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 The first part of the present work is dedicated to a systematic study of the five-
dimensional universe that was considered by O. Klein [1], Th. De Donder [2], and L. de 
Broglie [3].  One knows that it was the latter that whose succeeded in making the concept 
of a five-dimensional universe satisfactory by showing that it is possible to define the 
metric of such a universe independently of the ratio e : m that characterizes an electrified 
particle.  We shall first show that concept can be deduced rigorously and very simply 
from Einsteinian gravitation.  Then, by generalizing the work of Gordon [4] and 
Schrödinger [5], we will show that introducing the de Broglie-Schrödinger function Ψ 
will permit us to reduce the laws of gravitation, electromagnetism, and quantization (viz., 
the equation in Ψ) to a single variational principle in a five-dimensional universe.  One 
likewise finds the conservation laws of energy, impulse, and electricity united into a 
single statement.  Finally, an approximate formula is established in order to calculate the 
gravitational and electromagnetic potentials of a field that differs only slightly from a 
Minkowski field as a function of Ψ.  The calculation is developed in the cases of a static 
charge and a charge that is animated with a uniform motion with a small velocity.  Upon 
comparing the values thus-found to the classical values of the potentials, one will find 
that the amplitude of the function Ψ that represents the charge must have a constant value 
inside a finite volume and be zero outside of it.  That result can be understood by means 
of the beautiful interpretation of the function Ψ that De Donder gave recently [6.f].  On 
the other hand, it seems to be irreconcilable with L. de Broglie’s opinion that the charge 
would be a point-like singularity of the function Ψ. 
 In the second part, we shall say a few words about the extension of the preceding 
considerations to Th. De Donder’s continuous systems [6]. 
 This work was carried out under the direction of L. de Broglie and Th. De Donder, 
who did not cease to assist me with their advice and were so helpful as to send me 
manuscripts of their own work on the subject.  I am pleased to be able to express my 
deepest gratitude to them here. 
 
 

I. – Point-like systems. 
 

 In what follows, we shall generally adopt the notations, units, and sign conventions of 
De Donder’s Théories des champs gravifiques [7]; the main exceptions are the following: 
 

                                                
 (*) Presented by De Donder at the session on 3 May 1927. 
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 1. We shall write xµ and not xµ . 
 
 2. We shall use the well-known “summation convention.”  The Latin indices are 
supposed to vary from 1 to 4, while the Greek indices vary from 0 to 4. 
 
 3. We shall sometimes use the notations of covariant derivatives: 
 

 u, µ = 
u

xµ
∂
∂

, 

 

 uν, µ = 
u

u
x

ν
ρµ

ν µ
ρ

 ∂ −  ∂  
, 

 

 uν
, µ = 

u
u

x

ν

ρµ

ρ µ
ν

 ∂ +  ∂  
, 

 

 u, µν = 
2u u

x x x

ν

µ ν µ

ρ µ
ν

 ∂ ∂−  ∂ ∂ ∂ 
, etc. 

 
 We further remark that one cannot distinguish between the contravariant components 
that relate to the ds2 of space-time and the ones that relate to the dσ 2 on the five-
dimensional universe, so no confusion should arise in practice.  Only the components gik, 
Rik, Hik, Sik, F i, Φi, which will be used later on, refer to the ds2. 
 
 
 1. Introduction of the variable x0. – We start with the Jacobi equation [2] [equation 
(15) of the second communication]: 
 

gik (S, i – Φi) (S, k – Φk) – µ2 = 0,    (1) 
 
in which µ is an invariant of the system: 
 

µ = 
m

e

τ
τ

      (2) 

that will become: 

µ = 
2

0m c

e
,      (3) 

 
in particular, in the case of a charge e of rest mass m0 ; the Jacobi function S has the form: 
 

S = − 
2

s
µ

 + S′ (x1, x2, x3, x4) .      (4) 

 Now set: 
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0

2
x s

µα= −     (5) 

 
and replace the independent variable s by the new variable thus-defined; α is a universal 
constant.  The function S takes the form: 
 

S =
0x

α
+ S′ (x1, x2, x3, x4) .     (6) 

 We infer that: 

S, 0 = 
1

α
,    (7) 

 
in such a way that the Jacobi equation (1) can be written: 
 

gik S, i S, k – 2α Φi S, k S, 0 – α 2 Φi Φi S, 0 S, 0 – µ2 = 0. 
 
That will then give (upon introducing a second universal constant ξ for more generality): 
 

0 0

00 2

,

,

1
,

ik ik

i i i

i
i

gγ
γ γ α

γ α
ξ

=
= = − Φ

= Φ Φ −

    (8) 

and 
2 2 ,ξ α χ=          (9) 

 
so we can put equation (1) into the form: 
 

J ≡ γ µν S, µ S, ν − 2 1

2
µ

χ
 − 
 

 = 0.   (10) 

 
 
 2. Interpretation of the preceding transformation. – Up to now, we have been 
dealing with only a purely-analytical transformation of the Jacobi equation.  We shall 
now interpret the transformed equation (10) by giving a geometric meaning to the 
variable x0. 
 In order to do that, it is first of all important to point out that the relation (5) that 
served as the starting point is indeed sufficient (and even particularly convenient) for us 
to define our transformation, but it is not necessary.  Indeed, the necessary and sufficient 
relation between S and x0 is the relation (6) or its equivalent (7).  That relation will imply 
the following properties for x0 : 
 
 1. x0 is invariant under all transformations of the coordinates x1, x2, x3, x4. 
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 2. x0 enters into S linearly. 
 
 Having said that, we interpret the variable x0 as a fifth parameter that is necessary for 
us to determine an “event”; i.e., a fifth dimension of the universe.  Its invariance under 
the transformation that we can perform explains how that fifth dimension has escaped our 
direct observation. 
 By means of that meaning of the variable x0, one will see that equation (10) has the 
form of a Jacobi equation for a five-dimensional gravitational field that is only massive.  
Thus, the trajectories of particles – even charged ones – will be geodesics in the five-
dimensional universe.  The quadri-dimensional trajectories that one observes will be the 
projections of those geodesics onto space-time; they will not generally be geodesics in 
space-time any more. 
 It is easy to calculate the inclination of a five-dimensional trajectory over space-time.  
Indeed, if S is a complete integral of equation (1) or (10) then, from (10), one will have: 
 

γ µν S, ν = 2 1

2

dx

d

µ

µ
χ σ

−     (11) 

 
along a trajectory, and from (1), (8), (7), one will have: 
 

γ mν S, ν = 
mdx

ds
µ ;     (12) 

 
dσ is the five-dimensional line element.  One will then infer: 
 

d

ds

σ
= 

2

1
1

2χ µ
− .      (13) 

 
One will then see that this inclination is determined by only the ratio µ .  That is the 
geometric interpretation of the ratio µ, which is at the basis of L. de Broglie’s arguments 
[3]. 
 
 
 3. Metric on the five-dimensional universe. – We shall start from formulas (8) and 
calculate the dσ2 and the curvature tensor of the five-dimensional universe as functions of 
the four-dimensional gravitational and electromagnetic potentials. 
 One first easily finds that: 

0 0

00

2 ,

,

.

ik ik i k

i i i

gγ χ
γ γ ξ α
γ ξ

= − Φ Φ 
= = − Φ 
= − 

    (14) 

 
 If g is the determinant of the gik then the determinant γ of the γµν will become: 
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γ = − ξ g .     (15) 
 
 Introduce the following quadri-dimensional tensor: 
 
 1. Electromagnetic field: 
 Hik  = Φi, k − Φk, i  

 

= i k
k ix x

∂Φ ∂Φ−
∂ ∂

.      (16) 

Set: 
H = Hik H ik ,     (17) 

 
and let Fi denote the divergence of Hik : 
 

( )
4

4 4

1

,

m m
i i nm

m
i i n

k im

i m
F H g H

nxg

H i l m r
H H

k rx

 ∂= − −   ∂−   


∂     = − + −    ∂     

  (18) 

 

( )

4 4

1

.

i im
m

m
kik m in im

km

F H g
xg

H m n m r
g H g H

k rx

∂ = − ∂− 
∂     = − + +    ∂     

  (19) 

One has set: 

4

i k

l

 
 
 

= 
1

2
lm mi m ik

k i m

g g g
g

x x x

∂ ∂ ∂ + − ∂ ∂ ∂ 
,    (20) 

 
in order to distinguish it from: 
 

5

µ ρ
σ

 
 
 

= 
1

2 x x x
τµ τρ µρστ
ρ µ τ

γ γ γ
γ

∂ ∂ ∂ 
+ − ∂ ∂ ∂ 

.   (21) 

 
 2. Electromagnetic energy-impulse tensor: 
 

Sik = 1
2 gik H – Hil Hk

 l .     (22) 

 3. Curvature tensor: 
 

Rik = 
4 4 4 4 4 4

k m

i m i k i m k n i m m n

m m n m m nx x

           ∂ ∂− + −           ∂ ∂           
,  (23) 
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with the curvature: 
R = gik Rik .     (24) 

 
 We would like to calculate the five-dimensional curvature tensor: 
 

Pµν = 
5 5 5 5 5 5

x xν ρ

µ ρ µ ν µ ρ ν σ µ ν ρ σ
ρ ρ σ ρ ρ σ

           ∂ ∂− + −           ∂ ∂           
  (25) 

 
and the curvature: 

P = γ µν Pµν .      (26) 
 We first have: 

5 4

5

5

5

5

( ),

( ) ,
0 2

0
,

0

0
,

2

0 0
0,

i i
r s s r

l l sr
l r s s r s r

l
l r

i
s

r s r s
H H

i i

r s
H H

x x

r
H

s
H

i

χ

αχ α

χ

α ξ

µ

    
= − Φ + Φ   

   
   ∂Φ∂Φ  = Φ Φ + Φ + +   ∂ ∂   


  = Φ 
 

  
 = − 
  


  = 
 

  (27) 

and then: 

 
0

,

,
2

ik ik mi k
m

i i im
m

P R H H

P F P

χ
α α

 = −



= − Φ


 

 

0

0
0

,
2

,
2

k k m k
i i i m

i i

i
i

P R H H

P F

P H F

χ
α ξ

χ χ


 = −

 = −

 = + Φ

      (28) 

 

 

2

0

00

( ),

,
2 2

,
2

m
ik ik i k k i i k i mk

i i i

P R H F F H H

P F H

P H

χ χ
ξ α ξ α χ

ξ χ


 = − Φ Φ − Φ + Φ +

 = − − Φ

 = −
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 and finally: 

P = R −
2

χ
H.      (28′) 

 
 
 4. Introduction of the de Broglie-Schrödinger function Ψ. – We set: 
 

Ψ = Ψ* (x1, x2, x3, x4) ekS,    (29) 
 
in which k is a purely-imaginary constant, which will amount to: 
 

k = 
2 e

i
h c

π⋅ ⋅        (30) 

 
in the case of a charged particle; S is real.  As for the amplitude Ψ*, it will be generally 
considered to be a complex function of the form: 
 

Ψ* = A + i B.      (31) 
 
 The conjugate of a complex quantity u will be denoted by u . 
 Suppose, for the moment, that Ψ* ≡ constant (real or imaginary).  We will then infer 
from (29) that: 

S, µ = ,1

k
µΨ

Ψ
= − ,1

k
µΨ

Ψ
, 

 
and the Jacobi equation (10) will be written: 
 

L ≡ γ µν Ψ, µ Ψ, ν + k2 2 1

2
µ

χ
 − Ψ Ψ 
 

= 0. 

 
 We then see the appearance of the “world-function”: 
 

2 2
, ,

1
,

2
L kµν

µ νγ µ
χ

 ≡ Ψ Ψ + − Ψ Ψ 
 

   (32) 

 
which will play a very important role: It is the generalization of an analogous function 
that was considered by Gordon [4] and Schrödinger [5].  The link between that equation 
and the Jacobi equation was pointed out by De Donder [6.b]. 
 If one considers the functions Ψ and Ψ  to be independent and one annuls the 

variational derivatives of L g−  with respect to those functions then one will get their 

equations of propagation: 
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γ µν Ψµν − k2 2 1

2
µ

χ
 − Ψ 
 

= 0,   (33) 

 

2 2
,

1

2
kµν

µνγ µ
χ

 Ψ − − Ψ 
 

= 0,   (33′) 

 
which is a generalization of the de Broglie-Schrödinger equation [3]. 
 In the general case where Ψ* is arbitrary, the function L will no longer be zero along 
the trajectory.  It is interesting to perform the calculation in the case of a real amplitude 
A.  Upon setting: 

θ = log A,     (34) 
one will then have: 

, , , , , ,

, ,

( ), ( ),

kS kSe e

k S k S

θ θ

µ µ µ ν ν νθ θ

+ − + Ψ = Ψ =
 Ψ = Ψ + Ψ = Ψ − +

  (35) 

 
so, upon taking (10) into account: 
  L = , ,

µν
µ νγ θ θΨ Ψ , 

or rather: 
L = γ µν A, µ A, ν .    (36) 

 
 The complex equation (33) is equivalent to two partial differential equations in A, B, 
S.  It is easy to establish those equations.  To abbreviate the notation, we introduce the 
d’Alembertian notation: 

u□ = γ µν u, µν  = ( ),

1
g u

xg
µν

νµ γ∂ −
∂−

.  (37) 

 
In the case of functions such as A, B, S, for which u, 0 = const., upon taking the Maxwell 
equation: 

D ≡ ( )1 m
m

g
xg

∂ − Φ
∂−

 = 0   (38) 

 
into account, it is easy to see that one has: 
 

u□  = ( ),

1 mn
nm

g g u
xg

∂ −
∂−

.   (39) 

 One easily finds that: 
 

2 2 1

2
k µ

χ
 Ψ − − Ψ 
 

□  ≡ 2
, ,[ 2 ]kSe k S S k S kµν
ν µγ∗ ∗ ∗Ψ + + Ψ + Ψ J□ □ = 0 ; 

 
i.e., upon taking (10), (12), and ,0

∗Ψ = 0 into account: 
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2
d

k k S
ds

µ
∗

∗ΨΨ + + Ψ□ □ = 0 . 

Upon setting: 
k = i K      (40) 

 
and separating the real and imaginary parts, one will have: 
 

2 0,

2 0.

dB
A K KB S

ds
dA

B K KA S
ds

µ

µ

 − − =

 + + =


□ □

□ □

    (41) 

 
 In the case of a real amplitude (B = 0), those relations reduce to: 
 

2

0,

log
.

A

d A
S

ds
µ

=



= −


□

□
     (42) 

 
 

 5. Variational principle.  – We shall show that equations (33), (33′) in Ψ and Ψ , 
the equations of gravitation, and the Maxwell equations are unified by the variational 
principle: 

0 4( 2 ) 0.P L g dx dxδ χ+ − =∫ ⋯    (43) 

 
 We have already shown that equations (33), (33′) result from: 
 

L gδ
δ

−
Ψ

 = 0,  
L gδ
δ

−
Ψ

= 0, 

 
or, what amounts to the same thing, from: 
 

( 2 )P L gδ χ
δ

+ −
Ψ

 = 0, 
( 2 )P L gδ χ

δ
+ −

Ψ
= 0 . 

 
 It remains for us to write down the variational equations with respect to the γµν (one 
must observe that, from (14), δγ00 ≡ 0).  In order to do that, set: 
 

*Pµν ≡ Pµν − 1
2 γµν P,     (44) 

and then: 
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τµν ≡ 
1 L g

g µνγ
∂ −

∂−
,     (45) 

and as a result: 

τµν ≡ − 1 L g

g µνγ
∂ −

∂−
,    (46) 

and finally: 

, , , , ,T Lµν νµ
µν µ ν µ ν µντ τ γ≡ + = Ψ Ψ + Ψ Ψ −   (47) 

 
which is the symmetric part of: 

 
( )2L g

µν

δ

δ γ

−
. 

 One will then have the equations: 
*Pµν = − χ T µν ,    (48) 

 
which one can further put into the form: 

nPµ
∗  = − nTµχ .     (49) 

 
The covariant form is a little less simple; we shall not use it.  For the sake of symmetry 
and ease of calculation, we shall employ the contravariant form for µ = 1, 2, 3, 4 and the 
mixed form for µ = 0; hence, one has the following system: 
 

1
2

0 0

,

,

mn mn mn

i i

P P T

P T

γ χ
χ

− = −
= −

    (50) 

 
which is equivalent to the system (49). 
 Thanks to formulas (28) and (28′), one immediately verifies that equations (50) are 
formally identical to the equations of gravitation and the Maxwell equations: 
 

1
2

0

( ),

.

mn mn mn mn

i i

R g R S T

F T

χ
α

 − = − +
 =

   (51) 

 
 One first sees that the constant χ, which has been undetermined up to now, is nothing 
but Einstein’s gravitational constant: 
 

χ = 
4

8 G

c

π
,  G = 6.7 × 10−8  CGS.  (52) 

 
 In order for 0

iT  to be interpreted as an electric current quadri-vector, it is further 

necessary that it must satisfy the condition of the conservation of electricity.  Before 
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showing that this is indeed the case, we shall see that appearance that this condition takes 
on in a five-dimensional universe. 
 
 
 6. Conservation of energy and electricity. – We must distinguish between the 
divergence of a tensor that is taken in the five-dimensional universe and the divergence 
that is taken in space-time; we propose: 
 

( )

( )

,

5

,

5

1
,

1
,

T T g T
xg

T T g T
xg

µ µ µ
ν µ ν αµ

ν µ µν αµ
µ µ

ν µ
α

α µ
ν

  ∂= − −   ∂−  


 ∂ = − −   ∂−  

  (53) 

 

( )

( )

4
,

5

4
,

5

1
,

1
.

m m m
i m i lm

im im im
m m

i m
T T g T

lxg

l m
T T g T

ixg

  ∂= − −   ∂−  


 ∂ = − −   ∂−  

  (54) 

 
 We deduce the conservation of energy-impulse from this and the conservation of 
electricity can be deduced from the fundamental equations (48) and (50), thanks to the 
well-known identity: 

,Pνµ
µ

∗  = 0,      (55) 

which one can also write: 

,P µ
ν µ

∗  = 0 ;      (56) 

we take: 

,

0,

0,

0.

nP

P

µ
µ
µ
µ

∗

∗

=
=

     (57) 

 
 Upon combining (50) and (57), we will get: 
 

  
0

,0 ,
0

0,0 0,

0,

0.

n nm
m

m
m

P T

P T

χ
χ

∗

∗

 − =
 − =

 

 
 We shall transform these two equations in succession.  Upon observing that *Pµν and 
g do not depend upon x0, and upon taking (53) and (27) into account, one can first write 
them: 

0
,

5

0,

0
0,

0.

nm k
m

m
m

k
T P

n

T

χ ∗  
− = 
 

 =

     (58) 
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 By means of (48), (58) can be initially written: 
 

0
,

5

0nm k
m

k
T T

n

 +  
 

 = 0 ; 

 
from (53), (54), and (27) that will become: 
 

 0 = 4 0 0
,

5 5 4 5

0 0nm m ml k
m

m m l m l k
T T T T

n u n n

        
+ + − +        
        

 

 

  = 
2

4 0
, 2 2

2 2
nm n m n ml
m m l mT H T H T

αξ α ξ− ⋅ − ⋅ Φ  

 
  = 4 0

, 00 0( )nm n m ml
m m lT H T Tα γ γ+ +  

 
  = 4

, 0
nm n m
m mT H Tα+ . 

 
 Now, from (51), one has: 

0
n m
mH Tα  = H nm F m, 

 
and one knows that the latter quantity is nothing but: 
 

4
,

nm
mS ; 

 
one will finally have the expression for the conservation of “material” and 
electromagnetic energy: 

4 4
, ,

nm nm
m mS T+ = 0.     (60) 

 
 As for equation (59), using (53) and (27), it can be written: 
 

 ( )1 m
nm

T g
xg

∂ −
∂−

 = 
5

0 mm
T αα

 
 
 

 

 

  = 
2

02 2
n m n m

l m m lH T H T
ξ α αξΦ −  

 

  = − 0
0( )

2
l m lr m

im rH T T
ξ α γ γ+  

 

  = −
2

lm
imH T

ξ α
, 
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or finally, since Hlm is skew-symmetric and Tlm is symmetric: 
 

( )1 m
nm

T g
xg

∂ −
∂−

 = 0,    (61) 

 
which expresses the conservation of electricity. 
 We now arrive at the verification of equation (61), when 0

mT  is expressed as a 

function of Ψ.  It will suffice for us to show that equation (59) is verified identically.  In 
order to do that, we first establish the identity: 
 

0,T µ
µ  ≡ 0,   (62) 

 
which is true for any function Ψ that satisfies equation (33).  Indeed, upon applying the 
rules of covariant differentiation: 
 
 0,T µ

µ  = (γ µν Ψ, 0 ,νΨ + γ µν ,0Ψ Ψ, ν  − 0
0 Lγ ), µ 

 
  = γ µν ,νΨ Ψ, 0µ + γ µν Ψ, ν ,0µΨ + Ψ, 0 γ µν ,µνΨ + ,0Ψ γ µν Ψ, µν   − L, 0 

 

  = (γ µν ,νΨ Ψ, µ ), 0 + k2 2
,0 ,0

1
( )

2
µ

χ
 − Ψ Ψ + Ψ Ψ 
 

− L, 0 

 

  = 2 2
, ,

1

2
k Lµν

µ νγ µ
χ

  Ψ Ψ + − Ψ Ψ −  
  

 

 
  ≡ 0, from (32). 
 
 It will then result that: 

0,
m
mT  = 0

0, 0,0T Tµ
µ −  = − 0

0,0T  = − 
0

0
0

T

x

∂
∂

. 

 
Now, it is clear that (29) and (7) imply that one will have: 
 

0
0
0

T

x

∂
∂

≡ 0 

identically, and as a result: 

0,
m
mT  ≡ 0. 
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 7. Mass density. – From (28), one will have: 
 
 1

2
i i
i iP Pγ−  = P − 0

0P − 2P 

 = − R – χ Φi Fi  
 = − R – χ Φi F i , 
and from (49): 

1
2

i i
i iP Pγ−  = − i

iTχ . 

 
Consequently, if we define the mass density 4T by the equality: 
 

4R Tχ=    (63) 

then we will have: 
4T = 0

i i
i iT T− Φ .   (64) 

From (51), one can write: 
 4T  = T − 0

0 0
i

iT Tα− Φ  

 = T + 0
00 0 0 0

1
( )i

iT Tγ γ
ξ

+  

 = T + 00

1
T

ξ
 

 = T + L + ,0 ,0

2

ξ
Ψ Ψ  

 = T + L − 2 1
2

2
k

χ
Ψ Ψ . 

Moreover: 

 2L = γ µν (Tµν + γµν L) + 2 2 1
2

2
k µ

χ
 − Ψ Ψ 
 

 

  = T + 5L + 2 2 1
2

2
k µ

χ
 − Ψ Ψ 
 

; 

hence: 
4T = − 2 (L + 2 2k µ Ψ Ψ ) .    (65) 

 
 One deduces from (48), (63), (64), (28) that: 
 

P µν = − χ ( )1
2

m mT Tν νγ ′− ,    (66) 

with: 

T′  = 4T −
2

H
 = 

2
i i

i i

H
T F

 − Φ + 
 

,   (67) 

and in particular: 

Rmn = − ( )41
2

mn mn mnT S g Tχ + − .   (68) 
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 8. Approximate calculation of a gravitational and electromagnetic field that 
differs slightly from a Minkowski field.  – Take the Cartesian spatial coordinates to be 
x1, x2, x3, and set: 

x4 = ct. 
 Set: 

γµ i = δµ i + εµ i ,     (69) 
 
in which the δµ i are the Galilean values: 
 

11 22 33

44

1,

4,

0, .i iµ

δ δ δ
δ

δ µ

 = = = −
 = +
 = ≠

    (70) 

 
 Upon starting with (66) and (67), one will easily see by a well-known process that the 
corrections εµ i are given by: 
 

εµ i = − { }
1 2 3

2
vi t
c

dx dx dx
T

rµ
χ
π

∗

−∫ ,    (71) 

with: 
*Tµ i = Tµ i − 1

2
l

i lTµδ .     (72) 

 
r is the (Euclidian) distance of the potential point from the integration point, and { } v

t
c

u
−

 

denotes the “retarded” value of the function u. 
 From (70) and the fact that: 

l
lT = T44 – T11 – T22 – T33 ,     (73) 

one has: 
4

4 1
11 11 22 33 442

4 1
22 44 22 33 112

4 1
33 11 22 33 442

4 1
44 11 22 33 442

,

( ),

( ),

( ),

( ).

i iT T i

T T T T T

T T T T T

T T T T T

T T T T T

µ µ µ = ≠
 = − − − = − + − +
 = − − + +

 = + + +

    (74) 

 
 However, in the present, (32) will give: 
 

L = k2 µ2 ,1 ,1 ,2 ,2 ,3 ,3 ,4 ,4Ψ Ψ − Ψ Ψ − Ψ Ψ − Ψ Ψ − Ψ Ψ  , 

 
in such a way that: 

4
, , , ,

4 2 2
, ,

, ,

( 2 ).
i i i

ii ii ii i i

T i

T k
µ µ µ µ

δ µ δ
 = Ψ Ψ + Ψ Ψ ≠
 = Ψ Ψ + Ψ Ψ

    (75) 
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 Suppose that the amplitude of Ψ is real: 
 

Ψ = A ekS . 
 
By means of (34) and (35), we will then have: 
 

4 2 2
, , , ,

4 2 2 2
, , , ,

2 2 ,

( 2 ) 2 .
i i i

ii ii ii i i i i

T k A S S A A

T k A S S A A
µ µ µ

δ µ δ
 = − +
 = − +

   (76) 

 
 Case of a static charge. – Set: 

S = 
0

2

x
+ µ x4.     (77) 

Formulas (76) will then become: 
 

4
0

4 2
04

4
, ,

4 2 2 2
, ,

0, 1,2,3,

2 ,

2 , ,

2 2 ,

i

ik i k

ii i i

T i

T k

T A A i k

T k A A A

µ
α

µ

 = =

 = −

 = ≠


= − +

   (78) 

 
and as a result, if we take the values (3) and (30) for µ and k, resp., and set: 
 

I = − { }
2 2 1 2 3

2

0

2
r

t
c

k dx dx dx
A

m r

µ
−∫ ,   (79) 

then, from (74), we will get: 
 

{ }

{ }

0

04 2

1 2 3

, ,

1 2 3
20

,

0, 1,2,3,

1
,

4

, ,

( ) .
4

i

rik i k t
c

rii i t
c

i

e
I

c

dx dx dx
A A i k

r

m dx dx dx
I A

r

ε

ε ξα
π

χε
π
χ χε

π π

−

−

= =

 = − ⋅


 = − ≠

 = − −


∫

∫

  (80) 

 
 We now let r0 denote the distance from the potential point to the point O where we 
finds the charge.  When we take only the terms in 1 / r0 , we will have: 
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0

04
0

2
0

0

0, 1,2,3,

,
4

0, ,

.
4

i

ik

ii

i

e

r

i k

m c

r

ε

ε ξα
π

ε
χε

π

= =

 = − ⋅

 = ≠


= −


     (81) 

 
 The identification of the values (80) and (81) leads to the conditions: 
 

,

2

0

0,

.

iA

c
I

r

=

 =


      (82) 

 
 The first condition indicates that the static charge is represented by a stationary phase 
wave of constant amplitude. 
 From (79), the second condition will then be satisfied if one imagines that the 
amplitude is non-zero only in a finite volume around the point O.  If one calls that 
volume υ then one can define r0 by the theorem of the mean by setting: 
 

  
0r

υ
 = 

1 2 3dx dx dx

r∫ ; 

one must then have: 
2

2

8

h

π
m0 A

2 υ = 1.     (83) 

 
 Observe that the conditions (42) are indeed satisfied then. 
 
 Case of a moving charge with a very low uniform velocity. – Suppose that the charge 
moves with the velocity β c along x1, and that one can neglect β 2 in comparison to unity.  
An analogous calculation, to the same approximation, will lead to the same amplitude A 
and a phase velocity c / β ; i.e.: 

S = 
0x

α
+ µ x4 – µ β x1.    (84) 

 
 Other than the values (81) for εii and ε04 , one will find the potential vector: 
 

01
0

02 03

,
4

0,

e

r

βε ξ α
π

ε ε

 = + ⋅

 = =

    (85) 

and the gravitational potential: 
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2
0

4
0

2 ,
4

0, , except for (1, 4).

i

ik

m c

r

i k

χε β
π

ε


= ⋅


 = ≠

   (86) 

 
 

II. – CONTINUOUS SYSTEMS. 
 

 9. Case of N point-like particles. – In the case where the system is composed of N 
point-like particles, one can [6.a, b] study the motion of each of them separately by the 
preceding method.  One will then get N geodesics in the five-dimensional universe that 
might have differing inclinations over space-time.  We pass directly to the general case. 
 
 
 10. General case. – Let a system with f degrees of freedom be defined by f 
parameters q n.  We let the Latin indices vary from 1 to f and the Greek indices from 0 to 
f.  Nonetheless, the underlined indices will vary from 1 to 4 when they are Latin symbols 
and from 0 to 4 when they are Greek ones.  We set: 
 

ix  = ix (x′ 1, x′ 2, x′ 3, x′ 4, q1, …, q f ),    (87) 
 by supposing that: 

idx  = 0     (88) 
 
when s varies by ds, but that, on the other hand: 
 

ixδ  ≠ 0, δ qn = 0, δ s = 0.    (89) 
 
 If σ(m) , σ(e) are the mass and electromagnetic densities then we will set: 
 

1 2 3 4
( ) ( )

1 2 3 4
( ) ( )

( ) ( )

( ) ( )

( )

( )

,

,

,

,

.

m m

e e

m m

e e

m

e

x x x x

x x x x

δτ σ δ δ δ δ
δτ σ δ δ δ δ
τ δτ

τ δτ

τ
µ

τ

′ ′ ′ ′ =
 ′ ′ ′ ′=
 =


=

 =


∫

∫
    (90) 

 
The integrations extend over the system. 
 We define the mng∗  and the n

∗Φ  by the equalities: 

 
2 ,

,

i k m n
ik mn

i n
i n

ds g dx dx g dq dq

dx dq

∗

∗

 = =
 Φ = Φ

   (91) 
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and we will introduce the “mean” values: 
 

( )
( )

( )
( )

1
,

1
.

mn mn m
m

m m e
e

G g

Q

δτ
τ

δτ
τ

∗

∗

 =


 = Φ


∫

∫
    (92) 

 
 We then have the Jacobi equation: 
 

mn
m nm n

S S
G Q Q

q q

  ∂ ∂− −  ∂ ∂  
 − µ 2 = 0,   (93) 

 
in which the contravariant components are taken in the configuration space Gmn dxm dxn. 
 If we introduce the fifth variable x0 then, at the same time, we must introduce an (f + 
1)th parameter q0 ; we can take: 

x0 = q0,      (94) 
and if: 

S = 
0q

α
+ S′ (q1, …, q f )    (95) 

 
then the Jacobi equation (93) will take the form: 
 

S S

q q
µν

µ ν
∂ ∂Γ
∂ ∂

= µ 2 − 1

2χ
    (96) 

 
in the (f + 1)-dimensional configuration space that is defined by: 
 

0

00 2

,

,

1
.

mn mn

m m

m
m

G

Q

Q Q

α

α
ξ


 Γ =
 Γ = −

 Γ = −


    (97) 

 
 The quantization condition will take the form: 
 

Γµν Ψ, µν − 2 2 1

2
k µ

χ
 − Ψ 
 

 = 0.   (98) 

 
 In the case of a real amplitude: 

Ψ = A e k S ,     (99) 
 
that equation will be equivalent to the two real equations: 
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2

0,

log
.

A

d A
S

ds

=



= −


□

□
     (100) 

 
 Suppose, moreover, that A is invariant during the motion of the system.  Equations 
(100) will then become: 

0,

0.

A

S

=
 =

□

□
      (101) 

 
 De Donder showed [6.f] that under those conditions, one can interpret A as an internal 
stress potential. 
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The five-dimensional universe and wave mechanics (*) 

 
By L. ROSENFELD 

 
(Second communication) 

 
Translated by D. H. Delphenich (†) 

________ 
 
 

On continuous systems that have an internal tension potential 
 

 This communication is a continuation of the second part of my preceding work and is 
concerned, more particularly, with continuous systems that admit an internal tension 
potential.  The calculations are developed in the general case of a system with f degrees 
of freedom, but they will be applied, in particular, to a continuous system in four 
dimensions (viz., space-time), or, if one prefers, to a continuum in five-dimensions, as it 
was defined in the first communication. 
 De Donder recently introduced two important ideas into wave mechanics: viz., the 
notion of the permanence [1] of a system and the interpretation [2] of the amplitude A of 
the Schrödinger function Ψ as the internal tension potential of the system.  In the first 
part of the present article, I shall study the conditions under which those ideas are 
introduced, and I shall establish a deep relationship that links them: Any permanent 
system admits an internal tension potential, and conversely. 
 In the second part, I shall indicate the “world-function” L, which permits one to 
recover the internal tensions by starting from the fundamental variational principle (43) 
of my first communication.  My results permit one to better account for the meanings of 
the mass and charge densities ρ(m) , ρ(e) that are defined by means of the function Ψ; viz., 
they are mean densities.  The true densities σ(m) , σ(e) serve only to define a “mean” 
configuration space that is equivalent from a spectral standpoint.  I must thank De 
Donder for the very important remark that this is a particularly instructive aspect of the 
correspondence principle; I hope to return soon to that question in more detail and from a 
more general viewpoint. 
 Finally, in the third part, I shall develop some cosmological consequences of the 
notion of internal tension.  Those remarks are only provisional, moreover.  One will still 
be quite far from a solution to the fundamental cosmological problems. 
 I must express my deepest gratitude to De Donder, who did not cease to exhibit a 
very active interest in my work. 
 
 

                                                
 (*) Presented by De Donder. 
 (†) Translator’s note: The erratum that was described on pp. 580 of this volume was incorporated into 
the text.  
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I. – PERMANENCE AND INTERNAL TENSION POTENTIAL.  
 

 1. Quantization of systems with f + 1 degrees of freedom. – Take the second part 
of our preceding article [3] to be the starting point.  One defines an (f + 1)-dimensional 
mean configuration space metric Γµν with the aid of the given distribution of mass and 
charge densities σ(m) , σ(e) , resp.  In that space, the Jacobi equation is: 
 

J ≡ 2 1

2

S S

x x
µν

µ ν µ
χ

 ∂ ∂Γ ⋅ − − ∂ ∂  
 = 0,    (1) 

 
and the quantization condition is: 
 

Γµν Ψµν − 2 2 1

2
k µ

χ
 − Ψ 
 

 = 0.    (2) 

If one sets: 
Ψ = A e kS,      (3) 

 
to simplify, then equation (2) will give, separately: 
 

2

0,

log
,

A

d A
S

ds
µ

= 



= − 


□

□
    (4) 

in which: 
f□  ≡ Γµν fµν .      (5) 

 
 The function S that enters into (3) and (4) always has the form: 
 

S = 
2

nq
+ S′ (q1, …, q f ),    (6) 

 
but the same thing will not be true a priori for the Jacobi function that enters into (1) 
when the system is subjected to internal tensions.  Meanwhile, De Donder has shown [2] 
that even in that case, equation (1) will persist with the significance that (6) gives to S.  
For the reader’s convenience, we shall rapidly summarize De Donder’s presentation. 
 
 
 2. Invariance conditions for A. – If we introduce the tensions (1): 
 

                                                
 (1) De Donder had set: 

g α− Π  = 
( )m

A

xα
σ

∂

∂
. 

The difference is just a question of homogeneity; De Donder’s A does not have the same dimensions as 
mine. 
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g α− Π = 
1 2 3 4

( )

( , , , )
e

A x x x x

xασ ∂
∂

,    (7) 

 
which is derived from a potential A then the conservation of mass will demand (2) that 
one must have: 

dx

ds

α

αΠ = 0 ;      (8) 

i.e.: 

0.
dA

ds
=       (9) 

 
 The tension potential is invariant under the motion of the system. 
 The Hamiltonian function of the system without tension is: 
 

H (p) = 
1 1

2 2
p pµν

µ νµ χ
 Γ + 
 

;   (10) 

it was obtained by setting: 

pµ = 
S

qµ
∂
∂

 

in (96) of our preceding note. 
 The Hamiltonian function of the system with internal tensions will be: 
 

H * = H − A,     (11) 
 
and the Jacobi equation will have the form: 
 

J * ≡ 2 1

2

S S

q q
µν

µ ν µ
χ

∗ ∗  ∂ ∂Γ ⋅ − − ∂ ∂  
 = 0,   (12) 

with 

S * = As + 
2

nq
+ S′ (q1, …, q f ).   (13) 

 
 Upon observing that ∂A / ∂q0 = 0, one will infer from (13), (6), (12), and (1) that: 
 

J * ≡ J + 22
A S A A

s s
q q q q

µν µν
µ ν µ ν

∂ ∂ ∂ ∂Γ + Γ
∂ ∂ ∂ ∂

 = 0.  (14) 

Now, from (9): 

                                                
 (2) See equation (339) in Théorie des Champs gravifiques [4].  
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0

.

dA A dq A S

ds q ds q q

A S A A
s

q q q q

ν
µν

ν ν µ

µν µν
ν µ ν µ

µ µ
• ∂ ∂ ∂= = ⋅ = Γ ∂ ∂ ∂ 


∂ ∂ ∂ ∂ = Γ + Γ

∂ ∂ ∂ ∂ 

   (15) 

 
 Since the two double sums in (15) are independent of s, one will have, separately: 
 

A S

q q
µν

ν µ
∂ ∂Γ
∂ ∂

= 0,     (16) 

 
A A

q q
µν

ν µ
∂ ∂Γ
∂ ∂

= 0,     (17) 

and (14) or (12) reduce to J = 0. 
 
 Remark. – From the second equation (4), the fundamental invariance condition (9) is 
equivalent to the condition: 

S□ = 0.     (18) 

 
 The condition (9) or (18) is necessary and sufficient for one to be able to interpret A 
as an internal tension potential. 
 The quantization of systems that have an internal tension potential is then determined 
by the equations: 

0, 0.A S= =□ □     (19) 

A satisfies the condition (9). 
 
 
 3. Permanence. – One says that the system considered is permanent when one has 
the integral invariant: 

1| | 0.fd
G dq dq

ds
=∫ ⋯    (20) 

 
 When one takes the complementary Maxwell equation into account, one will easily 
see that equation (20) is equivalent to the equation: 
 

S∗
□ = 0 ;     (21) 

i.e.: 
S s A+□ □  = 0, 

 
or rather, since will always have A□ = 0, from (4): 
 

S□  = 0 ; 
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the permanence condition is then equivalent to the fundamental condition (9).  In other 
words: 
 
 Any permanent system admits an internal tension potential, and conversely. 
 
 

II. – THE FUNCTION L OF SYSTEMS THAT HAVE  
AN INTERNAL TENSION POTENTIAL.  

 
 4. The function L. – We first introduce the notations: 
 

ρ(m) = − 2 k2 µ2 A2,     (22) 
 

ρ(e) = − 2 k2 µ A2,     (23) 
in such a way that: 

( )

( )

m

e

ρ
ρ

= µ = ( )

( )

m

e

τ
τ

;     (24) 

 
we shall have to discuss the meaning of these quantities in a moment. 
 Having said that, we define the function L by: 
 

L = 2 1

2q q
µν

µ ν µ
χ

 ∂Ψ ∂ΨΓ ⋅ − − Ψ Ψ ∂ ∂  
− ρ(e) A ;   (25) 

 
i.e., we simply add the “tension function” − ρ(e) A to the function L of the system without 
tensions.  Since the former function does not contain Ψ or Ψ  explicitly, the quantum 
equation of the continuous system (2) will not be modified.  Furthermore, one also has: 
 

Tµν = 
q q q qµ ν µ ν

∂Ψ ∂Ψ ∂Ψ ∂Ψ+
∂ ∂ ∂ ∂

 − Γµν L .    (26) 

 
 We shall develop the calculation of that expression. 
 In order to do that, first recall that equation (36) of the first communication [3]: 
 

2 1

2q q
µν

µ ν µ
χ

 ∂Ψ ∂ΨΓ − − Ψ Ψ ∂ ∂  
= 

A A

q q
µν

µ ν
∂ ∂Γ
∂ ∂

; 

 
as a result, due to (17), the function L will have the value: 
 

L = − ρ(e) A .      (27) 
 
 Now, by virtue of the Jacobi equation, upon setting: 
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uµ = 
dq

ds

µ

,      (28) 

we will have: 

µ uµ = 
S

q
µν

ν
∂Γ
∂

,     (29) 

 
or, in covariant components with respect to the (f + 1)-dimensional form  Γµν dqµ dqν : 
 

µ uµ = 
S

qµ
∂
∂

.      (30) 

 Furthermore: 

Tµν = − 2k2 A2 + 2
S S A A

q q q qµ ν µ ν
∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂

+ Γµν ρ(e) A, 

 
which can be written, by means (30) and (22): 
 

Tµν = ρ(m) uµ uν + Πµν ,    (31) 
with 

Πµν = 2
A A

q qµ ν
∂ ∂
∂ ∂

+ Γµν ρ(e) A.    (32) 

 
 
 5. The mean densities. – We shall now compare the expression (31)-(32) for the 
material tensor Tµν to the classical expression for Einsteinian gravity, in such a way that 
we can specify the significance of the magnitudes ρ(m) , ρ(e) , and Πµν . 
 First observe that since A is independent of q0, one will have: 
 

0
iΠ  = 0 ; 

on the other hand, from (30) and (6): 

u0 = 
1

µα
. 

 
If one introduces those results into (31) for µ = 0, ν = 1, after passing to mixed 
components, then upon taking (24) into account, one will find that: 
 

0
iTα = ρ(e) u

i .     (33) 

 
 For the components relative to space-time, one will have simply: 
 

T mn = ρ(m) u
m un + Πmn.   (33′) 

 
The material tensor T mn is decomposed into a dynamical tensor ρ(m) u

m un and a massive 
tensor Πmn (cf., equation (41), pp. 11, of Théorie des Champs gravifiques [4]). 
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 We first address ρ(m) and ρ(e) ; formulas (33)-(33′) show that ρ(m) and ρ(e) must be 
interpreted as the mass and charge densities of the system, or better (*), the ones that 
correspond to the densities of the system in configuration space: 
 Indeed, it is essential to observe that ρ(m) and ρ(e) are not generally the densities σ(m) 
and σ(e) that were given originally; that will exhibit the relation (24) immediately: 
 

( )

( )

m

e

ρ
ρ

 = 
1 2 3 4

( )

1 2 3 4
( )

m

e

x x x x

x x x x

σ δ δ δ δ

σ δ δ δ δ

′ ′ ′ ′

′ ′ ′ ′
∫
∫

. 

 
 From that relation, one can set: 
 

ρ(m) =
( )mτ
υ

,  ρ(e) =
( )eτ
υ

,    (34) 

 
and one can always “normalize” A in such a way that: 
 

11
| | fG dq dq

υ∫
⋯ = 1,    (35) 

 
which will show that ρ(m) and ρ(e) are (ponderable) mean densities. 
 One then sees that the true densities σ(m) and σ(e) serve to simply define a mean 
configuration space metric Γµν : 
 

( ) ( )
( ) ( )

1 1
recall that ,mn mn m m m e

m e

G g Qδτ δτ
τ τ

∗ ∗
 

= = Φ  
 

∫ ∫ . 

 
In that mean configuration space, one determines a function Ψ with the aid of which one 
defines the mean densities ρ(m) and ρ(e) , which permit one to calculate the “global” 
gravitational and electromagnetic actions of the system. 
 
 
 6. Internal tensions. – Finally, we move on to consider the tensor Πµν .  The 
tensions Πµ that are defined by Πµν are: 
 

Πµ = ,
ν
µ νΠ .     (36) 

 

 We first confirm that the first term 2
A A

q q
ρν

ρ ν
∂ ∂Γ
∂ ∂

 of ν
µΠ  makes no contribution to 

the tension Πµ .  Indeed: 
 

                                                
 (*) Remark by De Donder.  
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, , , , , , ,

,

, , , ,

, , , ,

2 2 ( ) 2 ( ),

2 2 ,

2 ( ) ,

0,

A A
A A A A A A

q q

A A A A

A A A A

ρν µν µν
ρ µ ν ρν µ ρ µνρ ν

ν
µν µν

µ ρµ ρ νµ
µν

µ ρ ν µ

 ∂ ∂Γ ⋅ = Γ = Γ +  ∂ ∂  


= Γ + Γ 
= + Γ 
= 

□

  (37) 

due to (4) and (17). 
 It then results that the system behaves like a “massive perfect fluid” from the 
standpoint of Πµ . (Théorie des Champs gravifiques [4], pp. 15).  One has: 
 
  Πµ = ( ) ,( )e Aν

µ νρΓ ; 

i.e.: 

Πµ = ( )( )m A

qµ

ρ∂
∂

.     (38) 

 
 It is easy to see that one will indeed arrive at that value of Πµ when one starts from 
the value (7) of αΠ . 

 
 

III. – COSMOLOGICAL CONSIDERATIONS IN REGARD TO  
INTERNAL TENSIONS. 

 
 It is interesting to develop some of the consequences of introducing an internal 
tension function, especially from the cosmological standpoint.  In order to do that, we 
shall place ourselves in the five-dimensional universe and repeat the calculation of the 
scalar 4T that was developed in number 7 of our preceding article [3] with the new value 
of L.  We effortlessly find that: 
 

4T = − 2 (L + k2 µ2 Ψ Ψ ) + 2ρ (e) A = ρ (m) + 4ρ (e) A ,  (39) 
 
in such a way that the curvature of space-time will be: 
 

R = χ ρ (m) + 4λ(e) ,     (40) 
with 

λ (e) = χ ρ (e) A .     (41) 
 
 We will then be led to a “cosmic” term with a curvature that is radically different 
from Einstein’s, since it will depend upon the distribution of electricity. 
 In order to see what happens, consider the three fundamental formulas: 
 

2 2 2
( )

2 2
( )

( ) ( )

2 ,

2 ,

,

m

e

e e

k A

k A

A

ρ µ
ρ µ
λ χρ

= −
= − 
= 

     (42) 
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which one can write: 
2 2 2

( )
2 2

( )

( ) ( )

( ) ,

( ) ,

( ),

m

e

e e

eA

eA

A

ρ ζ µ
ρ ζ µ
λ χ ρ

=
= 
= 

    (43) 

 
when one takes into account the meaning of k.  In those formulas, ζ and χ are two 
universal constants, and e, µ, A are the three fundamental magnitudes that determine the 
state of the universe at each point.  The magnitudes e and µ are such that their product eµ 
is a quantity that is independent of e.  The fundamental formulas then define the three 
auxiliary quantities ρ (m) , ρ (e) , λ (e) that suffice to describe the massive and 
electromagnetic systems in equilibrium, such as electrons, protons, light quanta (from the 
microscopic viewpoint), or even molecules and systems of molecules (from the 
macroscopic viewpoint), or finally stars and star systems (from the ultra-macroscopic, or 
cosmic, viewpoint).  A system for which ρ (e) = 0, ρ (m) ≠ 0 at each point is called a neutral 
material system.  From the microscopic viewpoint, there exist no neutral material systems 
except for possibly light quanta, if one (like L. de Broglie) would like to attribute a non-
zero mass to them.  A system for which one has ρ (m) = ρ (e) = 0 at each point is called 
vacuous. 
 A discussion of the first two fundamental formulas will give the following result: 
 The system (e, A, µ) is vacuous only if at least one of the three quantities e, A, µ is 
zero at each point.  Meanwhile, there is one important exceptional case: It is the one 
where A ≠ 0, where e tends to zero and µ tends to infinity in such a manner that the 
product eµ has a finite limit, which is necessarily non-zero then.  The system will then be 
a neutral material system, and that is the only case in which one can have such a system. 
 The third fundamental formula, in turn, shows that λ (e) is zero only for a vacuous 
system or a neutral material system. 
 We see that a vacuous system or a neutral material system can be under tension, but 
those tensions will not lead to any supplementary curvature of the universe. 
 A general (massive or electromagnetic) system is necessarily under tension, and those 
tensions will produce a supplementary curvature of the universe. 
 If one adopts the cosmic point of view and one remarks that the universe, taken 
globally, is a neutral material system then one will arrive at the conclusion that the 
cosmic curvature λ (e) is zero: One knows how many arguments exist against that concept.  
It then seems necessary to introduce, as Einstein did, a third fundamental universal 
constant, namely, the curvature of the vacuum 4λ0 .  That introduction can be achieved 
with no difficulty; it suffices to replace the variational principle: 
 

0 4( 2 )P L g dx dxδ χ+ −∫ ⋯  = 0    (44) 

with the principle: 
0 4

0( 4 2 ) 0.P L g dx dxδ λ χ− + − =∫ ⋯           (45) 
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 However, the curvature 4λ0 will no longer play precisely the same role that it did in 
Einstein’s theory.  It will enter only in part to ensure the equilibrium of massive and 
electromagnetic systems. 
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THE CORRESPONDENCE PRINCIPLE  
 

 The goal of the present article has been touched upon already in my second 
communication (** ).  I shall now take up the question again systematically by referring 
back to my first communication (*** ), and the present one constitutes an indispensible 
complement to it.  All of the arguments will be developed for a point-like system in the 
five-dimensional universe, but the extension to continuous (f + 1)-dimensional systems is 
immediate. 
 Wave mechanics, as contained in the variational principle [U 1, (43)], is a formal 
theory.  In order to give a physical interpretation, one is guided by the correspondence 
principle, with the meaning that O. Klein (IV) gave to it, and in a more general and 
precise manner, Th. De Donder (V). 
 The compatibility of the two principles – i.e., the possibility of establishing such a 
correspondence – is assured by a fundamental theorem whose proof will be the goal of 
number 2 below. 
 Having laid those general foundations, it will essentially remain for us to establish the 
correspondence in question.  Thanks to some extremely important consideration that that 
are contained in a letter from L. de Broglie, I have succeeded in generalizing paragraph 8 
in his recent paper (VI).  The details are presented in number 3. 
 De Donder played an essential part in this article by suggesting the fundamental idea 
to me.  I also have much to thank Louis de Broglie for, who was kind enough to continue 
a correspondence with me that was greatly profitable. 
 

                                                
 (*) Presented by Th. De Donder. 
 (** ) Bull. Acad. roy. Belg. (5) 13 (1927), session on 2 July.  In that communication, which is dedicated 
to the study of the internal tension potential, I kept to the approximation that is called “geometrical optics.”  
The existence of an internal tension potential implies a restriction on the function Ψ.  In the general case 
(cf., no. 3 of that communication), one will see internal tensions of a different type appear. 
 (*** )  Bull. Acad. roy. Belg. (5) 13 (1927), session on 3 May.  In what follows, that work will be 
denoted by U 1.  Similarly, De Donder’s Théorie des champs gravifiques [Mém. des Sc. math., fasc. XIV 
(1926)] will be denoted by G.  Hence, formula (12) in Champs gravifiques will be denoted by “[G, (12)].” 
 (IV) O. KLEIN, Zeit. Phys 41 (1927), 407-442.  
 (V) TH. DE DONDER, Bull. Acad. roy. Belg. (5) 13 (1927), session on 2 August.   
 (VI) L. DE BROGLIE, J. de Phys. (5) (May 1927).  



Rosenfeld – The five-dimensional universe and eave mechanics – III. 2 

 1. Correspondence principle. – Wave mechanics, which is contained entirely in the 
variational principle [U1, (43)], formally realizes the fusion of the general theory of 
relativity and quantum theory.  Along with the field equations that describe gravitational 
and electromagnetic phenomena, one also has the quantization equation [U1, (33)], which 
governs the quantum exchanges of energy.  That latter equation involves a fundamental 
quantity Ψ, and the fusion of the two theories consists precisely of the fact that the five-
dimensional material tensor that appears in the field equations is defined by means of the 
fundamental quantity Ψ.  On the contrary, in pure Einsteinian gravity, it is a function of 
some other fundamental quantities of system: viz., the mass density σ(m) and charge 
density σ(e) .  (For the moment, I shall abstract from the massive-electromagnetic tensor 
Hµν that Th. De Donder introduced a priori into gravitation.) 
 The new definition [U1, (47)] of the material tensor as a function of Ψ then implies a 
modification of our new conception of the role of the fundamental quantities σ(m) and σ(e).  
In Einsteinian gravitation, those quantities enter directly into the field equations in order 
to determine the gravitational and electromagnetic potentials that correspond to the given 
distribution (σ(m) , σ(e)).  In wave mechanics, they enter directly into only the quantization 
equations by which they determine the quantity Ψ.  It is therefore the latter quantity that 
one must introduce into the field equations in order to obtain potentials. 
 A little reflection will show that the material tensor Tµν, when defined as a function of 
Ψ, is not necessarily identical to the material tensor of pure gravity, which is defined as a 
function of σ(m) and σ(e) .  Moreover, it seems desirable to analyze the behavior of the 
tensor Tµν a little more closely in such a way as to exhibit the possible modifications that 
the introduction of the quantization quantity Ψ can afford to gravitation; that is precisely 
the role of the correspondence principle.  It comes down to interpreting the tensor Tµν as 
an ordinary gravitational tensor, which is a function of certain mass and charge 
“densities” ρ(m) , ρ(e) , which naturally depend upon Ψ.  A comparison of ρ(m) , ρ(e) with 
σ(m) , σ(e) will indicate how quantization modifies gravitational and electromagnetic 
phenomena.  One cannot give a more precise general statement of the correspondence 
principle.  One will see later on how one can effectively define ρ(m) and ρ(e)  as functions 
of σ(m) , σ(e) , and Ψ.  One will see that one must introduce a massive tensor Πij that 
determines the internal quantum tensions.  Those defining formulas constitute the 
correspondence principle in the strict sense.  It establishes the identification of the formal 
schema of wave mechanics with the gravitational schema of Th. De Donder [G, Chapter 
VI], which then illustrates the manner in which wave mechanics enlarges the scope of 
pure gravitation in order to introduce quantum phenomena into it. 
 
 
 2. The fundamental theorem. – Before going further, it would be appropriate to 
turn our attention to a very remarkable property of the tensor T µν :  In order for that 
tensor to be capable of being interpreted as an ordinary gravitational tensor, conforming 
to the correspondence principle, it must satisfy the conservation equations for energy-
impulse and electricity [U1, (60)] and [U1, (61)].  That condition is entirely essential to 
ensure the compatibility of the two principles: viz., the variational principle [U1, (43)] 
and the correspondence principle, which constitute wave mechanics. 
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 We shall show precisely that equations [U1, (60)], [U1, (61)] are verified identically 
for any solution of the quantization equations [U1, (33)], [U1, (33′)].  That is the 
fundamental compatibility equation: It is a consequence of the variational principle.  The 
latter point is particularly remarkable.  The variational principle is “intrinsically” 
compatible with the correspondence principle with no restriction or supplementary 
condition. 
 The proof is extremely simple.  It has been performed already [U1, no. 6] in the 
context of electricity, moreover.  From the calculations in [U1, no. 6], equations [U1, 
(61)], [U1, (60)] are equivalent to: 
 

0,

0
,

0,

0,

m
m

nm k
m

T

k
T T

n

σ
 =


  + = 
 

 

 
however, from [U1, (20)] and [U1,(7)], one will have: 
 

0

T

x
µν∂

∂
≡ 0, 

 
in such a way that by means of [U1, (53)], the preceding equations are equivalent to: 
 

0,

,

0,

0,n

T

T

µ
µ
µ
µ

 =
 =

 

 
or rather, it will suffice to show that one will have: 
 

, 0T µ
ν µ ≡           (1) 

 
for any solution Ψ, Ψ , of [U1, (33)], [U1, (33′)]. 
 Formula (1) can be verified by direct calculation [U1, no. 6].  However, as De Donder 
and Nuyens suggested to me, it is more elegant to resort to the fundamental identities of 

gravitation when they are applied to the invariant 2L g− .  Upon observing that Tµν 

precisely the symmetric part of 
( )2L g

µν

δ

δγ

−
, those identities can be written: 

 

( ) ( )
, , ,

2 2
2

L g L g
T µ

ν µ ν ν

δ δ

δ δ

− −
+ Ψ + Ψ

Ψ Ψ
 ≡ 0, 

 
but [U1, (33)], [U1, (33′)] are equivalent to: 
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( )2L gδ

δ

−

Ψ
= 0,  

( )2L gδ

δ

−

Ψ
= 0, 

which result immediately from formula (1). 
 
 
 3. The correspondence principle and Schrödinger-de Broglie dynamics. – It now 
remains for us to construct a system (ρ(m) , ρ(e)) that corresponds to the given system 
(σ(m), σ(e)) in the manner that was specified above.  It is presently impossible for me to 
resolve the question of knowing whether the correspondence that I established is the only 
acceptable one; that seems quite probable.  In what follows, I have made much use of the 
letter from De Broglie to which I alluded in the Introduction. 
 Set: 

Ψ = A′ e k S′ ;      (2) 
 
it is easy to see [cf., U1, no. 4] that the quantization equation [U1, (33)] is equivalent to 
the system of two real equations: 
 

, ,S Sµν
µ νγ ′ ′ = µ2 − 2

1

2

A

K Aχ
′□

,      (3) 

 

, ,2 S A A Sµν
µ νµ γ ′ ′ ′ ′+ □ = 0.     (4) 

 Set: 

2 2
2 .
A

K A
µ µ

′′ = +
′

□

          (5) 

 
By means of that notation, we confirm that equation (3) takes the form [cf., U1, (10)] of 
the Jacobi equation: 

J′ ≡ 2
, ,

1

2
S Sµν

µ νγ µ
χ

 ′ ′ ′− − 
 

 = 0    (6) 

 
that relates to a system that is characterized by a quantity µ′ (which differs slightly from 
µ): We shall take that new system to be the basis for the “corresponding” system.  It is 
important to note that the Jacobi equation of that corresponding system is a consequence 
of the quantization condition.  In the case of a particle of mass m0 and charge e, the only 
modification that wave mechanics brings with it is to replace the mass m0 with L. de 
Broglie’s mass: 

M0 = 
2

2
0 2 24

h A
m

c Aπ
′

+
′
□

.     (7) 

 
 Now, the correspondence, properly speaking, is easy to establish.  By virtue of the 
Jacobi equation (6), we will have: 
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µ′ uν = Sµν
µγ ⋅′       (8) 

  
for the velocity vector uν of the corresponding system or: 
 

0

,

1
i iu S

u

µ

µ α

⋅′ ′= 

= ′ 

     (9) 

 
for the covariant vector uν with respect to the dσ 2. 
 If one sets: 

2 2 2
( )

2 2
( )

2 ,

2
m

e

K A

K A

ρ µ
ρ µ

′ ′=
′ ′=

    (10) 

then one will have: 

( ) 2 ,mT u u A A Lµν µ ν µ ν µνρ γ⋅ ⋅′ ′= + −    (11) 

 
in which L is the world-function that was defined in our first communication; upon taking 
(3) into account, one will have: 
 

L A A A Aµν
µ νγ ⋅ ⋅′ ′ ′ ′= + □            (12) 

here. 
 In particular, one will have: 

Tmn = ρ(m) u
m un + Πmn,    (13) 

with the notation: 

2 .A A Lµν µ ν µνγ⋅ ⋅′ ′Π = −           (14) 

 
 Upon taking (9) and (10) into account, one will have, in addition, that: 
 

0
iTα  = ρ(e) u i.      (15) 

 
 We will then recover the material tensor [G, (38)] in (13), on the condition that we 
must interpret ρ(m) as a (mean) mass density of the corresponding system and Πmn as a 
mass tensor that determines the internal tensions: 
 

Π i = 4 in
n⋅Π .      (16) 

 
Similarly, (15) gives us the current quadri-vector of we interpret ρ(e) as a (mean) charge 
density of the corresponding system.  The correspondence principle is then expressed by 
formulas (5), (10), (14), and (12). 
 

Institut de Physique mathématique de l’Université libre de Bruxelles 
29 July 1927    
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THE PRINCIPLES OF WAVE MECHANICS  
 

 The present article has the main goal of presenting a synthesis of my first and third 
communications (** ), and to include De Donder’s important note on the correspondence 
principle (*** ). 
 Wave mechanics is initially based upon two formal principles: 
 
 1. The variational principle that was established in my first communication [U1, 
(43)] and which permits one to write out partial differential equations by means of the 
introduction of a complex auxiliary function Ψ. 
 
 2. The eigenfunction principle or Schrödinger’s principle, which gives the boundary 
conditions for the function Ψ. 
 
 One must add a physical principle to those formal principles: viz., the correspondence 
principle, which was stated most precisely in the cited note by De Donder, and which 
indicates the physical meaning of the formal operations that were performed by virtue of 
the first two principles. 
 A compatibility theorem establishes the link between the two groups of principles. 
 Having posed those fundamentals, one can construct various corresponding systems.  
I shall give two examples: The first one, which is entirely new, introduces a quantum 
current.  The second one, which was treated already in my third communication, is the 
system that L. de Broglie adopted (IV).  By now, it is well-ensconced in the general 
framework of the theory.  It will take on some complements here that relate to internal 
tensions especially. 
 In the first part of this paper, everything will be developed in detail for the case of an 
electrically-charged point particle.  In the second part, I shall indicate how one extends 
that to the holonomic systems that were considered in my first communication.  Finally, 

                                                
 (*) Presented by Th. De Donder. 
 (** ) Bull. Acad. roy. de Belg. (5) 13 (1927), sessions on 3 May and 2 August 1927, which will be cited 
as U 1 and U 2, respectively.  One should refer to them for the notations that are not explained here. 
 (*** )  Ibid., session on 2 August 1927.  
 (IV) J. de Phys. (May 1927), 225-241, and above all, § 8.  C. R. Acad. Sci. Paris 8 August 1927. 
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in the third part, I will study certain systems of N points by a method that is due to De 
Donder (*).  I will show how the present synthesis encompasses the statistical 
conceptions of Born and his school by means of the results obtained.  I will conclude 
with some brief remarks on non-holonomic systems of N points. 
 In the editing of my present communication, I have been able to profit from numerous 
instructive conversations with De Donder, as well as from work done at his remarkable 
institute, which he placed at my disposal with indefatigable helpfulness. 
 
 

I.  POINT-LIKE SYSTEM.  
 

 1. – Wave mechanics is based upon three principles: 
 
 1. A variational principle, which permits one to write down the field equations 
formally. 
 
 2. A correspondence principle, which gives the physical meaning of those 
equations. 
 
 3. An eigenfunction principle, which determines the quantization of the system 
considered. 
 
 We shall study the first two principles in detail, and first of all in the case of point-
like system in the five-dimensional universe. 
 
 
 2. The variational principle. – Let m0 be the rest mass, and let e be the charge of 
the point considered.  The ratio: 

[U 1, (3)]         µ = 
2

0m c

e
            (1) 

 
is then a constant of the point-like system under study. 
 The motion of the point is determined by five parameters q0, q1, …, q4 that forms a 
configuration space: 

dσ 2 = γµν dqµ dqν   (µ, ν = 0, 1, …, 4);  (2) 
one can, for example, set: 

xµ = qµ.     (3) 
 
 Our problem consists of calculating the γµν in the form (2); i.e., the gravitational and 
electromagnetic field of the point-like system (m0 , e) in the configuration space.  The 
field potentials are given as functions of the γµν by the formulas: 
 

                                                
 (*) DE DONDER, C. R. Acad. Sci. Paris 184 (1927), 698-700 (presented at the session on 20 September 
1927). 
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[U 1, (14)]   0 0

00

2 ,

,

,

ik ik i k

i i i

gγ χ
γ γ ξα
γ ξ

= − Φ Φ
 = = − Φ
 = −

 (i, k = 1, 2, …, 4),        (4) 

 
or, in contravariant components: 
 

[U 1, (8)]   0 0

00 2

,

,

1
.

ik ik

i i i

i
i

gγ
γ γ α

γ α
ξ


 =
 = = − Φ

 = Φ Φ −


           (5) 

 
 In these formulas, α, ξ, χ are universal constants, which satisfy the relations: 
 
[U 1, (9)]         ξ α2 = 2χ, 

(6) 

[U 1, (52)]         χ  = 
4

8 G

c

π
,  G = 6.7 × 10−8  CGS. 

 
 The formal solution to that problem is given by the following variational principle: 
Introduce an (unknown) complex function Ψ, as well as the conjugate function Ψ , and 
set: 

[U 1, (32)]   2 2
, ,

2 ,

1
.

2

W P L

L kµν
µ ν

χ

γ µ
χ

= +


  = Ψ Ψ + − Ψ Ψ 
 

         (7) 

 
P is the five-dimensional curvature invariant; it is a function of the γµν .  k is a system 
constant, that is given by: 
 

[U 1, (30), (40)]  k = i K = 
2 e

i
h c

π⋅ ⋅ .            (8) 

 
 Having said that, the partial differential equations give the γµν and the auxiliary 
functions Ψ, Ψ  are deduced from the variational equation: 
 

[U 1, (43)]   0 4W g dq dqδ −∫ ⋯ = 0.           (9) 

 
 One will thus obtain the two quantization conditions: 
 

W gδ
δ

−
Ψ

= 0,  
W gδ

δ
−

Ψ
 = 0, 
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and the fourteen field equations: 
 

W g
µν

δ
δγ

−
= 0  (except for µ = ν = 0). 

 
They are written explicitly as: 
 

[U 1, (33), (37)]  2 2 1

2
k µ

χ
 Ψ − − Ψ 
 

□  = 0, 

(10) 

[U 1, (33′)]   2 2 1

2
k µ

χ
 Ψ − − Ψ 
 

□  = 0, 

and 

[U 1, (51)]  
1
2

4
, 0

( ),

,

mn mn mn mn

im i
m

R g R S T

H T

χ
α

 − = − +
 =

 (m, n, i = 1, …, 4)      (11) 

 
by means of the notations: 
 
[U 1, (22)]  Smn = 1

4 gmn Hik H
ik – Hm

l H
nl  (i, k, l, m, n = 1, …, 4)      (12) 

 
and 
 
[U 1, (47)]  Tµν = , , , ,µ ν µ νΨ Ψ + Ψ Ψ − γµν L (µ, ν = 0, 1, …, 4) .      (13) 

 
 
 3. The correspondence principle. – As one sees, the problem is solved formally by 
the sixteen equations (10), (11) in the sixteen unknowns γµν (except γ00), Ψ, Ψ .  The 
boundary conditions for the functions Ψ, Ψ  are given by the third principle (the 
eigenfunction principle or Schrödinger’s principle), which we shall not discuss here.  
However, it is important now to extract the physical sense of those equations: That is the 
role of the correspondence principle, which we shall examine. 
 First, let us introduce some useful terminology.  Imagine a system of charged masses 
that are defined by the mass and charge densities ρ(m) and ρ(e) , resp.  Suppose that the 
system also includes a quantum current Λi , and that it is subject to internal tensions Hmn.  
Having done that, we will say that the system in question is Maxwellian if it satisfies the 
four equations: 

4
,
im
mH  = ρ(m) u

i + Λi .     (14) 

 
We say that it is Einsteinian if it satisfies the ten equations: 
 

Rmn – 1
2 gmn R = − χ (Smn + ρ(m) u

m un + Hmn),   (15) 
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when we use the notation (12).  In the formulas (14) and (15), ui represents the 
contravariant velocity at the point (q0, q1, q2, q3, q4).  In particular, a Maxwellian system 
for which Λi = 0 will be called pure Maxwellian.  An Einsteinian system for which Hmn = 
0 will be called pure Einsteinian. 
 One knows that for a Maxwellian system, one will have the equation for the 
conservation of total electric current: 
 

4(ρ(e) u
i + Λi), i = 0.     (16) 

 
For an Einsteinian system, one will have the equations of the conservation of energy-
impulse, which give the dynamics of the system in question: 
 

4
,

mn
nS  + 4(ρ(m) u

m un + Hmn), n = 0.    (17) 

 
 Having said that, we return to equations (11).  We observe that they have the form of 
the Einstein equations (15) and the Maxwell equations (14).  The vector 0

iTα  and the 

tensor T mn, which are both functions of Ψ, Ψ , by virtue of (13), take the places of the 
total current ρ(e) ui + Λi and the material current ρ(m) um un + Hmn in them.  The 
correspondence principle consists precisely of asserting that this analogy is not just 
formal, but also physical.  More precisely: The two functions 0

iTα  and Tmn of Ψ, Ψ  

define a system that is both Einsteinian and Maxwellian in the configuration space, 
which will be called the corresponding system to the given point-like one.  In formulas: 
 

( ) 0

( )

( , ),

( , ).

i i i
e

m n mn mn
m

u T

u u H T

ρ α
ρ

+ Λ = Ψ Ψ
+ = Ψ Ψ

   (18) 

 
 It is essential to remark, first of all, that the correspondence thus-established takes 
place in configuration space.  In the second place, it is necessary to prove the 
compatibility of the correspondence principle with the variational principle, because if 
the system 0

iTα , Tmn is both Maxwellian and Einsteinian then it must give rise to the 

conservation equations (16) and (17), in the form: 
 

0 ,
4 4

, ,

( ) 0,

0.

i
i

mn mn
n n

T

S T

α =
 + =

     (19) 

 
The left-hand sides of formulas (19) are functions of Ψ, Ψ  that must be identically zero 
for any solution Ψ, Ψ  of the quantization equations (10).  One verifies that this is, in 
fact, the case (viz., the fundamental compatibility theorem).  One will then see that the 
correspondence principle has a different character from the other two principles.  They 
are postulates, in the sense of formal logic, whereas the correspondence principle is a 
physical principle.  The compatibility of the two groups is ensured by the intermediary of 
formulas (18), thanks to the compatibility theorem. 
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 It now remains for us to effectively determine the corresponding systems; i.e., to 
calculate ρ(e) , ρ(m), Λi, and Hmn as functions of Ψ, Ψ , in such a manner that they satisfy 
formulas (18).  As we have posed that problem, it is obviously indeterminate. 
 We shall give two particularly remarkable solutions, which we will then compare 
briefly. 
 
 
 4. Corresponding system with quantum current Λi. – We can always put the 
function Ψ into the form: 
 
[U 1, (2)]         Ψ = A′ ekS′,           (20) 
 
in which A′ and S′ are two real functions, and k has the meaning that it had in (8): A′ is 
the modulus or amplitude or amplitude of Ψ; its argument or phase is KS′.  Thanks to 
formula (20), one can replace the two complex quantization equations (10) with two real 
equations by replacing, for example, Ψ with the value (20) in the first equation (10) and 
separating the real and imaginary parts.  One will get: 
 

2
, , 2

1

2

A
S S

k A
µν

µ νγ µ
χ

′′ ′ = − +□ ,    (21) 

[U 3, (3)](*) 
2

, ,( ) 0S Aµν
µ νγ ′ ′ =      (22) 

by a simple calculation. 
 If one performs the same substitution in the expressions (7) and (13) of L and Tµν 
then, upon taking (21) into account, one will get: 
 

[U 3, (12)]   L = , ,S A A Sµ ν
µνγ ′ ′ ′ ′+ □  = 21

2 ( )A′□                    (23) 

 
and 

2 2
, , , ,2 2 .T K A S S A A Lµν µ ν µ ν µνγ′ ′ ′ ′ ′= + −    (24) 

 
 Up to now, we have performed only some absolutely general formal transformations.  
Before going further, we point out two more general formulas that will be useful for us: 
They will permit one to pass from a divergence that is taken in the five-dimensional 
universe to a divergence that is taken in the space-time.  If uµ is an arbitrary five-
dimensional vector, and τ µν is an arbitrary five-dimensional symmetric tensor then one 
will have: 

,u µ
µ  = 

0
4

, 0
m
m

u
u

x

∂+
∂

,      (25) 

                                                
 (*) The second equation [U 3, (3)] must be written 

, ,
2 S A A Sµν

µ νγ ′ ′ ′ ′+ □ = 0.  The form (22) is found in 

LONDON, Zeit. Phys. 42 (1927), pp. 385.  Cf., also L. DE BROGLIE, C. R. Acad. Sci. Paris, 8 August 
1927.  
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,
mν

ντ  = 4
, 00

mn
m n m n

n nH
x

ττ α τ∂+ +
∂

.   (26) 

 
the proofs are accomplished very easily thanks to formulas [U 1, (27)], [U 1, (53)], [U 1, 
(54)]. 
 Having established those preliminaries, we arrive at our first example of a 
corresponding system (*).  The hypothesis that characterizes that system is that the Jacobi 
equation is true in its classical form: 
 

[U 1, (10)]    γ µν S, µ S, ν = µ2 − 1

2χ
.        (*27) 

 
One then deduces that the velocity vector in components that are covariant with respect 
to dσ 2 : 

µ uµ = S, µ ;      (*28) 
hence, since: 

[U 1, (7)] S, 0 = 
1

α
, 

one will have: 

u0 = 
1

µα
  (*29) 

and 
 
[U 1, (22)]    µ u1 = γ i µ S, µ = gim (S, m − Φm) .       (*30) 
 
 Now set: 

S′ = S + C.     (*31) 
 
C is a function that is independent of q0, as is A′. 
 Using (*31) and (*27), equation (21) will reduce to the following relation between C 
and A′: 

 γ µν C, µ C, ν + 2γ µν S, µ C, ν  = 
2

A

K A

′□
.          (*32) 

 
 Introducing (*31) and (*28) in (24), we will get: 
 

Tµν = 2 2 2 2 2
, , , , , , , ,2 2 ( ) 2K A u u K A S C S C C C A A Lµ ν µ ν ν µ µ ν µ ν µνµ γ′ ′ ′ ′+ + + + − . (*33) 

 
Upon taking (*29) into account, we infer that: 
 

                                                
 (*) The numbers of the formulas that relate to this example are affected with an asterisk.  
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2 2 2

2 2 , , , , , ,
, ,

2 2 2 2
0 ,

2

2 ( ) 2 ,

2 2 .

mn m n

m n

i i i

T K A u u

K A S C S C C C A A L

T K A u K A C

µ ν µ ν ν µ µ ν
µ ν µν

ν
ν

µ
γ γ γ

α µ γ

′ =


′ ′ ′ + + + + −  
′ ′= + 

 (*34) 

 
 Now, if we compare formulas (*34) to formulas (18) then we will see that we can 
satisfy the correspondence principle by setting: 
 

2 2 2
( )

2 2
( )

2 ,

2 ,
m

e

K A

K A

ρ µ
ρ µ

′ =
 ′=

     (*35) 

as well as: 

0

,

,

mn m n

i i

H H

H

µ µ
µνγ γ

α
 =
 Λ =

     (*36) 

by means of: 
 

Hµν = 2K2 A′ 2 (S, µ C, ν + S, ν C, µ + C, µ C, ν) + , ,2A Aµ ν′ ′ − γµν L,   (*37) 

 
in such a way that: 

Λi = 2K2 A′ 2 gim C, n ,      (*38) 
 
or, in covariant components with respect to ds2 : 
 

2 2
,2 .i iK A C′Λ =      (*38′) 

 
The function C is therefore the potential of the quantum current Λi . 
 Equation (22) can now be put into the form: 
 

4(ρ(e) u
i + Λi), i = 0,     (*39) 

 
thanks to (*35), (*30), (*38), and (25): It expresses the conservation of the total current.  
That is a new aspect of one part of the compatibility theorem.  We shall now pursue the 
dynamical study of the system, and we will begin with the aspect that is analogous to the 
other part of the theorem. 
 We first address the calculation of the internal tensions (*): 
 

Πi = 4
,

i n
nΠ ;      (*40) 

 
from (26) and (*36), one will have: 
 

                                                
 (*) Of course, the internal tensions that will be at issue from now on have nothing in common with the 
ones in my note U 2, which would now be pointless to consider. 
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Πi = ,
i i i

n
µ
µΠ − Π Λ .     (*41) 

 
On the other hand, due to (23), (*32), (22), and (*31), (*37) will give: 
 
 ,

ν
µ νΠ  = {2K2 A′ 2 γ νρ (S, µ C, ρ + S, ρ C, µ  + C, µ C, ρ )} , ν  + , , , ,2 2A A A Aνρ νρ

µν ρ µ νργ γ′ ′ ′ ′+  

   − , , , ,2 ( )A A A A A Aσρ
µρ σ µ µγ′ ′ ′ ′ ′ ′− −□ □ , 

 

  = {2K2 A′ 2 γ νρ (S, ρ + C, ρ ) C, µ } , ν  + {2K2 A′ 2 γ νρ S, µ C, ρ} , ν − 2

,

A
A

A µ

′ ′  ′ 

□
, 

 
  = 2K2 A′ 2 γ νρ (S, ρ + C, ρ ) C, µν +{2K2 A′ 2 γ νρ C, ρ} , ν S, µ − 2K2 A′ 2 γ νρ C, ρ S, µν 
   − K2 A′ 2 {γ νρ C, ρ C, ν + 2 γ ρν C, ν C, ρ} , µ , 
 
  = 2K2 A′ 2 γ νρ (S, ρ + C, ρ ) C, µν +{2K2 A′ 2 γ νρ C, ρ} , ν S, µ − 2K2 A′ 2 γ νρ C, ρ S, µν 
   − K2 A′ 2 {2γ ρν C, ρ C, µν + 2 γ ρν S, ν C, ρµ} − 2K2 A′ 2 γ νρ C, ρ S, µν , 
 
  = {2K2 A′ 2 γ νρ C, ρ} , ν S, µ , 
 
  = − S, µ{2K2 A′ 2 γ νρ S, ρ} , ν , 
 
or finally, from (25), (*28), and (*35): 
 

,
ν

µ νΠ  = − uµ 4(ρ(m) u
n), n .    (*42) 

 
 By means of (*42), (*41) will become: 
 

Πi = − u i 4(ρ(m) u
n), n − i n

nH Λ .   (*43) 

 
 Now, from the compatibility theorem [cf., U 2, no. 2], the dynamical equations that 
we seek are written: 

,
mT µ

µ  = 0, 

or, by virtue of (26): 
4

, 0
mn m n

n nT H Tα+  = 0, 

or rather, by virtue of (18): 
 

4(ρ(m) u
n), n +

4
,

mn
nΠ + H mn (ρ(m) u

n + Λn) = 0, 

or finally: 

( ) ( )
m m
m eϕ ϕ+ + Πm + um 4(ρ(m) u

n), n + H mn Λn = 0, 

 
from (*40) and upon setting: 
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4
( ) ( ) ,

( ) ( )

,

.

m n n
m m n

m m n
e e n

u u

H u

ϕ ρ
ϕ ρ

 =
 =

    (*45) 

 
 Now, due to (*43), (*44) will reduce to: 
 

( ) ( )
m m
m eϕ ϕ+  = 0.          (*46) 

 

( )
m
mϕ  is the generalized Einstein force of inertia, ( )

m
eϕ  is the generalized Lorentz 

electromagnetic force.  One then recovers Einsteinian dynamics; it is the novel aspect of 
the second part of the compatibility theorem. 
 One deduces the equation of continuity from (*44): 
 

4(ρ(m) u
n), n + Πm um + Hmn Λn um = 0,     (*47) 

with 
  Πm = gmn Πm ; 
 
that equation is satisfied identically thanks to (*43). 
 
 
 5. Corresponding system with quantum mass. – Recall equation (21).  Since it has 
the form of the Jacobi equation, we can construct a second corresponding system that is 
characterized by the Jacobi equation (21), which we write: 
 

[U 3, (6)]   , ,S Sµν
µ νγ ′ ′  = µ′ 2 − 

1

2χ
,         (27) 

with the notation: 
 

[U 3, (5)]   µ′ 2 = µ 2 +
2

A

K A

′
′

□ ,          (28) 

 
and upon keeping the same value for the charge e, that will amount to the replacement of 
the mass m0 with the L. de Broglie mass: 
 

[U 3, (7)]   M0 = 
2

2
0 2 24

h A
m

c Aπ
′

+ ⋅
′
□ .         (29) 

 
 The velocity vector is presently defined by: 
 
[U 3, (9)]   µ′  uν = S′, ν ;           (30) 
 
hence, in particular: 

u0 = 
1

µ α′
,      (31) 
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and 
 
[U 3, (8)]   µ′  un = γ nν S′, ν = gmn (S′, m − Φm) .        (32) 
 
 Formula (24) now gives: 
 

T µν = 2 K 2 A′ 2 m′ 2 uµ uν + , ,2 vA Aµ′ ′  − γµν L ;    (33) 

hence: 
2 2 2

, ,
2 2

0

2 (2 ),

2 ,

mn m n m n

i i

T K A u u A A L

T K A u

µ ν
µ ν µνµ γ γ γ

α µ
′ ′ ′ ′ = + −

 ′ ′=
  (34) 

 
 We see that we can satisfy the correspondence formulas (18) by setting: 
 

[U 3, (10)]   
2 2 2

( )
2 2

( )

2 ,

2 ,
m

e

K A

K A

ρ µ
ρ µ

′ ′ =
 ′ ′=

          (35) 

as well as: 

,

0,

mn m n

i

µ ν
µνγ γ Π = Π


Λ =

         (36) 

by means of: 
 
[U 3, (14)]   Πµν = , ,2A Aµ ν′ ′  − γµν L .          (37) 

 
The corresponding system that we are studying now is therefore pure Maxwellian.  The 
total current reduces to the convection current here.  The conservation of that current is 
once more expressed by equation (22), which conforms to the compatibility theorem; 
indeed, thanks to (25), (32), and (35), that equation is written: 
 

4(ρ (m) u
i), i = 0.      (38) 

 
 It now remains for us to study the dynamics of our second model, in parallel with 
what we did for the first system.  From (26), (37), (23), we have immediately: 
 

Πi = 4
,
in
nΠ  = 4

,
iν
νΠ , 

 

,
ν

µ νΠ = − 2 in A
A g

A

′ ′  ′ 

□
; 

hence: 

Πi = − 2

,

in

n

A
A g

A

′ ′  ′ 

□
,      (39) 

 
or in covariant components with respect to ds2 : 
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2

,

.i
i

A
A

A

′ ′Π = −  ′ 

□
    (39′) 

 
 The function /A A′ ′□  is then the potential of the internal tension Πi . 
 The dynamics of the system can be condensed into the equations: 
 

4
( ) ( ) ( ) ,( )m m m m n
m e m nu uϕ ϕ ρ+ + Π + ⋅  = 0,    (40) 

with the notations: 
4

( ) ( ) ,

( ) ( )

,

.

m m n
m m n

m m n
e e n

u u

H u

ϕ ρ
ϕ ρ

 =
 =

    (41) 

 
 One deduces the continuity equation from (40): 
 

Πm um + 4(ρ(m) u
n), n = 0.    (42) 

 
Upon introducing the values (39) and (35) for Πm and ρ(m) , resp., into that equation, one 
will get: 

− 2 4 2 2
( ) , .

,

( ) 2m n n
m n n

m

A
A u u K A u

A
ρ µ µ µ′ ′ ′ ′ ′ ′+ + ′ 

□

= 0, 

 
or rather, from formula (28): 

4(ρ(m) u
n), n = 0, 

 
which is nothing but the real equation of the quantization (38).  Hence, (42) will be true 
identically by virtue of (38); one recognizes the compatibility theorem.  Thanks to (42), 
one can again put (40) into the form: 
 

( ) ( )
m m
m eϕ ϕ+  + Πm − um Πi u

i = 0.    (43) 

 
 One indeed recovers the various equations of Chapter VI of De Donder’s Théorie des 
Champs gravifiques. 
 We conclude with a remark that relates to the tension potential. 
 Set: 

( )mρ ∗ = 
2

( )m

µ ρ
µ

 
 ′ 

,     (44) 

or, by virtue of (35): 

( )eρ ∗ = 2 K2 A′ 2 µ 2.     (44′) 
 In addition, set: 

V = 2 2

1

2

A

K Aµ
′

⋅
′
□

.     (45) 
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 Formula (39′), which gives us the tension vector Πi , is written: 
 

Πi = − ( )mρ ∗ V, i ;     (46) 

 
on the other hand, formula (28) will give, in the first approximation: 
 

µ′ ~ µ (1 + V),      (47) 
or rather: 

M0 c
2 ~ m0 c

2 (1 + V) .     (48) 
 
 Formula (48) was pointed out by L. de Broglie in his cited paper in Journal de 
Physique [formula (64)].  He remarked that “everything happens as if there exists…a 
(supplementary) potential energy term” m0 c

2 V.  Our method gives us the interpretation 
of that potential energy now: From (46), it is nothing but the energy of internal tensions. 
 
 
 6. Remark concerning the preceding two examples. – The interest in the systems 
with quantum current is found, above all, in the fact that it preserved the completely 
classical Einsteinian dynamics.  One will then see a quantum current appear that gets 
added to the convection current.  The total current is conserved, but not the convection 
current.  Charged moving bodies will not always keep their initial personalities then, but 
might possibly break up or coalesce into each other. 
 On the contrary, the second system, or L. de Broglie system, is pure Maxwellian, but 
its dynamics are somewhat complicated, due to the intervention of internal tensions.  
What is truly remarkable about such systems is the significance that the complex 
quantization equation takes on when it is put into the form of the two real equations (27) 
and (38): The first of those equations is the Jacobi equation of the system; it provides the 
dynamics.  The second one gives the conservation of electricity. 
 
 

II. – HOLONOMIC SYSTEMS.  
 

 7. Continuous holonomic system with (f + 1) degrees of freedom [cf., U1, II]. – 
The motion of such a system is determined by (f + 1) parameters q0, q1, …, q f that one 
considered to be the coordinates of a configuration space with metric Γµν dxµ dxν (µ, ν = 
0, 1, …, f).  If  x′ 1, x′ 2, x′ 3, x′ 4 denote the coordinates of a point of the system with 
respect to a reference system that is linked with it then one will have a change of 
variables or holonomic constraint for an arbitrary system x0, x1, x2, x3, x4 that takes the 
form: 

[U1, (87), (94)] 
1 2 3 4 1

0 0

( , , , ; , , ) ( 1,2,3,4)

.

i i fx x x x x x q q i

x q

′ ′ ′ ′ = =


=

…

            (49) 

 
More precisely, one supposes that there exist differentiations d and δ that enjoy the 
following properties: When ds ≠ 0, dqn ≠ 0, one has idx = 0; when δs = 0, δqn = 0, one 
has ixδ  ≠ 0. 
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 Now, it is clear that all of the arguments of the Part I can be transposed to the new 
configuration space with Γµν dxµ dxν.  The constants m0 c

2 and e will be replaced by the 
constants τ(m) , τ(e) , resp., which can be calculated as functions of the given density 
factors by the formulas: 

[U1, (90)]   

1 2 3 4
( ) ( )

1 2 3 4
( ) ( )

,

.

m m

e e

x x x x

x x x x

τ σ δ δ δ δ

τ σ δ δ δ δ

 ′=


′=

∫

∫
       (50) 

 
In these formulas, the symbol δ has the significance that was just recalled: τ(m) is the total 
internal (rest) energy, and τ(e) is the total charge of the continuous system (charged 
material particle).  Apart from that, all of the formulas will remain the same: Of course, 
the Latin indices vary from 1 to f now, while the Greek indices vary from 0 to f. 
 On the other hand, that extension of our principles to the new configuration is 
natural, because if one abstracts those principles, for the moment, then one can calculate, 
just as one did in no. 10 of U1, the Γµν , by starting with the γµν (x

1, x2, x3, x4) of the five-
dimensional universe, and one will effectively find a Jacobi equation that will permit one 
to generalize the quantization equation in the configuration space, thus-determined.  Of 
course, the field Γµν that is determined by starting from the γµν  (the original field), as was 
just said, does not rigorously coincide with field Γµν that is calculated from the method 
that was developed in Part I (viz., the corresponding field); the new element that wave 
mechanics brings with it is precisely that difference.  The correspondence principle 
asserts that in configuration space, the field that has a true physical significance is not the 
original field, but, in fact, the corresponding field. 
 
 

III. – SYSTEMS OF N POINTS. STATISTICS. 
 
 8. System of N points embedded in a given field. – Consider a field gik (x

1, x2, x3, 
x4), Φ1 (x

1, x2, x3, x4) that is known at each.  Introduce N bodies (test bodies) with masses 
and charges ( )m

ντ , ( )e
ντ  (ν = 1, 2, …, N).  We shall treat the dynamics and quantization of 

that system by a method whose principle is due to De Donder. 
 We first argue in space-time.  The system has 4N degrees of freedom.  Take the 
parameters of motion to be the coordinates ixν  (i = 1, 2, 3, 4; ν = 1, 2, …, N) of the 

various points; let iuν  be the corresponding components of the velocities.  In general, let 

fν denote the value of a function f for xi = ixν , ui = iuν , i = 1, 2, 3, 4.  Set: 

 

1
2

,

.

i
i

i k
ik

U u

Y g u u

 = Φ
 =

     (51) 

 The fundamental theorem (*): 
 

                                                
 (*) TH. DE DONDER, Théorie des Champs gravifiques, pp. 38, equation (100).  
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( ) ( )m e
i i i i

d Y Y d U U

ds u x ds u x
δτ δτ ∂ ∂   ∂ ∂        − + −          ∂ ∂ ∂ ∂          
∫ ∫ = 0  (52) 

is written: 

( ) ( )m e
i i i i

Y Y U Ud d

ds u x ds u x
ν ν ν ν

ν ν
ν ν ν ν

τ τ
          ∂ ∂ ∂ ∂− + −          ∂ ∂ ∂ ∂          

= 0  (53) 

 
in the present case for each point of the system. 
 Set: 

Aν = ( ) ( )m eY Uν ν ν ντ τ+ ;     (54) 

 
we can write equations (53) in the Lagrangian form: 
 

i i

d

ds u x
ν ν

ν ν

   ∂Λ ∂Λ−   ∂ ∂   
 = 0.    (55) 

 Upon setting: 

pi, ν = 
iu
ν

ν

∂Λ
∂

 = 
i

S

x
ν

ν

∂
∂

,      (56) 

 
one will deduce the N Jacobi equations: 
 

( ) ( ) ( ) 2
, , ( )ik e e m

i ki k

S S
g

x x
ν ν

ν ν ν ν ν ν
ν ν

τ τ τ
  ∂ ∂− Φ − Φ −  ∂ ∂  

= 0   (57) 

 
from the N systems of equations (55), by the usual method. 
 In reality, the problem then splits into N independent equations.  One can nonetheless 
introduce a unique 4N-dimensional configuration space to represent the states of the 
system.  To that effect, set: 

Λ = ν
ν

Λ∑      (58) 

and observe that: 

ixν

∂Λ
∂

=
ix
ν

ν

∂Λ
∂

, 
iuν

∂Λ
∂

=
iu
ν

ν

∂Λ
∂

.    (59) 

 
Moreover, equations (55) can be written: 
 

i i

d

ds u xν ν

   ∂Λ ∂Λ−   ∂ ∂   
 = 0.    (60) 

Upon setting: 

,ip ν
∗  = 

iuν

∂Λ
∂

= 
i

S

xν

∂
∂

,     (61) 
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one will deduce the single Jacobi equation from the system (60): 
 

( ) ( ) ( ) 2
, ,( )

1
( )ik e e m

i km i k

S S
g

x xν ν ν ν ν ν
ν ν ν ν

τ τ τ
τ

   ∂ ∂ − Φ − Φ −   ∂ ∂    
∑  = 0,  (62) 

which is written: 

2ds∗  = 
( )

,( )

m
i k

ikm
g dx dxν

ν ν ν
ν

τ
τ∑

    (63) 

in configuration space, with: 
τ (m) = ( )m

ν
ν

τ∑ . 

 
 Equation (62) is equivalent to N equations (57), moreover.  In order to see that, it is 
sufficient to compare (56) and (61) using (59); one has pi, ν = ,ip ν

∗  and: 

 

i

S

x
ν

ν

∂
∂

= 
i

S

xν

∂
∂

;      (64) 

hence: 
  S = 1 2 3 4( , , , )S x x x xν ν ν ν ν

ν
∑ . 

 
 Thanks to (64), equation (62) can be written: 
 

( ) ( ) ( ) 2
, ,( )

1
( )ik e e m

i km i k

S S
g

x x
ν ν

ν ν ν ν ν ν
ν ν ν ν

τ τ τ
τ

   ∂ ∂ − Φ − Φ −   ∂ ∂    
∑  = 0.  (65) 

 
 We shall construct the world-function L that enters into the variation principle by 
starting with that equation (65).  It will depend upon N complex functions Ψν and their 
conjugates νΨ .  

  First, introduce the fifth dimension x0, which takes the value 0xν  at the νth point.  Set: 
 

0

S

xν

∂
∂

 =
0

S

x
ν

ν

∂
∂

= 
( )e

ντ
α

,     (66) 

 
and further define the γ µν, γµν by (4) and (5), resp.  Equation (65) is written: 
 

( ) 2
( ) 2

( )

( )1
( )

2

e
m

m

S S

x x
αβ ν ν ν
ν να β

ν ν ν ν

τγ τ
τ χ

  ∂ ∂ − −  ∂ ∂   
∑ = 0,  (67) 

 
in the 5N-dimensional configuration space with: 
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2dσ ∗  = 
( )

,( )

m

m
dx dxα βν

αβ ν ν ν
ν

τ γ
τ∑

.    (68) 

 From (67), one must take: 
 

L = 2 ( )
( )

1 1

2
m

m
k

x x
αβ ν ν
ν ν ν ν να β

ν ν ν ν

γ µ
τ χ

 ∂Ψ ∂Ψ  + − Ψ Ψ  ∂ ∂   
∑   (69) 

 
to be the world-function L, upon setting: 

 
( )

( )

( )
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,

.

m

m

e

k i
h c

ν
ν

ν
ν

ν

τπ

τµ
τ


= ⋅



 =


     (70) 

 
 In addition, one must observe that in the present problem, the Einstein and Maxwell 
equations play a role only dynamically, since the fields are assumed to be given.  Other 
than the dynamical equations, which contain the tensor ( , )T αβ

ν ν νΨ Ψ , the variational 

principle will then yield 2N quantization equations in Ψν , νΨ .  As one sees, the 

corresponding system is no longer determined by just one tensor T αβ, but by a set of N 
tensors T αβ

ν (or, if one prefers, by a tensor of rank 5N that has a very special form).  In 

particular, the “densities” of the corresponding system are defined by two sets of N 
functions, that proportional to the squares of the amplitudes Ψν , νΨ , respectively. 

 
 
 9. Statistics. – Apply these results to a system of N identical points.  In that case, 
one will get the same formal equations for all value of the index ν .  One can then say 
that formally the problem is the same as the one that was treated in Part I in relation to a 
single point.  One can even dispense with the explicit consideration of the 5N-
dimensional configuration space and say, more briefly, that the system that corresponds 
to a single point (as described in Part I) is also the system that corresponds to an 
arbitrary system of points of the same nature that is embedded in the given field.  The 
latter restriction is obviously essential: When one considers just one point, the 
corresponding system will permit one to calculate not only the motion of the point in the 
field, but also the field at each point.  When one considers a “cloud” of points, the 
corresponding system will give only the motion; one will no longer have an “in sich 
geschlossene Feldtheorie” ( *). 
 Now, as L. de Broglie ingeniously remarked in his aforementioned article, one can 
interpret the motion of a cloud of points in a field statistically.  If one considers a particle 
that arrives at an arbitrary (unknown) point in the field with a given velocity then the 
density of the cloud at each point of the field will be proportional to the probability of 
                                                
 (*) “An intrinsically-closed field theory.”  Cf., Schrödinger, Ann. Phys. (Leipzig) 82 (1927), pp. 265, et 
seq., to the end.  
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presence of the particle at that point.  However, by virtue of the correspondence 
principle, the density that we must consider is that of the corresponding system.  Now, 
that density is proportional to Ψ Ψ .  We thus arrive at the statistical interpretation of the 

function Ψ that Born had proposed.  Born and his school placed that statistical 
interpretation at the basis of a remarkable theory that is radically different from the one 
that was presented in the present work.  The considerations that were just developed seem 
to show that, given the present state of affairs concerning the question, the statistical 
aspect of atomic phenomena, as interesting and fruitful as it is, does not necessarily lead 
to the “indeterministic” attitude of the Göttingen school, however. 
 The initial idea of my argument was that of L. de Broglie.  However, I arrived at the 
same conclusion as he along a very different path.  One might say that whereas he sought 
to superimpose the individual waves in order to obtain the wave of the system, I have 
simply juxtaposed then.  In that fashion, thanks to the correspondence principle, I could 
avoid the hypothesis of the “double solution” that one is obliged to introduce. 
 
 
 10. Observations about non-holonomic systems of N points that are embedded in 
their field . – On first glance, it seems that can extend the considerations of number 8 to a 
system of N points that interact with each other, because, at the end of the day, the field 
of such a system is likewise finite and well-defined at each point.  However, that 
viewpoint is contrary to the spirit of the Lagrangian method; that is why I resorted to the 
mode of exposition that I adopted.  If one would like to repeat the considerations of 
number 8 for the present case then one will be stopped by equation (58) or (59) in the 
application of that Lagrangian method. 
 In order to treat such systems, one must (*) introduce a 4N-dimensional configuration 
space a priori with a metric of the form: 
 

gik (q
1, q1, …, q4N) dqi dqk   (i, k = 1, 2, …, 4N). 

 
 I hope to be able to return to the matters above in more detail. 
 

Institut de physique mathématique de l’Université libre de Bruxelles 
8 October 1927     

 
___________ 

 

                                                
 (*) Cf., TH. DE DONDER, Bull. Acad. roy. de Belg. (5) 13, pp. 509, (§ 5). 


