the inversion of (5.29) that was given by

Kroner ([2], (11.18)), it will follow from (7.29) that:

—m+2In(r—z)——(—+l —1 E
m+1 mt+1
K m+2 m( z
X= 166 ° ‘m+1'”“‘2)‘—(7 ) - (30)
1 p 0 2 (z-j
m+1r =1\ r

We choose a circle, z = const. around the-axis to be our integration path. Only the
components of the second row will enter into the iimegral, and of them, onlyy, is, in
turn, non-zero, and since the integrand does not dependgpbmvill follow directly
that:

gﬁdtq :jpowﬁe¢ Q(:jpd¢)(¢¢(r,z)e¢= 0. (7.31)

We will further require the integral:

cﬁdtQ(x O :j pdge, Wy x0), (7.32)
and, withtg=z¢ :
gﬁ(drq(xm)x(t—ro):jpd¢e¢ Qyx0) x pep. (7.33)

After a somewhat lengthy intermediate calculatiuat twill be omitted here, it will follow
in cylindrical coordinates that:

_ia)(pz +6Xp¢ +i _a)(pp +0sz __:La(p)(pz) +_10pr __1
pop oz p’* 0z op p op pop p’”¥
/_YX U= _ia)(m_'_a)(w __1 _0X¢p+a)(¢z __10(,0)(¢¢) +_10X¢p +_1 , (734)
pog o0z p’t 9z dp p Op pop p°”
—i%+a)(_z¢ —_a)(z" +% —ia(p)(m) +_10Xp
p o0y 0z dz 0p L 0p L 09

and after substituting (7.30) in this:
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ep Ly x 1)

KL, mz mi(—z+1j+ W2 P ___MA (735
87|\ r m+1r®)” |m+lp\r m+lr(-z) m+1rp

One infers the vanishing of (7.33) from that dikect All that remains then is the
contribution from (7.32), and from the dyname oge #dge that faces the origin of a
circular cut surface through tleaxis (the normal to the cut-edge isth the resultant

force is, from (1.5):

P :(ﬁdt[l)_(xD:%[...] £ (7.36)

If one now contracts the circumference over thaetpes-axis then that will yield:

|im1(5+1j =2 im—P =2, imPZ =0 (7.37)
-0 p\r p' eor(r-z) p’ eeor

for the only term in the square brackets. All tenwill vanish upon contracting over the
negativez-axis. It will then follow that:

(7.38)

p-0 for z<O0

= K¢ for z>0
limP=
The interpretation as a singularity of a fictitiqu®per stress state in analogy to (6.12-13)

and Fig. 9, pp. 36 is then obvious.

5. The stress function tensor of a double fordé wioment. We imagine a foréet
at the origin and a forcek-¢ at the location:

-Jdl=-id. (7.39)
The double force has the moment:
-Kdj=-Mij. (7.40)
One obtains the stress functions of that doubleeféor |¢ |< | d( | from:
XM =+ 3N +x () =- ALY ()

== d (epCOSP —ey SN P) Eéep%+%e¢ %j )_(K(t) (v)
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1 .
=da (—cos¢i+— sm¢ij X< e (7.41)
op p 09)7

The asterisk in the index shall then remind one thati®fy no means dealing with a
pure moment singularity here. Such a thing can be firstedrat by adding a composed
force-dipole:

p=- 4

=-1dK(Ei+ib (7.42)

whose stress functions can, in turn, be arrived at by isapesing two simple force-

dipoles of opposite signs witR = i%él in 2 and 1 medians in thee¢plane, so by

superimposing two tensors of type (7.20) after rotatingtly / 4 around they-axis.
Another possibility for arriving at a pure moment singijaconsists of adding a further
double-force with moment that has been rotatedrby around theg-axis (in the plane,
cf. [23]). In order to do that, the tensor (7.41) must betedtaor when a second singular
line should be avoided, a new stress function tensorishabmposed of the stress
functions of the isolated force in thedirection with singular connecting hose on the
positivez-axis. We shall dispense with that extension and gee):

m+2 p _ 2m pz| sing m( z | _cogp Z
COS¢{m+1 r(r—z) nt-1 Fj 0 m+1( r+1j m+1°7
o M| sing m (7 m2 p __mp3 sinpl
= 8|l p m+1(r+1j Cos¢{m+1r(r—z) -1 rj m+1r (7.43)
_cosp % sig 1 2cog pz
m+1r’ m+1r n-1r

from (7.41) by calculation.

For the determination of the contour integrals (1.5) @n@) around circles around
the z-axis, one next calculates (7.31). One gets from (7.48), W.37), after a brief
calculation:

| [ M2
E%C.'Sdtq _{ 0

z>0
z<0

for

(7.44)
for

For the two integrals (7.32-33), one will get from (7.34) ahd@¥):

() Obviously, the basis vectors must also be differastian this, or — what amounts to the same thing
— the scalar components must be covariantly differentiated.
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2 —
M ow(im *2m 2+—2jé for z> 0

2T 2 . 2
ime, ixo) =g YT AT ML e (7.45)
o B —Mcos¢imz+—m_1€ for z< O
4T r’r m -1

Integration before the ultimate passage to the lirehtehows that (7.32) will vanish.
Substitution in (7.33) will finally give:

. M/2; for z>0
I O —1) = : 7.46
;rg(ﬁdr[ﬂ)_(x ) % (r =%0) { 0 for z<O0 ( )
The result of adding (1.5) and (1.6) will be:
limP=0 (7.47)
p-0
and
- -Mj f >0
lim M= ) for z=8 (7.48)
p-0 0 for z<0

The singular supplementary stress then corresponds rowgtilg stress state of a beam
under a constant bending moment. No further statensist the details of this
singular stress process are possible or meaningful. rticydar, the distribution of the
moment in the integrals (7.44) and (7.46) can be alterettailyi by the addition of a
deformator. It will then depend upon a special Ansatz fersthess functions and will
have no physical meaning beyond that.

8. The Schaeferstress function tensor for the isolated force in infirte space.

On the same grounds as i7,8he actual load stress state can also be replatkdwi
fictitious proper stress state that we choose (likewisth the replacement of the
supplementary compression with a supplementary tensigmecisely the way that was
described at the beginning of78 Up to now, nothing has been published on the solution
of the proper stress problems w#khaeferstress functions, which is why some general
remarks on that subject shall next be made. As is krfofyre.g., B, 5, 7, 21, 30, 31]),
when a strain that is not produced by elastic stresspgesent — namely, a so-called

supplementary straig® - the equation:
£°=Defu=£%+¢&F (8.1)

will be true. £° can originate in, e.g., plastic deformation, heatinggmetostriction, etc.
FurthermoreHooke's law:
o =czF (8.2)
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is true for elastic straiE® and the total stresg®, and the equilibrium condition (1.3)

for g® can be fulfilled identically, since it can be derived fr¢h) by differentiating a
stress function tensor, However, what now enterglace of the differential equation
(2.10) is:

Ink (sfIhk x) =17, (8.3)
with

n=-1Ink £°. (8.4)

Now, according tSchaefer(’), (8.3) will be fulfilled identically in an isotropimedium,
when one replaces (5.42) with:

X=¢+Ql,
20 =" (o m-ag), (8.5)
m-1 -
Ay =-2G £°.

We prove this with the help of the known developmernhefoperator Ink (cf., e.g.18],
(20)):
Ink y = Ay-000y-xMO+00y DI +00 xi —A x|,

(8.6)
(Inky) = O0y-A xi.
Applying this to the first equation (8.5) yields:
g°®=Inky = Inky + (00 - Al) Q
(8.7)
_ 0, & 1
=-2G| ¢ +——| —2Def Dgg——_lﬂ@uﬂl + 00w + 00Q
and
gF=sllInk y= i[Ink)(——l(D DyD]]—A)()I}
- 202G 7 m+l = !
(8.8)

=-g° +%(—2DefDQg+DD¢/I +00Q).

A pure deformator appears in the last parenthdsasse, the fulfillment of (8.3) will be
obvious. A comparison with (8.1) will yield }:

() Oral communication.
(") The agreement will follow directly from the substituti (5.41). Due to the change in the sign
convention from 12], ([11], (1.6) will be true with the opposite signs.
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u:é(—D@+%Dt/ll +100Q) (8.9)

as the extension ddchaefefs formulas (LL1], (1.6)) and (12], (7.18)) to the case of
proper stresses, up to a rigid motion.

We now assume that the fictitious supplementary stimsthe forceK ¢ is a line
singularity along the positive-axis. In the symbolic notation of the theory of
distributions, one will then have:

0
g =K a9 d¥y) oW | 0 (8.10)
0

o O O
= O O

in cylindrical and Cartesian coordinates. One calculdbes associated fictitious
supplementary strain from this by using the negativdaatke's law [5], ([7], (1.5)):

L 0 0
m+1
. K 1
e = = 0W(x) aW(y) oWz 8.11
£ =55 (x) 0% (y) 0(2) o~ (8.11)
0 o -_M
m+1

In order to determing/, from the third equation in (8.5), one will then require t

potentialU (tr) of the unit-source distribution along the positvaxis. From (7.28), one
will then easily derive that it is:

U (v) :i In (r—2, (8.12)
iys
and find that:
K| -1 0 O
w :ﬁ -1 0]. (8.13)
0O O m

In order to calculat®, one will then require:

_ K[z ml
DWIDD_A[M_ZT{F m+1Aln(r z)}, (8.14)

and one will then get:

K m z m1
_{_ o=t mri _Z)} (8:15)
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from the second equation in (8.5), as one easily verif®3scombining this with the first
equation in (8.5), one will finally get tHéchaeferstress function tensor of the isolated
force in infinite space:

m_z
2(m=-1r
k_ K m z

X = 0 —In(r—z)—z(m_l)r

=In(r-z) -

, (8.16)

m_z
2(m=-1r

and indeed, only the main diagonal will figure iglicdrical, as well as Cartesian,
coordinates.

In order to investigate the singularity, one maste more calculate the integrals
(7.31-33). One sees immediately that (7.31) mastsh. With (7.34), it will then follow

that:
wpy=KJ, (1__m p p ___ M p?
o LX"x0) 477{ (r 2m-1)r? j E(r t-z) 2m-1r j} 8.17)

(7.33) also vanishes in the integration indeperygeritthe limiting value of the contents
inside the brackets in (8.17), and from (1.5) andZ), along with (7.37), what will
remain is:

Ke for z>0
im P = lim § dv yx0= { : fzrr Z<O (8.18)
VA .

One will then get the singularity (7.38), as expdct We shall omit the calculation of the
stress function tensor for the double force here.

We shall reach our goal noticeably faster wdbhaefers Ansatz than with the
Kroner-Marguerre stress functions. Naturally, that is based irt p@on the fact that
we have employed the results of the previous papdgin it and in part upon the fact that
we have saved ourselves one integration step byrtimediate use of the supplementary
strain that theSchaefer Ansatz makes possible. That advantage will beeffiect
everywhere that the supplementary strain itsedfiven or it can be integrated very easily
from the dislocation density (up to an inesserdeformator). However, normally for a
given dislocation densityr, the integration along a contour using the equatlmat

Kréner gave (R], (11.105)) or the integral formula:

1 vt o
=—<la()x dr 8.19
¥ 877{-[_( ) [t'—v | } (5.19)
that is extended over all of infinite space and tkaeasily derived from th&roner
formula, like (2.20) and (2.26), will lead to thead much faster.
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Which Ansatz one prefers to employ for the stresstions will then depend entirely
upon the details of the special case.

Added in proof: The stress functions (8.16) were found alreadinidgnbom ([46],
ed. (17)), up to the different positions of the singukesitand an error in the logarithm.
The asymmetric first-order stress function tensor ihgiven there 46|, eq. (14-15)) is
also interesting. Its examination with the formulas:

P = <_|’>dt r (8.20)
and

Moz—gﬁdt@x(r—to)+g|5gmf, (8.21)

which correspond to thBeretti-Gunther integrals (1.5-6), from (2.21), reveal singular
proper stresses along the six coordinate half-axes, whcksolated force at the origin
“produce” in equal parts. The meaning of these singulaffibieshe problem that was
studied bylndenbom and the influence function for the proper stress &sumn the
displacement shall be reported on another occagign [

9. The Schaeferstress function tensor for the load singularity in half-spce.
(The Boussinesqg-Cerutiproblem)

Schaefer[11] derived the outer surface conditions for the stfiesstion tensor for a
given outer surface loading on the basis of diffeedsstiatic considerations and then
solved the boundary-value problem for a general load singutam the half-space, in
particular. We seek to achieve the same goal in areliffavay, whose basic ideas are
likewise found inSchaeferin a different placel9], and there they were employed in
order to exhibit the stress functions of the two-dimemei, planar continuum [cf., (5.27-
28)]. The load-stress problem was also replaced wikttiaous proper stress problem in
it. However, the fictitious supplementary stress myéo lies in the domairBj that was
investigated in Fig. 11, pp. 38, but in the bB) é@nd the surfaceF) that are put in it,
which carry forces and moments from one part of theraitirface off) to another. The
singular stress state in the bar will be given fréme) with a suitable multi-valuedness of
the generating vect®X for the null-stress functions in external space.

One obtains the case tlathaefertreated of the plane (disc, resp.) by flattening the
region @) and for the isolated dyname, by bending the bar unsilperpendicular to the
plane of the plate (8c, 2.). We also bend the bar in that way for the ptegsoblem,
but separate the regioB)(to the lower half-space. In order to empBghafers stress
function, the null-stress function (5.45) must alsasathe derived auxiliary conditions.
Here, we shall use the sufficient condition that generated vector must be harmonic (
so:

() Here, we understand a harmonic vector to be a vectorendmaponents in Cartesian coordinates
are harmonic. The absence of sources and vortitiesaivbe postulated.
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A = 0. (9.1)

From (1.5) and (1.6), the transition to the interiothef body will then be mediated by
the “static boundary conditions” (cf., also the footoh pp. 11, eq. (2.11a,b)):

nx y=nx Def, (9.2)

nEI]nX)_(Xn:nEDnXDeleXn; 9.3)

they are to be fulfilled by a harmonic tengrand a scala® using (5.42).

a) The Boussinesgproblem on a half-space- We choose our reference potgtin
(5.6) to be the point of applicatiod of the forceK; ¢. The required jump around a
circuit around the singular bar in thexis will then be:

2[2—2[1:—sz2¢. (94)

One vector field that fulfills this jump condition is:

K
A =——Zpde,. (9.5)
T

2

However, it is not harmonic; one has:

2
A’ = _&(_ﬁj , (96)
2T yoj

moreover. Now, one must determine a single-valued véetidrthat cancels the right-
hand side of (9.6) exactly; one finds such a thing)in (

A" = — K, plnp. (9.7)
T

2

Furthermore, in order to eliminate a superfluous constathiei deformator, we add:

"o Kz
A" = — 2IT(—,Oep) (9.8)

() A generating vector of this form can lead to a stsisgularity of order at most?, if at all;
however, such a thing would be excluded by its single-valuedfesrding toSternberg andEubanks
[40], the absence of higher singularities will then be guasaht
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and thus obtain the ultimate generating vector fielthenetxternal space:

KZ

A=A +A" +A" = — > [pde,+p(n p-1e,]. (9.9)
Vid
We then calculate the deformator:
a K
x° =Def =- 2—Z|n,0(epep+e¢ eg), (9.10)
= Vid

and obtain the static boundary conditions from thisguin?2):

np 0 O
Xl =—=% 0 Inp 0. (9.11)
— 1270 2

0 0o -

(The line means “no boundary condition”), and from (9.3):

5 0O 0 -
— =-—2/0 0 —-|. 9.12
az)—( z=0 2 (0.12)
The boundary conditions (9.11) will now be fulfilled by tharmonic tensor:
_K, In(r-2z) 0 0
2
K
Y = 0 -——2In(r-z) O (9.13)
- 2
0 0 y,,
with ¢, undetermined. If one sets:
Q=-12 (9.14)
2ir

in addition, which is then the product oWith a harmonic function, then the fulfillment
of (9.12) will also be ensured. However, one lmsthe other hand, from the second

equation in (5.42):
K, z oy
L T2z 9.15
2mr r® azzj (1)

NQ = i(
m-1
which leads to:
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0y, K, m-2 z
2 ooarm (9.16)

The harmonic solution of (9.16) that is less-than-lilyeiacreasing at infinity is:

Y= e M72 10 ). (9.17)
27T m

For theBoussinesgproblem, that yieldSchaefefs stress function tensor directly:

=In(r-2z) 0 0
x= ; 0 “n(r-2)-2 0 , (9.20)
- T r
0 0 M2 1 ¢ —2)-2
r

which agrees witlschaefers result fL1].

Added in proof: The same stress function tensor was found (up to anmyelud the
upper and lower half-spaces and an error in the logartbo@ntly bySchaefer[11], as
well asindenbom ([4€], eq. (19)), and in order to calculate the displacemetiteoouter
surface in the stress field, an edge dislocation thatperpendicular to it was employed.

b) TheCerutti problem on a half-space-. If one again places the reference pejrt

the point of applicatiof® of the force with the componenks andKy then, from (5.6),
the generating vector must jump by:

after a circuit around theaxis. Such a jump will possess the vector field:

,_ 2 . N X¢
A' = (- Kyi +Kyj) —=K e +—K,¢t. 9.22
2]_[( yl i) o o y ( )

However, it is not harmonic; moreover, one has:

1 2X 2y
A= —| -——KEt-—K | 9.23
2;7[ R j (9.23)

This will be balanced out by the single-valued vectdd fie (" ):

()  The component functions are known from #igy stress function of the edge dislocatigh [
(")  Cf., footnote to (9.7), pp. 53.
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Ql":zi(xlnpKXE+ylnpKyE). (9.24)
T

The gradient tensor in Cartesian coordinates follfvars these two vector fields:

Z zZ
%Ky —%KX (Inp-1K, +¢K,
@+ =—| X2k X5 (np-DK,-¢K, (9.25)
27T 0 y 0 y
-¢K, oK, 0

The boundary conditions that are derived from the sytmengart of this tensor lead to a
contradiction for the harmonigy, = xxy. On the one hand, from (9.2}, must vanish on
the boundary then and therefore in the entire half-smacéhe other hand, the boundary
condition (9.3) with (9.25) requires a non-vanishing normalvdgve. In order to
eliminate this contradiction by setting the normal ¢sive equal to zero, we add another
null-stress function tensor with the harmonic andIsivglued generating vectol:(

A" = iz In o (Kyi+Kyj), (9.26)
2
and in order to eliminate the superfluous constant, we add:
2 = - (K +y Ky ¢ (9.26a)
o : :
Combining them leads to the tensor of the null-sti@sstions in external space:
z
(XK, +yK)— 0 Klnp
P

a ! " nr nn 1 Z
X'=Def@ +2" +2" +2A) = —/| 0 (xKX+yKy)? K,Inp (9.27)

K.Inp K,Inp 0

and therefore to the boundary conditions:

0 0 K,Inp
X|...= %T 0 0 K, Inp (9.28)
Kinp K /Inp -

() Cf., footnote to (9.7), pp. 53.
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and

1
(XK, +y Ky)? 0 -
0 1 1
— = — 0 xK +yK)—= - 9.29
ngOZH (XK, +y ﬂ# (9.29)
If follows directly from this that:
1 0 0 K. In(r-2)
Y = 2 0 0 K, In(r-2) |, (9.30)
K. In(r-z) K, In(r-2) 2y,
and from the second equation in (5.42):
2 _ 2 _ 2
A _1m 2KX6 In(r z)+2KX6 In(r Z)+2716 y,, | (9.31)
2mrm-1 %02 0y z 9z
or, after performing the partial differentiations:
pg=t M Ofog X ok Y 405 (9.31)
2rm-10z r(r-2) Yr(r-2 0z
On the other hand, the remaining boundary conditwifi be fulfilled by:
(9.33)

_1 z
Comr —z)(X Kty )

If one applies thd.aplace operator to this and compares with (9.32) thewilit follow

that:

m2maz r(r-2  Yr(r-2

2
I 2100y X g Y | (9.34)
0z m2moz

{,,is then determined up to a productzafith a singularity-free harmonic function »f
andy. However, should the stresses die off at infititgn it can be at most linear and
will then have effect on the stresses, as one asityeverify. We then set them equal to

zero and find:



Rieder — Topological questions in the theory of stress ifumst 58

11 0 0
by=———| K, —+K, — | (zIn(r=2 +r
¢ 2m277( “Ox yayj( r=2+0
11 2 1
g 2m2ﬂ(xK yK)[r(r—z)+rj' (9.35)

With that, one can assemble the stress function tesfsihe Cerutti problem from the
first equation in (5.42), in agreement wikhaefer[11]:

(XK, +YK))

r(r 2) K, In(r—2z)

X == 0 XK, +YK))—— K, In(r-2) . (9.36)
2 21 r( Z)

K.n(r-z) K In(r_z) (XKX+yKy)(2m 1 z 1 1}

2m r(r-2) omr
We shall forego the corresponding calculationssfogular momentslfl] here.

c) Overview.— The application of the fictitious proper stresste in external space to
the problem of the singular load stresses thatdessribed is closely related to the idea
of extending to a continuous load distribution.fdat, one can now (at least, for the half-
space) go backwards from the singularity solutiomd aonclude withSchaefets
equations (11], (3.22)). However, in the general case, one newpand the barl)) in
Fig. 11, pp. 38 to a spatial structure or evenltofspace; i.e., one will arrive at a second
boundary-value problem for external space. Thelltred the procedure for singular
loads is based upon just the exceptional simpleftyhe “boundary-value problem” for
the singular bar. In the other case, one mustrumthe continuous outer surface load in
a suitable way to an equilibrium stress in extegpece, then determine a stress function

tensor x*, and then connect that with the internal stresgtfon field with matching

conditions of the type (2.11a-b) on the outer sgfaOne might then expect that in many
cases this problem could be simplified very muclalsgitable choice of fictitious proper
stress state in external space; the example dfdliespace is also especially clear here.

Appendix to § 2.
a) Derivation of (2.14)— When one substitutes (2.11) and (2.13) in tfiehlend side

of (2.14) and makes the concomitant repeated atits of the product rule and
Stokess theorem, one will get:

3| x~ i x(sihky ") 0] =4 [(x~ x0) O sk x) % df
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= 1[ (02 +2 D) Mdfx Ou™ x0) =4 [ (dfx DA™ x 0) I(0u” +u )

- %I(deIlj) QoA +2A70) B x0 —%I(deIlj) 0w +u-D)m5l- x )

= ~1¢de oA +A0) Q0 xu") +4¢ de 0w +u D) QOx2A7)

. v N . T v
+ 3 [dFQO* ) (O xu ) M -4 [ df O xu”)(Ox2A™)
= =3 fdel-) 3P de )+ 4 de EOX(OxA) Y Oxu)])
= 3¢ de {2 (Def 27) [{0xu”)+2(Def u )OI A )+ OxA")x Oxu")},
which is the right-hand side of (2.14).

b) Closing flux on the outer surface (to 2.286) We assume that the vector of the
outer surface flux density has the forffi x n. The continuity condition for each

component of the outer surface then demands that:
<_|’>dr @y = jdf ry (2.20a)
and therefore, frorBtokess theorem:
[(dixD)@0= [df . (2.20b)
Now let:
t=t(uU,v,n) (2.20c)
be determined in such a way that one has:

n=0; On=n (2.20d)

on the outer surface. If we make the further Angat 20 that:
g ot
W=W — (2.20e)
ou

then that will establish the direction of the ouserface flux as perpendicular to the

parameter lines = const. on the outer surface. Theector on the outer surface can be
decomposed g, § 225) into:

ov du Juov
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in which we have expressed the triple product of theethesis vectors:

Z—Z%n ‘:«/ EG- F? (2.209)

in terms of the first three fundamental quantite$-, G ([9], § 48) of the outer surface,

which is possible here with no further assumptions,esincl g—t ﬁ Substituting in

u ov
the left-hand side of (2.20b) will now yield:

ot 0 ot 0 o0t
df) QY = || ———X| —Xn—+n W —
j(f ) J.{/EG F2 (av n6u auavﬂ Jdu
Y AR

/EG— F2\0vou duodv
oW _ 0w’ WD(GF an}

J'\/ EG- FZ{ 6V ou ov

In order to eliminate the derivation with respeaxtit we now specialize to an orthogonal
system withF = 0 and upon introducing the geodetic curvatey®f the parameters lines
v = const. (8], § 49), we will obtain:

[(@rmyo = [af (—Eaﬂuwﬂﬁqj (2.20i)

(2.20h)

That will be once more substituted in (2.20b). wNgince this equation must be true
for any arbitrary surface patch, we can set thegrands equal to each other, and sitjce

= n df, we can thus arrive at the ordinary differentiliation forw " :

_\E OW" + 2N EG=n Db, (2.20K)

G ov

which can be solved by a quadrature along eaclvithégil flux line u = const. for
arbitrarily given initial values for each of themlhe dependency om is arbitrary, to
begin with. That quadrature will become especisityple when the parameter lines
const. are geodetic lines, so the second term.20k2 will vanish.

The dependency of the outer surface fluxuda certainly meaningless then when all
of the flux lines intersect; i.e., so for a polaoainate system with two “poles” on the
outer surface. However, one must generally abaniemuse of geodetic lines4{[ pp.
196) then. Another possibility consists of ovepmg the outer surface piecewise with
geodetic parameter lines= const. (#5], pp. 102, 106). However, since the productivity
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of the individual surface patches does not need to valm&ar singular closing fluxes
must be introduced into the boundaries of the surface gmtchihe same thing is true for
surfaces of rotation when one lays the flux lines gltne parallels. In general, a singular
flux line along a meridian must then serve as aaditbackbone” for the flux in order to
balance between the other closed flux lines.

c) Conversion of (2.25) into (2.26) In order to convert, we write the stress as a
dyadic sum9):
o® =2, B, (2.25a)
and employ the auxiliary formula:

Ry X | X By = G &im Emj = Gj &im §m =— G (Qa 9j— A &) = (G- G D (2.25b)
which is easy to derive fromZ], (A.2)). It will then follow from (2.25) that:

X© == o

'
r—t

le—v'|

xg(r')xOdr'

—

1 t'
== — | A ()% OxB (¢)dr’
AR IxB.(<)

[t—t¢

:_i{ 1 Q[V(t')x|X%V(t’)_ﬂv(t’)x(t_t')|t__t,’ x%v(t')} dr’

8 ||v-t'| t—t' f

R o I P |
=-= {—h—u[g(t) Ol

(t—=1) xg(t) X(t—t')} dr', (2.25c)

which is then formula (2.26).

d) Derivation of (2.7).— After an application of the product rule from diféntial
calculus, the second term of the second equatio@) (@il decompose into two
summands, the first of which will yield the rightuird side of (2.7) directly. Since:

0 ' —1) =1, (2.6a)

one can now convert the second summand using (2.@%5ken one replaceg with the
asymmetric tensoe (x') x [0'. Since the first scalar of that tensor vanishas @ the
symmetry of¢ , it will now follow that this second summand calscthe first term of
(2.6), which proves (2.7). Inverting that calcidatwith g in place ofy will yield the
derivation of thePeretti-Guinther equation (1.6).
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Appendix to 8§ 5: distributions.

Let:
0 for z<O
30 () = z (5.27a)
1 for z>0

be theHeavisidestep function. The DIRA@function can then be regarded as a kind of
derivative of (5.27a) g, § 9):

oW (2 = diz 09 (2, (5.27b)

and one can formally proceed to higher-order “distributidmg using the recursion
formula:

o™ () = di o" (). (5.27¢)
VA

Naturally, one cannot be dealing with differentiatiarthe usual sense in this. Schwartz
[28] has given a thorough analytic foundation of thesenmating operations, which
correspond to differentiation only formally. However,many cases, it will satisfy for
one to regard distributions as limiting cases of a famflgifferentiable functions, so
e.g., one replaces tliteaviside step function withfGaussan error integrals with various
parameters. In other cases, distributions can be rebasiérmal ways of writing out
the inverses of otherwise-defined integrals. In thaseé¢hen, e.g., in spacg&™ (2) will
represent a simple assignment afitl () will represent a double assignment in the place
z=0, as is known from potential theory. The expressior line and point singularities
can then be represented with no difficulties as produttdistributions of different
variables. Hence, e.g.:

oY (x —a)  (x =b) 3V (x —¢) (5.27d)

means a point singularity at the locaticm b, c), which is sort of spatiaDirac &
function. Furthermore:

o9 (F(v)) (5.27e)
means a function that has the value zero at pointleosurface:

Ft)=0 (5.271)
and possesses the value unity in external space, and tlessapr

009 (Fk)) =0 (F) OF (5.279)

means a singular assignment on the outer surface vatbrgehat are perpendicular to it.
In particular, with:
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F()=n (), with |On|=1  forn(x) =0, (5.27h)

one will arrive at representation of the normal ueittern that is sometimes preferable.
If one formally defines the vector field:

0@ (n) n (v) (5.27i)
and its divergence:

0062 Mn@I=n @) Y M +00 ) 6 () (5.27)

then the first terms on the right-hand side willlooger give the singular source-density
on the outer surface correctly. The last examplesigdly shows that one cannot carry
over the “naive” calculation with distributions to cdinear coordinates without making
further assumptions. In particular, one might alseeHagher derivatives of the function
n (v) on the singular surface at one’s disposal in alsleitaay, should the need arise.
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