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1. The parallel transport of a motor 
 

 It is known that a force-system on a rigid body can be reduced to a point P and 
represented by a single force vector F (P) whose line of action goes through P and a 
moment vector M (P).  If one chooses another reduction point Q then one will have the 
transport law: 
 F (Q) = F (P), 
(1.1) 

 M (Q) = M (P) + F × Q P−
������

. 
 
(× is the symbol of vectorial multiplication.) 
 We call the two representations of the force system at P and Q equivalent or 
equipollent. 
 The same law of transport is true for the infinitesimal displacement state of a rigid 
body.  Infinitesimal rotations and translations can be described completely when one is 
given a point P of the body, the vector ϕϕϕϕ (P) of infinitesimal rotation, and the vector u (P) 
of infinitesimal translation.  For a different choice of point Q on the body, one will have 
the transport law: 
 ϕϕϕϕ (Q) = ϕϕϕϕ (P), 
(1.2) 

 u (Q) = u (P) + ϕϕϕϕ × Q P−
������

. 
 
The pairs of vectors F, M or ϕϕϕϕ, u are called screws, and were originally called Dynamen.  
STUDY [1] and v. MISES [2] have introduced the concept of motor for vector-pairs that 
satisfy the transport law (1.1) or (1.2).  A motor V is then composed of two vectors v and 
v : 

(1.3)     V = 
 
 
 

v

v
, 

 

                                                
 (*) The results contained in this paper were presented at the session on 4 April 1968.  
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in which the second vector is the moment vector of V. 
 If the reduction points P and Q of a motor V are separated by the infinitesimal 
distance dV then the transport law will read: 
 
 v (r + dr) = v (r), 
(1.4) 
 v (r + dr) = v (r) + v × dr, 
or 
 dv = 0, 
(1.5) 
 d v  + dr × v = 0. 
 
We define the absolute differential of the motor transport by: 
 

(1.6) dV = 
d

d d

 
 + × 

v

v r v
. 

 
If (1.5) is true then dV = 0 and we speak of parallel transport, in the sense of differential 
geometry.  Hence, dV in (1.6) will be a measure for the deviation of a motor field from 
parallelism. 
 The Cosserat continuum is described by motor fields.  Hence, to give an example, 
every point r of the continuum is associated with an infinitesimal rotation v = ϕϕϕϕ (r) and 
an infinitesimal translation v  = u (r), and here dV measures the deviation of the 
displacement state of the continuum in the neighborhood r + dr of the displacement state 
of a rigid body.  Hence, dV is a measure of the deformation state of the continuum at the 
field point r.  To give a second example, if V (r) is a force-motor then dV will measure 
the deviation from equilibrium in the neighborhood r + dv of the field point r. 
 
 

2. The absolute differential of a motor in general coordinates. 
 

 We introduce the general coordinates with the parameters x1, x2, x3 into three-
dimensional Euclidian space E3.  With the help of the position vector: 
 
(2.1)     r = r (x1, x2, x3), 
we define the natural basis: 

(2.2)     gk = 
kx

∂
∂

r
 (k = 1, 2, 3), 

 
and obtain the metric tensor gik from the scalar products of the three basis vectors: 
 
(2.3)     < gi , gk > = gik . 
(All Latin indices run from 1 to 3.) 
 With dr = gi dxi, we write (1.6) as: 
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(2.4)     dV = 
( )

( )

k
k

k i l
k i l

d v

d v dx v

 
 + × 

g

g g g
. 

Now, one has: 
(2.5)     d (vk gk) = ∇i v

k dxi gk , 
with 

(2.6)     ∇i v
k = ∂i v

k + lk
v

i l

 
 
 

, 

 
and the same equations are true for kv .  (∇i is the symbol of the covariant derivative with 

respect to xi, ∂i = ∂ / ∂xi
 , and 

k

i l

 
 
 

 is the CHRISTOFFEL symbol of the second kind for 

the metric gik .) 
 Furthermore, one has: 
(2.7)     gi × gl = eilr  g

rk gk , 
with: 

(2.8)    gri g
rk = k

iδ  = 
1 for ,

0 for

i k

i k

=
 ≠

 

and the RICCI tensor: 

(2.9)    eilr  = g εilr ;  g = det (gik). 

 
(εilr  is the symbol that is alternating in all indices and has the values + 1 or – 1 according 
to whether ilr  is an even or odd permutation, resp., of the numbers 1, 2, 3.  εilr  = 0 when 
two indices are equal to each other.) 
 In order to make the notation in (2.4) more intuitive, we introduce the transport 
symbols: 

(2.10a, b)    k
ilΓ = 

k

i l

 
 
 

; k
ilT = grk eril  , 

 
and ultimately get, with (2.5) to (2.10): 
 

(2.11)   dV = 
k i k i l

i k il k

k i k i l k i l
i k il k il k

v dx dx v

v dx dx v T dx v

 ∂ + Γ
 ∂ + Γ + 

g g

g g g
 

or 

(2.12)    DV k = 
k i

i

k i k i l
i il

v dx

v dx T dx v

 ∇
 ∇ + 

. 

 
An intuitive summary of the last result will be achieved by introducing dual numbers: 
 
(2.13)    V k = vk + kvτ , k

ilL = k k
il ilTτΓ + , 
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which satisfy the rules of the elementary algebra that are required here, and in which τ is 
an undetermined quantity that obeys only the condition τ 2 = 0.  The summand that is 
endowed with the τ will be referred to as the dual part of the dual number, and the first 
summand as the real part.  As one will convince oneself by a simple calculation: 
 
(2.14)    DV k = ∂i V k dxi + k

ilL  dxi V l 

or 
(2.15)    DV k = ∇i V k dxi + τ k

ilT  dxi V l 

 
will give the representation (2.12) after they are separated into real and dual parts. 
 (2.14) is the representation of a linear connection in the space D3 of dual vectors.  
One must observe that this connection is not symmetric, since the dual part of the 
transport symbol k

ilL  − namely, k
ilT  − is skew-symmetric in its lower indices, from (2.13) 

and (2.10b). 
 
 

3. The FRENET-CARTAN differential equations in the dual space D3. 
 

 One can also represent a motor by its six coordinates vk, kv  = vk+3 in a vector space 
V6 and define the linear connection (2.12) in that V6.  That was done in [3].  Here, we 
would like to regard a motor as a dual vector vk + τ kv  in D3, as in (2.13).  We construct 
the basis of dual vectors that is required in D3 as follows: We start from the natural basis 
in E3 as in (2.2).  We associate the basis vectors gk with their moment vectors: 
 
(3.1)     kg  = r × gk 

 
with respect to the origin of a Cartesian coordinate system in E3.  The dual vector: 
 
(3.2)     Gk = gk + τ kg  

 
represents a directed line in E3 with the PLÜCKERian vectors gk and kg , in which, from 

(3.1), one will have: 
(3.3)     < gk , kg > = 0. 

 
The basis vector gk in E3 is fixed by kg  in such a way that it can only be displaced along 

the tangent to its associated parameter curve. 
 We take the dual vectors Gk (k = 1, 2, 3) that were defined in (3.2) to be a basis for 
the dual space D3, and their scalar products are: 
 
(3.4)     < Gi , Gk > = gik . 
 
The dual part of that scalar product will then vanish.  In detail: 
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 < Gi , Gk > = <gi +τ ig , gk +τ kg > 

  = <gi , gk > +τ [< gi , kg > + < ig , gk >] 

  = gik , 
so 
(3.5) < gi , gk > = gik , 
(3.6) < gi , kg > + < ig , gk > = 0. 

 
Obviously, (3.6) is fulfilled for any i and k, as a result of (3.1).  Now, since the dual part 
of the scalar product is the “reciprocal moment” of the lines Gi and Gk , the three directed 
lines G1 , G2 , G3 intersect the carriers of the basis vectors g1 , g2 , g3 in E3 at the point r 
(x1, x2, x3).  ([4] and [5])  The vectors G1 , G2 , G3 of the dual space D3 correspond to the 
basis vectors g1 , g2 , g3 in E3 that are fixed at the point r. 
 Since we are dealing with a line connection in D3, the FRENET-CARTAN 
differential equations will take on the form: 
 
(3.7)     ∂i Gk = l

ikL Gl , 

in which 
l
ikL = l l

ik ikTτΓ + , 

 
and we can show that the transport quantities l

ikL  are determined uniquely by the 

Euclidian metric.  Upon separating the real and dual parts in (3.7), we will get: 
 
(3.8)     ∂i gk = l

ikT gl , 

 
(3.9)     i k∂ g = l l

ik l ik lTΓ +g g . 

It is known that: 

(3.10)     l
ikΓ  = 

l

i k

 
 
 

. 

With (3.1), (3.9) reads: 
 ∂i (r × gk) = r × ∂i gk + gi × gk 
(3.11) 
 = l

ik lΓ g + eikr g
rl gl . 

 
 A comparison of (3.11) and (3.9) will yield: 
 
(3.12)     l

ikT = glr erik . 

 
(3.10) and (3.12) agree with (2.10a, b). 
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4. The absolute differential of the linear connection in D3. 
 

 In a three-dimensional Cosserat continuum, one deals with motors or dual vectors 
whose six coordinates are differential forms of degree p (p = 0, 1, 2, 3).  For that reason, 
in what follows, we shall make use of the calculus of differential forms ([3], [5], [6]).  Let 
us first review its notations. 
 The volume element is represented by: 
 

(4.1)     dV = g  dx1 ^ dx2 ^ dx3 

or 
(4.2)     dxi ^ dxk ^ dxl = eikl dV. 
 
 The vector dFi of the surface element is: 
 
(4.3)     dFi = 1

2 elik dxi ^ dxk  

or 
(4.4)      dxi ^ dxk = eikl dFl . 
 
In this, we have the upper-indexed RICCI tensor: 
 

(4.5)     eikl = 
1

g
 εlik , 

 
in which the right-hand side of (4.5) is explained by (2.9). 
 It follows from (4.1) to (4.4) that: 
(4.6)      dxi ^ dxk = i

kδ dV. 

 
In the calculus of differential forms, one has: 
 
 ddFi  = 1

2 ∂s (elik) dxs ^ dxi ^ dxk  

(4.7) = 1
2  εlik εsik 

1

g
∂s g dV 

 = 
1

g
∂l g dV. 

 
 With (3.7), (3.10), and (3.12), the CARTAN torsion 2-form of our asymmetric 
connection reads: 
 d (Gk dxk) = ∂i Gk dxi ^ dxk, 
 = τ l

ikT dxi ^ dxk gl  

(4.8) = τ glr erik e
sik dFs gl 

 = 2τ gs dFs . 
 
Furthermore, one has, with (4.7): 
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(4.9) 0 = dd (Gk dxk) = 2τ (∂l g
s dxl ^ dFs + gs ddFi) = 2τ 1l

ls s g
g

 
− Γ + ∂  
 

 gs dV, 

 
from which, it will follow that: 
 

(4.10)    ddFs = 
1

s g
g

∂ = l
lsΓ dV. 

 
 We denote a dual differential form of degree p by: 
 

(4.11)     
p
kΩ = 

p p
k kω τ ω+ . 

 
 We obtain the absolute differential of such a form with the help of the differential 
equations (3.7): 

 ( )
p
k

kd ΩG   = 
p p

k k
k kd dΩ + ∧ ΩG G  

(4.12)  = ( )
p p

k k i l
il kd L dxΩ + ∧ Ω G  

  = 
p

k
kDΩ G , 

with 

(4.13)    
p p p

k k k i l
ilD d L dxΩ = Ω + ∧ Ω  

 
is the generalization of (2.14), in which Vk appears as the dual differential form of degree 
0. 
 In the calculus of differential forms, one has: 
 

(4.14)     
p
kddΩ = 0 

 
and likewise, since the basis vectors Gk of the connection are known as functions of 
position: 
(4.15)     dd Gk = 0. 
 
(The connection is integrable; teleparallelism prevails.) 
 With that, one will have: 
 

(4.16)   ( )
p
k

kdd ΩG =
p p p p

k k k k
k k k kd d dd dd d d d∧ Ω + ∧ Ω + ∧ Ω − ∧ ΩG G G G , 

 
such that from (4.14) and (4.15), one will have: 
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(4.17)     ( )
p
k

kdd ΩG = 0. 
 
When (4.17) is applied to (4.12), that will yield: 
 

 0 = ( )
p
k

kd DΩ G   = ( )
p p
k k

k kdD d DΩ + ∧ ΩG G  

(4.18) = ( )
p p
k k i l

il kdD L dx DΩ + ∧ Ω G  

 = 
p
k

kDD Ω G , 
 
from which we get the important equation: 
 

(4.19)     0.
p
kDD Ω =  

 
 One will find examples of differential forms of degree p for the three-dimensional 
Cosserat continuum in my paper [3], and likewise the analogues of (4.13) and (4.19).  For 
that reason, at this point, we need to clarify (4.13) and (4.19) with some examples.  
Moreover, we would like to treat the curved shell as a two-dimensional Cosserat 
continuum in what follows. 
 
 

5. The shell as two-dimensional Cosserat continuum. 
 

 One has W. GÜNTHER [7] to thank for the first complete linear theory of the 
Cosserat shell.  We will show how the basic kinematical and static equations in 
GÜNTHER’s article follow almost immediately from our formulas (4.13) and (4.19).  
We shall preserve GÜNTHER’s notations as much as possible in that demonstration. 
 The position vector r in Euclidian space E3 has the form: 
 
(5.1)   r (x1, x2, x3) = R (x1, x2) + x3 E (x1, x2), 
 
such that the shell takes the form of x3 = 0. 
 r (x1, x2, x3) = R (x1, x2) is position vector of a point on the shell, in which x1, x2 are 
the GAUSSian parameters of the shell-surface.  On x3 = 0, the basis vectors are: 
 

(5.2)   
1x

∂
∂

R
= a1, 2x

∂
∂

R
= a2, 3x

∂
∂

r
= E. 

The scalar product: 
(5.3)     < aα , aβ > = aαβ  
 
(Greek indices run from 1 to 3) defines the metric tensor of the shell-surface, which is 
also called the first fundamental tensor. 
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 In order to define the transport quantities on x3 = 0 by using (3.10) and (3.12), we 
shall require gik and its first derivatives for x3 = 0. 
 One next has: 

 gαβ = ,
x xα β
∂ ∂

∂ ∂
r r

 = 3 3,x x
x x x xα α β β

∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

R E R E
 

(5.4) 

 = aαβ + x3 , ,
x xβ αα β

 ∂ ∂ + ∂ ∂ 

E E
a a + … 

 

(5.5) gα3 = 3 ,x
x xα α

∂ ∂+
∂ ∂

R E
E = 3, ,x

x xα α
∂ ∂+
∂ ∂

E E
E E , 

 
(5.6) g33 = <E, E>. 
 
 From time to time, it might be appropriate to compute further with these gik .  
However, (5.4), (5.5), and (5.6) will become especially simple when one introduces E as 
the unit normal vector to the surface, which is customary in GAUSS’s theory of surfaces.  
With: 

(5.7)  E = 1 2

1 2| |

×
×

a a
a a

 = 
1

a
 a1 × a2 , 

in which: 
(5.8)   a = a11 a22 − 2

12a , 

one will get: 
(5.9)   gαβ = aαβ − 2x3 bαβ + …, 
 
(5.10)   gα 3 = 0, 
 
(5.11)   g33 = 1. 
 
bαβ = bβα is called the second fundamental form. 
 One calculates the contravariant spatial metric tensor from (2.8): 
 
(5.12)     gαβ = aαβ − 2x3 bαβ + …, 
 
(5.13)   gα 3 = 0, 
 
(5.14)   g33 = 1. 
in which: 
(5.15)    aβµ aµα = α

µδ ;  bλµ aλα aµβ = bαβ . 

 
For later purposes, we will need: 
(5.16) aαµ bµρ = bα

ρ . 
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On x3 = 0, the RICCI tensor will become: 
 

(5.17)   eαβ 3 = eαβ = a  εαβ  ; eαβ 3 = eαβ = 
1

a
 εαβ , 

with 
(5.18)    ε12 = − ε21 = 1;  ε11 = ε22 = 0. 
 
The index 3 requires special attention when one constructs the absolute differential (4.13) 
on x3 = 0.  If we omit the degree notation p then we will have to write (dx3 = 0): 
 
(5.19)    DΩα = dΩα + 3

3L dx L dxα ρ λ α ρ
ρλ ρ∧ Ω + ∧ Ω , 

 
(5.20)    DΩ3 = dΩ3 + 3 3 3

3L dx L dxρ λ ρ
ρλ ρ∧ Ω + ∧ Ω , 

 
(5.21)     Lα

ρλ  = Tα α
ρλ ρλτΓ + . 

A simple calculation yields: 
 

(5.22)   α
ρλΓ  = 

1

2

a a a
a

x x x
µλ µρ ρλαµ
ρ λ µ

∂ ∂ ∂ 
+ − ∂ ∂ ∂ 

 = 
α

ρ λ
 
 
 

, 

(5.23)   T α
ρλ  = 0. 

Furthermore: 
(5.24)     3

3ρΓ  = 0; 3
3Tρ  = 0, 

 
(5.25)     3Lα

ρ = − bα
ρ +τ aαµ eµρ , 

 
(5.26) 3Lα

ρ  = bρλ + τ eρλ . 

 
We now split (5.19) and (5.20) into real and dual parts and get, with (4.11): 
 
(5.27)    Dωα = ∇ωα −bα

ρ dxρ ^ ω3, 

 
(5.28)    Dω3 = dωα + bρλ dxρ ^ ωλ, 
 
(5.29)    D αω = 3b dxα α ρ

ρω ω∇ − ∧ + aαµ eµρ dxρ ^ ω3, 

 
(5.30)    3Dω = 3d b dxρ λ

ρλω ω+ ∧ + eρλ dxρ ^ ωλ. 

In these expressions: 
(5.31)    ∇πα = dπα + α

ρλΓ  dxρ ^ πλ 
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means the absolute differential of the symmetric surface connection α
ρλΓ .  Since dx3 = 0 

on the shell, the absolute differential operator can be applied to only differential forms of 
degree 0 (functions of position) and 1 (PFAFFiam forms).  That corresponds to the fact 
that only differentials of degrees zero, one, and two will appear in the kinematics and 
statics of shells. 
 
 

6. The basic equations of the kinematics and statics of shells. 
 

 We begin with differential forms of degree zero.  Let ωα, ω3, E be the coordinates of 
a dual vector in the basis a1, a2, E. 
 As an example, we take: 
 ωα = ϕα, αω = uα, 
(6.1) 
 ω3 = ϕ,  3ω = u. 
 
ϕα, ϕ are the coordinates of the rotation vector for a point on the shell, and uα, u are the 
coordinate of its translation vector.  From (3.31), we get: 
 
(6.2) ∇ϕα = ∂ρ ϕα dxρ + α

ρλΓ ϕλ dxρ 

 
(6.3)     = ∇ρ ϕα dxρ , 
in which: 
(6.4) ∇ρ ϕα  = ∂ρ ϕα  + α

ρλΓ ϕλ 

 
means the covariant derivative of ϕα with the shell metric aαβ .  An equation that 
corresponds to (6.3) is true for ∇uα.  (5.27) to (5.30) yield the following first-degree 
differential forms: 
(6.5) Dϕα = (∇ρ ϕα  − bα

ρ  ϕ ) dx ρ, 

 
(6.6) Dϕ =  (∂ρ ϕ  + bρλ ϕλ) dxρ , 
 
(6.7) Duα = (∇ρ uα  − bα

ρ u + aαµ eµρ ϕ) dx ρ, 

 
(6.8) Du = (∂ρ u  + bρλ u

λ + eρλ ϕλ) dxρ . 
 
 As was mentioned in the beginning of Section 1, these absolute differentials are a 
measure of the deviation of the displacement state of the shell from that of a rigid body.  
The deformations of the shell are then defined by (6.5) to (6.8).  We write: 
 
  Dϕα = α

ρχ ⋅  dxρ, Duα = α
ρε ⋅  dxρ, 

(6.9) 
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 Dϕ = χρ dxρ , Du = ερ dxρ . 
 
The χ are the warping (Verkrümmung) deformations, while the ε are the membrane and 
shear deformations. 
 From (4.19), we have the compatibility conditions: 
 
 DDϕα = 0,  DDuα = 0, 
(6.10) 
 DDϕ = 0,  DDu = 0, 
 
which one can verify by calculation with the use of the first-degree forms (6.5) to (6.8).  
However, the formulation of the compatibility conditions from the deformations from 
(6.10) is itself important.  Thus, we have to construct the absolute differentials of the 
first-degree forms: 
  ωα = α

ρχ ⋅  dxρ, αω =  α
ρε ⋅  dxρ, 

(6.11) 
 ω3 = χρ dxρ ,  3ω  = ερ dxρ . 
 
We next calculate (5.31) again, in which we have set πα equal to ωα in one case and to 

αω  in the other, from (6.10): 
 ∇ωα  = ∇ ( α

σχ ⋅  dxσ ) 

(6.12)  = dx dx dx dxα ρ σ α ρ λ σ
ρ σ ρλ σχ χ⋅ ⋅∂ ∧ + Γ ∧  

  = ( ) dx dxα α λ ρ σ
ρ σ ρλ σχ χ⋅ ⋅∂ + Γ ∧ . 

 
 Now, the covariant derivative of the tensor α

σχ ⋅  in the metric aαβ is: 

 
(6.13) α

ρ σχ ⋅∇  = α α λ β α
ρ σ ρλ σ ρσ βχ χ χ⋅ ⋅ ⋅∂ + Γ − Γ , 

such that we can write: 
(6.14) ( )dxα σ

σχ ⋅∇ = α
ρ σχ ⋅∇ dxρ ^ dxσ, 

 
instead of (6.12), since the last summand in (6.13) can be added into the bracket in (6.12), 
due to the symmetry in the indices ρ, σ.  On the other hand, the result (6.12) should not 
be surprising, since we are dealing with the absolute differential, not of a tensor, but of 
the vectorial differential form α

σχ ⋅ dxσ = ωα. 

 With these preparations, we need only to substitute (6.11) and (6.14) into (5.27) to 
(5.30): 
(6.15) ( )D dxα σ

σχ ⋅ = ( )( )bα α
ρ σ ρ σχ χ⋅∇ − dxρ ^ dxσ, 

 
(6.16) D (χσ dxσ) = (∂ρ χσ + bρλ

λ
σχ ⋅ ) dxρ ^ dxσ, 

 
(6.17) ( )D dxα σ

σε ⋅ = ( )( )b a eα α αµ
ρ σ ρ σ µρ σε ε χ⋅∇ − + dxρ ^ dxσ, 
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(6.18) D (εσ dxσ) = (∂ρ εσ + bρλ
λ

σε ⋅ + eρλ
λ

σχ ⋅ ) dxρ ^ dxσ. 

 
The second-degree differential forms will become more intuitive when we introduce the 
surface element dF of the shell: 
(6.19)   dxρ ^ dxσ = eρσ dF. 
 
Ultimately, the compatibility conditions for the deformations read: 
 
(6.20)  eρσ 

( )( )bα α
ρ σ ρ σχ χ⋅∇ − = 0, 

 
(6.21)  eρσ (∂ρ χσ + bρλ

λ
σχ ⋅ ) = 0, 

 
(6.22)  eρσ 

( )( )b a eα α αµ
ρ σ ρ σ µρ σε ε χ⋅∇ − + = 0, 

 
(6.23)  eρσ  (∂ρ εσ + bρλ

λ
σε ⋅ + eρλ

λ
σχ ⋅ ) = 0. 

 
In (6.15), (6.17), (6.20), and (6.22), the covariant index σ can be ignored in the covariant 
differentiation, as we did above.  We have put that index in parentheses in order to recall 
that. 
 Our results, hence, the representation of the deformations by rotation and translation 
vectors as in (6.5) to (6.8), and furthermore, the compatibility conditions (6.20) to (6.23), 
coincide with the corresponding ones in GÜNTHER ([7], (3.10), (3.11), (3.38), (3.39)). 
 The basic static equations for the shell can be likewise obtained from equations (5.27) 
to (5.31) now.  Instead of (6.11), we must now set the first-degree differential forms of 
the sectional forces and moments equal to: 
 
 ωα = K dxα ρ

ρ
⋅ ,  αω = M dxα ρ

ρ
⋅ , 

(6.24) 
 ω3 = K dxρ

ρ ,  3ω  = M dxρ
ρ . 

 
K α

ρ
⋅  is the tensor of membrane forces, M α

ρ
⋅  is the tensor of bending and torsional 

moments, Kρ are the transverse forces, and Mρ is the moment around the surface normal.  
The external loads on the shell consist of the surface forces pα, p, and the surface 
moments qα, q.  The equilibrium equations will then read: 
 
(6.25) ( )D K dxα ρ

ρ
⋅ + pα dF = 0, 

 
(6.26) ( )D K dxρ

ρ  + p dF = 0, 

 
(6.28) ( )D M dxα ρ

ρ
⋅ + qα dF = 0, 
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(6.29) ( )D M dxρ
ρ + q dF = 0. 

 
Their explicit forms can be read of immediately from (6.15) to (6.18). 
 When all of the surface forces and moments vanish, the first-degree differential forms 
(6.24) will be “closed,” and under certain restricting conditions they will be “exact.”  The 
latter condition means that the first-degree forms (6.24) can be represented as absolute 
differentials of forms of degree zero, corresponding to (6.9): 
 
  K dxα ρ

ρ
⋅  = DΦα, M dxα ρ

ρ
⋅  = DΨα, 

(6.29) 
  Kρ dxρ = DΦ,  Mρ dxρ = DΨ. 
 
The vectors Φα, Φ, Ψα, Ψ are called stress functions.  The explicit representation of 
(6.29) can also be read off immediately from equations (6.5) to (6.8). 
 The complete analogies between the basic kinematic and static equations for Cosserat 
shells are consistent with the tenor of GÜNTHER’s study [7]. 
 (4.13) and (4.19) can be regarded as the sources of those analogies in the calculus of 
differential forms that we employed.  However, we would like to recall that our 
considerations began with the analogy between force and displacement screws that has 
been known since antiquity. 
 
 Text arrived 15 June 1968 
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