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Introduction

The problem of constructing a unified theory of elatiagnetism and gravitation
arose almost immediately after the appearance of diir'sttheory of gravitation. It
seemed natural and tempting to look for equations fortgtam and electrodynamics on
the basis of a single common principle, and it seemadthie construction of a unified
field theory would lead to a deeper understanding of natulfemable one to predict and
discover new and specialized electro-gravitationakesfe

These hopes have not yet been realized. All of theenous variants that have been
proposed to date for a unified field theory have led toftlnmal unification of the
Einstein and Maxwell equations, but not to any new knowledigeit nature. The failure
to achieve any progress along that direction led to &éngpoff of interest among the
physicists that had contributed to our heritage of pre-guamthysics, and they largely
continued to engage in more mathematical-geometric eadethan physical ones.

The reason for this is that experimental physicisasehsignificantly different
capabilities regarding the study of the properties oftelemagnetic and gravitational
fields.

In the case of electrodynamics, one can creategelsam spacetime fields and
investigate their properties in a laboratory environment.xvi#l's equations are the
mathematical formulation of the results of Faradagperiments. The electromagnetic
waves that were predicted by the theory were discoverperimentally and have found
widespread applications in engineering.

In the case of gravitation, experimenters are denied ajpportunity to create
gravitational fields that are variable in space-time abskovable in experiments. The
only field that is in their possession is the consggavitational field of the Earth and the
Sun. That should be regarded not as unfortunate, but agp@ortunity to observe
relativistic effects, such the secular motion of pleeihelion of Mercury and the bending
of light rays near the Sun. The detection of gravitafidields that are predicted by the
theory goes far beyond the capabilities of experimefitserefore, unlike the equations
of electrodynamics, the equations of the theory of gatigih were not obtained as the
result of the mathematical formulation of laws there found experimentally, but were
based mainly upon the possibility of a covariant foatiah of the laws of nature in
arbitrary coordinate systems.

Therefore, it was natural that all attempts to gdizeréhe theory of gravitation in the
direction of a unified theory of gravitation and eleatagnetism inevitably took on a
formal mathematical character and could not rely upmemment.

From the attempts to construct a unified field thedrgnmediately emerged that
there were two directions in which to proceed.

The first one was to abandon the Riemannian metritiseofour-dimensional space-
time continua of the general theory of relativity andke a transition to a general non-
Riemannian geometry. It was found that mathematic®arehers had opened up a vast
expanse of possible geometries from which to choose. &lftbst any choice, it was
possible to obtain geometrical quantities that could berpntted as the existence of
potential electromagnetic fields. The ambiguity in @f®ice of a non-Riemannian
geometry and the lack of a general physical principlé @auld make this choice
unambiguous deprived this direction of any interest and pHysicgent.
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The second direction was to introduce an extra @éifthension while maintaining a
Riemannian metric in five-dimensional space. In orderaimecto an agreement with
experience, which shows no dependence of macroscopic fiplds an extra fifth
coordinate, the additional rigid requirement is impogpdn metrics in five-dimensional
space that the metric potentials must be independdhtahtroduction of the extra fifth
coordinate, which is the so-calleglindricality condition.

The inadequacy of this direction is obvious. Indeed, tinednction of an extra fifth
dimension into space, whose existence, however, cendétected due to the postulated
independence of all fields of the extra fifth coordinatensehighly artificial.

However, as was shown by Einstein and Bergmann in 1938, alointroduce the
concept of five-dimensional space without entering intafl@d with experimentally
detectable four-dimensional macroscopic fields and withismposing cylindricality
conditions upon the metric. In order to do that, isudficient to assume that five-
dimensional space is topologically closed in the fdtimension, and that the period of
the fifth coordinate has a microscopic value that we tzke to be zero in the first
approximation.

One visual two-dimensional model of a space that isloggally closed in one of its
dimension might be the surface of an infinitely-exexh cylinder whose radius will be
denoted byb / 27z Suppose that we define a scalar fidi(k, S) on the surface of that
cylinder that is periodic in the coordingBavith periodb. Consider two limiting cases:

1. Macroscopic fieldswhen the changes in the field over distances of drdan be
neglected. Such an approximate field will satisfy cylicaliiy, and it will manifest itself
as a one-dimensional field that depends upon only the catedin

2. Ultra-microscopic fields when the radius of the cylinddr / 27 is large in
comparison to the distances at which the field vasigsificantly. The topological
closure of the surface can be neglected at such distemicee field (on a small part of
the cylinder surface). Such a field will manifest itsa#f a two-dimensional one that
depends upon both the coordinatesdS.

Microscopic fieldgepresent intermediate cases that vary consideralbligtances of
orderb. Inthose cases, the topological closure of theasanivould be essential.

Let us return to five-dimensional Einstein-Bergmann spases denote the fifth
coordinate byS and its period byp. The components of any field in such a space are
assumed to functions of all five coordinat®¥¥x, y, z t, S, and periodic in the fifth
coordinate with period.

When we deal with macroscopic fields, we can negleetperiodic dependence on
the fifth coordinate and treat them as four-dimensional.

Accounting for the periodic dependence upon the fifth coatdirwill become
significant under the transition to the consideratibm@roscopic fields. Mainly, there
should exist effects in which that periodicity is martdels In essence, we are talking
about the introduction of a new universal constainto the field theory, and the classical
theory will be produced only in the limit &s- O.
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However, the physical meaning and dimension of the extra doordinate still
remain open questions, so the entire theory retaifsritsal character.

One can also approach the notion of a topologicddiged, five-dimensional space
entirely from “the other end” — i.e., without attemptittggconstruct a unified theory of
gravitation and electromagnetism. That path will leathe discovery that it is possible
to ascribe the physical meaning of action to thé ftbordinateS, while its periodb is
rooted in the value of Planck’s constdntand will lead to a profound synthesis of
geometric ideas that were established in the genemaiytiod relativity with ideas from
guantum theory. In modern physics, it is customary ttingjuish between the
“macroscopic” and the “microscopic,” which is relatiedthe value of Planck’s constant
h, which finds its geometric analogue in the form of thstinction between “four-
dimensional” and “five-dimensional,” resp.

The path to the “five-dimensional” that will be chosenhis book is to look for some
still-undiscovered, far-reaching symmetry in the equationseftivistic mechanics in
space, time, and action. At the same time, a thireergional Einsteinian formulation
and a four-dimensional Minkowskian formulation will makessible a new five-
dimensional formulation of the equations of relatigistiechanics.

The problem of finding a five-dimensional formulation ofassical relativistic
mechanics for the motion of a charged, material paigtiven external gravitational and
electromagnetic fields is equivalent to the problem inngeocal optics of the
propagation of light rays in a five-dimensional Riemanrspace of coordinates, time
and action, whose metric has the cylindricality caadiimposed upon it. Therefore, the
entire field theory that will be discussed in this koaill be called five-dimensional
optics.

However, it would be wrong to view five-dimensional optias just one of the
various unified field theories. Rather, its main cahte the geometrically fundamental
concept of quantum physics, since it is found to be a nsaifen of the quantization of
the periodic dependence of physical fields on the fifdbrdmate of action. Insofar as the
“fifth dimension” is itself a quantum effect, it becosn@n obvious failure of all previous
attempts to construct five-dimensional unified field the® that are based upon the
classical representation alone with no significanbim@ment of quantum concepts.

We shall now move on to a brief description of tbatents of this book.

In the first chapter, one finds far-reaching symmetry gops for classical,
relativistic mechanics in space, time, and action, el expediency of interpreting
action as the extra fifth coordinate of space is shown

In the second chapter, the classical, relativisticharics of a charged, material point
is described as geometrical optics in a five-dimensispate of coordinates, time, and
action.

In the third chapter, a classical (“macroscopic”) unifiedory of the gravity and
electricity fields is described that assumes that pleeiodic dependence of the
components of the metric 5-tensor on the fifth cawaté of action can be neglected.

The first three chapters establish the parts of fimeedsional optics than can be
loosely called “classical,” because they can be defomdyg the limiting cases whem —

0.



4 Studies in 5-optics

In the fourth and sixth chapters, quantum mechanicssierided as wave optics in
five-dimensional spaces of coordinates, time, and m¢hat are topologically closed in
the action coordinate with a period that is equalh.toln that regard, we point out the
problem of the propagation of waves in multi-dimensionataspdhat is often considered
in mathematical optics. However, no one ever setminvestigate the problem of wave
propagation in spaces that are topologically closed enadrtheir dimensions. Anyone
that would have gone on to such a study would have beemedma encounter the
characteristically “quantum” phenomena that arisenfitbie topological closure of the
space in the course of investigating wave motion.

In the fifth chapter, we will study some special neatical tools that are convenient
for the covariant formulation of field equations in figeanensional Riemann spaces.
Those tools are equivalent to the usual tensor analygighey are useful in the sense
that they allow one to write down wave equations fee-flimensional optics in a
gradient-invariant form.

The following problems that we pose for ourselves in thagograph while we are
presenting quantum mechanics as five-dimensional wavesaopiiicalways be regarded
as special cases in which the dependency of the metlit dn the fifth coordinate of
action can be neglected. The transition to the gemase, in which one takes that
dependency into account, will have to be the subjectadkainvestigation.

Five-dimensional optics is a new way of defining couplingsveen space, time, and
action. It should be emphasized especially thatiieedimensional space of space, time,
and action is not the space of the general theorylativiey (when extended by one more
dimension), but a configuration space for considering theomaf particles. We shall
discuss that detail in 8 7. Having said that, we will &l far from presenting a full
explanation of the issues that have emerged along #y Wive-dimensional optics
gives a new, purely geometric, rationale for quantumhaeics, and some philosophical
and methodological questions will arise from that stindy will require careful analysis
and in-depth examination. The author hopes to return ésethssues in a more
specialized work.



CHAPTER |
OPTICO-MECHANICAL ANALOGIES

8 1. Historical background.
In 1891, F. Klein wrote, in regards to the work of Hamiltonoptics and mechanics:

“Hamilton found that from the form of the corpusculaeory, light rays, which are
defined to be trajectories that pass through some inhoraogsrfbut isotropic) medium,
can serve as special cases of the usual mechanitdmothat are concerned with the
motion of material points.

At the same time, we might presently add that theicéstis that are present at this
point in special cases are inessential and that in ewaghanical problem that is
concerned with the motion of material points, one datermine the path of a light ray
that passes through a suitable medium with the helpspaee with a higher number of
dimensions” 1].

In a footnote, Klein indicated, as he had said in a lectut&91 at Goéttingen, that he
had derived all of Hamilton—Jacobi theory from a quasieal representation in a space
with a higher number of dimensions.

Ten years later, he bitterly noted that this idea, wiehhad presented to the
Congress of Natural Scientists in France, “has not fabadgeneral recognition that |
had hoped for.”7].

Note that Klein’s words were spoken many years beforeagygearance of the
theories of relativity and quantum mechanics.

At the beginning of our century, Klein was interestechis sphere of ideas, but his
hopes starting cooling, and up until the end of histliey certainly did not increase.
Neither the advent of relativistic mechanics nor the appea and development of light
guanta induced him to return to cultivating this abandoned sphateas.

These ideas were developed further in our century. Thalajewent was close to the
time in which Klein worked, but not, as sometimes happerse history of science,
close enough to attract his attention and make him abahdoapathy. We have
subsequently seen the development of a “five-dimensiondiedrtheory of gravity and
electricity.

At the same time, what touches upon the possibilitias\iere revealed by Klein of
interpreting mechanics as quasi-optics in spaces with @migmber of dimensions are
the forgotten and unnoticed authors of the numerous fivestBianal generalizations of
the general theory of relativity. We will see, hoee\that there are important deep and
intimate connections between the ideas of “five-dinmerad spaces” and optico-
mechanical analogies.

Our problem in this volume is now that of constructing fthedamental equations of
geometrical optics and classical relativistic mechamcsuch a form that they display
similarities and differences with the aforementionedsgmil#ies and to perceive in what
sense the problems of optics can serve as particagaisof the problems of mechanics.
We shall start with optics.
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8 2. The principle of least time in optics

Consider the problem of the trajectory of a light rayain inhomogeneous (but
isotropic) optical medium, whose index of refractisrN{r) and does not depend upon
time. According to the principle of least time, thmajectory of a light ray that passes
between two pointsr and T is distinguished amongst the family of infinitely-sé®

perturbed paths that connect these two particular paints whose elapsed time is
T(r,r) by the fact that as the ray follows the true ttgey it will render a minimum to:

ST(r.7) = 5f%da. (1.1)

In this,dois the element of arc length aads the speed of lighh vacuo Here, the
symboln; will denote a unit vector that is tangent to ttageictory and satisfies:
do=n; dX, n=dxX/ds ainn=1, (1.2)
and therefore: _ _
dd? = d dX dX; ddo=n; dX.

If one performs the variation then one will get:
oT(r.r) ZEIT (N do+ N&do) :Ef (N nc dX + Nn dox)

_j{ n dx - d(Nn)}5x+ { NP %-_Na_X, (1.3)

wheref andf denote the values of the functibat the pointg andT .

If the variation vanishes at the endpoind& = &' = 0 then the extremum condition
will give the equations of motion for the ray indrangian form:

d ON
—(Nn)-=—==0, 1.4
da( n) P (1.4)
dx
j = —. 1.4
Ly 1.4)

One can derive two independent equations fromtlihee equations (1.4). If one
multiplies (1.4) byn; then one will obtain:

oN dN dn _dN
- ——r1 bt N
n ( ") dO’ NN o do do

0. (1.5)
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We now consider the tim&(r,i) that elapses along the light ray as it passes from
the pointr to the pointr, which will be a function of the six coordinatelsio and 7.
From (1.3), since the line integral vanishes aldmgactual trajectory, we will have:

x

OT(r,F) = {NHJoX - Npo% (1.6)

oOlr

and therefore:

Sy
—

o
‘::I

: 2.7)

S

from which we conclude that for = const. the functionT (r,r) will satisfy the

equation:
(aTj aT (6Tj N2 (l E)
aX 6y 62 C2 ’ .

which is called th&-eikonal equation.

We now transform equation (1.8) and, as is custgrmathe theory of first-order
differential equations that depend upon the vaeidhl introduce a fourth additional
variable, i.e., we look for a single dependent petar>, that makes the solution to
equation (1.8) take the form:

2(X,¥,2,)=2%. (1.9
Therefore:
BLOEQT o AT _GE o
ox  OT ox ox ox'/ oT

and if we substitute this in equation (1.8) thenwikk obtain the following differential
equation for the functioh:

o

which is called th&-eikonal equation

In problems that are concerned with the propagadfdightlike rays, equation (1.11)
will display a relativistic character that is hisde the equivalent equation (1.8).

Note that although we have introduced time inftren of a fourth coordinate in our
presentation, what is going on here is independéiiny considerations of relativistic
symmetry and what is usually methodologically atable, but it is well known in the
theory of first-order partial differential equat&n

On the other hand, our method of exposition igdviadependently (but of course, far
from physically, and rather artificially) of the theds that are introduced into the
description of optical phenomena in order to regmeselativistic symmetries of space-
time.
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From the standpoint of the theory of gravitation, andlie sake of problems that are
concerned with the propagation of light rays in optjcalhomogeneous media, one
formulates the 4-eikonal equation (1.11) in the particdases in terms of the
propagation of light rays in four-dimensional Riemanrcega

X=X, y =y, z=72, icT =X, (1.12)

in which the metric tensor takes on the special form:

1 00 O
- 010 O
ik
- , 1.13
g 001 O ( )
0 0 0 N?

and does not depend upon the fourth coordixate
One can formulate problems of geometrical optics #rat concerned with the
propagation of light rays in arbitrary gravitational dielby means of the associated 4-
eikonal equation:
0 0% _

. ———=0. 1.14
g|k aXI axk ( )

We shall make two remarks about this:

I. The 4-eikonal equation (1.14) ®mogeneoum the metric potentialg®. This
means that one does not have ten metric potenffala the problems of geometrical
optics, but only nine of them, due to the relation thate between them. However, this
does not play much of a role, since in passing to the geioalatptics approximation
one will simultaneously formulate problems in wave optissig Maxwell's equations in
gravitational fields:

ik
NIOF g, B RLR (1.15)
ox X X ox

which are certainly inhomogeneous in the potentfls

II. The 4-eikonal equation arises from the principldeast time. This conclusion is
coupled with the assumption that the index of refrachofor, in the general case, the
metric potentialsg"‘) does not manifestly depend upon time. However, it iskmewn
that the 4-eikonal equation loses its legitimacy indhse where the metric potentigfs
do depend upon the fourth coordinate. In the general ca&sé;dlkonal equation can be
deduced from differential equations for the characteris@nifolds=(x}, X2, x2, X*) =
of the system of Maxwell equations.

This conclusion is justified in the appendix.
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8 3. The principle of least action in mechanics

We now consider some problems regarding the trajectofiedectrons [massn,
charge £ €)] in electromagnetic fields. All of these calcugais will be carried out in
four-dimensional form.

According to the principle of least action, the eécapry of an electron (which is a
piecewise-defined curve) that passes through two eRents (x,y,z_t) and R=
(X,V¥,2, 1) is distinguished amongst the family of infinitelpsé piecewise-defined
curves that connect these two events by the facthbaictionS(R R will be rendered a
minimum along the actual trajectory:(

55(3‘9:—dncjf {ds+gdi}=0. (1.16)

e

mdc

In this, ds is the element of arc-length agd= Ai, whereA; is the electromagnetic

potential.
If u; denotes the 4-velocity vector then that will give:

ds=-u; d, u :‘Z—i , d U U =-1, (1.17)
and therefore:
ds’ = - Jc dX dx, dds=-u d K.
If we perform the variations then we will obtain:
— R .
OS(RB=-mc | {Jds +dg di)}
—me [* { uddd - 99 5 dx —g da)}
R ox*
R Jdg, O i
=mc ; {-du+ (a%—a—?('l‘jd%} K +
+mc{ (T -g)ox —(u —_g)J_)‘( }. (1.18)

This variation will vanish at the endpointgix' = X' = 0, so the extremum
condition will give the equations of motion for takectron in the Lorentz form:

du _(0dg, dg j
= L —— | U, 1.19
ds (axk ax ) " (1.19)

() Cf.[12], pp. 52.
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d)(I i
=u.

o (1.19)

Of the four equations (1.19), only three of them are inoidpat. Upon multiplying
both sides by' one will obtain:

d Y=o (1.20)
ds

We shall now consider the action to be a functibthe eight coordinateg' and X'

when it is evaluated along the actual trajectory.
When the integral in (1.18) vanishes this gives us

IS(R R=mc{ (T -7) X —(y - 9) d.x}, (1.21)
and therefore:
9 +0, mc=mcu,, (1.22)
ox I

In this case, with the assumption tlatu' U= -1, the function S(R B wil be
regarded as a function Bfwhen R= const., and which satisfies the equation:

b, 9SS 105 _
N +2g, p——_s +(1+dku U = (1.23)

which is called theelativistic Hamilton-Jacobi equation

We are utilizing the possibility that was suggdstey Klein, viz., that every
mechanical problem concerning the motion of maltgraticles can be defined by the
paths of light rays that pass through suitable medth the help of spaces of higher
dimensionality.

Toward that end, we introduce the functi@ R R, which depends upon five
additional independent variables, i.e., we willls@elutions of equation (1.23) of the
form:

> (x4, 3 K 9 =35, (1.24)
that depend upon the single param&ter That will give:

o orgs . 05 o jor w29
ox' 0dS 0x X ox'/ 0S

and when we substitute this in equation (1.23) wieobtain the differential equation for
this functionZ:

9> 9S 2403 2
 —— [F— - 20 1 m 1.2
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which is called th&-eikonal equation
Equation (1.26) is easily generalized to the case in wdnickexternal gravitational
field is present, as long as we insure its general coudaoan, namely:

WO S ., 95 0s » 0z
——F=-2 == 1 mgd—|=0. 1.26
o o gqaxasmﬁﬁgkgg) %{asj 1.26)

From the standpoint of geometrical optics, the fortitaof equation(1.26) will
serve as a special case of a general problem in fiverdiov@al geometrical optics,
which is formulated as the 5-eikonal equation (

o 95 0% _

=0, (1.27)
ox* ox’

which is concerned with the propagation of lighysran five-dimensional Riemannian
spaces with whose coordinates are space, timegaiah:

x = X, y =X, z=x, ict = x* S o (1.28)
mc

The contravariant metric 5-tensor in this spacegsdke following special form:

gn glz g13 g14 _ gl
921 gzz g23 g24 _ gz

Gt = g31 g32 g33 g34 — g3 (2.29)
g41 g42 g43 g44 — g4
-g' -¢° -¢° -¢' 1+dgyg

and does not depend upon the fifth coordindief action.
We re-write (1.29) in the abbreviated form:

G/IV :[ g
-9

ik _gi
. 1.29
k 1+ gIkg g(j ( )

and compute the covariantly-constructed metricdeGsg,, :

(9% *tT9d ¢
Guv —( 0 1}. (1.30)

One easily verifies from expression (1.30), by patation, that:

(") We denote 5-tensor indices by Greek symbols, andsbitémdices by Latin ones.
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GG = 55 .
Note that according to (1.30):
G55 =1. (131)
We must make two remarks:

I. The 5-eikonal equation lfomogeneoum the metric potential&”’. This means
that in the problems of geometrical optics (i.e., atadgelativistic mechanics) it is not
all fifteen of the metric potential§,, that are meaningful, but only fourteen of them,
since there is one relation between them.

Therefore the restriction th&ss = 1 is inessential, so problems in 5-optics that are
concerned with the propagation of light rays in five-eisional spaces whose
coordinates are space, time, and action, and are endowed wietric 5-tensoG,, that
is restricted by one condition (viz., that it does ngtet@l upon on the fifth coordinate of
action) will be equivalent to associated problems in @akselativistic mechanics that
are concerned with the motion of a particle with a gédo-mass ratio of / min a
gravitational and electromagnetic field:

Oik :A_Egcﬁ, Ai:m_czg%. (1.32)
GSS GSS G55 € G’SS

[I. The restriction we imposed (viz., that the metensor should be independent of
the fifth coordinate of action) is more essentlle obtained the 5-eikonal equation from
the variational principle of least action. The iwoluotion of the restriction was connected
with the assumption that the Lagrangian function dat depend upon the fifth
coordinate of action. The fact that this demand &tittains apparently points to physical
considerations. It is always the character of mampis gravitational and
electromagnetic fields in four dimensions that theyndb exhibit any dependency upon
the additional fifth coordinate.

Therefore, we shall retain this requirement for tresent and pass on to a historical
survey of some five-dimensional generalizations thatagesciated with the theory of
relativity. At this point, we do not pose the problengiving a systematic exposition of
the numerous associated variational generalizationsy®unly exhibit their connection
with the notions of optico-mechanical analogies.

8 4. Five-dimensional generalizations of the theory of gravity

After the appearance of Einstein’s theory of gravityKaluza[3] (1921) was the first
to show the possibility of constructing an approximate uwhitieeory of gravity and
electromagnetism by extending the four-dimensional spaeetontinuum of the general
theory of relativity with one additional dimension. Hared to show that the trajectory
of a charged particle could be approximately interpreted gesodesic line in a five-
dimensional Riemannian space whose metric dependstieigeupon the mass of the
particle considered, but not upon the additional fiftordmate (i.e., theylindricality
condition). For the sake of what we directly established aldovehe fifteen metric
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potentials G,, in a fifteen-dimensional space and the fourteen gtauial and
electromagnetic potentialgi(, A), following T. Kaluza, we assume:

Gik = Jik , Gis = iAi : Gss = 1. (1.33)
mc

Independently of T. Kaluza. A. Mandel[4] (1926) developed the idea of a five-
dimensional generalization of the theory of gravity cedbly further than T. Kaluza.

In 1926, in connection with the advent of wave mechatas,similar works byO.
Klein [5] and V. A. Fock[6] appeared independently of each other that made a
considerable step forward. Note that Klein borrowed tha adfea fifth dimension from
Kaluza, whereas Fock borrowed it from Mandel. We sunm®avhat was suggested in
the author’s introduction, viz., that the trajectoryao€harge particle can be rigorously
interpreted as a null-length geodesic line (i.e., a ge@mmnety) in a five-dimensional
Riemannian space with a metric tensor that has the @®:30), viz.:

e e
Gik=0ik + mz—c"'Ai A, Gis :m_czAi : Gss = 1. (1.33)

In fact, the aforementioned authors established theva&gquce of classical mechanics
with five-dimensional geometrical optics, i.e., indepenigeaf the fact that F. Klein
showed the possibility of formulating mechanics as gopscs in spaces of a higher
number of dimensions.

What is more, they revealed that suitable problems awewmechanics that are
concerned with the motion of spin-zero particles cafobmulated as problems in wave
optics that are concerned with the propagation of scakves in five-dimensional
spaces, as long as the functidtof five coordinates upon which the scalar wavgsedd
satisfies theyclicality condition:

W0, 3, 5¢, X, x0) = U, %, ¢, X exp{imgxsj : (1.34)

If the expression (1.34) is substituted in the evaguation for 5-spaces, namely:

< OW _

2,

Py (1.35)
a=1

then it is well-known that the functidd(x}, %, >, X') that one obtains will satisfy the
equation for matter waves:

{u—(?} }U(xl, 2, ¢ X =0. (1.36)

However, the further development of this idea wit reveal the physical meaning of
the fifth additional coordinate, which will stilemain unknown. For the same reason, we
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cannot hope to understand the cylindricality condition tia$ imposed on the metric
potentials in five-dimensional spaces and the cyclicalitydition that was imposed on
the wave functions. Moreover, we very quickly point ¢lat the successes of the
development of wave mechanics and its numerous apphsatnake the introduction of
five-dimensional spaces seem gratuitous.

Five-dimensional theory embraces this formalism cebaff. To be sure, it is a
unified formalism, and it is unified in an essential whayt it does not imply anything
beyond its own framework, and does not seem to predictnemy specific electro-
gravitational effects that would be accessible to erpamtal verification, even if only in
principal.

We find considerable progress being made in the woB{rsteinandBergmann 7]
(1938), in which the fifth dimension takes on some physealse. In that work, the
authors rejected the cylindricality condition that waposed on the metric potentials in
the previous works. However, as far as what is obdervéhe nature of macroscopic
four-dimensional gravitational and electromagneticdBe(which do not exhibit any
dependency upon the additional fifth coordinate) is comxkrit is necessary to assume
that five-dimensional space obeys cylindrical relativitythe fifth dimension, at least
approximately. From these considerations, the authesgnzed that five-dimensional
space is topologically closed in the fifth dimensiong ahat the period of the fifth
coordinate (which is denoted by the symbphas a microscopic magnitude, which can
be assumed to be equal to zero in the first approximatiotheir work, such a form for
the cylindricality condition weakened and substituted tfe demand that the metric
potentials should have microscopic periodicity in tffté ftoordinate.

The infinitely-extended surface of a cylinder of radidisd 277 serves to define a
two-dimensional model for the consideration of five-éitgional spaces. A spatial
stratum of thicknesb that is bounded by two parallel planes (when one hastabke
way of identifying each with the other) will give a thh@dienensional model for the space
of Einstein and Bergmann.

Rejecting strict cylindricality entails far-reaching pieyd consequences; principally,
important effects in which the fields that are constaictisplay the postulated periodic
dependency upon the fifth coordinate. On the importantemat how one goes about
introducing the new arbitrary constdntinto field theory, by reason of classical field
theory, one should obtain an absence of new resfidis passing to the limig - O.

All of the existing work leaves open the following questions

1. The question of the physical meaning and units of thiiadd fifth dimension.

2. The question of the physical sense of the cylindrycabbndition on the metric
potentials and the cyclicality condition on the wawvections (Kaluza, Mandel, O. Klein,
Fock).

3. Unless one rejects the cylindricality condition agolaces it, following Einstein
and Bergmann, with the demand of microscopic perigdititen the question will arise:
In what natural phenomena does this postulated periodictyfestitself?
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8 5. The geometrical meaning of Planck’s constant

From the presentation in the foregoing paragraphs, weregard it as being
established that there is work to do in giving the fiftldidonal coordinate a precise
physical meaning in reality, and that in that discussi@nown developments seemed to
ignore the ideas of F. Klein on mechanics as quasisptispaces of a higher number of
dimensions.

At the same time, we posed and answered the questiohatfproblems of optics
might serve as particular cases of mechanical problem& then displayed those
problems of optics, formulated the 4-eikonal equation, whsenved as a four-
dimensional particular case of the general problem in-diweensional mechanical
problems, and formulated the 5-eikonal equation.

Note especially that from the work of Einstein and gdesinn, we arrived at the
conclusion that the new arbitrary constanrt viz., the period of the fifth coordinate — has
real units and that it is reasonable to identify it vidtanck’s constarth.

Because of this and other work of the author on 5-op8fswe fundamentally
maintain that conclusion in substantiating and devetpie following assumptions.

Problems of wave optics that are concerned with tbpawgation of (tensorial and
spinorial) wave fields in Riemannian spaces with five coatgis of space, time, and
action that are topologically closed in the action dowte with perioch are equivalent
to problems of quantum mechanics that are concernedpaitiicular motions with a
charge-to-mass ratio ef/ m(integer or half-integer spin) in an external field.

In such a form, 5-optics implies a somewhat unexpesyethesis of ideas from
guantum mechanics with geometrical ideas at the foundabibtize general theory of
relativity by saying that Planck’s constant obtains a peegeometric meaning as the
period of the fifth coordinate of action.

5-optics gives the following answers to the questionswieae left open in the work
of the foregoing authors:

1. The fifth coordinate has the physical meaning of actienvell as the same units.

2. The cylindricality condition on the metric potefgiand the cyclicality condition
on the wave function are replaced with the single denedrthe microscopic periodicity
of those physical fields (gravitation, electromagnetiand quantumg+fields) that
always depend on the action coordinate. The periodediifth coordinate of action has
the universal magnitude of Planck’s constant

3. The physical fields of Nature that appear in quantwwohamics always exhibit a
periodicity dependency on the fifth coordinate of acti®@y passing to the limih - O,
the influence of the physical field will always be indegent of the action coordinate,
i.e., they will satisfy the cylindricality condition.
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8 6. Gradient invariance

The possibility and expediency of its interpretation dedhthat the additional fifth
coordinate must be especially distinct from the oth@&spanless we examine the group
of general point-like transformations of all five coomatms:

X=X+ f (2% %%9, } (1.37)

S=S+ (X %X XX %
The topological closure of a 5-space in the coordir&tienposes an important

restriction upon the group elements (1.37), namely, haissible unknown functiorfs
andf must be periodic in the coordingevith periodh:

£ €%, S0 = F(% % 2 4§
f(Xl,xz,X3,x4,S+ B= f X %R % $ } (1.38)

In connection with this, we observe that the “fiveadnsional Lorentz group” is the
group of linear transformations of all five coordinates {bave the quadratic form:

dX +dxX + dX+ df+ d$

invariant. These transformations do not define a subgréupeogroup (1.37), since
these elements do not satisfy the additional cond{tic38B).

However, it is easy to see that the true group of htaréransformations in four
coordinatess', X%, x°, X* does define a subgroup of the group (1.37).

In the classical limith - 0, the group (1.37) will go to the subgroup of
transformations:

X =% + f (%,3,3¢,%), } (1.39)

S=S+ (X, %, XX,
which, in turn, will subdivide into:

1. The subgroup of general transformations of the fourdimatesx’, 3, 2, x*:

X =%+ (%, 7,5, %), } (1.40)

2. The subgroup of gradient transformations:

X =X,
5=+ (R RH). } (141
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We see that in 5-optics the group of gradient transfoorma does not stand alone,
but is combined with the group of general transformatidnkeofour coordinates into the
group of general transformations of all five coordinates.

From this particularly clear presentation, it follewhat the action serves as a
“coordinate-like” magnitude, insofar as it, like eachtbé other four coordinates, is
defined to be point-like, up to an arbitrary additive fumcti

This property of action is certainly well known in Aaativistic classical mechanics.
At the same time, this property, which is displayed bgheaf the four coordinates,
exhibits a possibility that is lacking in the general tyedfrrelativity.

If one formulates equations between 5-tensors in @varform then they will
obviously be gradient invariant, since the group of gradiearisformations defines a
subgroup of the group of general transformations of thectedinates. By passing to
four-dimensional notation for the equations, the actimordinate must nevertheless
disappear, in order that what remains should be gracwatiant. One deduces general
formulas for the transformation of 5-tensors by thedgmt transformations (1.41).

From the general formulas:

” 6x“ — ox’
A=A pey Au=A (1.42)
one will get:
A=R; A=A-Ae
5 (1.43)
AN=AN+A_—; A=A,
o BTA

from which, one can conclude the following rule:

The gradient-invariant construction of 5-tensors wilbdquce tensors that are
contravariant in the index(= 1, 2, 3, 4) and covariant in the index 5.

At the beginning of this chapter, we examined the congrucif the metric tensor
Guv. Inaccord with the requirement of gradient invareonstruction, we can set:

G*=g*, Gssarbitrary. (1.44)
If we demand thais should transform according to formula (1.43) then:

= = Of
Gis :GiS_GSSW' (145)

Hence, if one makes note of (1.32) then one will deduee fdrmula for the
transformation of electromagnetic potentials:

A=A-—. (1.46)
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§ 7. The physical meaning of 5-space

We now direct our attention to formula (1.32). We #geeconnection between the
gravitational potentialgik that figure in the theory of gravity and the metric paadsit
G.v of 5-space, which defineniversals in the same way that the rago/ menters into
the expression that connects the electromagnetic jadseft with G, for a particular
motion that is being considered.

This shows that the 5-space of 5-optics does not ddimeuniversal space of the
general theory of relativity (when it is extended witle additional dimension), but the
configuration spacéor the particular motion which we consider.

Let us consider the question of the physical meaning ofigtoration 5-space in
detail. Unless we consistently refuse to introduce pigtgical concepts such as absolute
space and absolute time into physics, which are torn frattemand are in contradiction
with it, like some sort of independent essence, we camm@irincipal, consider motion
separately from its interaction with the rest of taxain the universe.

Physics created a successful method for dealing witheéhavior of radiation that is
assumed to exist separately from the rest of mattema@ract with it: It is the method of
field theory. In field theory, one singles out a pédetihat plays the role of test particle,
while all of the rest of matter in the universe intésaeith it through their roles as the
sources of force fields.

The methodical division of all matter into test gdes plus external fields gives us
the possibility of associating test particles with theoordinates in four-dimensional
manifolds (three space dimensions and one time dim®nsioWe will call this
association theoordinate-wisdest-particle relativity of all matter in the universe.

In the detailed description of the theory of relativityis necessary to operate with
and adapt the coordinates of material particles; fompie the emission of a light
signal, a measuring device, a rigid ruler, a clock. Tosle, only someone who
constructs an abstract picture that has no meaning cak speoordinates and particles
that are isolated in time, as if they were torn fribin rest of matter.

The question arises of the metric and topological pt@seof four-dimensional
coordinate manifolds, which, for us, will be independemtfigaration spaces for the test
particles in question.

An answer to this question can be given only by experimiglareover, we can make
the answer to the question more precise by refining ouwvlkedge. In all cases, priori,
there is no fundamental reason whatsoever for postgl#tat the metric and topological
properties of configuration space should be independenteophlgsical nature of the
individual particles (for instance, mass, charge, etc.).

Finding the answers would then successively give walgg@utiestions of the special
theory of relativity, the theory of gravity, and 5-optic

1. Special theory of relativity. In the absence of any dependency upon physical
properties (mass, charge, etc.), the configuration spaftésst particles will define
Minkowski spaces.

This allows us to introduce the space that one is coedawith in the special theory
of relativity in place of the configuration space foe test particle in question.



Chapter | - Optico-mechanical analogies 19

The interactions of test particles with the restmatter in the universe will take into
account the way that this introduction was made. Framgle feature, or from each
feature, one ascribes a number of characteristicss(roharge, etc.) with a test particle,
the magnitude of which will determine the behavior oftds particle in a given external
field.

2. Theory of gravitation. In the absence of any dependency of a test particle upon
physical properties, this four-dimensional configurationcepaill define a Riemannian
metric space whose metric determines the charactéreoihfluence of gravity on test
particles due to the rest of all matter in the universe.

There is an equivalence principle for gravitationdldBethat one expresses in terms
of fundamental properties of gravitational fields. Ihd# formulated in the following
way:

Gravity, and only it, defines the universal concept the sense of the present werk
that all uncharged bodies with a sufficiently smadisswill move according to the same
laws.

Thanks to this equivalence principle, the notions inttieery of gravitation that are
concerned with the universal four-dimensional spacabefjeneral theory of relativity
will still remain.

3. 5-optics The five-dimensional configuration space whose coorelnate space,
time, and action for a given test particle will defin&ki@mannian metric space whose
metric depends upon the ratio of charge to mass for thendgest particle and will
determine the gravitational and electromagnetic charaxtthe influence of the rest of
matter in the universe on the test particle. Fiveetisional configuration space will be
topologically closed in the action coordinate, while geriod of the fifth coordinate will
have the universal unit of the Planck cdmst

Thus, in 5-optics, it is no longer possible to maintaenotion of universal space, as
one does in the theory of gravity and which is, howegeiite unnecessary from a
physical point of view.

It is hard to overestimate the role and significarfcéh® equivalence principle in the
history of physics. If one formulates the fundameptabperties of gravity from it then
one will allow the geometrization of the gravitatiorfedld, which will remain by its
customary introduction into universal space. Although itmlowed with a non-
Euclidian metric that depends upon the distribution of gaéimly mass, the universal
space of the general theory of relativity will st#tain one characteristic trait of its own
prototype- i.e., absolute Newtonian spacaamely, that the theory of gravity can never
give a satisfying answer to the eternal and inescapabldique$Vhat form does
gravitating matter take when it simultaneously disttirésspace in which it is localized?

Below, the equivalence principle will prove to be antatle that impedes the
development of the unified theory of fields. The physiesdia implant the erroneous
opinion that the construction of a unified theory of graaihd electricity will conclude in
logical contradictions.

It is truly astonishing that Einstein himself spent #&t P5 years of his existence on
problems of unified field theory without ever noticing aoytradiction.
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5-optics shows that the four-dimensional space of yravii.e., the configuration
space for a given neutral test partieleeflects the character of gravitation that it is the
influence of all the remaining matter in the universeaogiven test particle in its own
metric properties. Nevertheless, in this book this questnd the question of the manner
by which matter distorts the space in which it is loealizvill be devoid of meaning.

MATHEMATICAL APPENDIX
Derivation of the 4-eikonal equation from Maxwell’s equations

Let some initial manifol&(x}, %, x¢, X*) = 2, be given, along which the fundamental
tensorFiis given, with the meaning of a Cauchy initial condition.
Perform the coordinate transformation:

(1.47)

X =X(x, &, %, X), X=TX(X X X X,
X2 =%(X, X, %, X), X=Z(X, X X X),

and note that when one singles out the coorditfatg(a, 5, y= 1, 2, 3), equations (1.15)
will take the form:

oF, OF, OoF
Ly —t=0, 1.48
ox*  ox* ox’ (1.48)
_ _IEUﬂ _ —IEU4
0y —GF" | Oy 9 -0, (1.49)
ox” ox
oF, oF, OF J-gF¥
Ly M-, W-OF” (1.50)
ox’ ox* ox* ox”

in the new coordinates.
In the new coordinates, the given manifd@’, 3¢, 3¢, X)) = =, will define the
coordinates of the surfagé= Y, . If one can calculate the derivatives in the normal

F
£ from the Maxwell equation and deduce the manilthen one

R,
direction—,- ,—
ox"  0X

. . : L - oF,
will call it ordinary; in the contrary case, it will beharacteristic. Calculate?"f from
X

equation (1.48). Next, calculalg,, / 9x*and substitute in (1.49):

F= gUg7F, + (00 - 0" 1) T, (157
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oF,
and thus obtain the determination %f_“—f from the system of three equations of the
X

form:

oF
(g44§aﬂ _@4[3@4") _a;f =, (152)

In order that the manifol@ should be characteristic, it will therefore be neagss
that:

Det(g*g” -g*¥g*)=0. (1.53)
The roots of this equation do not depend upon the fundamemsal @ and give:
g*=0, (1.54)
which will give the desired condition — viz., that the mifiald X*= 3, should be
characteristic— in thex',x*,x*,X*coordinate system. If one returns to the initial

coordinate system then one will get:

COx* X' _ 4 0% 9% _
Yax X T X oxX

~44

=g 0, (1.55)

i.e., the 4-eikonal equation for the characteristic nadahiE(x, 3¢, x°, X*) = Zp.



CHAPTER I

GEOMETRICAL 5-OPTICS

8§ 8. 5-eikonal equation

In this chapter, we shall present relativistic point Inagics as geometrical 5-optics in
a Riemannian configuration space whose coordinates aree,spate, and action.
Naturally, we will not, by any means, obtain any newilktssthat would enter into the
framework of relativistic mechanics. Nonetheless, nwitke general formulas are
formulated in five-dimensional “optics,” they will acqeiimore elegance and a more
symmetric form than they have in their conventionarfdimensional form.

We showed in § 3 that general problems in geometrical ibsofftat are concerned
with the propagation of light in five-dimensional Riemaspace, when they are
formulated in terms of the 5-eikonal equation:

‘“’a—zga—z =0, (2.1)
ox* ox

will be equivalent to problems of classical relatiistiechanics that are concerned with
the motion of a charged particle with a charge-to-mass ode / min the gravitational
and electromagnetic fields:

GG GG 4
G, G

5 5

_Mc’ Gy

—y (2.2)

al
al

Moreover, in the classical limii — 0, we will be obliged to burden the potenti@s,
with the cylindricality condition.

As far as the 5-eikonal equation (2.1), which is homogenigotie potential&*", is
concerned, we can, with no loss of generality, andttier remainder of this chapter,
suppose thaGss = 1, and then take the teng8y, to havethe form that is expressed by
formulas (1.29) and (1.30):

ik

_(9+g4q 9). w_[ 9% -g
Vv = ) - . . 2
G/I ( gk 1} G (_gk 1+ g|k g g(yj ( 3)

If we substitute equation (2.3) into (2.1) thenwi# obtain the 5-eikonal equation in
four-dimensional form:

«0% 95 . 0% 9%

kaay 02 ) -
o o r 20 g S+ (1 d gg)[ai,j =0. (2.4)
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Since fields should not depend upon theoordinate in the classical lintit - 0, we
will pass on to the “truncated” 4-eikor@{ix*, X%, ¢, X) by means of the formula:

(¢ %8, ¢, X)) =M + x5, X, (2.5)

in whichs is constant. If we substitute (2.5) into (2.4) tiaenwill obtain the equation
for the functionS(x*, X, 3¢, X%):

w( 0S 0S
gk(&_nsgij(a_xk_nsgj*-né:o’ (2.6)

which coincides with the Hamilton-Jacobi equation for dig@a of mass £ | m and
chargex Ze (in which Z is an arbitrary number), as long as the condiintakes the
value:

Ms =+ 2Zmg (2.7)

g ["’_S.iieAj["’—Si—f%}(ZmaZ: 0. (28)

We see that the 5-eikonal equation (2.1) will dégcthe motion of all families of
particles whose charge-to-mass ratie@ is m as long as every particle of the family in
guestion has a distinct charge, and therefore @&,mésch consists of the fundamental
characteristic constafts. In the particular case for whidhs has the value zero, the 5-
eikonal equation will describe the motion of pdegcof zero mass and charge that move
in accordance with the 4-eikonal equation for gedional fields:

" asj(asj
—||=—1[=0. 2.9
g (6x' ax (2.9)
8 9. Hamilton’s canonical equations

, 2 , e .
We now introduce the wave 5-vecfay, = g—ﬂ and the optical Hamiltonian function
X

H" by the formula:
H" =i¢*n,n,, (2.10)

which, by virtue of (2.1), and in light of realitgguals zero. We note the system of ten
differential equations that are associated with tharacteristic equations (2.1), and
obtain:
9 .
Xt _oH _ L« , (2.11)
dr an,
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dn oH" 1 0G
Lz = =2 T, Mg, 2.12
dr ox¥ 2 ox* 7 F ( )

which is a system of ten canonical Hamiltonian ¢igua for light rays in a 5-space. The
parameterr that enters into this equation is defined poirdeyiup to an additional
constant.

In this construction, we have, according to (2.3):

Gyvnﬂnv :gikrlirlk'*'(grli +M°)?=0, (2.13)
M, =G,N'+G,1°=gMN' +MN°,
and therefore, taking into account (2.11):
i dX dx
W MM+ N2=gy ———+N2=0. 2.14
Oik 5= Oik dr dr 5 ( )

In this, gi dX dX = — d<’, wheredsis the 4-interval element. Therefore, (cf., 2.7):

ds _ _ _
—=1|Z|mc; T=T1y+
dr |Z|mc

, (2.15)

with the condition that the parametemust range along the world line.
Equation (2.11) serves as the definition of thevectorn*. We construct the optical
Lagrangian functiom.”:
L' =N, M*-H =1G,N“N~, (2.16)

which will then equal zero, in light of reality. &\easily verify the formula:

oH :_aL | (2.17)
ox” ox”
which follows from:
ur
GVT g/r: 5;1, GVT aG :_G/IT&, (218)
ox” ox”
for the change in both partsidf, N*.
From (2.16), we have:
oL
Mny=——-, 2.19
“an (2.19)

and if we substitute this in (2.12), while takiry1(7) into account, then we will obtain:
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dfoL j ot 4 (2.20)
drlon” | ox“

which is the ray equation in Lagrangian form.
We now return to the systems of equations (2.11) and (2:#e singling out the

action coordinate®:

%:n‘, (2.11a)
dr
ﬁ:|'|5, (2.11b)
dr
dar. 1 0G“
— 1 =——"—_N,Ng, 2.12a
dr 2 oax £ ( )
dr, 1 0G
===, MNg=0, 2.12b
dr 2 O F ( )

and elucidate the physical meaning of each growggoétions individually.

1. We have:
dxl i i i i
ar M =G*M+G°Ns=g* (M- g M),

dX Ze
Z|mc—= n s— ,
|Z] s 9( k+c&j

Mg=1]Z|mc g(i%iZ—eAk. (2.11a)
ds ¢

Thus, equation (2.11a) expresses the usual caondmtween the 4-momentuiiy
and the 4-ve|ocityqd£ in the presence of external fields.
r

2. We have (cf., 2.13):

O o me=ns—g T,
dr

|Z|mcﬁ:i|2|mc—gi|2|mc%,
ds ds
_ Ze -
FdS=|Z|mc dst ?A; dx . (2.11b)

Thus, equation (2.11b) gives (for a choice of sign in front ofd§ the usual
definition of the element of action for a test et in the presence of an external field.
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In 5-optics, the action coordinate algebraically defiaemagnitude and a sign that is
connected with the sign of the charge; by changingitheof action, one will change the
sign of the charged patrticle.

3. We have, taking (2.17) into account:

dn, _ 14G™ 190G

—L === N Ng==—2%NN* =

dr 2 ax 7o ox
_1 (agmn+agmgnjnnT1n+2§§hT1q15 |
2| ox 0X oX

Substituting the expressions fdr andls in formulag2.11 a)and (2.13) will give:

i gikﬁigi :E _agm”ﬁd_xn|'|m|'|”+2|z|mcagmd_)z1 .
dr dr 2| oxX dr dr oxX o

We introduce the notation:

I m(agm_69m+0gmj
27 Lax ax ax )’

F_:m&(mh_agj
““ e laXx ax)

which will have the obvious consequence of tramafog the equation of motion into
Lorentz form:

d’X . dX dx e di
+ K — Fnk
ds’ ds ds mt ds

=0. (2.12 a)

4. We have:
dr,

=0, 5 = const.
dr

Thus, equation (2.12b) expresses the law of coasen of rest mass (and therefore
charge) for fields that do not depend updni.e., for any field in the classical lintit —
0.

8 10. The canonical equations in asymmetrical form
The canonical equations can be put into an asynuakeform by eliminating the

parameterr. We then single out one of equations (2.11) i(fstance, the one that relates
to a coordinate that we shall denoted)y
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dx0
dr

=n° (2.21)

and construct the rest of the system (2.11, 2.12) from it.
Taking into account that:

oH 6H or, -0, oH 6H on, -0, (2.22)
ox’ 6I'I 6X” or 6I'I or,

n

this will give the system of ten canonical equations:

dx’ o, _n-

oL (2.23)
dri, _on

dXOn = aX”O , (2.23a)
dri, _or

RS (2.23b)

in which the field will be independent of any changes in ikénguished coordinate’,
and will be linked with the “mechanical Hamiltonian functi Ny, which is defined by
solving the equation:

2H =G™M,N,+ 26N, Mo+ G*N2 =0, (2.24)
namely:
GOn 0 0 00
Mo= ~ Mot GOO\/(G "G - G®G™nN, N, (2.25)

If we choose a completely arbitradil, / dX and take (2.23b) into account then we
will find that:

(2.26)

dn, _an,  am,ex" am,an" _an,
0

B 9 08 ot ae X

and conclude that equation (2.23b) implies equatid@.23) and (2.23a) as a

consequence.
If we multiply equation (2.23) bii, then, taking into account thet, dX' + Mo dxX’ =

0, we will find that:
I—In
I—IO

0. (2.27)

dx' dn,
+ =—Mo-N
n{dx0 dﬂnj o

Thus, only eight of the nine equations (2.23)iadependent.
In mechanics, it is customary, although it is netessary, to single out the time
variablex’ = x* = ict to be the independent variable. In this cilkes M, =iH / ¢, where
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H is the mechanical Hamiltonian function. In this cdke,system of eight independent
equations (2.23) will take the form:

d< _ oH d¢ _oH d? oH
dt on,’ dt on, dt an,’
di, _ oH di,_ oH dn,_ oH
dt  ox’ dt  aX’ dt  9x’

(2.28)

which is well known in mechanics.

8 11. The law of conservation of 5-impulse

In 5-optics, the laws of conservation of energypulse and charge combine into one
law of conservation of 5-impulse, which is formeltn the following form:

If the external fields do not depend upon thehfiébordinatexX’ then that will be
associated with the conservation of the impulsedioatell,.

The law of conservation of 5-impulse immediatetyplies equation (2.12) as a
consequence. In the classical limit & 0), fields must not depend upon the fifth
coordinate; therefore, charge can be taken tow@versal constant, although it is not an
integral of the motion.

As we shall see, the law of conservation of chamg#e usual sense has no place in
wave-like 5-optics, in which it is necessary to sistently take into account fields that
are periodically dependent upon the action cootdina

We shall further see that the business of establisnew fundamental properties of
particles (with a conservesl/ m) for a single charge relates to whether it emitalisorbs
a charged, massive quantum.

§ 12. Variational principles of mechanics

The geometrical meaning of action as the fifth rdowmate of a distinguished test
particle can be formulated in terms of the varisioprinciples of mechanics. We show
this in the following proposition.

As long as the field§,, do not depend upon one of the five coordinafesvhich
will then define the first group of canonical eqaas:

u .
di :ai: |_|'u, (229)
dr an,

from the variational principle:

sl dé=o, (2.30)

we will obtain the second group of equations:
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dr, = _oH . (2.31)
dr ox"
We have:
5Jﬁdr= sl ndt, (2.31a)
dr

where the selected coordinat® (i.e., “the mechanical Lagrangian functiorij®) is
defined by the solution to the quadratic equation:

Grmn ™M™ + 2G N™N° + Goo(M%? =0, (2.32)
G n 1 mEyn

I_IO =- in i_\/ (GnOGmO - GmnGbO) nene". (233)
GOO C;OO

Compare formulas (2.25) and (2.33). The Euleraggno (2.30) for the variational

problem takes the form:

0 0

djom)_on =0. (2.34)
dr{on" ) ox"

Note that:

oL N oL or°® _

ox" ar° ax"

oL, oL on° _ (2.39)
on" on°on-n

gives:
on® _ 10U _ 10H

ox" n, ox" _I'I_O ox’
on°_ 1 4oL _ 10H

(2.36)

onn M,on" n,on"

Substituting this expression in (2.34) and takimg account the condition thét, =
const. will give (2.31). The assertion is thusve.

If the distinguished coordinate is the actigh= x° then (2.30) will indeed be
Hamilton’s principle; if the distinguished coordieas timex® = x* = ict then (2.30) will
be Fermat’s principle. Since all fields in georiwetr5-optics are independent>3fwhen
h- 0, Hamilton’'s principle can be regarded as a usafe principle of classical
mechanics, and Fermat’s particular principle wdljbstifiably absent from this particular
volume, in which the fields will not depend upoméi.



CHAPTER 11l

CLASSICAL FIELD THEORY

§ 13. Metric field equations

In the last chapter, we showed that problems of fimedsional geometrical optics
that are concerned with the propagation of rays in an&mmian configuration 5-space
whose coordinates are space, time, and action, witketac 5-tensoG,, that is subject
to one condition— viz., that it should not depend upon the fifth coordinatare
equivalent to problems of classical relativistic mectsrfor charged particles whose
charge-to-mass ratio s/ mthat move in a gravitational field and an electromagneti
field:

g =3 - Gs (G p=TC M G 3.1)
Gss 55 55 e e G'55

In this chapter, we shall consider problems that invalyarticular metric fields,,
whose source field Q... We recall that in the general theory of metricdssb,, there
are special cases for which the unified theory of ¢yaamd electricity is summarized by
the Einstein equation for 5-spaces whose coordinatespace, time, and action:

in which P, is the Riemann curvature 5-tensor.

In contrast to the 5-eikonal equation, the fifteen égna (3.2) are inhomogeneous in
the potentials5,,, and thus, in order to be consistent, we cannot arbt@ssume that
Gss = 1, as we did in the previous chapter.

If we introduce the notatio@ss = N then we will, in turn, substitute the metric tensor
that is defined by the formula:

g|k _ g g<
N(ag, + N
GW:( (G +99) gj; e N N (3.3)
Ng, N _9%g i+_19ikggﬂ
N N N '

in (3.2), and then determine the electromagnetic figldisat figure in electromagnetism
from equations (3.2), as well as the gravitational figjdghat figure in the theory of
gravity, and all of them will be normalized by the fadtb = Gss.

Furthermore, in problems of geometrical 5-optics, we dascribe the motion of
material particles in an external field as an opticacpss that involves the propagation
of rays in a five-dimensionaonfigurationspace whose coordinates are space, time, and
action.
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For that matter, we see that in order for us to coeeagreement with experiment in

the solution of the field equations (3.2), we must muftifsle magnitudem—(;:2 that

figures in the expression (3.1) by the universal consi;é%g, where k is the
K

gravitational constant.
Therefore, in equations (3.2), with sou@g, and metric potentials,,, we apply the
formulas:

gik:%—%gqﬁ, A = /Z_ITgi: /2_]7-% (31a)
GSS G55 G55 K K GSS

in order to determine the gravitational metricdiend the electromagnetic field for the
excitation sourc€),, .

For that matter, in order to clearly emphasize diheation that we have created, we
note that we have introduced two details in thenfaf a configuration space with a
metric that combines the potentiadg and Ai by means of formulas (3.1) and an
additionalfundamentabkpace with a metric that combines the potengialsA by means
of formulas (3.1a).

Since the two problems:

a) determining the motion of material particlesain external field (configuration
space)

and

b) determining the construction of fields with @i sources (fundamental space) in
the considered approximation

are sufficiently distinct, we will not introduce yarspecial notation for the metric
potentials in configuration space and fundamenpacs, and we shall preserve the

notationsy; :m—izAi org :\/;Ai , resp., depending on which problem we are solving
In this chapter, we shall consider the resultitagsical theory of fields, and then in
the limiting caseh — 0 we will impose the usual cylindricality on theetric potentials
G in equations (3.2), viz., to account for its indegence of the fifth action coordinate.
We then pass on to the four-dimensional form efftald equations (3.2) and single
out the action coordinate with due care, in orthat the remaining equations should be
gradient invariant. In accordance with what werded in 8 6 concerning the rules of
gradient-invariant formulas, the field equation®j3vill take the following form:

Pik _%Gik P:KQk,
|35k :/(Qg, (34)
Pss_%Gsspz KQ55-
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8 14. True and effective gravitational potentials;y-field
We have the following identity for the differentidlarc lengthdoin a 5-space:

+d02:—G/1V_qudXV )
=~ Gy dX dX = 2G5 dX dxX® — Gss (dX°)?

— _ Gss [ﬂ _Gs GG—S“} dX A =2 (Gis X + Ges )’
G55 55 G55 GSS

=~ N g dX dxX — (dX)?, (3.5)
in which we have made use of the formula:
dxs = Gg dX + Gss dX° .

The expression (3.5) gives a gradient-invariartodgosition of 5-space into a 4-
space of position-time coordinates and a linearcesphat is orthogonal to it. The
formula: _

ds’ = - N gy dX dxX¢ (3.6)

establishes a metric in the gradient-invariant Bspace. We introduce thigue
gravitational potentials into 4-space by way of fitienulas:

— —i 1 i
0= N Gk, gkzﬁgka (3.7)

which determines the true interval between two ts/eand the conventional gravitational
potentialsgi , g’" that figure in the theory of gravity, which we ldall the effective
gravitational potentials.

For the purposes of this volume, the true andcttffe gravitational potentials will
coincide in the particular case whidre Gss = 1.

The effective gravitational potentiadg that figure in the theory of gravity do not
have a simple geometrical meaning in a five-dinwmasl space, and therefore we expect
that the field equation (3.2) will acquire a clegasense as long as we make use of the true

gravitational potentialg, andg"*. Therefore, we introduce the notation:

Gss=N=1+y, (3.8)

and note, while paying attention to (3.7), thateékpression for the metric potentiglg,
in formula (3.3) takes the form:
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s :(@k +1+ X094 (1+)()€Lj
" 1+ x)9 1+ x

. (3.9)
_glk g&

Tl-gvq Lt +gqgq|
L

We see that in 5-optics, along with gravitational amecteomagnetic fields of
contemporary physics, there appears a new sgdiafd that is linked with the potential
Gss by formula (3.8).

At the same time, why is thig-field not evident in nature? As far as that is
concerned, in the limit of geometrical 5-optics (iakassical mechanics) the influences of
the true gravitational fieldj, and they-field on test particles cannot be separated from
each other, since they both influence the expressionthe effective gravitational
potentialg* = Ng*, which is the only one that figures in the formulasctfssical
mechanics. In other words, in the problems of geonadtBeoptics (i.e., classical
mechanics), the metric fieldsg{*, gk, X} are completely equivalent to the metric fields

{g* g« 0}. However, this equivalence will not have much sigaifice when we pass to
wave-like 5-optics, since the equations of wave-like 5esptiare certainly
inhomogeneous in the potentiédg, .

What is more, we see that disregarding xtfeeld in classical field theory will give
the conventional theory of gravity, for instance, inlgems that are concerned with the
fields of charged point-like masses, which is unacceptable.

8 15. Harmonic coordinate systems

We present equation (3.4) in a special harmonic coordsastem, with the same
success that many researchers @j. lhave found.
In a harmonic coordinate system, we assume that ttricrieensorG* satisfies the
following condition:
0(AG*)

—— =0, 3.10
ox’ ( )

into which we have introduced the notation:

A=[]DetG, ). (3.11)

We remark thatr =,/ | § | 1+ x), and if we single out the action coordinate then w
can write condition (3.10) in the form:
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6(\/(1+)( Jalg)_

(3.12a)
a(m F g9)_, (3.12b)
Making note of (3.12a), the condition (3.12b) t@nexpressed in the form:
g" LT (3.12¢)
ox

We remark that the introduction of harmonic copatie systems into 5-space will
provide a generalization of the Lorentz normalzatof the electromagnetic potentials
that is used in electrodynamics to the case ofrtétic fieldG,, .

We will give formulas forP, P* R, Pss in a harmonic coordinate system in a

mathematical appendix. If we direct our attentiorfields that are independent of the
action coordinate then we will get these formulas:

G,ka Iny|G|@+x) 1G' aG"‘ e 66‘5 Q 0G>
AX 9% « ° 59X
2~k
Pik:—EG aGXk GLG*™+2G. G+ G G,
2 0xo (3.13)
FZ-)I - Gmn aGm5 + Gk5 aGiS ,
ox" 0x
ZEGmn azG55 _ Gia q:s aG5ﬂ .
2 ox"ox" ox

We introduce the Christoffel symbols for 5-spagemay of:

GH.

w

GH/IV G/IT GVO' Ga

8 16. Form of the field equations

The calculation of the expressions in formula 33.lis associated with
straightforward, but tedious, computations. We oake an essential simplification, as
long as the calculation of the Christoffel symbmisserves the character of the terms that
are known to be gradient-invarianti.e., the terms that do not involve the quantiges
but only their derivatives- since the remaining terms, which we will not wraet
explicitly, will all cancel each other when theyaubstituted in the expression (3.13) (

() Cf., the analogous method ibZ] (§ 94, problems).
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If we introduce the symbol® to mean “point-wise equal to a gradient-invariant t&rm,
then we will have:

i E i 1. LA 1. 0x
G, UMy Gis DE g fal+ X)) Gy D_E o) y,
. oy : 1 . . 1 iy 6)(
Gl,kl Drl,k|; G|m5 D— fml; G,SS D k , 314
2 21+ x ¥ SV ( )
1 . 0x Jg, 0g
G, O « > 00; =k _ =1
> T2+ x) 9 Gs b= X X’

If we introduce the Riemann curvature tensor anadas curvature for 4-space by way
of R*andR, which are constructed fro@n, , substitute them in the expression (3.14) and

formula (3.13), and again discard the resultingngerthat contain the non-gradient
invariant quantitieg); then we will obtain (cf., Mathematical Appendixta 5):

i 2
P= |52+6L+ i FX +£(1+)() £+ g 0"Inyl+x 1 g“ ax ox
4 IXoX 4(1+)()2 X 0%
ik

ox'
g“ o°x _ 8" axox
1+ y 0Xox  (I+y ¥ oxX 9x’

=|i+%(1+)() fi £+

X 4 (1+ x ) 9x 9xX

Egingim aZX __3 l aX aX __1 fm,ik aX
2 1+ y | oxXoxX 2@ x)oxX ox") 2@y PX

— Iféik +£(1+X)'gﬂn fim fkn+

i
5

_1.g" oxox
2 (1+ y )oX ox*

L
29
1~'k aX 2 ik
= =1+ x)Pf f
2gl X ax¢ 4( X

55

(3.13)

If we substitute this expression into the fieldiagpn (3.4) then we will obtain, using
formula (3.12):

{R« P }+ w){ iy,

|n km _ 3 a)( a)( _ rm.ika_)(
2(1+)() 6x”6x 2(2+ y )ox" ox™ ox"
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k| X 1 oy ox ||,k
g {aX'an (1+)()6x’“6>€}} kQ", (31%)
1 1 0 ~ S cki| — i
§J|g|(1+)()axk{\/lg|(1+x)zf b=k, (3.16)
1 5.3 ik
—5(1+X){R+Z(1+X)fikf }=KQ55. (3.17)

These equations justify the introduction of a hamim@oordinate system, with additional
normalization conditions in the form of equatioBsl@a) and (3.12b).

8§ 17. Comparison with classical field theory

For the sake of comparing the field equations tat obtained with the field
equations of gravity and electromagnetism in coptaary physics, which disregard the
x-field, it will follow from the assumptiony = 0 thatg, = gix, R* = R¥.

We obtain:

RK _ %gik R+%{ G fim gk _ %gik fo fmn} - KQik, (3.15a)

1 1 o0 - -
———(Jlg f i = kQ., (3.16a)
2 f|g|ox (ﬁ )

3 ]
-Zf f*-ZR= kQs5. 3.17a
g i > Qss ( )

We add the normalization conditions:

oWlale") _, oWleld)_, (3.18)
X ' ox .

to these results.
In essence, equations (3.15a) and (3.16a) areisphecthe Maxwell-Einstein
equations of the unified theory of gravity and &letty when we set:

gi:\EA-, q=1/#g (3.19)
21T c\ «

in whichs is the current 4-vector, whil¥ is the electromagnetic potential 4-vector.

(") Translator’'s note: sic (The indices in the last term are not consisteittt the ones on the right-
hand side of the equation.)
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Equation (3.17a) serves to subsequently determine the sbdsresor component
Qss, which cannot be posed independently. Thus, equation (3.47ajdeed the
condition for neglecting thg-field.

We convince ourselves that it is necessary for the isoludf problems in the
determination of fields with a given source to go oeethe fundamental space, in which
the metric tensor takes the universal form:

G"'= ,
— LA“ _1 +LAA‘
\ 27 1+xy 2r

whereas in the case of configuration space, in whichtéresor will depend upon the
ratio e / mfor a material point, that motion will describe thatical process that takes the
form of the propagation of rays in configuration 5-space.

§ 18. Energy and impulse of a field source

The characteristic feature of 5-optics is the possibdf duplicating the general
formulas that were obtained in the theory of gravityhettt reaching any new
deductions; in particular, one duplicates all of the foamuthat were obtained as
mathematical consequences of Einstein’s equations fettajranal fields.

In the theory of gravity (2], 8 98), it is proved that the 4-impulse of matter
(including electromagnetic fields) that is containetide of a closed surface is
determined by the values of the gravitational potentialstiaaid first derivatives on this
surface and can be expressed by means of surface integrals:

1,0 i i
Pr=— [ llgl@7 g -d" 9"} dfa, (3.20)

in which a takes on the valuez= 1, 2, 3 andif, signifies the surface element. As far as
formula (3.20) is concerned, it is a mathematical agusiece of the Einstein equations,
SO we can carry it over into 5-optics and writenithe form:

1 a . .
P=— [ G|GG"-G“G""} df
o) o 11 } df,

1,0 i i
=—|—={gl@+x @“g"-d"g"} dfs. (3.21)
c’ oX

We retain the four-dimensional divergence in formula (3.Rilplace of the correct
five-dimensional one, since the potentials will not deljpgmon the fifth action coordinate
in the classical approximation.
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We see that in that case, since thield is absent, the 5-optics formula (3.21) will
agree with formula (3.20) from the theory of gravity. the general case, the 4-impulse
that is contained within a closed surface is determineddbyonly the values of the
gravitational potentials and their derivatives, but atewualues of thg-potential and its
derivatives on the surface.

8 19. The Schwarzschild problem for 5-space

We find static, spherically-symmetric solutions to ¢lgeiations for the metric field
vacuq soQu = 0. The objectsdi4, Gos, Gz4) and Gis, Gzs, Gss) can be regarded as two
3-vectors that must be equal to zero, for symmetryoreas Therefore, the remaining
components can be written as the ter@grin the form:

O +(e¢'=1)nn 0 0
Gu = 0 e+d o dég. (3.22)
0 e'g d

In this section, Latin indices will take on thelues 1, 2, 3n; will be a unit 3-vector,
andA, u, v, gwill be four functions of the radius vector thatmvsh at infinity; moreover,
g will be completely imaginary.

Calculation of the contravariant object gives:

g +E'-Dnp 0 0
G = 0 e -e¥g : (3.23)
0 -e#g -e'+-¢é"¢§

We can derive the field equation from the variadioprinciple:
5 Lam*dr=0, (3.24)
in whichL is the Lagrangian function, which we imitate frome theory of gravity:

L=JIG|G” (GG, - G, G,)
—Jlfl{ G G”ﬂ a|nJ|T|a|nJ|F| 9 InJ G |aG'kj (3.25)

% ox X ax 9%

Calculation gives:
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i 1 ' 1_ Y
le{—vmm © (%—w)} n

G, = —e”’”(é"” "+ gA'+2 g9 n
Gis =—§ e”’”(/l' g+ d) n, (3.26)
Gl =-1en,

2

G = expd+u+v).

Substituting these equations into (3.25) will give, aftens tedious calculations:

L= exp()H’g_Vj{ev 1()! + 1+ )——)I,u +; 3 “g’z}. (3.27)

If we put this into (3.24) with the new variahde:ithen we will obtain:
r

o ex (“g "j{ev Lt grv)ed - 2 gz}du:o, (3.28)

in which a dot denotes differentiation by
The field equations are the Euler equations for thatvanal problem (3.28) and take
the form:

e-1,4 +'U—M+—1e“‘g2 =0,

u? u 4
_ 2
s
: Vfl - 2 (3.29)
© 2 A ey =0,
u u 4 2

Integrating the resulting equations gives:

g=ic exp(—”“’z_?’)'j, (3.30)
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in which ¢ is a material constant, and has the unit of lengtimighting the functiong

from equations (3.29) and (3.30) will give the following threguations for the
determination of the three functioAsy, v

-1 A+u i &

C = g2 =,
ouw? u 4 4
_ . .3 2 3 ) 2
c, =81l A Egu A Xy, (3.31)
u u 4 4 2 4
v . : .. .2
Cs=e 21—K+ﬂ—§£2é”” -H_E —g
u u 4 4 2 4

For the sake of solving this system more easily transform to the following linear
combinations:

_Atprv A AL A7

Cl_CZ 01
u 4 2 4
3 . . .71 . £y . 3 “\2 v o_ .
201+C2+C352(/I+:1+V)+V(/I:ﬂ)_(/I;ﬂ)_(/l+4ﬂ) +4[eu21_ﬂ:0, (3.32)

A+p+v _pA+v) |

Q&= 4

.o .2
EvE g2 =,
2 4
For the sake of later calculations, we chooseegiapsystem of coordinate9),(for
which we impose the following condition on the nepotentials:
|G|=1. (3.33)

In such a special coordinate system, one will hteen (3.26):

A+u+v=0, (3.33)
and therefore, from formula (3.32):

cl—czs%()l'wiz):o,
S (3.34)
2C1+C2+QE4{e Zl_zj-*-}(l.j_v.z):(),
u u) 2
Ci—Cs s%{(/i )it} —2e P =0, (3.35)
g =iee?. (3.36)

Integration of the system (3.34) gives:

(") On the possibility of making such a choice, &f5][§ 49.
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e=1+au; R ,
1-4u

in which a, £ are two integration constants that each haveniteotilength.

Substituting (3.37) int(8.33 )and (3.35) gives:

C,,:1—,[>’u’
1+au

dF+af-£=0.
Integrating (3.36) gives:
_leu
1+au

41

(3.37)

(3.38)

(3.39)

(3.40)

We will then obtain the following solution, whicls based upon (3.39), with its two

arbitrary constants:
1 1-# a
g = , ¢=—1 d=1+=,

1- 1+9 r
r
_ |2 _ |2 Qg
A“_\/Kg_ K r+a’

o

r

(3.41)

We now go on to the calculation of the constantg, ande. For large values af

U

the potentialA, must obey Coulomb’s lawh, :e_t’ in whiche'is the source charge.
r

Therefore, the constastwill define the electronic radius of the source:

/K '
E=,|—¢€.
2

(3.42)

Further calculation that is based upon formul@13.for the energy of a charged

point-like mass and equating it with' & will give:

m’cz:icP“:—i.[
2K

0
ox“?

{| G|G*G* dfy.

We integrate this over a sphere of radsvhich then goes to infinity.

Formulas(3.22), (3.26), (3.41) then give:

|G| =e""=1,

(3.43)
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_ _ oG B
GP= 0+ (€/=1)nyng= 4, —énn, =—-L"ng,
afS ( ) allp a3 R allp axa R2 B
1+9
GH = o = RDl_l_a‘*l[’) 6644:_ (a+,3)na
1B R’ ox” R? ’
R

and therefore:

_ 1 5| 0 5 a4 _ 2
mc= —ZH{MTR [—aR (|G| G G“} n Q}M — (a+ 2p). (3.43)
We let:

!

K mc

2r 2
denote the gravitational radius that correspondeeanassn and obtain frong3.43):

a=2(y-p. (3.44)

Substituting this expression in (3.39) will giveettletermination of the constgfiby way
of the quadratic equation:

Aly-B*+2(-P B-£=0. (3.45)

Solving this equation and substituting the expogs$or S in (3.44) will give the
expressions for the constantsand S in terms of the gravitational radiygand the

electron radiug:
2
a=<,/1+ Z(EJ -1y,
14

2
- 1+ Z(EJ }y.
2 y

The sign of the root was chosen so that when O the solution (3.41) would go to
the classical Schwarzschild solution for the fietca point-like neutral mass:

(3.46)

o)
I
N w

&=~ e":1—1?/, =1, A=0. (3.41)

This will allow us to neglect the gravitationatiias yin comparison with the electron
radiuse when:
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1
=-—|el;
V2 (3.46)
a=+2|¢|,
and we will obtain the solution:
||
1+
vV _ 1 _ \/Er
e’ = : e = :
14+ €1 1+ﬁ|£|
\/EI’ r
2|e| i€ .
e”=1+[ : Ag=—— 441
r r+v2|e| (441)

that corresponds to the field of a point-like clearg

8 20. Fields of charged, point-like masses in the theory gfavity

The problems that we examined in the previousiaediave been solved in the
theory of gravity. We obtain solutions from theedhy of gravity that givel = O in

equation (3.31) (i.e., we neglect thdield), and we throw out the equati@3 = 0, which
results from varying the functioh. We will then have:

_e-1

L
C +—-—¢ =0,
Yuw u 4

-1 v &
C, = -———-_—¢& =0, 3.47
2w u 4 (3.47)
gzisexp(’uTWj

From the equatio; — C, = 0, we get that/+ v = 0. Integrating the equati@} = 0 will
give:

_ -
e’ = 1—yu+%u2} ; g=iscu (3.48)
or. )
Ly e y, €
&=t ?*ﬂ ’ {1 ?ﬂ

e=1; A _le (3.48)
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We then see that 5-optics, when we take into acchent-field, and the theory of
gravity, which neglects thg-field in problems concerning the fields of charged, point-
like masses, arrive at different solutions. Note thathe theory of gravity, Coulomb
potentials take the usual classical form, whereas foptss) one does not have a
singularity at the point=0 .

8 21. Generalized Kepler problem

As an exercise, we examine the problem of the matientest particle in the field of
a charged point-like mass. The 5-eikonal equation takdsitime

(G L L v v P

o € a_zz_ e 0 (02 . _
(orror g Zf 2t g E)EJeso pu

Passing to the reduced 3-eikoBat*, X2, X%) by the formula:

03 0% _ﬂ(azjz
— 4l = +

T =MsxX + MaxX* + ¢ %8, ) (3.50)

will give the Hamilton-Jacobi equation for the ftioa S

L(aSY 1(as)Y _ e 2
el —=| +=|=—=| +e¥|N,- n.| + ée'n2=o, 3.51
(arj r2[a¢j ( 4 mC2 A SJ 5 ( )

in whichlls = £ mc, E = -T4ic (energy).
For sake of generality, we put the solution ofaeun (3.51) into the form:

S=Mg+f(r) (3.52)

and arrive at the expressiav {s the moment of momentum):

(i) eAl F e (NS
S= M¢+j\/e (CM —ry Sj —-e (der. (3.53)

The trajectory equation takes the fod& /0M = const.

1 T , o
If we suppose, moreover, that— then that will give the trajectory equation in the
u

form:
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du

¢ = j _ _ . (3.54)
Je_<u+ﬂ>(E+wn | e e (M)
cM mém ° M
Note the three special cases:
|. Substituting solutior(3.41)will give (Ms = £ mo):
¢ =[ — du : , (3.55)
J [CMJ -urQ- yu)—(m (1- yu)
which is exactly the Keplerian orbit equation im&ein’s theory of gravity.
[I. Substituting solutio(B.41 )will give (Ms = £ mg, when one lets - O:
du (3.56)

¢ =[ . _,
(TR

which is the classical orbit for a charge that is moving in a Coulomb field/ r.

lll. The case of the trajectory of a light raytire field of a charged point-like mass

will follow from (3.54) if we assume thdls = 0. The trajectory equation will take the
form:

du
4 :J \/ g V)

R2

(3.57)

-u’e”

in which R :% is the affine parameter of the ray. The inte@¢8b7) results in an

ellipse. The differential equation of the trajegttakes the form:

2 o
[j_ZJ _& e (3.58)

If we substitute the solution of 5-optics (3.418nhwe will obtain:

du 2_1+au_ 21
[@j = U (=AY (3.59)
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An approximate integration will give the following fortauor the angle\s between
the asymptotes:

a+28 2y
Dy = = 3.60
¢ R R (3.60)

Substituting this into the solution for the theory of gia(8.48) will give:

[ﬂj :i—uz(]_—yu+%2 UZJ, (3.61)

A, =Y OTE (3.62)

Upon comparing the formulas, we see that accortbn§-optics, electrical charge
does not influence the value of the angle betwberasymptotes, whereas the theory of
gravity gives an additional term that is quadrati¢s/ R).

MATHEMATICAL APPENDIX

Harmonic coordinate systems in Riemannian spaces

In this appendix, we shall consider the generaéad am-dimensional Riemannian
space.

1. If the metric tensag® satisfies the condition:

ik
6_\/23klg =0 (3.63)

then one will call that coordinate systéarmonic
The covariant derivative of the tengftis equal to zero:

ik
99 g+ g T = 0. (3.64)
0X

Contracting this over the indicdés 5 while keeping in mind thaf ;= , will

diny/|g]|
ox

give:
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(Ml ¢*) +JTg1gT.=0. (3.65)

and therefore the harmonic condition can be exptessthe form:

o __ 1 OWTgld") _
Jlgl Xt

M= g*r =0, (3.66)

in whichl is the anharmonicity pseudo-vector.

2. From the formula for the transformed Christbffiymbols:

. Ox! ax” L@TV 0°X aX

rﬂ = ﬂy ]
OX? Ox* oxX oxox ox'

(3.67)

one derives, upon multiplication ", the transformed formula for the pseudo-vector

A
= 0°x" \ox'
M= +g” -, 3.68
[ J ax"axrjai" (3.68)

from which it will follow that the coordinate systeremains harmonic, as long as the
functionsf ¢ in the transformed formula:

X =XT+ (8, LX) (3.69)
satisfy the condition:
g 1 - (3.70)
X 0 '

Upon passing to a harmonic coordinate system, sthecture tensorG*’ will
transform according to the formula:

v U U v
G,uv :G,uv + Gpa af + Gua af G‘aﬂ af af

3.71
o € o TG o (3.71)

in which the function$ " satisfy the condition (3.70).

3. By simple calculations, along with the quaesit}, , we introduce the quantities:

M =gm™g'ry,. (3.72)
Multiplying (3.64) byg™ gives:
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ik . .
gStaa%'i' rk, it + rl, kt = 0 ) (373)

If we solve this relativistic equation f6¥ " then we will find that:

1 ag" L ag~ age
pkit= 2] gks —qfs —gs _ 3.74
2{9 o 0o Y ax i

4. We calculate the transformed contracted Riemarsotewhich is defined to be:

h
Tl LV "ry =T
'oox ox

Multiplying by g* and noting that:
h _ ikrh o (09" k|
M=gr, T +2g*r! |=0,
g ik Ik ( 6X g |]j

gives:

or rh h Ik .
th g axllq gr, Ff‘k[%g)& +glkriljj_rlrlrj]:

_ ikarEJ 1 haglk_ or’
"9 T2 %oy

a r;r'j . (3.75)

Contracting over the indicéds j gives:

2 Ik h
,ka|n«/ 1,109 [ar Fmrj (3.76)

XX 2'ka>é“ X

Multiplying (3.75) byg® gives:

agSJrh ' aglk
Rsh: ik _ 'krh. _ 4 .
I 7o 9T T2 W ox

or"
S| __ Sj + r hr
of 3|
Symmetrizing the first term in the indicés sand the second term in the indidesj,
while keeping in mind formulas (3.64) and (3.73), gives:

1 ) azgsh
Rsh — _— ik '
29 xoax

h
+rEjrS’k"—gS‘[ng+r rj (3.77)

Multiplying (3.75) bygsh gives:



Chapter 11l - Classical field theory 49

Rs=d

WO wendg, 1 ag ar"
S !

Symmetrizing the first term in the indicgsj gives:

1, 0°dy ., 0g, 99" or”
_g i gkrn Oon r g - 9., _.+r':l.r' . (3.78)

X AX M ax 2 sk gx ax

If we use a harmonic coordinate system in formulas (3(35§6), (3.77), and (3.78)
then we will obtain the formulas that were cited hie text (8 15) from the assumption
thatr" = 0.

5. In order to pass from formula (3.13) to form#&13)as a result, recall that

coordinate systems in 4-space cannot be harmonic. F®rharmonic condition in 5-
space (3.12a), that will give:

6«/1+ ,
X g ng+\/1+)( T gld=
which, from formula (3.66), will give:

fi:— 1 a\/ﬁgik_~ika|nm ZE g'ik a)(

Ja oo ox 21+ y ox*

and furthermore:

i in xkm 2
g aL'*‘f;rl _1497°9 oy _ 1 oy a)(_rlmn ox ,
ox° 2 1+yx |ox"ox™ (A+x)ox"ox" ox"

=i ik 2
O el g {6)(_ 3 a_)(ax}_ (379

X T2 (L) | 0xaX  2(1+ y)oxX ok



CHAPTER IV

WAVE-LIKE 5-OPTICS IN MINKOWSKI 5-SPACE

8§ 22. Introduction

In the last two chapters, we clearly presented 5-gptihich we agreed to call
“classical,” since we always considered it in the lingitcaseh — 0.

We presently set about presenting quantum mechanics as-lik@vs-optics in
rigorous detail from the following fundamental assumgion

Problems in wave-like optics that are concerned withpitopagation of wave-fields
in a five-dimensional Riemannian configuration space whosedgtates are space, time,
and action, and which is topologically closed in thehim &ction coordinate with period
h, are equivalent to problems of quantum mechanics thatcareerned with the motion
of particles whose charge-to-mass ratie ismin an external field.

In connection with this, we emphasize that we will t@ncerned with only
configuration spaces in what follows. Fundamental spatech we dealt with in
Chapter III, will not be considered at all.

We saw that in geometrical 5-optics, the motion ofsa particle is described by the
5-eikonal equation. This equation serves as a universakpgbmt the sense that it
describes the motion of any test particle and regardless spin. In the transition to 5-
optics, we shall not give either a universal wave eqoair a system of wave equations.
That is connected with the fact that we will have défé systems of wave equations for
particles of different spins.

In wave-like 5-optics, the motion of test partictesscribes the optical process of the
propagation of wave-fields in configuration 5-spaces withcspdime, and action
coordinates. The motion of particles of integer spiddscribed by tensorial fields, while
the motion of particles of half-integer spin is desed by spinorial fields.

In this chapter, we shall consider various example®mgorial and spinorial wave-
fields in 5-space. To that end, we will meanwhile prepist external fields should be
absent; that is, that our metric 5-space should indeeditieotski 5-space. In Chapter
VI, we will then consider fields in a Riemannian 5-space., we will study what
happens when external fields are present.

Henceforth, we will utilize the Pauli units; i.es, = 1, c = 1. We denote the

“quantum radius” of a particle b]y:i; thereforeu will indeed be the mass of the test
i mc

particle when it is measured in Pauli units. Relltg the Pauli convention, we will call
particles of integer spimesons

Since we know that 5-space is periodic in theoactioordinate, we will decompose
each field that we construct into a Fourier series:

WO, 5, 53, x4, x0) = g:zm expZ 1)U (Z | x4 3, 3, x*) (4.1)

g=—
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and regard:
Uz |5 %, 3, x4

as the set of Fourier component$/é?f

Hereinafter, when we describe operations of the fok@t', X@, X, X*, ) dx°, we will
understand that to mean integrating over one period diftih€oordinate:

[ Ad®= %T A AR = AR X, 4.2)

Let a field be assigned to the Lagrangian function:

(r)
L(W“) awg j (4.3)
0X

With our notation, that will give:

[ L(W“) agv j i A d dt e

X7

= | (u“>(2| %j(d%d%dmx“). (4.4)

Therefore, the transition from functlons of five adioamtesW(x, 32, 32, X, X°) to the
Fourier componentbl(r)(z | x4, %4, %3, x*) that depend upon four coordlnaiéésx2 33, X
is actually the transition from therepresentation that relates to the coordingteg, X,
X!, X° to the “mixed” representation for which therepresentation relates to the
coordinate X’ and the g-representation relates to the coordinatesy, z In that
representation, all formulas will take on their uswalrfdimensional form.

With the help of the canonical formulation, we camress the field equations in
terms of the Lagrangian function:

0 oL oL

ox"| S(ow® )| ow? =0 #)
&3
and calculate the canonical 5-tensor:
_ oL w®
%)

which, by virtue of equation (4.5), will satisfy the equation
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oT,
—=0. (4.7)
ox’

In the sequel, when we consider special cases o$ fieltbrmulas (4.5)-(4.7), we will
pass over to the representation in terms of Fouriepoosnts, which will permit us to
give a physical interpretation to the five-dimensionatfolation.

8 23. Problems concerning the propagation of sound waves in plaparallel media

Before we turn to the study of special cases of fieldsill be useful to illustrate our
objective by considering some problems in the propagatiorsonind waves in
inhomogeneous flat (plane)-parallel media. We will eahtourselves with expressing
the thickness of the mediulnin terms of some fictitious massthat is related tb by the
formula:

m=—, (4.8)
al

in whicha is the velocity of sound. For a monochromatic walvgemuencyq) that will
give the Helmholtz equation:

AW+§W: 0. (4.9)

We choose the-axis to be perpendicular to the medium and decompodearibgon
WX, Y, 2) into a Fourier series:

WX, Y, 2) :n:fu (n[x y) exp{inr;azj. (4.10)

n=-oco
We will regardW(Xx, y, 2) as the set of Fourier componeb@ | x, y); i.e., we will use the
relative coordinate to pass from thg-representation to thgrepresentation.
We can now consider all problems to be two-din@mall The function®(n | X, y) =
U, satisfy the Helmholtz equation:

2 2 2 2
oy, .0 Un{ﬂ_(@j jun:o_ (4.11)

x> 0y® a’ h

In order that the two-dimensional wavegn | X, y) should be non-vanishing,
according to (4.11), it will be necessary that anest have:

hw>nmd&  or )l<|—,
n

in which A is the wavelength of the sound wave.
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If we consider spatially non-vanishing two-dimensionahglavaves in the medium
then we will obtain characteristic equations for tle/ev2-vectok:

2
24 ij =& 412
k, ( h a’ (4.12)
All 2-vectors with group velocityw and phase velocity are determined by the
formulas:

v, _dw_ a25, (4.13)
dk, w
=9 4.13
"k (4.13)
Vi Wh = &% (4.13)

As long as the only sound fields that appear hasgelengthA> | , we will be
dealing with two-dimensional waves with= 0. One propagates without dispersion
whenvy = wp = a, which defines the usual corresponding two-dinwmedi phonons, for
which hky = hw/ a, which we will, in turn, take into account, andobdimensional fields
with ¢ # 0, for which we will have, when we substitute @).in (4.12):

hk = (nm)\gz; (nm)aZZI
M
a a

These two-dimensional fields propagate with disjoer, corresponding to two-

dimensional “heavy phonons” with a discrete magsgpm.
Note that by virtue of (4.10) we have:

he, = (4.14)

W(x )= T[W(X %9 d=U© [x. ) (4.15)

so we can apply equation (4.9) to theoordinate and obtain the two-dimensional
Helmholtz equation:
N/ 2\A, 2
OW OW, @\ - g (4.16)
0x dy a

for the functionW(x ).

Thus, as long as all of the sound fields in thelioma are not short waves with> | |
we can describe sound fields by means of equatidi6) and ignore “heavy phonons.”
In the presence of short waves, we will have thieviong alternatives:

1) Disregard the two-dimensional description@drsd fields and return to the initial
three-dimensional equations.
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2) Preserve the two-dimensional description of the sasfusfout, at the same time,
introduce the usual two-dimensional phonons that aredcdlEavy phonons.”

We now consider an example that proves to be veryfutefpr our further
understanding.
§ 24. Scalar mesons

We start by considering the simplest real scaladdieivhich are the ones whose
Lagrangian function takes the form:

_Low LW. (4.17)
20x" ox
From formulas (4.5), (4.6), and (4.7), we will get:
The field equation
oW _ (4.18)
oxX'oxX
The expression for the 5-tensor
ﬁ ad 4.19
ax“ o ( )
which satisfies the equation.
oT,
£=0. (4.20)
ox

We now convert formulas (4.17)-(4.20) into the form thay take in terms of
Fourier components. Note that for real fields:

U(=Z x5 3, X)) = U Z X %, 3, X, (4.21)

which will give, upon substituting into the developmentnfola (4.1):

ZZJ {6U (Z)aU(Z) ~2'Z7u U(Z)U(z)}exp[|(2+ Z)u X] dx

ox*
_1E8E[ou” (Z)6U(Z) .
_EZZ‘W{ > ™ +Z,uU(Z)U(Z)}
:L(0)+Z§L(z), (4.17)

into which we have introduced the abbreviated martat
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19U (0) U (0)

L(0)==
A2 0 .22
L(Z):# (k)+ZZ,uzU*(Z)U(Z).
ox"  ox
If we single out the action coordinate then, from (4.0@) will have:
RACE A
U’ (Z) 6U(Z) (4.19)
T =Yilzly {U(Z) -U'(2) }
1
in which:
ouU (0) oU (0)
=—————= —-1(0) &,
|k( ) ox i a)e( ( )dk
= U™ (Z) 0U(Z)  aU (Z) 0U(2)
T (2)= _ + — — Ok L(0).
«(2) X o X< ox & LO)
The field equations in Fourier components will thake the form:
O-Z2u*)U(Z]...)=0;
O zu)uzl) (4.18)
@-zZ7u9)U (Z]...)=0.

From (4.20), if we single out the action coorden#lten averaging over the action
coordinate will give:

9N _ g Olsc _ g | (4.20)

We then conclude the transformation of the formutdo Fourier components. In
order to do this, we shall make the assumption dhét two terms should appear in the
Fourier series (4.1), which will correspond4ae + 1, so the field expressions will make
physical sense:

W= U exp(C) + U* exp(-ind) . (4.23)

In this special case, the system of equationsasglime the form:
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Lagrangian function

_ 95U au
L=—%—-x
0x" 0Xx

+°U'U;
Field equations
@-pHU =0; @-p*N =0;

Tensor components,T.

_ _9U" U au au

0 = - —=0, E,
Ko axX ax ax -
— . (ou" au .
T, =iyl —U -———U |
> ( ox o j (4.24)

The system of formulas (4.24) coincides preciseth the system of formulas that
was described in the Pauli-Weisskopf theory ofacadesons of mase=un/c. The 4-

tensorT, is the symmetric energy-impulse tensor, whiledhesctorT,, is distinguished
from the current 4-vector by the factonc/#. The Fourier componentd and U’
describe particles that are endowed with chargieed, the current 4-vectdt, will

change sign when one replatésvith U’

Formula(4.20 )expresses the laws of conservation of energy araigeh which
combine into one conservation law in 5-optics. r€f@e, we will henceforth call the 5-
tensorT,, theenergy-impulse-chargé-tensor.

Returning to the general case of a Fourier s¢didy, we conclude that a real scalar
field WO, %2, 3¢, X*, X° ) describes the entire family of scalar mesonsa$s Z | m and
chargeZe in whichZ is a positive or negative integer, including zeto. other words,
the entire family of scalars mesons can be regaegedne multi-particle of distinct
discrete charges in its construction.

As long as we are concerned with free particledh{@ absence of external fields), or
(as is incorrectly done in contemporary quantum laas) if we can neglect the
periodic dependence of the external field upon #wotion coordinate (viz., the
cylindricality condition) then the transition froone charged particle state to another
would be forbidden. However, a consistent quantbheory must account for such a
transition.

We especially consider the particular cas& of 0, which are scalar mesons of zero
charge and mass. In this case, the Fourier sg({@swill be real, and we will have the
system of formulas:
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E_16U ouU

_EFF- DU - O,
6UX6UX (4.25)
Tikzga_xk_l‘éik’ Ty =0,

instead of (4.24), and these formulas describe a clasgiaddr field that is associated
with a particle of zero mass, charge, and spin.

Contemporary physics makes a sharp distinction betwesmplex P-fields, which
describe the behavior of charged particles with non-zesb mass, and real classical
fields, which describe the behavior of neutral particléb mnero rest mass.

Such a sharp distinction implies something that is mkeekss fundamental in the
viewpoint of contemporary physics, namely, thfields are localized in a suitable
configuration space, just as classical fields are lpedlin the fundamental 4-space of
relativity theory.

It is natural that the principal distinction between quanand classical fields would
disappear in 5-optics, which is a radical departure titearconcept of universal space.

8§ 25. Vector mesons

1. Field equations The foregoing example of a real scalar field seteeiflustrate
our viewpoint without introducing new results that are absem the framework of
contemporary theory. We will not obtain importantvneesults until we pass on to the
consideration of real vector fields.

Consider Maxwell's system of equations for 5-space. hotation that does not
require explanation, we have the following system of eguos for the field components

a\NM =Q (4.26)
ot '

W, +6W‘” +6WM =0. (4.27)
ox” X~ X

The field components are expressed in terms of potéieidd through the formula:

ow, oW
Wy = =2
Mo o

(4.28)

The potentials satisfy the wave equation:

oW, 9 (OW)__
X%’ ax‘(a%j_ g (4.29)
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and can be subjected to gauge transformations:

Wy =W, +§7i. (4.30)

The Lagrangian function and symmetrized energy-impulsegehaitensor take the
form:

G)/1,11 = WA,u W,uv - d]y L. (432)

In order to explain the physical sense of these fiveedsiwnal equations, it is
necessary to transform them to Fourier componentst the sake of simplicity, we
should observe that only two components, naniély, £ 1, will appear in the Fourier
series for the present example. The generalizafithab would then be effortless.

We have:

W, = U, exp(iux’ )+ U, exptiux ),
W,, =U,, exp(i )+ Uj,, exptink ),

5 . s (4.33)
F="fexp(ux )+ expEiux),
Q, =, exp(iuxX )+ g, expEiux ).
In Fourier components, we have the following systenoohtilas:
ou,, .. auU,
ok T = O "= g, 4.26
an /'LJmS Om aXn s ( )
iﬁ«Unm+—aU”5+—aUm5=O; WV 4 WV, Wi (4.27)
ox™ ox" an ox™ X"
Umn:aun_aum; Um5=aU5”—i,uUm, (4.28)
ox™  ox" n
0 (oU, .
@10, = 5| i, | =,
(4.29)
Oou —i/,l(aunj:—q
5 aXn 51
,, Of o
Um:Um+a—mi Us=U,+imf (4.30)
X

The corresponding system of complex-conjugate témus can be written down
immediately:
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(4.31)

(4.32)

In equatior{4.32), it is convenient to convert to three-dimensionatation and
utilize a time coordinate’ = — i x*, instead of the usual coordinafe

If we note that:
ou, oduU ou, adu
Ugn = — n4--01- Upo=——"-2+——0 4.34
o (ax0 ox" j © T axX (4.34)
then we will get:
The energy densityr, 5=1, 2, 3)
— 1 . . . "
eoo:{zuaﬂuaﬂ'*'uﬂsuﬂs'*'uﬂ(pﬂ+U5cu 50}; (4.35)

The impulse density
B0 ={UsUgs U U s +U U7 +U, U o

The charge density
Bg={UsUss *U U} (4.36)

The current density
O, ={Us Vs ~Uo o +U U ~UU

2. Gauge potentials. Up till now, we have not made use of the poggpibf
introducing gauge potentials. We now choose sysbtential that satisfies:

a—Uii: 0 (4.37)
ox

Equationg4.29 )will then assume the form:
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@- 1, =g, +ipdos,
0X
. . 0U,
@- ), :_qo'“,UaTOS, (4.38)

from which it will follow that:

(r=lr=r']
r=r']

u;(r,x°):%7j % dv'+0:(r, %), (4.39)

in which U; is a solution to the homogeneous wave equaﬂdgz 0.

If g» = 0 in this spacdi.e., if to be we can consider the field to be ctatgly
wavelike, so we can assume that= 0) then we will choos&). = 0. The system of
equationg4.26 ),(4.27 ) will then assume the form (we now discard the prsymbol):

Do 1, =0, S0,
> ou, ouU,_ odU aatj( ouU (4.40)
U - n _ m mn 4 nk + km: O,

mMooax™ 9x" T ax¢  ax™  ax

while the system of expressions (4.35), (4.36) taile the form:

= 1 . . . .
G)00 :{Euaﬂuaﬂ -i_UﬂOUﬂO-i_lu2 (UﬂUﬂ +U Cp 0)}’
oa ={Uaios +UglU o+ 4 (UU o +U U}, (4.41)

05 =i/4U :)ﬁUﬂ_U OﬁU;},
ab :ilu{UaﬁUﬂ_UaﬁUﬂ-i_UHOUO_Ua(p (}

o @l

@l

The system of formulas (4.40) and (4.41) coincigecisely with the Proca system
of formulas that describe vector mesons.

Thus, we have shown that in the case of a vargstonirce Q, = 0) and for a suitable
gauge potential (4.37), five-dimensional Maxwedlldis will describe the entire family of
Proca vector mesons of mags||m and charg&e, in whichZ is any positive or negative
integer. The case & = 0 obviously includes classical electrodynamas] we do not
need to consider it at this point.

It is appropriate that we once again emphasizethgaprincipal differences between
complexy+fields and real classical fields will disappeabtoptics.

In electrodynamics, as was pointed out by V. Gimglicf., Mathematical Appendix),
it is possible to decompose a field into a photefuf(transverse wave) plus a Coulomb
field that is due to a continuous charge distrinutby the use of a gauge potential.
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Obviously, singling out the transverse wave would be anngalg non-Lorentz
invariant process.

Following the example of Ginzburg, we look for analogous gaaaientials in our
own theory. It is necessary that the following relatically non-invariant gaugeo(= 1,
2, 3) must be satisfied:

ou,

v +il!=0. (4.42)
Equationg4.29 )will then take the form:
aZU "
0O- 2 Un — + 0 ,
Q= =4, ox?9x°
(A- g =0, (4.43)
aU n

@-p*)Jg = —qs+ o
from which, it will follow that:

] 0
Uo(r, x°) :i o (’r ’X—) e “r gy | (4.44)
ai? |r'-r |

We transform the expression f@;,, by means of formula (4.35), taking into account
the gauge condition (4.42). If we discard the degboime notation then we will have:

- {1 . 0U, 0U, , 0U; oU; , U 0U

0,==U" U+
00 BB ax0 9’ X X 90X aX

! +ﬂ2U2Ua+2ﬂ2U5U2}+

1 * *
+ U -8, U —A)uo} +
oU’ 6U oy,

a | .
+— 1 +U,—Z2+ +U’, u
aXS{“U‘“S % 9x° 2 i a>8 2 09

} . (4.45)

Integrating this over the volume will give:

] 0 l ] 0
Go = Gt +—= [BTXVBITX) gt gy gy, (4.46)
iyrs [r'=r |

The first term, as we shall presently see, isaeddiéne energy of a meson wave-field,
while the second term is the interaction energy aontinuous charge distribution of
densityqo(r, x°) that interacts according to Jacobi's Law.

If we consider completely wave-like fields withostiurces then the second term in
(4.46) will equal zero, and, according to (4.44¢, ean assume thak = 0.

Doing this and performing analogous transformaionformulas (4.36), as with the
conclusion (4.45), will give for the meson waveldie
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01 ax% A X aX¥ X aX oX a%

5 :{auﬂau;Jrausau;Jrau;auﬁ+au;au5}
L0 [U*GUMU* augj,

x|l T TP ax

— 1 . ouU’ ouU oU. oU,. odU. oU . .
O,.={=U U +—a "a 477577547757 754 ,2)'U +2,°UU
* {2 P8 o0 9 00 9% ox oX h o HUs 5}

+iya%(ugu5—up;),

_ Lou, ouU; : ,0U ou’
esoziy[uﬁanwS% u,—£-U 5U5J+ 9 [u b J

X’ P 5o

(4.47)
We now calculate the expression for the 5-vector:

Gi=]@pdv.
We can decompose these potentiadsUs into plane wavesk?= K + 17):

U= (V)3 {U.(Wexplitkr —kx)]+U _(Rexp[-ikr —k %)} (4.49)
(k)

In that case, from condition (4.42), we will have:
()"

7 : Z{—(kUJexpﬂ kr —k,x°)]+ KU _) exp[-ikr —koxo)} (4.49)
()

U5:

Substituting this expression in (4.48) will give:

energy,. G= R ( N( k+ N k),

(k)

impulse G =k> ( N( B+ N( k), (4.50)
(k)

charge G=u> ( N( k- N( k),

(k)

in which, for the sake of brevity, we have introedc¢he notation:
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N(K) = kO(U*U)+%(kU*)(kU), (4.51)

For the sake of singling out longitudinal and snaTse components, we transform the
bilinear formula (4.51) into its principal axis far

_1 U }
U=——|eV,+eV,+X eV,|, (4.52)
J {el & ©

in which ey, &, e; are three mutually-perpendicular unit vectorshsiinates || k, so the
formulas forN, andN- will take on a normal form:

N. = (VL V,), N-= (V5,V)). (4.53)

We conclude from formulas (4.52) that the longitaél component of the force will
decrease/(/ ko — 0) with increasing speed of a meson, and will apph a transverse
one.

If the same calculation is done for the case ef Bmoca gauge then, instead of
formulas (4.51) and (4.52), one will have the faliog formulas (cf., Paulil3], pp. 36):

N = ko (U* U) — % (k U%)(k U), (4.51)
_ 1 Ko }
U=-—=—|eV,+eV,+-L2eV,|. (4.52)
i [el eV, + 7 &

We conclude from formula (4.92hat the longitudinal component of force does not
vanish k / k - 1) with increasing speed of a meson, but tendsatdsvthe largest
transverse value, which is physically unsatisfactor

3. Electrodynamics and vector meson dynamics¥/e have seen that 5-optics
combines electrodynamics and vector meson dynamiosa unified five-dimensional
Maxwellian theory. Physically, this means that eve found it necessary to consider
not only the usual photons, which relateZc= 0, but also “massive photons” — i.e.,
vector mesons — in the electromagnetic theory gtitlin the presence of short wave
lengths @ <h/mqg.

In order to understand this, it would be apprdpri@ recall the acoustic model that
was discussed in § 23.

The question arises: In which cases does one bse laws of classical
electrodynamics, and in which cases does it becapeessary to go to the five-
dimensional Maxwell equations?

If we single out the action coordinate and averager the action coordinate in
equations (4.22) and (4.27) then we will get:
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oW, ~ Oy, , OV, OW, _

m = Q,, 4 4.54
ox" P ox<  ax™  ox" ( )
oW, - oW, OW.

T - q, Phs T =g, 4.55
ox" < ox"  ox" ( )

If we identify the 4-vectoW, = Uy (0 | X', %, X, X*) with the electromagnetic

potential then the system of equations (4.54) will be ttstesn of Maxwell equations
precisely. If one identifies the 4-scalak = Us (0 | X, X2, X, X*) with the y-potential then
the system of equations (4.55) will be the system fosthdary-field.

In the classical approximation, when we neglect ahefFourier components, except
for Z = 0 (i.e., we neglect the dependence of the field componentshe action
coordinate) we will get a simple superposition of thetetenagnetic field with ther-
field, just as in static electrodynamics we get a simspfgerposition of the magnetic and
the electric fields.

If we take the higher Fourier components into accouet, field components that
depend periodically upon the action coordinate) then tHabking about the “induction
of action,” and both fields will be reciprocally reddtto each other. In the corpuscular
picture, this “induction of action” will correspond to theppearance of “massive
photons” — i.e., vector mesons.

Thus, while we are dealing with electromagnetic wavits W > h / mg it will be
legitimate for us to use the classical (i.e., averagedr the action coordinate)
electromagnetic theory of light.

In the presence of short wave lengths€ h / mc), one should have to use the exact
five-dimensional Maxwell theory.

We shall now consider the interaction of two contunslg-distributed charges.

If we generalize formula (4.46) to the case of the Eouexpansion of the total
charge density:

Qo (<4 %, ¢, X %) = i exp (Zu ) qo (Z | %, ¢, XY (4.56)

Z=—00

then we will get:

[ 0 " 0
i'[ qO(O | r ’X’ )qO"(O |r ’X )dvld\/n
8 [r'=r"]

+ ii '[ qo(zl r ’X(j)oon(zl r 1)g)e—z;1|r’—r”l d\/d\/ (4.46)
a7 [r'=r"]|

for the interaction energy.

We see that in the exact theory, in addition te tkassical Coulomb interaction,
interaction forces of Yukawa type will appear, watlprogressively-decreasing radius of
action. They can be ignored if the charge is ledat a distance that is greater thanl /

In 5-optics, the electromagnetic field and phéield are the components of ti&,,
field that defines the metric relationships in egufation 5-space.
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Therefore, the five-dimensional Maxwell theory that outlined here is an
approximation that is legitimate only in the case whare ocan neglect gravitational
phenomena. In the future, it should be included as patuwifified quantum theory of
the G, field.

8§ 26. Pseudo-vector mesons.
Let a real field in 5-space be given a Lagrangian fanct

1

where the components of the fiehd,,, define a third-rank 5-multi-vector.
The components of the fieM/,,, can be expressed in terms of the potential fields

W, = — W, by the formula:

oW, , OW,  aw,

Wy = . 4.58
Mo o o (4.58)
The potentialaV,, are defined up to a gauge:
. oF, oF
VV/Lu —W/]/1+6—Xf;_672 . (459)

If we vary the potentials fow,,, in (4.57) then we will get the first group of field
equations:

oW,
W= Q. (4.60)
ox

The second group of field equations can be written india:f

aVV/Luv _ aWIVU + aVVVg/} _ a \M/Lu

=0, 4.61
ox?  ox'  ox'  oX (#4.61)

which is equivalent to (4.58).
Comparing (4.58) with (4.60) will give a system of wave equatifor the potentials
2
oWy, f I W | OW, 0. (4.62)
ox' oxX  ox' X oxXoxX

Now, use this opportunity to gauge the potentials, and rethatethey satisfy the
following Lorentz-invariant condition:



66 Studies in 5-optics

Wy, _ OWss

= —22, 4.63
ox* x> (4.63)
In this case, equations (4.62) will take the form:
2
GZ\NM + OWs _ 0V, =0, (4.64)
X' oxX ox'oxX oXox
or, if we single out the action coordinate:
9° 0 (0W,, JW,
O+—— W, +—| —=2-—2| =0,
( 6x56x5j « axf’( ox  a% j
(4.65)
ow,
Wy = axgl :
The field equations will then take the form:
aVvikn +6Wk5 Eav\(m+ ava :O
" x> X' oxXax
ox 0 0 0xa (4.60)

aVvikn = a (a\/\(mjzo
x" 9 ax ’

oW, _aV\éln+aV\éi_aVMk =0
X" ax  ax ok

oW, _OW,; 0OWy, oW _ 0 _OWy _OW _9W =
o ox ok o ‘aXS(W‘k' ox X akj > (469

In order to clarify the physical meaning of this pregeyn for obtaining five-
dimensional field equations, it is necessary to rewtihlem in terms of Fourier
components. We will get (with the condition tlat + 1):

Uy,
i _ 2y =0,
ax" H ¥k

. (4.60)

kn —

ox"
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Uy Uy U, _0U,

ox"  ox  axX  oX

_0u, 3y, , ay,
ox  oxX  oaxX

:O’

(4.61)
U ikl

If you make the change of notatipA Uy — Uy in the system of equations (4"$0
and (4.61) then that system will coincide with the system q@i&ions that describes
pseudo-vector mesons (ct3, pp. 34). Thus, we have shown that real fiéMg, in 5-
space, with a suitable gauge (4.63), will describe theeefaimily of pseudo-vector
mesons of mas<Z|| m and charg&e whereZ is a positive or negative integer, including
zero. The case for which= 0 deserves special consideration (cf., § 29).

We shall now generalize the equations for the fi#lis, to the case in which field
sources are present in space, and write them in the for

aVV/Luv aVV/Luv aWIVU aW A a \M/Lu
= , - + Y7 — =0, 4.65
o X ox ¥  oX (4.65)
in which:
Qi = Qi €xp (ux°) + g, exp Ciux), (4.66)

is the source 5-tensor of the fieMs,, .
In order to focus on the use of free meson fieldsshed use the Ginzburg gauge and
require the following relativistically non-invariant caton on the potentials:

ow,
— = _avv14 . (4.67)
ox* 0x
With the gauge (4.67), the equations of the potentials aki# bn the form:
2
oWy | OV | OWy (4.68)

X ox oxox oaxox

or, when written down in three-dimensional form andleirms Fourier components, (5
=1, 2, 3):

9 (0U oU
(u—uZ)uwax{ - ”“j=qaﬂ,

X' 9xX
0 (dU,, .
(D_luz)uas+§(6—X§4_Iﬂua4j:qaﬂ’ (469)

(A—/,[Z)UM =0,
(A_IUZ)U54 = Osy;

We will then get:
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’ 4
Ug4 :_ij qa4(r » X )e—,u|r—r’| dV,
4’ |

r'—r
, 4| (4.70)
e _ij q54(’r X il gy
A |r'-r |
If one writes (4.57) in covariant form:
L= 1—12«/|G | W, W (4.57)

and varies the metric potentia@”” then one will get the usual expression for the
symmetrized 5-tensor of energy-impulse-charge:

O = 2Wyor Wor = iy L (4.71)
Using the time coordinat€ = - i x*, we calculated, 8, y=1, 2, 3):
The energy density
Goo= 4(UsegUims * U o5 +3U U s, +U U s o (4.72)
The impulse density
B,0= 4(UssUos +2U 55U s, +C.C), (4.72)
The charge density

O,,= %(UEMU oap +C- c) :

If we take the gauge condition (4.67) into account:

o, . U,
_I'(+|luUi5: =
ox ox' (4.67)
Uy, _ 93U,
ox<  axt

then we can integrate by parts and convert theesgpmn (4.72) into the form:

e 1 aUEﬂ U, _oU, 0U,
0= E{ ox°  ox° *2 ax°5 a)(05+%UEﬂVUaﬂy+UEﬂ5Uaﬂ5
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1
+ Z{UODH(,UZ —D)U,, +U(1? = B)U 5+ c.c}

+ spatial divergence, (4782

_ 1005 0U, UL aU,,
= | = - +C.C.
2 ox* oxX ox a¥

# 2{UG (W ~B)Ug, +U (0 D) U s ve. ]

+ spatial divergence, (42
~ . ]1 oU ou,, ouU ou.
O = 12| U y— U y— [+ U =2 -l —2°
50 :u{z( ap 6X° ap axoj ( ab axo ab 6)(0 j}
1
+Z{U5Da(:uz_A)UOa+C'C}
+ spatial divergence. (4'¢2

Integrating over volume and taking (4.70) and @3ti6to account will give:

_ 1. [0U,,0U,, _aulou, 1
Jaoodvzzj{ X’ ax° +2 axos a)(05+:_3UEﬂyUaﬂy+UEﬂ5Uaﬂ5 av

0 1 .0 n 0 4
+ ij Coa (', X7) O (1 ’X')'*'":’igs(r")(o)qos('l1X0)e—;1(r'-r")dv'dv'. (4.73)
47T [r'=r"]

The second term gives the interaction energy oticoously-distributed sources of
the W, field that interact according to the Yukawa laWt will be zero if the field
vanishes in all of space; i.@,, = 0. In that case, it will be the first term tlzaves the

energy of the meson wave field.
Expanding the potentials in plane-waves will givethe case of wave fields, and

while taking (4.70) and (4.6)7into consideration:

Uas= (V)™ 3{U 5 (k) explifr —kyx*)]+ Uz (K explickr + 1k X)},
(k)
(4.74)
= Uas = ()™ Y {U sk, expli kr —kyx*)]+ U ks explickr + 1)},
(k)
Ua4 = 0, U54 =0.

Substituting these expressions in (4) &hd integrating over volume will give:
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[ B dV = k> (N, (K + N.(K), (4.75a)
(k)
[ B dV =Dk, (N, (+ N.(K), (4.75b)
(k)
[ B dV = &> (N, ()~ N.(K), (4.75¢)

()

in which, to abbreviate, we have set:
_ 1 5 1
N =k, EUaﬂUaﬂ +?(kaUaﬂ)(l$Um) : (4.76)

In order to emphasize the transverse and longialidiomponents, we put formula
(4.76) into normal form. In order to do that, wéroduce the pseudo-vector, = 1 £,
Ug, and get:

U = i{%(\aeﬁ% &) +V, %}, (4.77)

VK

in which, e1, &, e; are three mutually-perpendicular unit vectorshwit|| k, which gives:
N=VYV). (4.78)

With increasing speed of the meson with Iongitad'cmmponent371 = Va3, \72 = Va1,

due to the fact that / ko — 0, they will gradually disappear, and the fieldl\gradually
approach a transverse one. Note that if all ofcddeulations are repeated in the case of
normal gauge then it will emerge that for mesondigher speeds the longitudinal
components will tend to have the same magnitude¢hastransverse ones, which is
physically unacceptable.

8§ 27. Pseudo-scalar mesons.

Consider a 5-field that is described by the follogvgroup of equations:

aVV/Luva
GT = QA/JV s (4783.)

aVV/l,uva + aWIVUT + aVVVgT/} + a \Mﬂ,u + a \Mﬂv
ox’ ox’ ox! oX oxX

=0, (4.78b)
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where the components of the fiel,,, define a fifth-rank 5-multi-vector. The
components of the 5-tens@;,, of the field source define a fourth-rank 5-multi-vector.
The components of the fieM,,.» are expressed in terms of the potentalg, , which
are the generators of a third-rank 5-multi-vector,lgyformula:

aVV/Luv _ aWIVU + aVVVg/} _ a \M/Lu

Wive = 4.79
MO Toxe ax ox X (4.79)
The potentialdV,,, are defined up to a gauge:
oF, OF OF
W =W + Ry TR gl ,
e T ax a9 (4.80)
F.=—F.

If we substitute (4.79) into (4.78) then it will sayig#.78b) identically, and we will
get the following system of equations for the potentials:

az\Mﬂv _aZWIW + az\/vvm _aZWﬂﬂ —
oX°0x° 0XoxX oXoxX 0X0¥%

Qiuv- (4.81)

We now take the opportunity to gauge the potentials, andreetipait they satisfy the
following Lorentz-invariant potential normalization:

aVV/Luv — aVVA,uS

EY Y

(4.82)

The system of equations (4.81) can then be put into the for

_ 0% |\ 0 [OW OWs OWs| _
{D axsaXS}Wik' 6)(5{ ax ok T ak} Q. (4.83)

OW,,, = Qski . (4.79)

If this field vanishes — i.eQ,.= 0 — throughout space then we can\it = 0, and
formula (4.79) will take the form:

W :aVVikI _aW!m+a\/\4ni_a\Mik
Mmoaxm o ax ax< X
_ow

kim

kims — axs '

(4.79)

while the field equations (4.78) will take the form:
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ox™  axXox (4.78a)
0 (GWmmj
& e |70
ox’ \_ ox
ankIm + aU kimn + aU Imni aU mnik aU Imni — O
ox" ox X X X ' (4.78b)

— ankI _ aUkIm + aUImi _ aU mik

U, = : .
S N % % ax

If we make the replacemenf Uiy — Ui in our notation then the system of
equations (4.78 will coincide with the system of equations that diss pseudo-scalar
mesons (3], pp. 22).

Thus, we have shown that real fieM&,,» in 5-space, with a suitable gauge (4.82),
describe the entire family of pseudo-scalar mesons s$ @ m and charg&e, whereZ
iS a positive or negative integer, including zero. TheecofZ = 0 deserves special
attention (cf., § 29).

Passing to the general case of the fi8lls,, that have source fields in space, we use
the Ginzburg gauge, and require that we impose the follpwadativistically non-
invariant formula on the potentials:

oW,,, oW
e = (4.84)
ox’ ox

The system of equations (4.81) will take following fornfFmurier components:

0 [oU ouU ouU
O - Ugs, — aph |~ —Bra L —wal o ,
@ =) Vapy ox* { ox¥  oax  a¥ } Qapy

0 |. ou ou
@ -4 Uas _W{WUH/M‘* a)ff” aigﬂ'}:qa@’

(A_/'lz)uaﬂ4 = qaﬂ4, (4 81)
(A_/JZ)Ua54 =05,
SO:
r',x° :
aBa = _i.[ q”ﬂ4'( X ) e_ﬂlr ‘fldv',
ar [r'=r | (4.85)

1 r'x°) e
Ug54 :__.[ qa54'( ' X )e U r|d\/r
ar [r'=r |
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The expression for the symmetric 5-tensor of enérgulse-charg®,, is obtained
by the general rules from the Lagrangian function:

L= 4i8\/|f|wwa wve (4.86)
in the form:
O = %W,\mp Wozp —4—18er,, WY, (4.87)
Using the time coordinatd = - i x*, we compute:

Energy density
By, = %{u 20 FUS0U s + %0 ) (4.88a)

Impulse density
8, = %{u 5 Uy s+C.CY, (4.88b)

Charge density
B, = %{ugaﬂyu vy +C.CJ (4.88¢)

If we integrate by parts, while using the gauge conditid84), then we can
transform these expressions as follows:

aBy QaUSDaﬂ aUSaﬂ +UD U
A’  9xX 9 ATk

00 6

5 - E{augﬂﬂ ou

1
+ V0o (4 =BV g +U o 4° = BU o +C.CJ

+ spatial divergence, (4.89a)

5 - E{aufm 0Ups , 205 WUssy | C}

6] axt 9 T X X

1
+ U =D Uqp, +2U (U7 = WU gy +C.C}
+ spatial divergence, (4.89b)

_— U, GUEM U, aUEaﬂ
905‘3{”5“ R v i U v

1
+ Z{Usmaﬂ(:uz _A)anﬂ +C. C-}

+ spatial divergence . (4.89¢)
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Integrating over space and taking into account (%&81d (4.85) will give:

_ 1 GUEM aUaﬂy aUEaﬂ aUW .
J@‘)Odv _EJ{ x°  ax° *3 X’ ax tUsomY somy AV

+

ij E qODap(r ,XO) quﬂ(r ,XO)’+ Zfﬁsa (IJ ! Xo)q)m (Il ’Xo)e—,u|r’—r"| dvfdvf ) (490)
ame 2 [r'=r" |
The second term gives the interaction energy fotticoously-distributed sources of
meson fields that interact by the Yukawa law.h# field vanishes then it will be zero.

If we expand the potential$,s, in plane-waves, as in the preceding section, than
will give, in the case of vanishing fields:

[ B dV = k> (N, (K + N.(K), (4.91a)
(k)
[ Bor dV = Yk, (N, (K + N(K), (4.91b)
(k)
[ B dV = 1> (N, ()~ N.(K), (4.91c)

(k)
in which, in order to make the indicated reductjan®se must set:

N(K) = k, {%Ugﬂyuaﬂﬁ +2_2-12(kaUEﬂy)(K5U5ﬂ/l)}' (4.92)

Introducing the pseudo-scaldr= 1 &4, Ugg, ill give:
kS~
N = koﬁutu. (4.93)

As the speed of the meson increases, $ntg — o, one will getU =Ui»3 — 0, as
it should be, since it is the only potential comgiatlJ,s, that contain the index 3, and
should be considered to be longitudinal.

8 28. Particles of spin 2 (metrons)

The extension of the theory of weak gravitatiofeltls to the general case of weak
metric fields in 5-space leads to the theory ofipkas of spin two, which we proposed to
call fundamentalin our previous communications. It seems to as$ ihwould be better
to call weak quantum metric fielasetrons and that is the term that we will use in what
follows. The theory of metrons is essential tophies, because they provide an exchange
of energy, impulse, and charge between all of kentary particles that are present.
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For weak metric 5-fields, we can set:

G/IV: 5/1|/+ H/IV! G/IV: 5/”/_ H/[V, (494)
in whichH,, are small quantities, and we are neglecting quadraticsterm
Insofar as:
glk _gkl g
GHY = ki ) , (495)

-§“g i+@'kgq
k1+)(

we find the physical meaning of the quantitigs , namely:
Hik = hi, Hsk = Ok , Hss = X, H=h+y, (4.96)

in which hy appears in the theory of gravitational fields as theygonents of the true
weak gravitational field.
We shall confine ourselves here to the consideratiomaaishing fields without

sources. For weak fields, the Einstein equat®ps- 1 G,,P = 0 take the form (the first
group of field equations):

0G,,, 0G,,, 1. (9G,, 0G
a, _ g, Ag __5 o, 0,10 - 0 497
ox? ox* 2 M( ox 0X j ( )

The components of the fied,,, can be expressed in terms of the potential f€)gd

by the formula:
oH oH
Gopy = E(GH“ -y ”"j. (4.98)

2 ox*  ax’ X

We can write down the second group of equations in time: fo

0 0
W{Ga,ﬂy + G/l,a;z} _&1{ GJ,/W + gﬂ} = 01 (499)

which is equivalent to (4.98).
The potential fieldH,, is determined up to a gauge:

oF, OF
H' :H I/+_‘u +—V . 4100
w T ax T ax ( )

Substituting (4.98) in (4.97) will give the following systednwave equations for the
potentialsH,,
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X oxX oxX \ ax 6)?6)?

?H, d (6H,U+6HMJ+ 9°H 9°H,,  o°H
3%0 % 350 %

j 0. (4.101)

In order to discover the physical meaning of these fimeedsional equations, they
need to be rewritten in terms of Fourier components.
Let:

Hu = Aw exp (uX) + A, exp € iux). (4.102)

The wave equations (4.101) will then take the form:

@-1)A, - (g’} a’}j—w(gg M«j MA%
+5ik(ai.§‘)} 263' iﬂ—ﬂzAss—(D—ﬂz)Amjzo- (4.103)
DA~ [a’*s (As— Ay w}:o, (4.103
0°A, o
OB 0(A-A)= 0. (4.103)

We now impose the following Lorentz-invariant cdgimhs on the potentials:
Ais=Aos = Ags = Ays = As5 = 0. (4.104)

Equations (4.103) will then take the form:

aAI Ak GZAn azAn 4,2 —
@-1)A, - (N axj PR +5[ e+ (@ u)AmjAk—o. (4.109
yaA*k“ =0, (4.10%)
ox
A _ _ ,
o DA =0. (4.105)

Equations (4.10% are exactly the same as the Fierz-Pauli systeaquaditions, which
describe particles of spin two (cf14], pp. 242.et seq) It is also shown there that when
M1 # 0 in equations (4.10§8 it will follow as a consequence that:
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ZX =, A, =0, (4.106)

and therefore equations (4.19%and (4.105), which are absent from Fierz-Pauli, will be
satisfied identically, and equation (4.10&ill take the form:

@-2)A, =0. (4.107)

Thus, we have shown that weak metric fields in 5-spaté, suitably-normalized
potentials (4.104), will describe the entire family of Ei€auli particles of massZ|| m
and charg&e, whereZ is a positive or negative whole number. The caseo0 needs
special consideration (cf., 8 29 below).

Now, use the Ginzburg gauge and require that the followitagivistically non-
invariant condition should be imposed upon the potentials:

As1=Asp=Aiz=Au=Ass=0. (4.108)

In what follows up to the end of this section, Latia@ctersn, n, p, g will take the
values 1, 2, 3, 5. The wave equations will now take eridtowing form:

a (0A, 0A ) 0°A 02
(D_’UZ)A“”_axp( et axi“}axmaiz‘ +5"‘{6x‘gp>jq +<D-u2>App} =0. (4.109

0 A, _
4 k_o
ox* ox

0" Ay

oxP ax?

, (4.109)

~OA,, =0. (4.109)

If the operators:
0 9°

X" ax™Max"’ A

are applied to equations (4.1P8n the left then:

0* (0A, 0A,
n— =0, 411
6x46x4( ox'  ox" ( 0

? (o
6x46x4(6 )@Agﬂ)a ~(A- ,uz)Appj =0, (4.110)
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. P
2o s {Z(A 12)+ NN}AW . (4.110)

If we exclude static fields from consideration th&p should satisfy (4.119 and
(4.110"), and thus—= A“” =0 from (4.110, and equation (4.110will take the form:

@- A, =0. (4.111)

The Ginzburg gauge is a generalization of the usual gautfeecsomponents of the
weak gravitational field that leads one to choose #estrerse gravitational field (i.e., the
graviton) to the general case of the weak metric field on 5espdtis well-known that
the choice of the graviton as the wave field in the mhebgravity is achieved when one
sets (cf., e.g., 2], pp. 338):

h14 = h24 = h34 = h44 =h=0. (4112)

In conclusion, we shall write down the wave equatifomsmetrons. Taking (4.96)
under consideration and denoting the Fourier compondriiyof will give:

1. The Fierz-Pauli gauge [equations (4.106) and (4.107)]:

@-u?) F\k =0,
ah" =0, (4.113)
X«
h =0,

2. Ginzburg gaugen( =1, 2, 3):

2\ L aﬁgﬂ . A
@-47)h,, =0, o 9, = 0,

@-4%) 4, =0, h, +X=0, (4.114)
@ §=0,  Herigg=o

In both cases, the ten quantitieﬁk) and (ﬁaﬂ,@a, X) will be subjected to five

additional conditions so that the number of indejegm components of the wave function
of the metron will amount to five, which will cospond to a spin-two metron.

If we consider flat, harmonic waves then it wi# lkasy to see that in the case of
(4.114), as the speed of the metron increase$ptigitudinal component of the field will
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gradually disappear, while in the case of (4.113), it wildtém the largest transverse
component, which is physically unsatisfactory.

8 29. Mesons and metrons in the zero charge state

According to 5-optics, mesons and metrons can besiata of zero mass and charge.
In the expansion of the wave function into a Fourieleseand in the case for which only
one component is present, which will correspond 00, one will have:

The state wittZ = 0 thus describes classical interaction fields in 4-esp@te get the
field equations by averaging the corresponding equations @ti&soover the action
coordinate.

1) Scalar mesons:

M o W _0W
ox' X X ox'

=0. (4.116)

Introduce the scalds: W =9U /dX, OU = 0, W, = const.
Thus, scalar mesons in tlHe= O state are described a superposition of the classical
scalar fieldU and the constant fieMy, = const.

2) Vector mesons:

aVvik:O’ 6V\(k+6V\4 +6V|V:0’

X X  ox oX

aVVSk:O aV\ék_aV\éi:O
k ! i '

ox ax  ox

(4.117)

Introduce the scaldd: W, =aU / ax".

Thus, vector mesons in tle= O state are described by a superposition of two fields:
A Maxwellian electromagnetic field and a classicallacfieldU.

3) Pseudo-vector mesons:

avvikn: aWkI_a\T\{In_i_avMi_aWk:O

ox" Too9x" aX X ox ’ (4.118)
%:O aV\ékl_i_aV\éln_i_aWnk:O.

ox" X" ax< X

Introduce the 4-pseudo-vectdd, = 1g, W, and the 4-bivectoFy = W,, and
rewrite the equations in the form:
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,_aJ, Y g
0 — — U, _— - ’
Fo_o  OF, OF OFy_o

ox" ox"  ox* ox

Introduce the 4-pseudo-scaldr: U, = 0U /dx'. The pseudo-vector meson in the
= 0 state will then be described by the supermosinof two fields: A Maxwellian
electromagnetic field and pseudo-scalar figld

4) Pseudo-scalar mesons:

avvskln - O
ox" ’
aVVSkIn _ aV\élnm + 0 ank _ 0 V\;(mkl =0 (4119)
ox™  ox oX X ’
aVvikln - O
ox"

Introduce the 4-pseudo-vectdy = 1¢,, W,,,, and rewrite the equations in form:

W, o, _, o, _

k=, iz 4.11
ox<  ox ox ( 9

Introduce the 4-pseudo-scaldy = 0U /dx'. Pseudo-scalar mesons in the 0 state

can then be described as the superposition ofildsf The pseudo-scalar field and
the constant field\,,, = const.

5) Metrons.

The last of equations (4.101) for the action cowat gives:

_ 9 (éH, oH 9°H 9°H. _
DH» _ i li + I'k + : nn +5 : in —DH - O,
* ax[a% axj X0 X *[aka& MJ

- o (oH
OoH,., ——| —2 [=0, 4.120
5 ax"[ AX j ( )

~ , 0°H,
OH. +—%--0OH
* X' o "

=0.
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Due to (4.96), we conclude that metrons in Zhe O state can be described as the
superposition of three fields: A weak gravitational fiekl,edectromagnetic field, and the

x-field.

Modern physics distinguishes complgsfields that describe the behavior of charged
particles with non-zero rest mass from real clasgiells that describe the behavior of
real particles of zero rest mass. Such a sharp distinis mainly due to the fact that in
the view of contemporary physicg-fields are localized relative to configuration space
in the same way that classical fields are localiretthé universal 4-space of the theory of
relativity.

Naturally, in 5-optics, which radically refuses to hdardinate to universal space,
the main distinction between complgxfields and real classical fields vanishes for them
and other particles that can be suitably localized anfiguration space. In the
mathematical apparatus of 5-optics, real classicaldiate represented by the zero term
in a Fourier series expansion, and complgkields are represented by appropriate
higher-order terms. That will exhaust all of the déferes between them.

8 30. Complex spinor fields (electrons, positrons, neutros)

1. Field equations. In 5-spaces with pseudo-Euclidian metrics, 5-spinose as
four-component complex quantities that define four-rowgmesentations of the five-
dimensional group of rotations. If we restrict ourselt@ Lorentz transformations>(=
invar.) then the 5-spinor will split into two 4-spinarhiose transformation properties are
well-known in Dirac theory.

We decompose each of the four components of the 5-gpiadFourier series:

W, =2, U (Z |58, 5C, XY) exp { ZuX). (4.121)

For the sake of simplicity in subsequent formulas, kgl @sssume that the Fourier
series in (4.121) is represented by just one componentdhasponds td = + 1:

W, = Uy exp {u X). (4.121a)

The generalization of this is not difficult.
Since a spinor is an essentially complex quantitgointrast to tensor fields, one will
have:

Uo(-Z x5 %3 X 2 U2z |x, x4 %, XK. (4.122)

This means that in the case of spinor fields, the ¢exaponjugates of the Fourier
components do not relate to the charge-conjugate partiaewas the case for tensor
fields.

From now on, we shall employ matrix notation andoderb-spinors by one symbol
W, without choosing a component.

The simplest equation for spinor fields that we stwatisider will take the form:
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9 ) 9 9 9 ).
{,u(l)a—xl +HR)5 5+ M) 5+ 1 (A 5+ (5)6—)(5}W =0,  (4.123)

in whichW is a system of five four-rowed matrices that $gatise following condition:

ma) Up) + P ma) = 24a, P). (4.124)

It will be convenient for us to choose th&r) matrices to be the following system of
matrices:

pO=-iyyy" =ipaa’,
H@R)= iyyyt =ipaa’,
H“(B)=-iy'y’y* =ipa’a’, (4.125)
&)= iyyy’ =paa‘a’
U =Yy yyt =iaaa’

in which {y/*, /% v, vy} and {a®, a?, a® a” are two systems of matrices that figure
in Dirac’s theory. (4.125) will then give:

V' =ip@uB), at=ip@uQ),
Y EiH@UE), @ =in@u ), (4.126)
y: =iu@u®B), a®=iu(du(3),
Visip@®u®G), o' =iu(du(4).

We can write the field equations (4.123), whileasing one of the coordinates,
which we shall denote b¥). From (4.123), we have:

ow

oW
i = = 4.127
v +u(0)u(n) e 0, ( a)

in which the indexn enumerates all of the other coordinates that wetselected.
If we single out the action coordinate=x then we will have:

ykg—V\k’+ (M =0. (4.127D)
X

If we single out the time coordinat®=x* = ict then we will have:

0, (4.127¢)

;aw{aaijrﬁaw _
c at ox X

or, if we pass to Fourier components:



Chapter IV - Wavelike 5-optics in Minkowski 5-space 83

10U ( ouU
——+
0x

- j if =0. (4.127d)

2. Adjoint spinor field We further introduce the adjoint spindt:
W=>U ]|x, %, X) exp €izuxX), (4.121)
Z=-00
which satisfies the field equation:
oW oW
—u@)+ 2)+ 3)+ 4)+ 5 4.12
{axlﬂ() 62ﬂ() X3,U() %ﬂ() X5,U()} (4.123

or, if we single out the coordinat® the equation:

oW 6W
ox° 6”

u(n)u(0) = (4.127%)

(0)
Introduce the spinoW , which is defined as:

\(X}: W £40), (4.128)

and call this spinor “adjoint to the coordinafe’ From (4.128), one should haV® =

0)

W £4(0), and if one substitutes this in (4.12then that will give the following equation
0)

for W:

(0) (0)
oW , dW

—- H(0)u(n)= 0. 4.129
50 oy HOHN)= (4.129)

If we single out the action coordinate= x° then we will have:

(5) (5)

oW _10W
5 ok — V" =0, (4.129a)
or, in Fourier components:
(5)
(5)
% -uU =0. (4.129Db)

If we single out the time coordinat®=x* = ict then we will have:
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(4) (4) (4)
10W | 0W ow
= + +

a
c ot 0X oxX

B =0, (4.129c)

or, in Fourier components:

(4)

(4)
(4)
10U 19Y o l-inl g =o. (4.129d)
c ot o0X

We conclude from (4.127b) and (4.129b) that:

(4) (4) .
W =W, U =U, (4.130)

in whichW' denotes the complex-conjugate transpose of the spinor
We have:

- (5)

- )
W =W 1(5), W =W 1(4), W =W 1(4) t(5) =i W y*,
and therefore, in accordance with the Pauli notation:

(5)

W =-iw".
We put the relationships between the various adjoinbsting following table:
W = W-u(4) = - W 1(5),
W= Wu(4)= Wy, (4.131)
W' = iWu((5)=Wy*,

which we shall use often.
If we use the Fourier series (4.121a) then forswal27b) and (4.129b) will give:

ouU ou”

— +tuJ =0, - J" =0, 4.132
v M o K MU ( )
and formulas (4.127b) and (4.129b) will give:
10U ou ) .
——+ a— |+ =0,
c ot ( 0x j A (4.133)
10U" (oU" ) . '
= + o |—i =0,
c ot [ 0x j wB

which are the two familiar Dirac equations.
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We showed that complex spinor fields in 5-space deserthe entire family of
particles that have spinor fields with mags||m and charg&e, whereZ is a positive or
negative integer, including zero. The caseZaf -1, 0, +1 correspond to electrons
neutrinos, and positrons, respectively, which should griefplain how one and the
same particle can be in different charge states.

3. Energy-impulse-charge 5-tensof.he field equations (4.123) and (4.12&n be
derived from the following Lagrangian function:

L=3Wu(o)W, - Wu(o) W,
I (4.134)
WU:a_W, V\{T:a—vv
ox? ox’
by the formulas:
0 (oL oL _o 0 foL | o _45 (4135
x| OW, | oW ox*{OW, ) oW

Note thatL will vanish for functions that satisfy the field equaso The canonical
tensor of energy-impulse-charge is given by the formula

~ oL  dL
Top=W, ——+—Wy— L. 4.136

Since we have been given that 0, if we single out the action coordinate and use
(4.125) and (4.131) then:

Tik :% w a—W——aW kW ,
ox  oX
. L OW oW’
T, =%|W ok ykwj, (4.137)
LOW AW
T ™ ﬁ‘a—xswj-

If we pass on to the formulation of things in ternid~ourier components then we
will assume that just one component in the expansiogpresented. We will have:

Energy-impulse 4-tensor
T, = %(U ' a%_ v ykuj , (4.138)

Current 4-vector
Ty =iuU'K U, (4.139)
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4-scalar
T.. =uU'U. (4.140)

By virtue of the field equations, the 5-ten3gr will satisfy the equation:

aT,,
—& =0, (4.141)
ox’

If we single out the action coordinate then that gike:
ik =, —5k =Q: (4.14]

i.e., the laws of conservation of energy and chatgete that in our formulas the current
4-vectorT,, is characterized by the usual dimensional facter é:.

We compute the antisymmetric part of the canonical Setehys ; from (4.136), we
will get:
Tpa=Tap

=WMUDABA-KD Xa AW +WdadUP-dBAHKA] W. (4142)

Using (4.124), we deduce that:

V[ u(a) (1 B) = (Bl 14 @) W,

V, u(p) (a) 1( B) — (B (@) ] W

H(a@) () U(B) — (B (p) () T W,

W[ 1) t( ) 1 B) = (B 1 o) (@) T W. (4.142a)

Tpa=Tap =

v

+ o+ o+

1
4
1
4
1
4
1
4

The first two terms in (4.142a) will vanish by virtue of tiedld equations. If we
introduce the notation:

K(a, o, ) = $WI @) (P U B) — B () (@) T W, (4.143)

in whichK(a, p, p) is the antisymmetrization of all three indicesled third-rank tensor,
then the expression (4.142a) can be written in the form:

19
Tpa=Tap= ErYd K(a, p, B, (4.142b)

so the symmetric part of the tendgp , namely:

Op=5Tap+ Tpa) =Tap+ 5 (Tpa—Tap)
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:%(Wﬂ(ﬁ)aw oW j_l 9

PN _a_xa,u(ﬁ)W ¥ Ka,p,B), (4.143a)

will satisfy the same equation (4.141) and we can congitiebe the symmetric energy-
impulse-charge 5-tensor.

If we single out the action coordinates and use (4.125)4ahd1) then that will give:

1 A 19 .

G ==| W'y —————y*W |-=— K(p, i K,

« 2( ykax' axyj4axﬂK(p')
(e xOW QW' ) 10

Oy == ———= V"W |-=— K(n5, K,

> 2( o o) j 2ax (N>

(4.144)

=i, OW W' 10

Os =—| W' — ——%W [+=—— K(n5, K,

< 2( X oxX j a5x (N>
=i, OW W'

Oy =—| W — - W|.

> 2( x> ox° j

In the formulation of the Fourier series, one \Wwdlve, assuming that the expansion is
represented by just one compongnt + 1:

~ 1. .. ,0U ou* , 19 —, .
) == |U P —— U |-=——K(n,i k), 4.145
K 2( X ox j46>{‘ (n,1,k) (4.145)
o, i oM (k,n)
g =i TR LA WL/ 4.146
he = 17U 4 X" ( )
— i( ,oU oU* 1M (k,n)
. =—|U*=—-""_y |-=—"— 7 4.147
< 2( X oX j 4 X ( )
6..= uU'U, (4.148)
in which we have introduced the notations:
va H -1 i Ky i N
KO =300 =Yy, } (4.149)
M(k,n)=1U"(y*y" - y"yU,

and from formula (4.145), the 4-tens@y will be the symmetric energy-impulse 4-tensor
of Dirac’s theory precisely.
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4. Current vector The essentially new fact, in comparison to Dirdb&ory, when
one is considering the current 4-vector [viz., formuld 48)] is the appearance of the
i oM (k,n)

ox"
further polarization current.

The symmetry conditio,, = g, which can be written in the form:

extra term— , Which is missing from Dirac’s theory, and correspormsat

, (4.150)

U U i aM(k,n)
oxX ox«

i,LJU"VU:—IE(U* ~U 5o

is known as the Gordon identity in Dirac’s theorgdas derived as follows: Substitute
MU andgUJ* from equation (4.132) in the left-hand side of equation (4:150)

ouU + ou”
HU == —, U™ = —;
0x 0x
that will give:
igUyu=- (u % au %Li ”ykuj. (4.151)

If we separate the terms wik= n from the ones witlk # n in the summation over in
(4.151) then that will give:

. + 6U 6U i 0 + n n k
upu=-Lu &L y|-L 2y —yyA)u, 4.152
iUy 2[ v j 2o () (4.152)

which agrees with (4.150).

According to Pauli's findings {3], pp. 51), the appearance of the extra term
i oM (k,n)
4
¥ U in the Dirac equation in the presence of an electrowtag field, which would
correspond to an extra magnetic moment for the paartid/e shall see that this is true in
Chapter VI, § 41.

in the expression for the 4-current makes one expeste a term gfmn M

Appendix: Ginzburg’s electromagnetic gauge potential [11]

The equations for the electromagnetic field potentade the form:

0A 109 _
D¢ ( j_ 4]w'
cat ox< cot (4.153)
DA (% E%j: 477 i
oxX cot c
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One usually assumes that the potentials satisfy ¢dihentz condition difA + %%—f =
0 and the field equations will then take the form:
47 .
O¢ =- 47mp, OA =——ji. (4.153)
C

In Ginzburg’s paper, the following condition was imposedn the potential:

6A (4.154)
ox’
With that condition, the field equations (4.153) will take form:
pp=-4m, sr.p=[L0av,  R=r-r), (4.155)
¢j 10°A
CAA =—-Amji+—| — |+ : 4.156
ARG P (at c o (4.156)
We will solve equation (4.156) by the method ofcassive approximations:
0 1 1 1 2
A=A+AY+S A+ AP+ (4.157)
c? c*

in which A, which satisfies the conditiod4 /9x = 0, is a solution of the homogeneous
wave equatiorA = 0 (i.e., a light wave) and®, A® are solutions of the equations:

09
© = _ 477 + 4.15
o i+ (%) (4.156
2 A (k-1)
AA® :a%, k=1,2,3, .. (4.156)

In view of formula (withk # 1):

AR =k (k + 1)R2, (4.158)
we find that:

cAO(r,y = [ 2L ‘(r B gy (r ) RAV, (4.159)

Eaxatjp
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R di. (4.159)

1 0%j@'t) 1 0> 0*p('t)
cA¥(rt) = R gy + :
AT (2k)!j at* (2k+2)!a><atj atx

If we take the continuity equation:

%,
ox< ot
into account, along with the formulas:
R _ k[ds+nins (k- 2)] R n=R (4.160)
X OxX° c ’ R’ '
and integrate (4.159) and (4.1pBy parts then that will give:
i (r't) 1
c A9r,t) = JI(Ld r't)———dV'
AO(rY = [ G )Ma
_ij Js(r ’t)( S nsni) dv', (4161)

R
cAY(r1) =
(ﬂbﬁiaznf14r‘*‘iigllR”1K2k+n@;«2k—nnq]dv. (4.161)

The energy of the electromagnetic field is givgn b

= (M Mj (% —16—Aj dv (4.162)
877 2 ox*  ox oX cot ’ '

which, by virtue of (4.154), and after integratibg parts, will be converted into the

form:
_ 0A oA\ . (0¢
" 8n { (ax j cz(atj (axj }dv (4.163)

We shall now assume that the speeds of all chargeke system are small in
comparison to the speed of light. We can thenemghe magnitudes of all terms in

(4.157), beginning with the term&®. We then calculate the expression for enékgin
this approximation. 1If we substitute = A + A” in (4.162) then that will give:

aA A Y dV+— 10A 0A” _AARO gy
871 ox" c2 ot 2 ot ot
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+8i]_[ {C_];(ag}_io)j _A(O)AA(O)_¢A¢} dVv. (4.163)

With this approximation, the first term in the secomdl ahird integrals can be
neglected in comparison to the ones that followlc@ation will give:

_1 _1pp)plt)
8ﬂj N Xo\Y zj - dv dv,

11 A® AA© _ 1o girt)jset)
- — AA™ dV = o.+nn)dvdVv,
87T'[ ATAA ZCZJ. R (0 +nn)

_%TI ADAO dv :%jA jdv.

When one is computing the last two integrals, one ral& (4.154) into account.
We will finally have:

w= [ s Anave ] A jave T] 2EDPE gy gy
8 c 2 R

1 s )j.et)
tos | = (3, +nn)dvdv. (4.164)

The first term is the energy of the transverse light/es, the second term is the
energy of the interaction of the light waves witlc@ntinuously-distributed system of
currents, and the last two terms given the instantenetderaction energy of the system
of continuously-distributed charges and currents. We ls&tethe proposed Ginzburg
gauge (4.154) not only singles out the energy of the phosdeh &nd the Coulomb
interaction of the charges, but it also takes into adcthe instantaneous interaction
energy of the currents in the same approximation (df., €.2], 8 65, which was a
situation that the author pointed out in the pafé&})[



CHAPTER V

TENSOR ANALYSIS AND METRIC n-BEINS (')
INTRODUCTION

Before proceeding on to wave-like 5-optics in RiemanBiapaces, in this chapter,
we shall construct the formal mathematical machitleay is necessary for that purpose.

It is well-known that it is impossible to introduchket concept of a spinor into
Riemannian space without abandoning the classical techniquetheinstudy of
Riemannian geometry.

As early as 1929, V. A. Fock (] showed that one could overcome the difficulties
that were associated with introducing the metric byoohicing n-bein coefficients,
instead of the conventional Gauss coefficients.

We shall show that metrio-beins can be constructed upon the basis of tensor
analysis, which has been used successfully for therglgneovariant formulation of not
only the tensor equations of mathematical physics, Ibatthe ones that involved spin.

The advantage of the approach to tensor analysiswifiabe presented is that it
consistently allows one to obtain Hilbert invariantegrals, field equations, and
conservation laws for both tensor and spinor fields.

In what follows, we shall consider the generah-afiimensional spaces.

8§ 31. Metric tensorn-bein.

In conventional tensor analysis, one introduces aienetrRiemannian space by
means of Gauss matricegi|||: _
ds = gi dX dxX. (5.1)

We can also introduce a metric by means of asymnepiedratic matrices Qi(a) ||
using the formula:
ds =Y Q (a)Q, (a)dX dxX . (5.2)
(@)

If the matrix ||Qi(a) || is diagonal then its elements will be thbeincoefficients, so
we will then call it thesymmetric n-bein matrix.
From (5.1) and (5.2), we should have:

2.Q,(@)Q, (@) =gor, 12i(a) IF = llgor |I- (5.3)
(@)

(") Translator's note: The Russian wordsi” did not seem to have an obvious translation (although it
might have been a translation of a non-Russian nsieh, as Lamé), so | used equation (5.2) and a remark
below as a justification for saying that he is introdgci-beins.



Chapter V — Tensor analysis and metriseins 93

A metric will persist when the elements of thdoein matrices are subjected to an
orthogonal transformation:

Q,(a)=> L@.B)Q,(B), (5.4)

(8)

in whichL(a, £|X) are orthogonal matrices that vary from point dnf

> L@, BIx)L@.y|x) = AB, ). (5.5)
(a)
Indeed, we have:

O = 2. Q(a)Q(a) =Y. 30, (B)L@.B)Q,(Y)La.y) = Y. Q,(@)Q,(a)

(@) (@) (B) (N (@)
=Jor - (5.6)

Since orthogonal transformations are determinednmmans ofn (n — 1) / 2
parametersy)-bein matrices can always be reduced to the nammalbular form:

Q1) Q,(2) .- Q,(n)
0 R@ a0 57)

0 0 Q)

so they, as well as the symmetric Gauss matriggs||| will be determined by only (n
+ 1) /2 elements. From (5.3), we have:

A = | Det Qi(a)) | = +/Det(g, ) # 0. (5.8)
If we let Q'(a) denote the elements of the inverse mai¥| () |[* then we will have:

Q%a) Qda) = da, B, 2.Q%()Q,(a) =77 (5.9)
(@)

Using then-bein matrices, we can define the following systwfmuantities from the
components of the contravariant vecdpand the covariant vecté :

A(a) = Qi(a) A, B(a) =Q'(a) A, (5.10)

which are invariant under the general coordinansiormation, as well as the
transformations in the formula:

A(a)=2 L@ B AP, (5.11)

(8)
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which are orthogonal transformations of the elemeftken-bein matrices.
We shall call the system of quantitié&n) andB(a) theinvariant componentsf the
vectorsA' andB; .
The raising and lowering of indices is achieved in twepstwith the aid of
intermediate indices:
A(a) =Qi(a) A, A= Q (a)A@). (5.12)
(@)

By using the metrim-bein as a basis, we can construct tensor anagsibeory of
two simultaneous groups of transformations:

A) The group of general transformations of all cawates:
X' =X+ LX), (5.13a)

B) The group of orthogonal transformations of trensdnts of tha-bein matrices:

Q, (@)= La.f)Q,B). (5.13b)

(@)

We agree to omit the summation sign whenever tantical indices are being
summed over:

Y A(@)B(a) =A(@) B(a), Q,(a) =D La.B)Q,(B)=L(a, H Q4a) .

(@) (@)

In general, tensors will have indices of all thke®ls:
TU(a)’ T;(a’ﬁ)l
and will transform under the groups of transformasiA andB according to the formula:

ox' ox°

X o d; L(& a) L(n, B. (5.14)

T7(&n) =T (a.8)—

By virtue of the fact tha®i(a) = g« Q'(a), the elements of the-bein matrices should
be regarded as the covariant-invariant componehtthe@ metric tensorgi, which
transform under the groups of transformatiérendB according to the formula:

Q (a) =

(5.14)

We will therefore call the quantiti€(a) thecomponentsf the metric tensom-bein.
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Remark. Note that in the usual presentation, the quant@i¢s) are understood to
mean the covariant components of vectors that definea tectangularepére(i.e., an
n-hedron) at each point of space, while for us they dalfine a covariant-invariant
tensor. The advantage of our notation will becomer afetne individual cases.

§ 32. Covariant differentiation of tensors

In order to introduce covariant differentiation,striecessary to define the concept of
the parallel displacement of vectors. The invariambmonents of the vectdX(a) at two
infinitely-close pointsX) and & + dX) must be coupled by a linear transformation:

Ala|x+dX) ={da, P +As(a, B dX} Ala | X). (5.15)

Since the square of a vect(a) A(a) = A A, as a scalar, should remain unchanged
under the parallel displacement of vectors, we conclugleinithe case where the vector
A(a | x + dX) is obtained from the vect&(a | X) by means of parallel displacement by
using (5.15), the corresponding linear transformationt inesn infinitesimal orthogonal
transformation; i.e., the quantities,(a, f) must be antisymmetric in the invariant
indicesa, £

DAo(a, B =-Ds(B a). (5.16)

They are called thetation coefficient®r theRicci symbols
Therefore, when the vecté{a) is parallel displaced, it will take on an increment:

A(a) =As(a, P dX AD). (5.17)
Under an arbitrary displacement of the veéttr), it will take on an increment:

0A(a)
ox°?

dA(a) = dx’. (5.18)

The differencedA(a) — 0A(a) of these vectors is thabsolute incremenin the vector
A(a):

dA(a) —A(a) = {% -0 (a,p) A(,[z’)} dx’, (5.19)

and therefore the expression in curly bracketss sovariant derivative

0A(a) _
ox°?

UoAa) = A, (a, B)AB). (5.20)

The requirement that:
O A =0,[Q7(a) Na)] =Q'(a)0, Ka), }

(5.21)
A =0,[Q () A =Q ()1, Ka)
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stems from the requirement that:
0,Q%a) =0, OsQ7(a) =0. (5.22)

If one multiplies (5.20) byQ,(a) and Q(a) then one will get, after an obvious
conversion:

0,a =28 {‘m (B) s p (a,B)0, (a)}n” BA,,

d X7

aZf ag ) (5.23)
O A = +A Q Q (BA.
o PV { PV -a.B) (a)} B)

We introduce the abbreviations:
Q9= e, (5.24)
My or= Q,(H) an(’B) +A, ., (5.24a)

and rewrite (5.23) in the usual form:
UoAr = a_AZ;_ rg-,AA ) DUAT oA + r A/] (523&)

004 X7

We now show that the symbols in formulas (5.24) and (5.@diatide with the usual
Christoffel symbols. In order to do that, switch thdicesz, A in (5.24a), and if one
takes (5.16) into account then that will give:

Mot Tron= 0,8 %2 0, (5 20 B) - e,

(5.25)

which will make:

1(dg Jdg 69,
[ or= —| —Hg St A | 5.25

& 2( o ax j (529
and the assertion will be proved.

One arrives at the rules for calculating covaridativatives by starting with the
formula:

O,A™(a) =

agr(”) +T° A (@) - Dola, B AT(D). (5.26)

One generalizes this to the following rule for ttwvariant differentiation of a tensor
of any rank:
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In order to get the covariant derivative of the ten&orwith respect to’, one should

add a term- A, (a, B A'(..., B ..) for each invariant inde& in A(..., a, ...).
Using that rule, we can reveal the true meaning ofditmeg in (5.22):

+I.QYa)-Ds(a, H Q'(H =0, (5.27)

0,Q7(d) = ag;X(CY)

M Q,(@)-A0s(a, P Q: (B =0. (5.27a)

0,Q(a) = agéx(a)

Remark. Note that in the usual presentation of the gtiast2’(a), they are not
regarded as the covariant-invariant components tehsor, but as the components of a
system ofn contravariant vectors. Therefore, in the usuakentation of the covariant
derivative ofQ’(a) [which is denoted b@(a). »], we understand that the quantities:

oQ’ (a)

Q(a).» = +I.Q%(a) (5.28)

are not equal to zero, but according to (5.27)y steuld be equal to:

Q(0): o =Ao(a, H QD) . (5.29)

8 33. The connection between the Ricci symbols and the tnetensor n-bein
Permuting the indices oin (5.24a) will give:

00,(a) 09,(a)
= S } . (5.30)

AO’, r/l_AT,UA:Q/l (0’) {

If we solve this equation fak,. ,» then we will find that:

Ay, M__{Q @ )(GQ , (@) afl[(a)j Q)(a)(an(a)_aQ(a)j

% X o¥
+ Qr(a)[a%x (f’) - ag;;g”)j}. (5.31)

Multiplying (5.30) byQ?(a) Q7 (8 Q* () will give:

Na, B ) ~A(B, a, ) = aQ (V ) [0%(a) Q7(8 - 27(a) Q°(B)]. (5.30a)

If we solve this equation faX(a, £, )) then that will give:
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9% (@)1 (8 Q° () -2 (1) Q°(B)]

GQ (ﬁ)

ANa, B, ) :—{

[Q"(a) Q7() - Q" (V) Q°(a)]

aQ (V 9% W10 () Q*(a) -2 (@) @° (ﬁ)]} (5.31a)

Formulas (5.31) and (5.31a) express the Ricci sygnh terms of the components of
the metric tensom-bein.

Contracting over the indices 7in (5.27) and taking into account the fact thgf =
Lon will give the formula:
A ox’
0(AQ°(a))

oo =MBah, (5.32)

8§ 34. Invariant differentiation of tensors

Introduce two operators, which are defined as:

(5.33)
O(n) =Q%1) O, (5.33a)
Multiplying the expression (5.20) I§y°(a) will give:
O(7) Ala) =D(1) Aa) = A(z, a, B AD). (5.34)

It is convenient to call this expression the “ingat derivative” of the vectoi(a). If
we calculate the invariant derivatives of the pidid(a) B(S) andA(a) B(S) C()) using
the formula (5.34) then we will come to the fornsufar the invariant differentiation of
second and third-rank tensors:

O(0) Ala, B =D(1) Ala, B) — A1, a, &) Ag, B — AT, B, & Aq, &), (5.35a)

O Ala, BY=D()A(a, B ) -A(1, a, ) A&, B ) — AT, B &) Aa, & )
A7,y 9 Aa, B, ¢), (5.35a)

which can be easily generalized to tensors of amk.r Contracting the expressions
(5.34) and (5.35) will give corresponding formulasthe divergences:

0(9) A() =D(7) A(7) - A(7, 7, B) A(D). (5.36)
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(1) A(a, ) =D() A(a, 1) —A(T, a, &) A&, 1) — A7, 1, ) A(a, &), (5.36)

O Ala, B 1) =D() Ala, B, 1) ~ A1, a,  Alg, B, 1) —A(7. B, ) Ala, & 1)
—A(T, 1, Ala, B, o). (5.36")

If we substituteA(7) = D(7) @, in particular, in formula (5.3Bthen we will find the
expression for the Laplacian of the scabar

{D(7) D(7) -A(7, 7, §) D(8)} @. (5.37)

In order to check formula (5.37), we start with the thet we have:

a,\gmgjz a/\Q”(a)Qr(a)gjz ANQ (1) o @
_ _ D +D(7) D :
Nox’ NOX° Ao O R

Using formula (5.32) will give (5.37).

By definition, the antisymmetric tensAfa, £) = (a) A(H) — O(H) A(a) is called the
rotor of the vectoA(q).

We find from (5.34) that:

Ala, B) =D(a) A(B) —D(h) Ala) —{A (a, B,1) - A(B, a, D} A(1). (5.38)

The third-rank tensoi\(a, £, ) =0(a) AG, ) + 0(H) Ay, a) + () Ala, ) is called
the rotor of the antisymmetric tenséfa, £) = — A(B, a). If we substitute the expression
(5.35a) then we will find that:

Ala, B ) =0(a) AB y +0B Ay a) +U() Ala, B
+A(a, AL, Y, & —Aly, 1, &
+AB o Ay, a, & —Aa, y &
+Ay & Aa, B e —-AB, a, . (5.39)

Formulas (5.38) and (5.39) are easily checked by directlaatou

Na, § =0%a) Q1B ["’i—"”*j,

ox°  ox

A(a, B ) =Q%a) Q1B () [%ﬁm * ‘23 *aa?fj'

In conclusion, we shall find the commutation relatiofighe operator®(a). We
have:
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D(a) D(A - D(B D(a) = [Q”(a) N (")j 2 540

0Q"(B) 0Q'(5)

If we eliminate the derivatives———=,
ox’ ox’

by means of (5.27a) then we will find

that:
D(a) D(P) - D(B) D(a) = [A(a.B¢) — A(B.a,€)] D(&). (5.41)

§ 35. Riemann tensor
We shall now calculate the change in a vector updeallel displacement around a

closed circuit.
From formula (5.17), we have (applying Stokes&otiem):

0A, (a, ,g)A(,g) oA, (a,B)AB) or
§on =311 UL
e o LL) s, @010, (6.5) -, @£, (6. B A
(5.42)
and in the curly brackets, we have towariant-invariant Riemann tensor
Roo(a, = 22 @B) _085(@B) |\ (4 e)n (6.8)-D (@), (€.5).  (5.43)

ox’ ox

In order to obtain the ordinary Riemann teng8* multiply (5.43) byQ, (@) Q4(D),
which will give:

on OB,
ox? ox
+ OGNS - DAL A (a, ﬁ) S1Q,(@)Q (B -4,(a, /J’) [Q () Q“(D)] -

Substituting the expression fax ;2 in formula (5.24) and eliminating the derivatives
of Q.(a) andQ*(B) using (5.27) will give:

oy ars

Ror (a, B) Qi(a) QX(B) = ox +rers —rere =R:F. (5.44)

In order to obtain the invariant Riemann ten&{a, £, u, v), multiply (5.43) by
Q%) Q'(v). That will give:
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aA(ﬂ a,p)_0Q°(@,p)
ox

Q) {"Mg;’ﬁ )% 0./ )Ar(a,ﬁ)} Q') {

+ A(v,a,6) A(p,e0) — A, a,é) A( v,e,,[:).

A (a,ﬁ)}

9Q'(v) 0Q7(k)

Eliminating the derivatives
e ox’

with the help of (5.27) will result in the

formula:
Ror (a, B Qi(a) QB =R(a, B, 14, V)

=D(W) A(v, a, ) -D(V) Ay, a, B
+A(u, & AW, a, &) - Ay, & P AL, a, &

+A(W & B A, a, B - AWV, & p) g a, P (5.45)

If we contract over the indicaeg a and renumber the indices then we will get the
invariant Ricci tensor:

R(a, B
=D(a)A(g, g, /) —D(9)A(a, g, B +Aa, g, DA(r, 1, 0) - A(1, 0, A)A(a, 1, B . (5.46)

Contracting over the indiceg S will give the scalar:

R=2D(0) A(g, 0, f) - A(g, 0, N1, 1, ) - N0, 1, ) A(T, & 0) . (5.47)

§ 36. Spinors in Riemannian spaces

We shall now show that the case that was treatad B. Fock [L0], which provides
the framework for tensor analysis, will also allows to introduce spinors into
Riemannian space.

We construct a system of Hermitian matriceg¢a) that satisfy the following
conditions:

U@ uB@+u@ua)=24(ap. (5.48)

In spinor analysis, it is proved thatnf= 2v orn = 2v + 1 then these matrices(a)
will have s = 2" rows.
Two complexs-component quantities:

W= Wy, Wa, ..., W), W =W, W,...,W), (5.49)

are callecconjugate spinorsvhen then Hermitian formsW u (a) W form a vector with
invariant components.
The components of the spinor remain invariant utike transformations of grouwo
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W' 1 (@) W=W 1 (a) W. (5.50)

Under the transformations of the grdsip

W' (@) W= Lia, BYWu(B)W), (5.51)

(8)

the components of the spinor are converted intather ones bg-rowed representations
of the group of orthogonal transformations:

W'=S W W' =WSsH, (5.52)

in which S is ans-rowed matrix that changes from point to point amdelated to the
values of the matrix U(a, ) || by:

St a) = L(a, B u(B), (5.53)

(8)

which follows from formula (5.51).

In order to deduce the formula for the covariaiffecentiation of spinors, we shall
define the concept of the parallel displacemerdgpafiors in the case that was treated by
Fock.

The components of a spinor at two infinitely-clgs®ents &) and & + dx) should be
associated with infinitesimal linear transformaton

W(x+dy={ I+ B d&} W )x } (5.54)

W(x+ d)=W X + B dg,

in which B, are somen-rowed matrices antlis thes-rowed identity matrix. From the
transformations of (5.54) that determine paralispthcement, it is necessary to construct

the vectorW (a) W that undergoes parallel displacement from theospid/ andW:
I.e., in accordance with formulas (5.15) and (5.54p must have:

W(R{l =B dx’} 1) {I +BodX’} WX
=YW up W{da, B +da, B dx?}, (5.55)

(8)

from which, we will get the equation for the FoclatmcesB,:

@) Bo—Bopa) = 3 A, (a, B)u(p). (5.56)

(8)

The general solution to these equations is, easgy verified:
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Bo=200(a, B ta) UP +ifsl, (5.57)

in whichf, are arbitrary functions arids the identity matrix.

Therefore, we have the following formulas for the amiant derivatives of an
arbitrary spinor:

O, W= ‘M—BUW, oW = 6W+VVBU, (5.58)
ox’ ox’
and for the invariant derivatives:
O(a) W=D(a) W-B(a) W, O(a)W = D(a)W + W B(a). (5.59)

§ 37. Application to 5-optics

In 5-optics, we are dealing with a five-dimensional Raeman space whose metric
tensor takes the form:

G =[ G FA+rNg g (1+)()gj
" @+xg @y )

gik _gik g<

Gv=| .1 . (5.60)
-G%g m"‘ d“gg

It is very easy to check that the components ohtbein matrices will then take the

form:
0u(a) = [w.(n) Jitxg }
0 Jl+y

o (n) 0
; 1 , 5.61
~Jg (661
J1+x
in which || a(n) || is the four-dimensional-bein matrix of components of the 4-tensor
i

For example, as is easily verified, thebein matrix of the components of the
Schwarzschild field [formula (3.22)] will take therm:

Q%a) =
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J(k)+(¢”~1)nnk 0 0

Qq(a) = 0 e’? d'? g},
0 0 €
(5.61)
g +(e”*-1)nr(y 0 0
Q%a) = 0 e’ 0
0 _e—A/zg g’/?
The operator®(a) in formula (5.33) take the form:
i 0 0 1 0
D(n)=w'(n) | —-g,—= |, D(5) = ———. 5.62
(n) ()(ax' g.axsj (5) 177 ¢ (5.62)

Of particular importance is the special case in wiighare purely electromagnetic
fields and their dependence upon the fifth action coordoatebe neglected. This is the
only special case that is considered in modern quantumanes.

The following conditions emerge from the general case:

1. No gravitational field Ok =0 -

2. Noy - field x=0.
3. Cylindricality condition %: 0. (5.63)
X
o " dg, _
4. Harmonicity condition a—x;—
Metric tensors:
o, 0 o, -
G/IV:[ ik glg( g(j’ G/IV:[ ik gkij. (564)
i 1 -0 1+ gg
Metric tensom-beins:
o 0 o, 0
Qa)=| ¥ 9| Qua=| * 7. (5.65)
01 -0, 1
From (5.62), thé(a) operators give:
D) =2--9,%,  DE) =, (5.66)

ox" ox ox°
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which imply the commutation relations:
D(n) D(m) —D(m) D(n) =f(m, n) D(5),
D(5) D(n) —D(n) D(5) = 0. (5.67)
It is very important that by virtue of (5.65), one wilMea
A = Qi (a) A(a) = A), As = Qs (a) A(a) =A(5) ; (5.68)

i.e., the gradient-invariant components of any 5-ve@&@) will coincide with its
invariant components, and therefore:

{A, A} = { Ali), A(5)}. (5.69)
Hence, using the symbol of invariant differentiationl Wwive a gradient-invariant

expression in this particular case.
Calculating the Ricci symbols from (5!3Will give:

A(ikl)=0, AGik)=3f (k) } (5.70)

A(,9)=0, A(kS=3f ki),
A(B, pa) = 0.

Using the general formulas of § 34, and singling out &bgon coordinate, we
calculate:

1. (Invariant) divergence of a vector:
D(n) A(n) + D(5) A(5). (5.71)

2. Invariant divergence of a symmetric tensor:

D(n) Q(k, N+ D(5) Ak5)+ f(k n 5, n, } (5.72)
D(n) Q(5,n)+ D(5)Q(5,5). '

3. Invariant divergence of an antisymmetric tensor:
D(NW(k n+ 5) W k5), } (5.73)
D(MW(S, m+3 f(k ) Wk .

4. Invariant divergence of an antisymmetric tensoaokithree:
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D(n) K(n, i,k) + D(5) K (5,i k),
D(n) K(n,5,k)=% f(I,n) K(i,n,k).

5. Rotor of a vector:

D(n) ALK - D(K A+ f(i K AD), }
D(5) A(k) - D(K) A®5).

6. Rotor of an antisymmetric tensor:

D(I) AGi, K) + D(i) Ak, 1) + D(K) A(l, i) +f(i, k).

7. Laplacian of a scalar:
{D(n) D(n) + D(5) D(5)} ®.

Using the formulas of § 36, we compute:
B' = B(i) =% f(Lk)uG)u)uk),
B; = B(5) =5 f(i,k)u()u(K),
H(a)B(a) + Bla)u(a) = —5 f(i, ) uG)u)u k)
WIB(Ru() +u() BRI W=4 { k b K5, n),
W[BE)u(R+u(R BE)IW=4 {mh K mnk

WIB(R ((5) + 1(5) B(R] W=0,

WIB(B)1(5)+ #(5)BEIW =4 f(m N K(m ns),
in whichK(a, £, )) is the antisymmetric tensor of rank three:

K(a, B, ) = $W [14a) 1B 1) — 1) 1B 14a)] W.

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)
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§ 38. Hilbert’s invariant integral.
Consider the integral:
0Q° (a)
J=|AL| Q%a); d
J ( @)=z j X (5.80)

N=Det[Q_ (a)]; dx=dxdx... dx,

which will remain invariant under transformatiorfsize groupsA andB.
We have three types of variational quantifE%a).

1. Arbitrary variationsXQ2“(a).

2. Variations that are generated by the infinfteditransformations of the group
aQ°a).

3. Variations that are generated by the infiniteditransformations of the grol
2Q°%a).

It is obvious thatd # 0, but one will always havéJ = 5,J = 0.

I. The group of transformatios

One has{is an arbitrary parameter):

X7 =% +e£9(3),

dX? = dy +£[gf j ax.

- (5.81)
X
10 (\,0 g o r af”
QX +ef?(X)|a)=Q% (x|a)+£Q (xla)F,
vV
in which one will have, up to terms that are linges:
of? 0Q°
Q%a)=Q%a)+¢| Q' (a - f7 : 5.82
(a) (a) ( )axf % (5.82)
and therefore:
of? 0Q°
Q%a)=¢| Q' (a -f7 : 5.83
aQ%a) ( )axf % (5.83)

[I. The group of transformatioris

We have:

Q'%a) ={da. P +eda, B} QUB), (5.84)
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in which [||A(a, A || is an arbitrary antisymmetric matrix.
Therefore:
2Q°%a) = eAla, P QUP. (5.85)

We shall now compute the invariant variation of (5.80):

:.[ aif\L 3 ar OAL X%(a) dx

0Q%(a) ox 3 0Q°(a)

ox’
= j NG, (a) X7 (a) dx, (5.86)
in which we have introduced the notation:
Nefay=0L _ 9} oAl | (5.87)
0Q%(a) ox a[agﬂ(a)j
ox’

If we now substituteX)’(a) = »Q°a) in (5.86) from formula (5.85) then that will
give:
O=¢ j A6, (a) Ala, B)Q° (B) dx = aj N6(a) Aa, B) dx, (5.88)

in which, due to the arbitrariness Afa,(), we should have the symmetric teng«,

D):

Q(B) OAL _Q7(B) @ OAL
A 0Q@) A x| (0Q7(a) '
ox’

6(a, P = (5.89)

If we now substituteX’(a) = 4Q°%a) in (5.86) from formula (5.83) then that will
give:

_ L, 0f7 L 0Q%(a)
0 _sj/\eg(a){g (@) 510 }dx

__ r ] 0Q"(a) 10NQ"(a)8,.(a)
= £jAf{ o O v; }dx

[1one 00%(@) -,
——g[afr ] 2o0G Q' ()8, +dx, 5.90
J {/\ o e 2@ "V} X (5.90)
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in which, due to the symmetry of the tengby and the arbitrariness in the functidi's
one will get:

16/\6?,” N 0Q° (a)
N ox ox’

Q“(a)8,, = 0,8 =0. (5.91)

T

Using formula (5.37), we rewrite (5.91) in the form:

0B &a, ) =D(P&a. B - AL a, &1, f —AB, 5, )41, ) =0.  (5.99)

Now, consider an important special case for witxa) and afgxga) are included
in the functiornL only in the combinations:
g7 =Q%(a) Q" (a),
99" _00°(a) . o 02 (@) (5.92)
= Q' (a)+Q°(a)——.
ox’* ax’ (@) (@) ax
In this particular case, the invariant integral berput into the form:
J=[AL g™ 99" |y, (5.93)
ox’
and its variation will take the form:
B :.[ OANL 0 OAL 57 dx
ag” ax (ag‘"j
a A
0x
1AL 9] _RE I or(a) &7 (@) dx. (5.94)
ag” ax (ag‘"j
a A
0x
Comparing this with the general formula (5.86), ankfind that:
NGy (a)= AL 9 | AL | grpy (5.95)

ox’

g7  ax a(ag”j
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so, upon multiplying this b@, (@), it will result that:

%/\em:a/\"—a oL | (5.96)

ag” X a(ag j

ox’

The symmetry of the tensd,, is obvious from its derivation. If we now substitute
X% a) = 4Q°%a) from formula (5.83) in (5.94) then that will give:

coonl v a0, 097(a)
0=¢| NG Q Q - f d
[ ne, (a){ (@37 ™" }x

1068, 1, 0g”
=[] 22%  1g 99 gy 5.97
J {/\axv 2”6x"}x (5.7)

which should once more satisty, &, = 0.

The cases that we considered were based upon the Hilfidings regarding
conservation laws in the theory of gravity. Followintp#Ert, in the next chapter, we will
give the derivation of the conservation laws forstarfields, which will be based upon an
invariant integral of the type (5.93), and the derivatibrcanservation laws for spinor
fields, which will be based upon an invariant integrahef more general type (5.80).

In conclusion, we shall consider, as an exampé&ejrtvariant integral:

I=] A Q%a) Q%a) Rox (@, B dx (5.98)

in whichRy; (a, p) is the Riemann tensor in formula (5.32).
One has:

& =] 3 AR dx+ 2] AR,5Q%0) Q7(a) dx + | AQa) Q@) Ree (@, A dx,  (5.99)
in which we have introduced the notations:
Ro(@) =Q (A R(a, B, R=Q%a)Q(a)Ru(a,p .
In order to calculate the last integral, we use a kntwk ([12], 8 94). Note that

. . . . 0Q%(a
A\ a, p) is a tensor, and choose a coordinate system in whlc%—éaﬂp are equal to
X

zero at some point. One will have:

Q%a) Q1B Ror (a, B = 2 a%{n"(a) Q1B &, (a, A}
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In an arbitrary coordinate system one will have:

Q%(a) QB Ror (a0, f = 22

N AR O%a) QB A (a, A}

Therefore, the last integral in (5.99) can be convertes ansurface integral, and will
disappear.
If one notices that:
N =N\Q%a) Xy(a) =-NQ4a) N%a) (5.100)
then that will make:

A =J]ARdx=2 j AR (@)-1Q, (@) R R%a)dx  (5.101)
If we substituted, Q°(a) from formula (5.85) then we will get:

0= 23] A(R(a)-1Q,(a) R Aa, B Q%P dx, (5.102)

which will imply the symmetry of the tens&a, ).
If we substituted Q°(a) from formula (5.83) then we will get:

_ 1 r oy I o 0Q%(a)
0_2£.[A(Ra(a) ZQJ(a) R)(Q (@) X f X

j dx. (5.103)

If we do the same calculations that we did in teevétion of (5.90) then that will give:
0(r) (R(o,1)-13(o, 1) R = 0. (5.104)

Our study has shown that the elementary geonmajects that define the metric in a
Riemannian space are the elements of the metoein matrices, while the components
of the metric tensogix are derived from them by quadratic constructioAs.long as we
are dealing with ordinary tensors, which are spimsors ofeven rank we can use the
usual metric. However, as soon as we turn to sgieers obddrank, we must go back
to the original metrio-bein.



CHAPTER VI

WAVE-LIKE 5-OPTICS IN RIEMANNIAN SPACES

INTRODUCTION

In order to embark upon wave-like 5-optics in Riemanniasespave might wish to
consistently demand the periodic dependence of the comiza®g, of the metric field
upon the action coordinate.

However, we shall not do that in this monograph, asds done in modern quantum
mechanics, we shall demand that the componépisof the metric field shouldot
depend upon the fifth action coordinate; i.e., it shoatis# the cylindricality condition.
Including that dependency will have to be the subject odéurstudy.

Obviously, the transition of elementary particlesngtgs and spinors) from one
charged state to another with the emission or absarpfi@ massive, charged quantum
of metric field — viz., the metronis a new, specifically 5-optical effect.

As we mentioned already, we shall not discuss thatteffere, but confine ourselves
to the special case in which the metric fi€lg, is purely electromagnetic; i.e., the only
case that is considered in modern quantum mechanics.

§ 39. Derivation of some formulas from the theory of tensor ahspinor fields

In the case of the tensor fiew‘”, we can derive all of the main formulas for field
theory from an invariant Lagrange integral:

(r)
'[AL[W‘”,GXXU \Gm’aaifj dx" dx dxC dx* dx. (6.1)

Varying the field componentw“) at constanG" will give the field equations in
generally-covariant form:

ONL 0 AL
oW ax 3 ow®
ox°

=0. (6.2)

Varying the metric potential&° will give an expression for the symmetric 5-tensor
6, of energy-impulse-charge:
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OAL @ AL
- , 6.3
aG”  ox' a[ac;”j (6:3)

ox’

1NGp=

or, in view of the fact tha{% =-2N\ G

30 = oL _10 oL ——1CBUTL. (6.3)
0G” A ox' o[9G7 )| 2
ox’
It was proved in 8§ 36 that it satisfies:
0.8 =0. (6.4)

In the case of complex spinor field W, we can derive all of the main formulas for
field theory from the invariant Lagrange integral:

J'/\L W,W,aw ’a_vv
ox° ox’

0Q° (@)

Q% (@),

j dxt dx dx® dx dxC. (6.5)

Varying the field componentd/ andW at constanf?(a) will give the spinor field
equations in the generally-covariant form:

OAL _ 9 | AL |_,
oW  axX a[aij ’
ox’
OAL_ 9 | AL |_o (6.6)
ow ax a(a\/vj
ox’

Varying the metric potential®“(a) will give an expression for the symmetric tensor
& a, p) of energy-impulse-charge by means of the formula:
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OAL 0 OAL

N&a, ) =Q (ﬁ)mg(a)—Q (ﬁ)axﬂ 752" @ , (6.7)
ox”*
or, in view of the fact tha{a/\il' =-NQ,(D:
0Q°(a)
. oL Q%(p) o OAL _
&a, p=Q (ﬁ)an(a) Y a[‘mg(“)j da,p)L. (6.8)
ox’

As was proved in § 36, the tengfn, £) is symmetric and satisfies the equation:

0B &a, B =0. (6.9)

For some applications, it is interesting to coesithvariant Lagrange integrals that
are more general than (6.5):

[A L( 197(@).0, (a),a%j(fa)j dxt 2 o d’ o, 6.5)

in which allQ () should be considered to be function€fa). We have:

oL _(_oL ), oL 90, (6.10)
0Q%(a) 0Q°(a)) 0Q.(y) 0Q°(a)’ '

in which the parentheses indicate that the devigas taken at consta,})).
However, sinc&(a) X (a) =- Q{a) X2 a), it should result from multiplying by
Q. (a) that:
R Aa) =-QAa) Qo()) X% a),

(6.11)
0Q,(y) _ _
an(a’) - Qf(a) QU(” .
Substituting (6.11) in (6.10) will give:
oL _ oL ) dL
207 (@) ( 297 ( a)j 29.() Q,(@)Q,(y) - (6.12)

Substituting (6.12) in (6.8) will give:
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&a, B

oL j_ (@) oL QB 0 OAL

B )(agf’(a) 0.8 A ox a[aQ”(a)

-Jda, /L. (6.8)
ox’ j
We shall now reveal the physical meaning of equat{én®) and (6.9), which, from
formula (5.38), can be written in the form:

D(n) Qa, P -A(r,a,6) Q& 1) - A1, 1, € Aa, € =0. (6.13)

In order to do that, we shall consider the speciat @asvhich the external fielt,, is
purely-electromagnetic and its dependence up@an be neglected.

From the general formulas (5.72), we can rewrite equ#6id. 3) for this special case
in the form:

D(n)8(k, n)+ D(5)8(k,5)+ f(k, n@(5,n= 0, (6.14)
D(n) 8(5,n)+ D(5)8(5,5) = 0. '
Averaging over the action coordinate will give:
aé(:n, Y4tk @50 =0, (6.15)
06(5:n) _ (6.16)

ox"

Equation (6.15) expresses the conservation ofggreend impulse in the presence of
an external electromagnetic field that does noteddpuponx’, while equation (6.16)
expresses the law of conservation for the eleatuoent. Hence, equation (6.13)
expresses the law of conservation of energy, ingp@ed charge in the case of a general
field Gy .

8 40. Real tensor fields in Riemannian 5-spaces

In Chapter IV, we established the complete systémquations for meson fields in
the presence of source fields. When written inegally-covariant form, they will take
the following forms:

1. Scalar mesons:
MW _ ow, oW, _

PW o ox 0. (6.17)
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2. Vector mesons:

ONAWH oW, AW ow
=N\Q’, Ly 4=, 6.17
ox* Q/] ox’ ox’ ox ( )

3. Pseudo-vector mesons:

Auv
AW _ no My W , Wy _ I Wors _ (6.17)
ox’ ox° ox* ox oX
4. Pseudo-scalar mesons:
Auvo
NWET e, Mo, OVier | Wy Oy, O Wi _yg.17)

ox° ox’ ox’ ox oX ox

Here, Wy, , Wi, Wywe, Q% andQ*" are antisymmetric in all tensor indices. The
structure of the equations is the same for all of threeson fields: The first group of
equations expresses the idea that the divergence oélthestiiength tensor is equal to the
source density field. The second group of equations expreéssédea that the rotor of
the field-strength tensor is equal to zero in all folsesa

Using the rules that were set down in 8§ 37, we catewhese equations in terms of
the invariant differentiation symbol.

1. Scalar mesons:
D(@W(i) + DBW(5)= Q,
D)W (k) - D(KHW( )+ f(i, KW5)=0, (6.17)
D(BW (i)+ D)W (5)= 0.

2. Vector mesons:
D@i)W(k, i)+ D(B)W (k,5)= Q(K),

DHW(E,)-3 f (kW (k,i)=Q(5),

. . . (6.18
D)W (k, )+ D(K)W( ], i)+ D(YW(i, k)

+1 (0, KW, D+ f (k,DWG,i)+ (i W (BK)= O,

D(5)W (i, k)+ D(i)W(k, 5)+ D(K)W(5, i)= 0.
3. Pseudo-vector mesons:

D()W(k, 1,i)+ D(S)W (k,1,5)= Q(k,I),
DOWEG,1Li)-3f ( kW K,1,i)=Q(5I),
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DOW(K, L, m)= DKWL m )+ D) Wm i R— Tm W.ik)

f (i, K)W(S,1,m)— f(k,DW(E, mip f(I,m)WG,i k- f(m )W, k B O, (6.19)

DB)W(i,k,)-D(iW (K,1,5+ DK)W(,5i> DiW (5 k F O.
4. Pseudo-scalar mesons:
DHOW (K, I, m, i)+ DB)W(k, |, m5)= Q(k I, m),
D)W (5,1,m,i)-3 f (k)W (k,I,m,i)= Q(5,I,m),
DOW(K L,mnm+ DIWImn)+ O Wik]nm W mik)l (6.20)
+D(N)W(i, k, I, m)+ f(i, WG, I, m m+ f(k ) W5, mn ) '

+£(1,mW(,n,i k)+ f (m,n)W(, ik I} f(n,i)W(5k,I,mE O,

DEW(K, I,m n+ DWW m n5H+ D)W m 5, B 0 mW b k)
+D(n)W(5, k, I, m)= 0.

One consequently imposes the cyclicality condition uperfield components:

WOR 2, %, %, %)= U(R, % % Dexp %), } (6.21)

Q(X, X, %, X, ®X)=d %, X, X, X)exp(@ X),

and rewrites the equation in Fourier components.
When theD-differentiation operator is applied to the Fourier congds, it will
replaced / 9 withiz. One will have:

D(K) = %— g, DG)=iu, (6.22)

and the equations for the meson field will take on tiieviang form:

1. Scalar meson:
D@)U (i) +iJ (5)=q,
DU k)-D(k)U()+ f(i,k)U(B)=0, (6.17)
iuJ()-D(@)J (5)=0.
2. Vector mesons:
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DU (k,i)+iuU k,5)=qk),
DU (Bi)-3f (kU ki)=q(5),

D@)U (k,1)+DK)U (1,i))+D (U ( k)
+HAKUGH+TKIMU G T (LY (X F O,

i W (i,k) + D(i)U (k,5)+ D (k)U (5,i)= 0.

3. Pseudo-vector mesons:
D@V (k,1i)+i /4 & 1,5)=q k),
DOHUGII)-3f (kW kli)=q ),

D(@)U (k,1,m)= D(k)U(l,m, i)+ D(1)U (m,i,k)- D(m) U(i, k, 1)
f(i,k)U(5,1,m)-f(k,DUGmM,i¥ fEmUGikyfmilGEk]E o

ipd ik )-DiJ k.1,5)+DK)U(,51)-D (Y Bk )= 0.
4. Pseudo-scalar mesons:
D@)U (k,I,m,i)+izU I, m,5)=q,I,m),
DOUGIm,i)-3f (kU &kl mi)=q(5) m),
D(i)U (k,I,m,n)+ D(K)U(l,m, n, i)+ D(n) U(i, k, I, m)+ D(m) U(m i k |
+D(N)U(i, k, 1, m)+ f(i,k)U (5,1 ,m,my+ (k1)U (5,m,n,i}

+£(1,m)U (5,n,i,k)+ f(m, nUG,ik, 1)+ f(n,i)U Gk, mE O,

i uU (k,I,m,n)+ D(k)U(I,m, n,5)+ D(I)U(m, n,5,k} D(m) U(n5, k I)
+D(n)U(5,k,1,m)= 0.

(6.18)

(6.19)

(6.20)

In the case for which the meson field in question is pusalye-like— i.e., there are

no source fields we can regroup the equations and rename them:

1) Scalar mesons: u@s) - iu U,
2) Vector mesons: U(5,K) - igU(K),
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3) Pseudo-vector mesons: iuxU(k I, 5) - U(l, K),
4) Pseudo-scalar mesons: igU(k I, m 5) — U(k, I, m),
and we can write the systems for the four kinds of megothe following forms:

1. Scalar mesons:

DU () -xU =0,
Uu@i)=D()U, } &
D(i) U(K) —D(k) U(i) +iuf(i, k) = 0. (2))
2. Vector mesons:
D(@)U (k,i) = U (k) =0, @)
U(@,k)=D(@{)U (k)-D(k)U (i),
DU k,D+DKUI,)+DIJ { k)
+H{ f(L, KU +f(k,DU@G)+f(,iJ k) =0, ®)
1°D(i)U (i)+%’uf0,k)u k,i)=0.
3. Pseudo-vector mesons:
D(@)U (k,1,i)-U k,1)=0,
GV
D@i)U (k,)+DK)U(Li)+D(J § k)-4U (k) )=0,
2{D(M U(i k) = D()U(k, I, m)+ D(K) U(L, m ) - D) U(m i, K)}
Hu{ (i, KUI,m) - f(k DU(m i)+ f(I,mU(i,k) - f(mi)U(k }=0, ®)
DOUi)-5iuf (kW kli)=0.
4. Pseudo-scalar mesons:
D@)U (k,I,m,)-U (k,I,m)=0,
D@)U (k,I,m)-D(k)U(,m,i)+ D(HU (m,i,k)- D(m)U(i, k, 1) @)

~12U (i ,k,I,m)=0,
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LD Uik Lm+D(DU(k Lmn+ D) WLlmnj+ XDU(M ik
DM U(n ik, )+ ip{ (L, YU, m )+ f(k hU(m n )+ 1(l,m U(n i K
+f(m nU(i k 1)+ f(ni)U(k1,m)=0, ®)

D(MU(k 1, M~ i F(i,mU(k |, m = 0.

The group of equationg\] for each kind of meson is the one that is usuallgrmyin
the literature (cf., especiallyL§]) for the wave equations of mesons. If we exclude the
case ofu = 0 from consideration then the group of equati@)sll be a consequence of
the group of equationg\]. Indeed, let the operatd(.) (the dot means one of the indices
1, 2, 3, 4) act upon the second group of equatiénsAlternating them and taking (5.67)
into account will give the first group of equatiordy.( Contracting and taking (5.67) into
account will give the group of equatior®) (

We shall explain this using an example from electnadyics. Write the system of
wave equations for a photon of frequernogs:

rotH—ﬁ)Ezo, rotE+£)H:0. @)
o o

If we exclude the case @b= 0 from consideration then, from), we will get the
following system of equations as a consequence:

dvH=0, divE=D0. B8)

If we turn to the general case of electromagnetiddievith sources then both systems
(A) and B) will combine into a single, complete, system of MaX equations:

otH - 2= dvE=ap),

o °
rotE+—H =0, divH = 0,

C

. . 1
in which wnow means the operate%.
i
We see that 5-optics gives a rigorous justificationtti@r rule that accounting for an

external electromagnetic field is achieved by replading operator% with the
X

operator%+h—eAK . That rule is confirmed under these limitations & e considering
X c

only wave fields for mesons [group of equatioAy.( If we turn to the complete system
of equations for the meson fields with sources thenrtHatwill be violated since terms
that containf(i, k) will appear in the group of equationB)( The situation will be
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different when we pass from the consideration of teffistifs to the consideration of
spinor fields.
8 41. Complex spinor fields in Riemannian 5-spaces
We shall obtain the equations of spinor fields andettgression for the 5-tensor of

energy-impulse-charge from the general formulas in 8§ 3%térging with the invariant
Lagrange integral:

Y oW oW Y
3 A{WQ (a)u(a)[ Bgvvj (a—xﬁ @WJQ (a)u(a)v%

x dxt dx¢ dxC dx* dxC. (6.23)

Using formula (6.33) from the Appendix, we can m2gs the invariant Lagrange
function in the form:

ow 6W

L:%Q”(a){w;x(a) T 00" (y)

ox

H(a )W} +3 Q,(p)Q%(a) K(p.y,a),  (6.24)

in whichK(p, y; a) is the tensor that was specified in formula (3.79
From formula (6.6), we will get the equations pin®r fields in the form:

NQ°

(@)W -N L a) BRa) + Ra) ()] W=0,

(6.25)
/\gﬂQ”(a),u(a)+—[/\WQ”(0),U(0)] AWM ( 0) Ba) + Ba) 1{a)] =O0.

By virtue of formula (6.32) in the Appendix, wenceewrite equations (6.25) in the
form:

Q%a) K a) ( jW 0, Q%a) [67W+WB j,u(a) =0. (6.2%5)

In order to derive an expression for the symméirtensord a, ), we will use the
general formula (6% for the invariant integral and perform the ca#tidns in formula

(6.8).
We will have:
oL
@ )(69”( )j RALFTNT)
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oW W }

= %Q”(ﬁ){V\?,u(a) 5 o MW

199,(y)
oo

0Q'(y)
ox’

+ Q,(p)Q°(BK(py,a)—% Q7 (p)Q, (@)K (y,p.8),

Q°(B) @ OAL 10 (e 1907 (B) ,
A B a[‘m”(“)j = n g (N (B.@) =5 =20,(0)Q7 () K(p.a ).
ox’

0Q'() . ONK (@, B)

If one eliminates the expressions for the deniesti 3 3 using
X X

the formulas:

0Q’

(2] +G., o’ W -D,(y.e)Q (¢) =0,

g

%%—A(y,ﬁ, P Ky p, a) =y a, ) K(y B, p) = 0. K'(B, a),

which arise from the formulas for covariant diffetiation, and considers the
antisymmetry of the tenséi(y; 5, p) then formula (6.8 will give:

— 1 g A v
&a, P =34 (ﬁ)[W,U(a)an 5 LW

308, p, Y K(a, B, ) —50: K (B, a) —da, P L. (6.26)

oW oW j

In Minkowski space, the expression (8)26ill go to the expression (4.143) in 8§ 30.

We shall give an expression féfa, p) in the case of a spinor field that is based upon
the invariant Lagrange integral while bypassingdaeonical formalism.

The Lagrange function will vanish, by virtue ofethact that the fielddV and
W satisfy the field equations, and if we use the faolerfor invariant differentiation then
we can rewrite the field equations (6.25) in therfo
H(a)[D(a) - B(a)]W =0, } (6.25)
{D(a)W+W Ra)} £ g =0,

and the energy-impulse-charge tenéar, f) in the form:
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&a, B
= {{Wu@) (B - BAIW- B W- WEHl o) W-11D) apf. (6.26)

Now, consider the special case of a purely eletgnetic field that does not depend
uponx. From formula (5.78) in § 37, one will have:

Field equations:
{ (k) D(k) + u(5) D(B)+$ (B (k) f (L k} W= 0,
(6.28")
{DIROW(K+ D) Wir(5)-3 W () (e (K (i |} = 0.
Using formula (5.74) will give:

Energy-impulse 4-tensor:

i, 1) = ${Wa(i) DIOW- D(R V() v
~1f(k,n) K(5,n,i)-1 DM)K(n k i)-1 DG)K (ki)  (6.26"a)

Current 4-vector:

6(5,k) = ${Wu(5) (K W- O B Wi(5) W

+2D(n) K(n,5,k)+% f(i,n) K(i,n,k), (6.26"b)

6(k,5)=${Wu( K O5) W- O5) Wu( k W-1 DN KB, K

The symmetry conditiordd5, k) = &k, 5) expresses the Gordon identity in the
presence of an external field.

In the transition to the representation by Four@mponents, we shall make the usual
assumption that only one component of the decortipnss presented, namely, the one
that corresponds td@ = 1; i.e., we impose the cyclicality condition upthe spinoraV
andW:

W=Uexp (uxX), W=UexpEiux) (6.27)

and introduce the notations:

K (i,k,1)=2U *[y0) y&) () - v vk ) yQ)), } (6.28)

M (i,k) =iK ( k,5)=3U"[y()yk)-y&)y0)]
We will get:
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Field equations:
UK) D(K) U+ U —=p(i) yK fi,k U=0, (6.29)

Energy-impulse 4-tensor:

6(i,k)=1{U"Ki) D(U — KU y(i) U}—%W+—i’ f(k,NM (i), (6.30)

Current 4-vector:

10M (k,n)

6(k,5) =iu[UKi) U] R (6.31)

We see [formula (6.29)] that in 5-optics the Dirac equavill include an extra term
—;—3 ) LK) (i, KU. This extra term will result from the requirement general

covariance of the equations for the spinor field, whigl imply that one must replace
the ordinary derivative8W / 0x° of the spinor with the covariant on@8// 0x° — B, W.

The appearance of this extra term shows that the ugdeafrom theD-formalism is
violated in the case of spinor fields. However, asvell-known, the Dirac equation
agrees with experiment, and that agreement would dettxisharply if there were an
extra term. We are now confronted with a dilemma sehanportance must not be
understated. We should hope that further developmerttssintheory might overcome
that dilemma. In our opinion, it would be appropriate to pecdirection in which to
conduct such research.

One should not think that equation (6.29) does not iraplyspecific 5-optical effect
(in addition to the conventional radiative corregjichat would compensate almost
completely for the additional term, so as to bringuttagreement with experiment. This
effect would be consistent with the charged (massivég sththe radiation field; i.e.,
virtual transitions of electrons to other charged stdtesluding a neutrino in the
transition state) with the emission or absorptidéra @harged (massive) quantum. The
transition of an electron to a neutrino state wite emission of a massive quantum is
analogous to the transition from a proton to a neutitin the emission of a meson, and
is the reason for the deviation of the experimental vafutae magnetic moment for the
electron from the one that is calculated from thea®iequation, which, in theory, is
calculated from equation (6.29).

Here, we come to some still-unsolved problems of fegpthe discussion of which
would lead beyond the scope of this monograph.

Although using the canonical formalism will give exmiess for the energy-impulse
4-tensorTy and the 4-vectos , these expressions will be undetermined, in that ane ¢

add expressions of the forn%;ﬂ# and aaw.”‘ , Where ¢4 and (4 are antisymmetric
X X

tensors:

al/ﬁlkl’ SL:S&"'aiiik-

T =T+
T T o X
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That means that the values of the energy and chaegrais:

[ Tas dt dx@ A, [ sidxt dx dd

of the densities of these quantities in space with atsnain undetermined. This, in turn,
will imply an indefinite value for the mechanical and metic moments of elementary
particles.

The theory of gravitation eliminates this indeterminagthwespect to the energy
density and mechanical moment of an elementary patiiclgiving the symmetric 4-
tensor energy-impulséy a direct physical meaning.

However, the charge density still remains undetermineachwwill imply an
indeterminacy in the values of the magnetic momentsofehtary particles.

5-optics, as a natural outgrowth of the theory of ga#ein, eliminates the
indeterminacy in the charge density, and consequently in thes \@fl the magnetic
moment.

APPENDIX

1. The derivation of the formula:

oNQ? (a)
ox’

Ha)

By definition, one has:

=A[B(a) 1(a) —(a) B(a)] . (6.32)

B(a) i(a) —(a) B(a)
=3 A(a, p, ) (P 1)) 1a) - () 1P 1))
=3 Aa, p, y) (da, Y hp)- Aa, p) 1))
= (140, p.a)-1A(@.a.p)) 1 (o)
=A(a, p, a) ((p) -

Multiplying formula (5.32) by a) will give:

u(a)a’\%gﬁf’) = A8, a, ) 1a) .
X

Comparing this will give (6.32).

2. Compute:

W [4(a) B(B) + BAMa] W
= 1(B. . ) WI(14a) 10) 1) — D) HP) 1a)] W
= 108, 0. Y K(@. p. ).
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3. Substitution gives:
W () B(a) + B(a)a)] W= 1A(a, p, YK(a, p, ) -
Multiplying formula (5.30a) b (a, p, ) will give:

Aa, B ) K(a, B y)

. a%;fy ) 0%a) Q'8 K(a, B )
_00%(a)

=TT QM QB K@ B ) -
X

Comparing this will give:

W [1a) B(a) + B(a)ua@)] W=-22 W) a1 a%a) Ko, y a) .

ox°?

(6.33).

(6.34)



AFTERWORD

In his lectures on basic quantum mechanics, L. |. Matalal raised the question of
the structure of physical theories of any constructiorgeneral, and answered it as
follows:

“We can say, somewhat schematically (as usual) thleatonstruction of any physical
theory consists of two complementary stages... Thediegje consists of learning how to
attribute values (which will mostly take the form ofrmoers) to certain objects in nature
in a rational way. Secondly: One determines mathealatelations between these
values. Without the first stage, the theory wouldllosory and vacuous. Without the
second stage, there would be no theory, in general. tBalywo stages in combination
will give a physical theory.”

Developing this idea further, Mandelstam said:

“Modern theoretical physics has taken a different gedim the classical one. |
would not say this happened consciously, but historichlg/was true. It happened by
itself. Nowadays, we primarily try to guess at math@ahtools, and operate upon the
values, or the part of the model that is known in adeaatthough it is not entirely clear
what they mean... Undoubtedly, so did Einstein, when tetedethe principle of general
relativity. This is especially true in the example laf tvay that the Schrodinger equation
was created.”

How does the foregoing viewpoint relate to the caseaftics?

The formal structure of 5-optics was, in substaneailable many years ago, and it
was constructed in the work of Kaluza and O. Klein, artdr lan, of Einstein and
Bergmann.

The construction of that formal structure proceeddderfollowing stages:

l. T.Kaluza (c. 1921).

1. The extra fifth dimension was introduced into the-diorensional physical space
of the theory of gravitation. The physical significanof that extra fifth dimension
remained open.

2. It was discovered that the metric potential of Segpehould not depend upon the
extra fifth coordinate of space. The physical meaninghaf tylindricality condition
remained open.

3. In order to get a one-to-one correspondence, the4lg 14 potentials from the
theories of gravitation and electrodynamics and 15 mptientials of 5-space implied
that one must pose an additional requirement; e.g.,Ghat 1. The question of the
physical significance of that requirement remained open.
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II. O.Klein and V. A. Fock (c. 1926).

1. The specified comparison of the 14 potentials oftlieries of gravitation and
electrodynamics and the 15 metric potentials of 5-spacke the discovery that the
trajectories of charged particles correspond to null-lenggbdesic lines (i.e., the
geometry of light) in 5-space. In fact, this is trepigalence of the problem of the
relativistic, classical mechanics of the motion of rgled, material points with the
geometrical optics problem of the propagation of rayssp&ce.

2. An opportunity was found to formulate the quantum-mechaproblem of the
motion of a charged particle as the wave-optical probletheopropagation of a scalar
field in 5-space, if the wave function in 5-space hasyeécality condition:

W0, 5 33 X, x0) = U, %, xC, X exp[i (%:j ij

imposed upon it, which relates to the cylindricality conditon the metric potentials.

3. The physical meaning of the fifth coordinate, thencyicity condition on the
metric potentials, and the cyclicality condition dmetwave function remained open
qguestions. As before, the physical meaning of the reqamethatGss = 1 still remained
open.

lll. A. Einstein and P. Bergmann (c. 1938).

The cylindricality condition was replaced with the Wwea requirement of the
periodicity of the metric potentials in the fifth cooralia. The period that was adopted
had microscopic values that could be set equal to zetweirfirst approximation. The
periodicity condition once more degenerated into thmdsitality condition then.

Since the equivalence principle does not apply to therefeagnetic field, in all of
these works, the metric tensor of 5-space turns outgendieupon the ratie / m of the
particle for the motion in question, while the metengor of 4-space of the theory of
gravitation is seen to be universal.

Hence, it must be concluded that 5-space, as a fivendiomal generalization of the
theory of gravitation, cannot be the universal physicatesps the general theory of
relativity (extended by one extra dimension), and shoaiee fa very different physical
meaning.

IV. 5-optics.

1. The 5-space of 5-optics defines the configuration spatesb particles whose
motion is being considered (extended by one extra dimensioThe metric and
topological closure of that space reflects the eftédhe rest of the universe on the test
particle.
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2. The fifth coordinate of configuration space takes ordisinct physical meaning
of action. This relates to the fact that the fiftbordinate of configuration 5-space is
topologically closed.

3. Instead of the cylindricality condition on the mepotentials and the cyclicality
conditions on the wave function, all physical quagsitmust satisfy the single condition
that they should be periodic in the fifth coordinataction.

4. It is discovered that the period of the fifth coortbnhas the universal value of
Planck’s constant, which then has a distinct physicalning.

5. The quantum motion of material points is a probldrphysical quantities that
depend upon the action coordinate periodically.

6. The fact that one had to assume (gt= 1 in the previous theories is due to the
fact that the 5-eikonal equation:
ox* ox’

formulates the problem of classical mechanics of tbhéam of a charged material point
homogeneouslyn terms of the metric potentiaG*’. Therefore, in that problem, the
physical meaning of the condition is that the metric gatkeim 5-space has only fourteen
ratios, so the requirement thags = 1 will not lead to a contradiction.

7. We find a different state of affairs in the problemdetermining the metric
potential sources for a given field that satisfies Eingequation for 5-space:

PA,u _%GA/J P= KQA,u )

which is inhomogeneous in the metric potentials.
When solving this problem, the rate®/ m that appears in the expression for the

metric tensor of 5-space should be replaced with theetsal valuec?, / ZL . The value
T

of the potentialGss must be determined from the field equations. @lebe thatGss = 1,
a priori, is not permitted, and will lead to wrong conotuss, for example, in the problem
of the field of a charged mass point.

8. Accounting for the periodic dependence otlattromagnetic field on the fifth
coordinate of action will automatically lead to appance of short-range interaction
forces of Yukawa type, in addition to the long-rarfgrces of Coulomb type (8 25, sec.
3).

9. In any consistent classical theory, we mustiassthath - 0, i.e., we must
neglect the periodic dependence of physical vaareshe action coordinate. In any
consistent quantum theory, we must take into adcolat periodic dependence of
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physical values on the action coordinate. Therefore) tiee standpoint of 5-optics, it is
inconsistent to neglect the periodic dependency of thgponents of external fields on
the action coordinate, as modern quantum mechanics does.

Accounting for this dependency should lead to the prediciwh discovery of a
number of specialized 5-optical effects that could be usedverify the theory
experimentally.
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