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1. The parallel transport of a motor

It is known that a force-system on a rigid body ¢enreduced to a poil® and
represented by a single force vecktol(P) whose line of action goes throughand a
moment vectoM (P). If one chooses another reduction p@nthen one will have the
transport law:

FQ=F(/P),
(1.2

M (Q =M (P)+Fx Q-P.

(% is the symbol of vectorial multiplication.)

We call the two representations of the force systt P and Q equivalentor
equipollent.

The same law of transport is true for the infinitedinigplacement state of a rigid
body. Infinitesimal rotations and translations candbecribed completely when one is
given a pointP of the body, the vectap (P) of infinitesimal rotation, and the vector(P)
of infinitesimal translation. For a different cheiof pointQ on the body, one will have
the transport law:

Q) =9¢(P),
(1.2)

u@Q=u(P)+¢xQ-P.

The pairs of vectorg, M or ¢, u are calledscrews and were originally calleBynamen
STUDY [1] and v. MISES 2] have introduced the conceptmbtor for vector-pairs that
satisfy the transport law (1.1) or (1.2). A moYbrs then composed of two vectarsnd
V:

(1.3) v:(fj,
V

() The results contained in this paper were presentig aession on 4 April 1968.
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in which the second vector is the moment vectdr .of
If the reduction pointd®® and Q of a motorV are separated by the infinitesimal
distancedV then the transport law will read:

v (r+dr)=v(r),

(1.4)
V(r+dr)=v(r)+vxdr,
or
dv =0,
(1.5)

dv +dr xv=0.

We define thabsolute differentiabf the motor transport by:

d
(1.6) av=| |
av+dr xv

If (1.5) is true therdV = 0 and we speak @irallel transport in the sense of differential
geometry. HencelV in (1.6) will be a measure for the deviation of a mdield from
parallelism.

The Cosserat continuum is described by motor fieldence, to give an example,
every pointr of the continuum is associated with an infinitesimmtionv = ¢ (r) and
an infinitesimal translationv = u (r), and heredV measures the deviation of the
displacement state of the continuum in the neighborhoedr of the displacement state
of a rigid body. HencejV is a measure of the deformation state of the continaiuthe
field pointr. To give a second exampleMf(r) is a force-motor thedV will measure
the deviation from equilibrium in the neighborhaot dv of the field pointr.

2. The absolute differential of a motor in general coordinates.

We introduce the general coordinates with the parametend, X° into three-
dimensional Euclidian spa&€. With the help of the position vector:

(2.1) r=r(xt, % x),

we define the natural basis:

(2.2) a=2" k=123)
0x

and obtain the metric tensggk from the scalar products of the three basis vectors:

(2.3) <G O > =Gk -
(All Latin indices run from 1 to 3.)
With dr = g dX, we write (1.6) as:
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(2.4) v = [d(‘_’kgk) | j |
d(v“g,) +g; dXx vg,

Now, one has: _

(2.5) d (Vgo = Oi V¥ dX gk,

with

(2.6) Oi v =0; V + {ikl}\/,

and the same equations are truevibr (J; is the symbol of the covariant derivative with
. . k
respect tok, 9, =0 /X , and {i I} is the CHRISTOFFEL symbol of the second kind for

the metricgi .)
Furthermore, one has:

(2.7) gi X0 =€ g”‘ Ok s
with:

1 for i=k
2.8 gh=0 = '
(2.8) 9 g =a {Oforiik
and the RICCI tensor:
(2.9) er =g &r; g = det Q).

(&r is the symbol that is alternating in all indices aad the values + 1 or — 1 according
to whetherilr is an even or odd permutation, resp., of the numbers3L, & = 0 when
two indices are equal to each other.)

In order to make the notation in (2.4) more intuitivee introduce the transport
symbols:

k
(2.1Ga, b) = {i | }; =g e,

and ultimately get, with (2.5) to (2.10):

(2.11) &V = ov<dxX g, +Tl dXvg,
' ovkdxX g +TE dXvg + T dk\xg
or
-
(2.12) pyk=| DV X L
OV dY + T dX v

An intuitive summary of the last result will be ackad by introducinglual numbers:

(2.13) VK=V + TV, LX=Tk+7Tk,
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which satisfy the rules of the elementary algebréa dharequired here, and in whiclis
an undetermined quantity that obeys only the conditiés 0. The summand that is
endowed with ther will be referred to as thdual partof the dual number, and the first
summand as theeal part As one will convince oneself by a simple calculation:

(2.14) DV¥=9; V¥dxX + Lk dX V'
or _ _
(2.15) DVK=0,v¥dX + r T dX V!

will give the representation (2.12) after they are sepdrato real and dual parts.
(2.14) is the representation oflinear connectionin the spacéd® of dual vectors.
One must observe that this connection is syihmetric since the dual part of the

transport symbolL — namely, T} — is skew-symmetric in its lower indices, from (2.13)
and (2.10).

3. The FRENET-CARTAN differential equationsin the dual space D*.

One can also represent a motor by its six coordindteg’ =<3 in a vector space
\® and define the linear connection (2.12) in tit That was done ir3]. Here, we

would like to regard a motor as a dual veator 7 v* in D, as in (2.13). We construct
the basis of dual vectors that is required®ias follows: We start from the natural basis
in E® as in (2.2). We associate the basis vedvéth their moment vectors:

(3.1) O =1 >0k
with respect to the origin of a Cartesian coordingstesn inE>. The dual vector:
(3.2) Gk=0+ 77,

represents a directed line i with the PLUCKERian vectorg, and 0, iIn which, from
(3.1), one will have:
(33) <gk , §k> =0.

The basis vectogy in E is fixed by g, in such a way that it can only be displaced along
the tangent to its associated parameter curve.

We take the dual vectoGy (k = 1, 2, 3) that were defined in (3.2) to be a basis for
the dual spacB?, and their scalar products are:
(3.4) <Gj, Gk > =0 .

The dual part of that scalar product will then vanishddtail:
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<Gi ,Gk> = <G +r§i,gk+r§k>
= <@ ,gk>+r[<gi,§k>+<§i,gk>]

= Oik ,
o)
(3.5) <G, 0> =0k,
(3.6) <gi, §,>+<0,%>=0.

Obviously, (3.6) is fulfilled for any andk, as a result of (3.1). Now, since the dual part
of the scalar product is the “reciprocal moment” oflthesG; andGy , the three directed
linesG1, G2, Gz intersect the carriers of the basis vecmrsg, , gsin E* at the pointr
(<}, %% 53). ([4] and B]) The vectorss:, G2, Gs of the dual spacB® correspond to the
basis vectors, g, gs in E2 that are fixed at the point

Since we are dealing with a line connection Of, the FRENET-CARTAN
differential equations will take on the form:

(3.7) 0; Gk = LIik G,
in which
TR

and we can show that the transport quantitigs are determined uniquely by the
Euclidian metric. Upon separating the real and dual pa(&7), we will get:

(3.8) dw=T,0,

(3.9) 0,6=r8+T.9.
It is known that:

Co
a0 (L]

With (3.1), (3.9) reads:
0i (r XgW =r x0i gk + 0 X Ok

(3.11)
=T 0+ e grl O .
A comparison of (3.11) and (3.9) will yield:
(3.12) T, = 9" e

(3.10) and (3.12) agree with (24,®).
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4. The absolute differential of the linear connection in D,

In a three-dimensional Cosserat continuum, one deilts motors or dual vectors
whose six coordinates are differential forms of degrge= 0, 1, 2, 3). For that reason,
in what follows, we shall make use of the calculuditiérential forms (8], [9], [6]). Let
us first review its notations.

The volume element is represented by:

(4.1) dv= /g dx'~d¥ "~ dé
or
(4.2) dX AdxX A dX =X dv.

The vectodF; of the surface element is:

(4.3) dF =Ly dX ~ dX
or _ _
(4.4) dX A dx =¥ dR .

In this, we have the upper-indexed RICCI tensor:

(4.5) eikl = i ik »

NE]

in which the right-hand side of (4.5) is explained by (2.9).
It follows from (4.1) to (4.4) that:

(4.6) dxX A dX = & dV.
In the calculus of differential forms, one has:

ddR =105 (aik) X~ dX ~ dX¢
4.7) =1 gy Eak—— e g AV

Jo

1
= —04/ gdV.
7e

with (3.7), (3.10), and (3.12), the CARTAN torsion 2-forrh aur asymmetric
connection reads: _
d (G dX) =0; G dxX A dX,
=7rT,dX dXg
(4.8) = rg" Erik eSides a
=2rg° dFs.

Furthermore, one has, with (4.7):
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(4.9) 0 =dd(GydX) = 27(d g°dX ~ dFs + g°ddF) = z{—r:s +%asﬁj g dv,
g

from which, it will follow that:

(4.10) ddF.= —= 9, /g=rLav.

NE]

We denote a dual differential form of degpeby:

p p P

(4.11) Q= of+rak.

We obtain the absolute differential of such a fosith the help of the differential
equations (3.7):

p p p
d(G, Q) =G, dQ"+dG, 0Q"

p ) P
(4.12) =(dQ*+ L dx 0Q") G,
p
= DQ“G,,
with
P p , p
(4.13) DQ"=dQ"+ L\ dx 0Q'

is the generalization of (2.14), in whitf appears as the dual differential form of degree
0.
In the calculus of differential forms, one has:

p
(4.14) ddQ*=0
and likewise, since the basis vect@g of the connection are known as functions of
position:
(4.15) dd Gk =0.

(The connection is integrable; teleparallelism piksv)
With that, one will have:

p p p p p
(4.16) dd(G, Q“)=dG, 0dQ*+G, OddQ*+ d, 0 D - &, 0 d*,

such that from (4.14) and (4.15), one will have:
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(4.17) dd(G, ka): 0.
When (4.17) is applied to (4.12), that will yield:
0= d(DQp"Gk) = (dDQp")Gk +dG, O Dka
(4.18) :mDﬁuuuNDDﬁka
= DDQp"Gk,

from which we get the important equation:

p
(4.19) DD Q" =0.

One will find examples of differential forms of gleep for the three-dimensional
Cosserat continuum in my papét,[and likewise the analogues of (4.13) and (4.19)r
that reason, at this point, we need to clarify 3.and (4.19) with some examples.
Moreover, we would like to treat the curved shedl @ two-dimensional Cosserat
continuum in what follows.

5. The shell astwo-dimensional Cosserat continuum.

One has W. GUNTHERTY] to thank for the first complete linear theory thie
Cosserat shell.  We will show how the basic kinerahtand static equations in
GUNTHER's article follow almost immediately from oformulas (4.13) and (4.19).
We shall preserve GUNTHER’s notations as much asipke in that demonstration.

The position vector in Euclidian spac&® has the form:

(5.1) r ¢ 3 ) =R (0, X8 + X E (x4 %),
such that the shell takes the formxdE 0.

r (x4, %) =R (X}, X9 is position vector of a point on the shell, inigihx', x* are
the GAUSSian parameters of the shell-surface x@Gn0, the basis vectors are:

oR oR or
5.2 — = ay, = , — =
(5-2) O PR ox®
The scalar product:
(5.3) <ag,ap> =ays

(Greek indices run from 1 to 3) defines the meteiosor of the shell-surface, which is
also called thérst fundamental tensor.
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In order to define the transport quantities>dre 0 by using (3.10) and (3.12), we
shall requiregi and its first derivatives fot® = 0.
One next has:

_<ar ar>_<aR s 0E OR 36E>
Jap = = + X + X

ox* ' oxf ox” X" 0¥ X

(5.4)
= agp+ X <0_E,a>+<0_5,a> N
ax? Pl \axf T

R 3 OE 0E s/ OE
55 = +xX°— E)= EY+X({— E),
(5:3) Js <6x" X ><6x” > <6x" >
(5.6) Oz =<E, E>.

From time to time, it might be appropriate to canep further with thesegi .
However, (5.4), (5.5), and (5.6) will become espakbgisimple when one introducé&sas
the unit normal vector to the surface, which isteomgry in GAUSS'’s theory of surfaces.
With:

(5.7) =% 1 5 xa,
laxa,| a

in which:

(5.8) a=apan - a,,

one will get:

(59) gaﬁ:aaﬁ_zxs baﬁ+ sy

(5.10) Ja3 =0,

(5.11) Oa3 = 1.

bas = bpe is called thesecond fundamental form
One calculates the contravariant spatial metrisdefrom (2.8):

(5.12) g¥=a%-2¢b%+ ...,

(5.13) g”3=0,

(5.14) g=1.

in which:

(5.15) ag &= 0] by, & & =b" .

For later purposes, we will need:
(5.16) a™by,= b .
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Onx® = 0, the RICCI tensor will become:

(5.17) €ap3=€ap=+/a Eap ; e =¥ = ia Eap »
with
(5.18) go2=—&1=1; &1=62=0.

The index 3 requires special attention when one constiheisbsolute differential (4.13)
onx’ = 0. If we omit the degree notatiprthen we will have to writedé¢ = 0):

(5.19) DQY=dQ” + LI, dx” Q" + LS, dx’ 0Q°,
(5.20) DQ®=dQ® + L, dx’ Q" + L3, d¥ 0Q?,
(5.21) L‘;’M = F; +TTp’j.
A simple calculation yields:

1 da, 0a, Oa, a
5.22 o =Za%| 2+ 22— = ,
(5:22) 2 [ax” ox' X' pA
(5.23) TS =0.
Furthermore:
(5.24) rs =0; T;=0,
(5.25) Lo,=— by +1a™ ey,
(5.26) Lo =bm +7€n.

We now split (5.19) and (5.20) into real and dual parts andwgét(4.11):

(5.27) D&f =0af ~bl d¥’ " o,

(5.28) D& =daf + by dx¥” o,

(5.29) D& =0af b dx’ D&+ a™ g, dX’' " o,
(5.30) D&@’'= d&@’ +b,, d¥ 0@' + ey dX’ " o

In these expressions:
(5.31) Orf =drf + T 5, d~ 7t
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means the absolute differential of the symmetric sartamnectionl” 7, . Sincedx® = 0

on the shell, the absolute differential operator caaiplied to only differential forms of
degree 0 (functions of position) and 1 (PFAFFiam formBhat corresponds to the fact
that only differentials of degrees zero, one, and tvlbappear in the kinematics and
statics of shells.

6. The basic equations of the kinematics and statics of shells.

We begin with differential forms of degree zero. L#t ', E be the coordinates of
a dual vector in the bass, ay, E.
As an example, we take:
f=¢" W=
(6.1)
W = g, @=u.

¢°, ¢ are the coordinates of the rotation vector for atpmmthe shell, and, u are the
coordinate of its translation vector. From (3.31), we ge

(6.2) O0¢7 =0, ¢7 A+ %, ¢ dX’
(6.3) =0, @7 d¥’,

in which:

(6.4) Op @7 =0, ¢° +rZ/1 ¢/]

means the covariant derivative ¢f with the shell metrica,s . An equation that
corresponds to (6.3) is true fatu®. (5.27) to (5.30) yield the following first-degree
differential forms:

(6.5) D" = (0, 4" - b5 ¢) A,

(6.6) Dg= 0o ¢ +bm ¢') d¥’,

(6.7) Du” = (0,u” - b u+a™ ey, §) dx’,
(6.8) Du=(@,u + by U +ey, ¢') dX.

As was mentioned in the beginning of Section 1, tlads®lute differentials are a
measure of the deviation of the displacement statlkeo$hell from that of a rigid body.
The deformations of the shell are then defined by (6.6.8). We write:

D¢ = x, d¥, Du’= g, dx’,
(6.9)
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D¢ = x,dX, Du=g,dxX.

The y are the warpingerkrimmuny deformations, while the are the membrane and
shear deformations.
From (4.19), we have the compatibility conditions:

DD¢ = 0, DDu” = 0,
(6.10)
DD¢ = 0, DDu = 0,

which one can verify by calculation with the use d tinst-degree forms (6.5) to (6.8).
However, the formulation of the compatibility condits from the deformations from
(6.10) is itself important. Thus, we have to constriuet absolute differentials of the
first-degree forms:

of = x, dx, o= g d¥,
(6.11)
@ =y, d¢, @ =g, d¥.

We next calculate (5.31) again, in which we havesBetqual tocS' in one case and to
o in the other, from (6.10):
0¢f =0 (x* dx)
(6.12) =0, x,dx’ OdX +19, dxX Oy, df
= (@, )% +T% x2)dx’ Od¥ .

A

Now, the covariant derivative of the tenspf in the metricaz is:

(6.13) O, =0,X5 +T0 Xo —T0, Xy,
such that we can write:
(6.14) D()(E’dx"): Dp)(g"d%”\dx",

instead of (6.12), since the last summand in (6.13) caddedanto the bracket in (6.12),
due to the symmetry in the indiceso. On the other hand, the result (6.12) should not
be surprising, since we are dealing with the absolute difiatenot of a tensor, but of

the vectorial differential formy,” dx’ = f.
With these preparations, we need only to substitute (&id)(6.14) into (5.27) to

(5.30):
(6.15) Dy dx)= (Dp)((cg) -box,) dx® A dx,
(6.16) D (Yo dX) = @p Xo + b X, ) dX A dX’,

(6.17) D(&,/dx’)= (0,64, —bje, +a™e, x,)dx’ " dx’,
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(6.18) D (&,dX) = 0p&s+ b ) + €01 x5) dX° A dXC.

The second-degree differential forms will become mot@tive when we introduce the
surface elemerdF of the shell:

(6.19) dx’ A dx’ = e™ dF.

Ultimately, the compatibility conditions for the defieations read:

(6.20) e (0,x5 -bix,)=0,

(6.21) &7 (0p Xo+bm X5') =0,

(6.22) e (0,65, ~ble, +a% e, x,)= 0,
(6.23) €7 0,60 +bpel +enx) =0.

In (6.15), (6.17), (6.20), and (6.22), the covariant indean be ignored in the covariant
differentiation, as we did above. We have put thatxndgarentheses in order to recall
that.

Our results, hence, the representation of the defioons by rotation and translation
vectors as in (6.5) to (6.8), and furthermore, the coilmpgt conditions (6.20) to (6.23),
coincide with the corresponding ones in GUNTHER,({3.10), (3.11), (3.38), (3.39)).

The basic static equations for the shell can be ig@wbtained from equations (5.27)
to (5.31) now. Instead of (6.11), we must now set thediegree differential forms of
the sectional forces and moments equal to:

of = Kf,"dx”, of = M;"dx”,
(6.24)
W= K, dx, @ =M, dx.

KE’ is the tensor of membrane forceM,ff’ is the tensor of bending and torsional

momentsK, are the transverse forces, avid is the moment around the surface normal.
The external loads on the shell consist of the surfaceesp’ p, and the surface
momentsy“, g. The equilibrium equations will then read:

(6.25) D(KZdx?) + p° dF = 0,
(6.26) D(K, dx’) +p dF=0,

(6.28) D(M“dx’) + g° dF = 0,
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(6.29) D(M, dx’)+q dF= 0.

Their explicit forms can be read of immediately fr¢@ril5) to (6.18).

When all of the surface forces and moments vanghfitst-degree differential forms
(6.24) will be “closed,” and under certain restricting @itions they will be “exact.” The
latter condition means that the first-degree form246can be represented as absolute
differentials of forms of degree zero, correspondin(ft8):

Kff’dx” = Do, Mff’dx” =DWY°
(6.29)
K, dx° = DO, M, dx° = DW.

The vectors®?, ®, W9 W are calledstress functions. The explicit representation of
(6.29) can also be read off immediately from equatiort (6.(6.8).

The complete analogies between the basic kinermaticstatic equations for Cosserat
shells are consistent with the tenor of GUNTHER&Igt[7].

(4.13) and (4.19) can be regarded as the sources of thosgiesah the calculus of
differential forms that we employed. However, we wlgo like to recall that our
considerations began with the analogy between force apdadement screws that has
been known since antiquity.

Text arrived 15 June 1968
Drafts licensed 13 November 1968
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