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FOREWORD

Hermann Schaefer was one of the promoters of theerfiational Center for
Mechanical Sciences.” He took part in various meetihgs were organized in Trieste,
Aachen, Braunschweig, and other places with the purposaftindrup the statutes and
choosing the original department and activities of théecen

He was cordially connected with my Institute for Mechanat the University of
Trieste, at which he held seminars, courses, and leaarearious topics. In particular,
his lectures on the Cosserat continuum were quite mdahinghich were lectures to
which | also contributed to a modest extent, and whoségation by my institute was
undertaken in Volume 7 of its “Lezioni e Conferenze.”

The short lecture that | would like to present heréo¥ahg the death of Professor
Schaefer was given by Hermann Schaefer at the Uniesrsiti Padua and Trieste in
March of 1968. Professor Schaefer sent us the manuscnpg days before his death.

| shall present this lecture as a CISM publicationegdtof as part of the collection
of the institute, since he was more closely linked whehformer institution than the latter
one.

As a colleague of the CISM and the University of Taeahd an unambiguous,
consistent, lively, and amiable human being, Hermann $mhdeserves the deepest
gratitude.

We are all saddened by his passing.

Luigi Sobrero

Udine, April 1970
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CHAPTER |

SOME NOTIONS FROM
THE CALCULUS OF DIFFERENTIAL FORMS

We shall consistently use Cartesian coordingtes,, s in Euclidian spac&>. We

p
denote a differential form of degrpdy w; e.qg.:
p 3
w=apdx +adx +agdx= Y a dx. (1.1)
k=1

In what follows, the summation sign will always benitied (viz., the Einstein
convention). We then write:

1
w = acdx . (1.2)
Let theak be functions of position, so:
ak = a (X, X2, Xa) ; (1.3)

they can be regarded as components of a vadiar ap, az).
Theexterior derivative(dérivation extérieurg or more simply, théifferential of the

form 2) will be defined as:
' _ 03, _
da)—(dak)dxk—a— dx M dx =0; & dx "N dx . (1.4)
)(i
The symbol ~ (i.e., wedge) signifies theterior product(multiplication extérieurg
which is antisymmetric in the indicesindk:
dx N dx =—dx M dx . (1.5)
Naturally, one will have:
dx " dx = 0. (1.6)

Along with (1.5) and (1.6), (1.4) will read, in detail:

1
dw=0a-03a)dx"ds+@say—0sa) dxsdxy + (01 —02a) dx "dx . (1.7)
Theoriented volume elemefur E is:

dV=dxg " dx "N dxs (1.8)
in Cartesian coordinates.



2 Motor fields of the three-dimensional Cosserat contimuu

We introduce the oriented (vectorial) surface element:
dA = (dAg, dAy, dAg) = (dxe M dxs, dxs N dxg, dxg ™ dX). (1.9

In more concise notation:
&k A =dx " dxc . (1.10)

(& 1s the RICCI tensor, which is alternating in all #hiadices. Its components will be
+ 1 or — 1 whenever, k, | defines an even or odd permutation of the numbers 1, 2, 3,
respectively. The components with two or three equatasdwill have the value 0.)
It follows from (1.8) and (1.9) that:
dx N dAC=dANdX = A dV. (2.12)

(Jk is the Kronecker symbol for the unit tensor.) WithL0), we now write (1.4) as:

1
dw =& 0i ax dA . (1.12)

This differential form of degrep = 2 represents the rotation of the veator

1 1
dw = (rota), dA =rot w. (1.13)

The differential of a form of degrge= 2:

2
w= ax dA (1.14)
will be defined as:

2
dw = (da) dA« =0; acdx " dA« =0; & dx dV =0 a dV. (1.15)
The a in (1.14) can, in turn, be regarded as the componentyvedtar, and (1.15) will
be nothing but:
2 2
dw =divadV=div w. (1.16)

2
d w is a form of degrep = 3. Forms of higher degree will not exista? sincedx, »
dv=0fork =1, 2, 3. By contrast, a form degnee= 0 can be defined to be a scalar
function:

0
w =a (X, X, X3), (1.17)
whose differential:

0 0
dw =0; adx = (grada); dx = gradw, (1.18)
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is a form of degrep = 1.
One of the most important formulas of the calcugus

dde =0, (1.19)

which is also callethe Poincaré Lemma
The validity of formula (1.19) can be verified direcilyour examples. One gets the
identities:

0
rot gradw= 0 forp= 0,
g P (1.20)

1
divrotw=0 forp=1.

This brief extract from the calculus of differentiaris in E3 can suffice for our
purposes to begin with.

Literature

One will find an elementary introduction to the célsuof differential forms in the
book by R. C. BuckAdvanced CalculysfNew York, 1956 on pages 309-321. The reader
will enjoy perusing this stimulating book. An alreadyalidinging, but still easily-
readable, presentation can be found in the chapter oerfdrende Differentialformen”
(written by Sommer, Reimann, and Rau) in the book by BehB&ehman, Fladt, and
Suss,Grundziige der Mathemat(kor Gymnasium students, as well as mathematicians in
industry and commerce), Band [Analysis Gottingen, 1962, pp. 133-200. | shall give
further bibliographic references later at the end of Chate



CHAPTER 2

DUAL NUMBERS AND DUAL VECTORS

In the book byl. M. Yaglom, Complex Numbers in Geometmxcademic Press,
1968, one reads on page 14:

“Dual numbers apparently, were first considered by the famous German
geometelE. Study (1862-1930, University of Bonn) of the end of the last Century
and the beginning of this one; double numbers were introducaccbgtemporary of
Study, the English geometé'. Clifford (1845-1879). Clifford, who was concerned
with the use of these numbers in mechanics, called mhetors”

That nice little book by Yaglom is generally too elentaey for our purposes here. |
recommend that the reader confer the bookWy Blaschke (a student of Study),
Vorlesungen uber Differential-GeometriBand I, Springer-Verlag Berlin, 1945, and in
particular, page 261 of the chapter on line geometry in it.

A dual number

A=a+ra

consists of a paira( a) of real numbers, a. The new unitr shall satisfy the rule of
calculation:
r2=0.

The sums and products of two dual numifers a; + 7 4, A, =a + 1 4, will then be:
A1+A2:(a1+a2)+r(éi+éz), (2.1)
APo=an+7 (88 +3a,3). (2.2)

We can regard as simply an auxiliary quantity that imparts a conveneerview to
assigning:
(s +a2, 4 +4a,), (2.3)

(12, 83,+3,3) (2.4)

to thesumandproductof the number-pairsa(, &), (a2, &,) on the basis of its property
2
r°=0.

The idea that one could use th&lines in space as the building blocks for a spatial
geometry goes back td. Plicker (1801-1868, physicist and mathematician at the
University of Bonn).

In his “line geometry,” a line is determined by two vectors:
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a a, (2.5)
such that one should have:
alh=1, aa =0. (2.6)

(ds the symbol of the scalar product of two vec)o@ne calls the six coordinates of the
vectorsa and a with the two auxiliary conditions (2.6) thélicker line coordinates.a

is determined by the origi® of the Cartesian coordinate system: namalys the static
moment of thalirection vectora with respect td:

Xxa=a. (2.7)

(% is the symbol for vectorial multiplication.) Ret® Fig. 1 for this.

Plane through the ling
and the origirD
Figure 1.

The coordinates of theosition vectox are the coordinates of the poihof the line.
Study combined the Pliicker vectoas & ) into thedual vector:

A=a+ra. (2.8)

The basis for that can be made clearer by thevirilp argument: The scalar product of
two dual vectors is:

Al =@ +73)dap+7d,)=a [+ (& A, + a2 [A). (2.9)

Consider Fig. 2:
A; andA; represent two lines whose shortest distange=g x; —xi1 | . Obviously,
the “real part” of the scalar product (2.9) is:

ay [y = cosd. (2.10)
Furthermore, one has:

(X2—x1)) gy =0,  fo—x1) O =0. (2.11)
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Figure 2.

We shall now consider the “dual part” of the scaladpob (2.9), which one also calls
the mutual moment of the lines:

a Byt =adxxa)talx xa) =(@xa) Oxi—x) =-psind.  (2.12)
From (2.9), with (2.10) and (2.12), we have then obtained:
Ay Az =cos® —7psind. (2.13)
(By the way: By means of a formal series developmam has:
cos P+ 7p) =cosd cosTp—sin® sin7p=cosP [l — (sind) (7p)

for thedual angle® + 7p)
As long asa; [y # 1.
a Dé.z'*' ao Eﬁlz 0 (2.14)

means that the lines that are representedl;l@ndA; intersect at the poidt=x; =Xz .
From now on, we shall employ Cartesian coordinatgsx{, xs), which will be the
case in all of this treatise.
At the pointx (x1, X2, X3), we construct the orthogonal dreibein, & , e; frome =

0,X. (0; is also the abbreviation for/ 0x that shall be employed from now on.) We shall
now represent the three coordinate lines that go througpdiné x by the three dual
vectors:

Ei=e+ré&, & =xxg. (2.15)

Obviously:
elx=&, ele+elB=0, (2.16)
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so the three coordinate lines do, in fact, intersetiteapointx. With that, we have also
“fixed” the three unit vectorg ; they are “line-bound” vectors, like forces on adigi
body. Since the at each point o> are unit vectors in the coordinate direction, one will
have:

d =0, (2.17)

Themoment vectorg, behave differently. Namely:
08 =0i(xxa)=exe=&8. (2.18)

[ & IS the Ricci symbol, which is alternating in all thiedices. It has the value 1 (- 1,
resp.) whenkl is an even (odd, resp.) permutation of the numbers 123allie will be
zero when two or three indices are equal.]

With (2.15), (2.17), and (2.18), we can write:

ai Ex =T E or dEk =l d>q E, (2.19)
in which:
Mk = T &kl - (2.20)

(2.19)defines dinear connection in the space Bof dual vectors.One observes that the
transport symbdT i of this connection is skew-symmetric.
We define a dual vect@ in D® by way of:

Q =E,Qy, Q=+ TC’(\,{“ (2.21)

in which the ax and &, are any three real numbers. With (2.19) and (2.20), the
differential of the dual vectd® will become:

dQ =d (Ex Qx) =ExdQy + dEk Q«
= Ex dQy + My dx B Qx
= Ex (dQx + i dx Q)
= DQk Ek, (2.22)

in which thecovariant differentiabf the connection iD® is:
DQk = ko + T & d>q Qk . (2.23)
The separation into real and dual parts yields:

Dax = dak,
(2.24)
D&, =d@, + & dx a .



CHAPTER 3

THE PARALLEL TRANSPORT OF A MOTOR

It is known that the individual forces that act upongad body at a poinP can be
“reduced” and represented by a single force veEtdP) whose line of action goes
throughP, and a moment vectd (P). If one chooses another reduction pdnhthen
one will have theransport law:

F(@Q =F(P), M (Q) =M (P) +Fx Q-P. (3.1)

One calls these two representations of the reduced &ystems & andQ equivalentor
equipollent.

The same transport law will be true for the infinites displacement state of a rigid
body. Infinitesimal rotations and translations candbscribed completely by giving a
point P of the body, the infinitesimal rotation vectgr (P) and the infinitesimal
translationu (P). For a different choice of poir@ on the body, one will have the
transport law:

Q) =¢(P) u@=u(P)+¢xQ-P. (3.2)

The vector-pairg, u will be called ascrew while the pairF, M will be called aforce
screwor dyname. E. Study andR. v. Miseshave adoptedlifford 's term motor for
vector-pairs that satisfy the transport law (3.1) o2)3which is identical to it. A motor
V is composed of the vectorsand v :

V= m (3.3)
Vv

in which the second vector shall always be the momwector of the motor.
If the reduction point® andQ of a motor have the infinitesimal distargethen the
transport law will read:
vV (X +dx) =v (x), V(X +dx) = v(x) +Vv x dx, (3.4)
or
dv =0, dv +dx xv=0. (3.5)

We shall define thabsolute differentiabf the motor transport by:

d
av =] | (3.6)
dv+dxxv

If (3.5) is true (sodV = 0) then we can speak ofparallel transport in the sense of
differential geometry. Thereforel/ in (3.6) is a measure of the deviation of a motor
field from parallelism.

With:
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V=V &, vV=ve, and dx=edx,
we write:
d
dV = ( (V&) j (3.7)
d(ve +é&, & dxy) g

A comparison of (3.8) with (2.24) shows that the parahahsport of a motor ifE>
corresponds to the existence of a linear connection ispheD® of dual vectors.

Literature and remarks about Chapters 2 and 3.

E. Study wrote an extensive book that was rich in content ¢aBeometrie der
Dynamen(Teubner, Leipzig, 1903), which is not easy to read. | kneweraan who had
studied that book from beginning to end, namely, the ®ifgabeth feeVerstandig) of
my Braunschweiger colleague F. Rehbock, but she wasdkille an air raid on
Braunschweig in 1944. She had studied in Berlin under R.isedMland he posed the
problem to her as an examination paper that she shouldctdhe all-too-numerous
flawed figures in Study’s book. Unfortunately, her work nagler exists.

One haR. v. Misesto thank for themotor calculus which is tailored completely to
the needs of mechanics. Two major publications on ghafect exist in ZAMM4
(1924), which was issued by him at the time, and later reprint&lected Papers of
Richard v. Misesvol. 1, Amer. Math. Soc., 1964. A mechanically-selasgralar and
motorial product is defined in it and calculated with motordiy® To my knowledge,
that motor calculus has been used only a few timek,0aly in the German literature.
One must refer to it, more precisely, as a linear matigebra. The restricted
multiplication of 6«6 matrices that is employed in it is a thorn in thader’s side. V.
Mises emphasized that he would make no use of Study'svdatdrs, in order to create a
calculus that was free of dual numbers.




CHAPTER 4

THE BASIC KINEMATIC AND STATIC EQUATIONS
FOR A COSSERAT CONTINUUM

The Cosserat continuum can be described by motor .fieldsgive an example, any
point x of the continuum is associated with an infinitesimaationv = ¢ (x) and an
infinitesimal translationv = u (x), and in it,dV in (3.6) measures the deviation of the
displacement state of the continuum in the vicinity dx from the displacement state of
a rigid body. HencedV is a measure of the deformation state of the continatithe
field-pointx. To give a second example Mf(x) is a force-motor (or dyname) thelW
will measure the deviation from equilibrium in the neighimmdx + dx of the field point
x. We shall initially stick with our first example.rdm (2.94) or (3.8), the deformation
of the continuum is defined by:

D¢ =0i ¢ dx ,
4.1)
Duk = (0i Uc— & @) dx ,
or
Kik = 0; ¢k,
4.2)

&k =0i k— &k @ .

K is the tensor of curvature and torsion, whileis the tensor of distortion and
relative rotation. Both tensors are asymmetric, &mdthat reason, they have 18
components collectively. Naturally, they cannot be giaebitrarily, since, from (4.2),
they must be expressible in terms of the six veoctonponents of the andux . The
compatibility condition for this reads:

&sri Or Kik = 0,
(4.3)
&sri (Or &k + &n Or ki) = 0.

One convinces oneself that (4.3) is fulfilled gayanduy identically by substituting (4.2)
in (4.3).

We know that (4.1) or (4.2) can be combined iatsingle equation by way of the
dual numberrz. Even when (2.23) is unknown to us, after a briedfrapt, we will come
back to:

(Kik + T &) dX% =0i (P + TU) dX — T & (@ + TUy) dX
=d(g+Tu)—TEdX (A +TU)
=D (¢ + TWwy), (4.4)
and thus, to (2.23), when we set:

Qu=Qx =@+ Tu. (4.5)
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We shall now proceed in an entirely analogous way (#it8). However, if we are to
do that then we must recall the calculus of diffeedrforms, as they were set down in
Chapter 1. Obviously, (4.3) has something to do with a rdobure. We summarize
(4.3) as:

&sii Or (Kik + T &k) dAs + T Eri &t (Kik + T &) dAs = 0. (4.6)

Now, since one has:
gsri dAg = d)ﬁ' A d)ﬁ (47)

from (1.10), (4.6) can then be written:

Or (Kik + T &) dx N dX + 7 & (Kik + T &) dx ~dx =0 (4.8)
or
d (Kik + 7 &) dX + T &a dx ™ (K + T &) dx = 0. (4.9)
Now:
1
Q= Q« = (ki + T &) dX (4.10)

is a differential form of degree 1, Whiék in (4.5) was a form of degree 0.
With (4.10), (4.9) will become:

1 0 1 1
DOx=DDQx =dQk +7&ndx " Q =0, (4.11)

which one might compare with (2.23).

In a Cosserat continuum, along with the tengpof force-stresses, there also exists

the tensoruyk of moment-stresses. Both of them are asymmetrime @fers the
orientation of their components from Figures 3 and 4.

O- 0
011 012 21 2 i1 L2 Ha1 H2z
Figure 3. Figure 4.

One finds the equilibrium conditions:
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aia-ik +Xk :O’
0l +&, 0y +Y, =0.

In them, X dV (Yk dV, resp.) are the volume-forces (-moments, resp.).
We now set:

2
Q« = (O + T th) dA
and calculate:

2 2 2
DO =dQx+ 7&Kk dx ™ Q.
We get:

2
D Q«=0s (T + T th) dxs ™ dA + T & dx " (G + T 14) dA .

Now, from (1.11):
dx " dA = ai dV,
such that (4.15) can be written:

2
D Q=0 (Ofk + T,U.k) dV + 7&K (Oﬂ + T,Un) dv.

After separating the real and dual parts, one will get:

D (g, dA) =0, g, dV, }
D (44 dA) = (0; t4 *+ &y T, ) dV.

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.14) can then yield the equilibrium conditions (4.12) wivenwrite it in the form:

D (0, dA)+ X, dV=0,
D (14, dA) +Y, dV=0.

As an exercise, the reader might verify that:

1
DD Qx =DD (Kik + T&k) dx

vanishes identically iy andé&y .

(4.18)



CHAPTER 5

COVARIANT DIFFERENTIAL AND DIFFERENTIAL
OPERATORS Grad, Rot, Div
IN THE COSSERAT CONTINUUM

In order to establish the calculations of the foregainapter, in which one deals with
the covariant differentials of differential forms dégreep, we recall equations (2.19) and
(2.20) for the linear connection Bf:

dEx =1 & dx E, (5.1)

are theFrenet-Cartan differential equations. We regard (5.1) as a diffeatritirm of
degree 1 and define:

ddEy = 7 & dE, M dX . (5.2)
Due tor? = 0, the substitution afE; from (5.1) in (5.2) will yield the result:
ddgk = 0. (5.3)

(5.3) says that the connection possesses zero curvieturtegleparallelism prevails. That
result was to be expected, since a motor uniquely e$ess@a moment vector at each
pointx of E, from the transport law.

The absolute differential of a dual-vectorial diffei@hform of degree will now be
defined:

p p p p p p
d(E, Q«) = E, dQi+ dE, 0Q«= E, (dQu+7&, dx 0Q)= EDQk.  (5.4)

With that, we have obtained the covariant differentla dual-differential form of
degreep:

p p p
DQk =dQ«+71¢,, dx 0Q. (5.5)

We define the next one by using (5.4):

p p p p p
dd(E, Q«) = dE, 0dQ«+E, ddQi+ dE, 0Qk— &, 0 dx. (5.6)

Now, from the Poincaré Lemma (1.19) and the fact did&i = O, due to (5.1), one will
haveddE, = 0. One will then have:

p p p
0 =dd(E, Q«)= d(E,DQ«) = E,DD Qx, (5.7)
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from (5.6) and (5.4). With that, we have obtained thgartant result that:

p
DD Qi =0, (5.8)

which is an analogue of the Poincaré Lemma (1.19).
The reader might be confused about the negative sigineofourth summand in (5.6).
In the calculus of differential forms, one has thie:

d(0ed) = d e+ (-1) 70d . (5.9)

However, due to (5.19Ey is a form of degree= 1 in (5.6).
In analogy to (1.13), (1.16), (1.18), we now introduce kineg differential operators
Grad, Rot, and Div by way of:

0 0

D Q« = GradQx, (5.10)
1 1

D Q« = Rot Qx, (5.11)
2 o2

DQ« = Div Q. (5.12)

(5.8) will then yield the identities:
0
Rot GradQx =0, (5.13)

1
Div Rot Q«= 0, (5.14)

which are analogous to (1.20). If we now skip over dualbermand differential forms
for the moment then what will remain as a result ballthe definition of the operators:

Grad VJ = (a‘ b j (5.15)

u ai U —&q Y
0 K
ROt I_( — ‘gsrl I’I(Ik , (516)
& £4i(0, & T Eq K)
g 0.0
Div| |= ( ' i j (5.17)
H ai Hy + &y O,

In this, the bold quantities are vectors, while the untk bold quantities are second-
rank tensors.
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With that, we now write the basic equations of tlesg&rat continuum as follows:

('—(j . Gradvj [cf., 4.2)] (5.18)
£ u
K
Rot ;j =0 [cf., (4.3)] (5.19)
piv [ |+[*] = o: f., (4.12 5.20
v [Yj_, [cf., (4.12)] (5.20)
(5.14) corresponds to:
Div Rot (’ﬂ -0, (5.21)

Confirming this directly was posed as an exercise ag¢nldeof the foregoing chapter.
Let us consider the homogeneous equilibrium conditibridy:

. [gj
Div =0. (5.22)

They can be fulfilled identically in the tensdés G when:

)
= Rot : (5.23)
7 G

F and G are the tensors of the stress functions of the €easg€ontinuum, which

number eighteen in all.
Corresponding to (5.13), the compatibility conditiors.19) will be fulfilled
identically by (5.18).

Literature and remarks on Chapters 4 and 5

The basic equations of kinematics and statics wesepted in 1958 bW. Glnther
(then at Braunschweig, now at Karlsruhe) in the Abhandiongder
Braunschweigerischen Wiss. Ga$.(1958). One will find the representation of force-
stresses and moment-stresses by stress functions theéhe elastic Cosserat continuum,
the stress functions must satisfy compatibility caodg. For quite some time, | sought
to exhibit the differential equations for the two s, andGj of the stress functions,
which nonetheless remained mired in equations that werastngffor some time. From
my calculations, | then recognized the possibility #faducing operators like Grad, Rot,
Div, along with their identities. My young colleag&e Kessel(who works withW.
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Gunther at Karlsruhe) took up my incomplete work and has achievedgtial quite
skillfully. His definitive paper appeared in ZAMM7 (1967). One will find a brief
summary of it inMechanics of Generalized Cosserat ContinUdTAM Symposium,

Freudenstadt-Stuttgart, 1967, ed. E. Kroner, Springer-Ved&$8. Three more
operators are required for the calculations with sti@sstions, namely, GradRot, and

Div". They will follow from the considerations of thext chapter.




CHAPTER 6

FURTHER NOTIONS FROM
THE CALCULUS OF DIFFERENTIAL FORMS

One requires two more identities in vector analylsed tink the operators grad, rot,
div with the Laplacian operator:

2 2 2
A=00 = 62+ 62+ g ,
o 0% 0%
namely:
div grad® = Ad, (6.1)
rot rota =—Aa+ grad diva. (6.2)

One calls® thescalar potential while a is thevector potential. Both play an important
role; e.g., in electrodynamics (viz., the theory ottall’'s equations).
In the calculus of differential forms, (6.1) and (Ga&se from the formula:

dSw+ddw = ([dé+ &) w = - Aw. (6.3)

ois the so-calledodifferential In order to explain what it is, we must first become
acquainted with thetar operator*. In order to do that, | shall be content to defirfer
Euclidian spac&® with Cartesian coordinates:

*dx =dA, (6.4)
*dA =dx, (6.5)
*dV =1, (6.6)
*1 = dW. (6.7)
Obviously, one has:
** =, (6.8)
For example, if:
1
w =a dx (6.9)
then let:
1
*w=a dA . (6.10)

p p
[More generally: ¥ (X1, X2, X3) w =f *w.]
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The star operator then converts a form of degrép = O, 1, 2, 3) into a form of
degree 3 p.
The codifferential of a form of degreas now defined by:

p p
Jw=(-1*d*w. (6.11)
One has that:

p
*w  has degree 3p;
p
d*w hasdegree 3p+1=4-p,
p
*d*w has degree 3—(4p}=p-1.

p p
Whereasd w is a form of degree + 1, d w will then be a form of degregg— 1. One
3 3
will then have thad w = 0 andow = 0.

0
We shall now apply (6.3) to the form =f (X1, X2, X3). Sinced = 0, what will
remain is:

Adf = — Af. (6.12)
In detall:

df=0; fdx, (6.13)

*df =0, f dA (6.14)

d*df =0x 0 f d N dA =0k 0i f & dV=Af dV,
*d*df =Af. (6.15)
Sincedf has degree 1, one will have:
Af = (- 1)t *d *df. (6.16)

(6.15), together with (6.16), confirm (6.12). Bindar calculations, one confirms that
1 1
O w corresponds to the operator — div, ah@ corresponds to the operator rot.

2
When (6.3) is applied ta =& dx that will yield:

1 1
dow+odw =-Ag dx, (6.17)
or, in the same sequence:
—grad div + rot rot = A. (6.18)

The casep = 2,p = 3 imply nothing new in (6.3). However, it is patorthy that:

5500 = 0. (6.19)
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In more detail, when one observes (6.8):

p p p
Ow=-Fd*(*d*)w =-*dd*w=0, (6.20)
from the Poincaré Lemma. (6.19) once more impliesdietities:

divrot=0 forp = 2,
(6.21)
rotgrad =0 fop = 3.

One should compare these with (1.19) and (1.20).
In order to prepare for a main result in Chapter 8, wk give a proof of the theorem
of Helmholtz that every vector fiekd(x) can be represented by:

v = rota — grad®. (6.22)

2
In the calculus of differential forms, we must shibwat w = v; dA can be represented as:

1

2 3
w=dm+oo, (6.23)

1 3
in which one hagr=a; dx and o= ® dV.
In order to do that, we set:

m=9on, o=dn, (6.24)

2
in which 7=w dA ; when (6.24) is substituted in (6.23), and one observa} {bat will
give:

2 2 2

w=do+) n=-A4An, (6.25)
or

a=—Aw . (6.26)
However, from the theorems of potential theory, (6.2@)ays possess a solutiow .

2 1 3
One substitutew: or /7 in (6.24) and calculateg and o, with which, the proof will be

complete.
We now further stipulate that the vectoshould satisfy the equation:

divv+p=0. (6.27)

2
w in (6.23) should then be a solution of the equation:
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2
dw+ppdV=0. (6.28)
It follows from (6.23) that:

2 3 3
dw=doo =- Ao, (6.29)

such that, as a result of (6.28) and (6.29), one must have:

3

Aog=-pdV. (6.30)
3 2
In this, we replacer with d# using (6.24) and obtain:
2 2
Adnp = dAn =pdV. (6.31)

2
(The operatora andd commute.) However; was determined by (6.25). Hence, (6.28)

2
does, in fact, follow from (6.31). In summary, we hakieven that any solutiorsv of
equation (6.28) can be represented by (6.23), as long as (6f3d)le.

3
In the case op = 0, (6.30) will say thaiz is harmonic. A deeper, more advanced

3
examination will show thato can generally be set to zero only when the domain
considered of the equation:

divv=0 (6.32)

does not possess a cavity (i.e., a hole). Sourcemdaad be present in such holes. We
shall come back to this problem in Chapter 8.




CHAPTER 7

THE COVARIANT CODIFFERENTIAL AND
THE ASSOCIATED DlFFERENTlAL OPERATORS
Grad, Div’, Rot

We recall the definition (5.5) of the covariant diéietialD and pose the problem of
defining a codifferentiaf? such that the formula:

(Dz9+z9D)§p2k :—Afgk (7.1)

will be true, in analogy to (6.3). Since our linear cation is skew-symmetric in the
indicesi andl, a closely-related problem is to defifien terms of the connection:

p p p
D Q=dQx —T&gcdx "™ Q. (7.2)
We then get, in succession:
p p p
D *Qx =d*Q—1& dx ™ *Q, (7.3)
p p p
(1P *D Q = (- 1P *d *Qu + (= 1) gi *(dx A *Q1), (7.4)
p p 1 p
IQ =0 Qu+1(-1)"" g, *(dx 0% Qu). (7.5)

Corresponding to (6.19), we shall show that:

p
I3 Q« =0. (7.6)
In analogy to (6.20), one will now have:
p p p
Qe == (*D *) (*D *) Qx=—-*D D *Q«. (7.7)
It will then suffice to show that:
p
DD Q=0 (7.8)

for the connection (7.2). It follows from (7.2)th

D (D_Qp)k) :d(D_Qp)k) — T &k dX A D_Qpll
—dd O« — 7 d (dx A Q1) = 7 & dx A dQ, (7.9)
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p
(r2=0!) Now, one hadd Q« = 0, and from (5.9):

d(dxAQ)=-dx"dQ, (7.10)

such that (7.8), and therefore (7.6), will actually oe t
Naturally, verifying the validity of (7.1) is essentjathore complicated.
We next haver(? = O!):

p p p
DZQ =dZQi+1&cd% " 0Q, (7.112)
p p o P
IDQ =0DQ«+ 1 (- 1)p Ek *(dx ~ d Q). (7.12)
We will then have:

(DS + D) O = A+ dd) O«
FTa (- 1P AR A Q) + S(dx A Q) +dx A SO + (- 1)PHdx A d Q). (7.13)

We must show that the square bracket in (7.13) vanisheter ome intermediate

computations (going fron® to d, bring the sign out of the bracket, dropping the
inessential indeX), it will remain for us to show that the differentiarm of degreep:

p p p
5(Q) =—d*(dx A Q) - *d*(dx A Q) +dx A *d*Q +*(dx A dQ) (7.14)

p p p p p p
vanishes identically ifQ . SinceZ is linear inQ = w+r @, we might replace with w
in (7.14). We immediately convince ourselves that:

S(*e) = *3(a), (7.15)

since ** = 1. If we can then verify that:

> (e) =0 (7.16)

for p = 0, 1 then the proof fqgy = 2, 3 will also follow from (7.15).
0
Showing thatz («w) = 0 is simple.

1
The calculation for w = ax dx is somewhat complicated. One should note the
relation:

&ik &m = 91 &m— Gm i (7.17)
in that regard.
1
The verification tha2 (w) = 0 might then be left to the reader.
The square bracket in (7.13) will then, in fact, varastd what will remain is:
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(DS + D) Q= (dd+ &) Q=-AQ,

which was to be proved.

Taking the codifferential lowers the degree of a ddifeial form by one step:

1 !
FQr=-Div Q,

3 3
9Q«=- Grad Q.
(7.6) yields the identities:

* 3
Rot Grad Q«=0,

. * * 2
Div Rot Qx=0.

Ultimately, one will get from (7.1), with the operatafsChapter 5:

-Rot Grad =A; (p=0)

- Grad Div' + Rot Rot =-A; b=1)
- Grad Div' + Rot Rot =-A; 0=1)
- Div Grad =-A. p=1)

Explicitly, these new differential operators have tent.

T aiTk &y S
Rot* (Qj — ( ‘gsri aiQ||< j ,
R Eqi (aiRk & Q)

(3330
R ai R« — & Q|

23

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)
(7.26)
(7.27)

(7.28)

(7.29)

(7.30)

(7.31)
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A comparison of these with the operators Grad, Rot,iib{%.15), (5.16), and (5.17) will
produce only a sign difference in the second termseo§écond row.




CHAPTER 8

THE COMPLETE REPRESENTATION OF TENSOR
FIELDS ON A COSSERAT CONTINUUM

| shall recall the considerations of Chapter 6, eq. [6r2Barding the complete
representation of a vector field, in particular, ateedield that satisfies the condition
(6.28).

On the grounds of the definition of the codifferentfalwe are now in a position to
give the complete representation of the motor fieddsa Cosserat continuum. Of
particular interest are the cases:

1
1: Q= (K + T &) dx , (8.1)

o
1

2
p=2: Q«= (Ok + T ) dA . (8.2)
We would initially like to treat them together and shdmatithe representation:

p-1 p+1

p
Q =D m+8 Z« (8.3)
is always possible. In order to prove (8.3), we substitute

p-1 p p+l p

= JHx, 2x= DH« (8.4)
p
in (8.3) and get the Poisson equation Iy :
p p p
Q = (DI + D)H =—AHy. (8.5)

p p
There always exists a solutidth for a givenQy, which completes the proof.

p
Furthermore Q« shall be a solution of the equation:

P p+l

DQx+Wy =0, (8.6)

p+l
in which W, must satisfy the compatibility condition:

p+l

DW, =0. (8.7)

Substituting (8.3) in (8.6) will imply that:
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p+1 p+1
DJ Z«+W«=0, (8.8)
which we can write as:
p+1 p+l ptl
-AZ—9D Zk+Wi=0, (8.9)

p+l
sinceD#+ JD =—-A. Now, sinceZ « can be represented as:

p+l p
>x= DHyx, (8.10)
from (8.4), the condition:
p+1
D>«=0 (8.11)

will be superfluous. (8.9) then simplifies to:

p+l p+l

ATy = Y. (8.12)

p p p+l
Now, Hk in (8.10) was calculated from the givedy« using (8.5), such tha« is
established already by (8.10). It then remains to show tha

+1
S\ = DHy with AH+Qc =0 (8.13)
fulfills (8.12).
We get:
p p p p+l
ADHk= DAH« =- DQ« = Wk. (8.14)

The operatord andD commute, and thUék satisfies eq. (8.6), by assumption.

The case op = 1 in eq. (8.2) is of especial interest, since one théh be dealing
with the complete representation of the stressesti@gssfunctions. One once more
considers equations (4.12), (5.20), (5.22), and (5.23):

2 3
DQ+W =0, (8.15)
with

3

W = X+ 7Y dV, (8.16)
to be the equilibrium conditions. In order to fulf{(8.15) identically, we make the
Ansatz:

1 3
Q« = D+« (8.17)
according to (8.3), in which:

=
[

= (Fik + 7Gy) dx, (8.18)
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S = Qe+ 7R dV. (8.19)

In symbolic notation, (8.17) reads:

(gj = Rot(Ej — Grad (Qj (8.20)
H G R

The proof of the completeness of the Ansatz (8.17) [(8r28).] will be simplified by
the fact that (8.11) is fulfilled from the outset in tese op = 2, since a form of degree
4 will have to vanish, due to the fact tlit ~ dx = 0. Substituting (8.17) in (8.15) will
yield:

3 3
DIZk+Wk =0 (8.21)
or

3 3
AT+ Wy =0, (8.22)

A variant of the method of proof above is the follogvone: We initially set:

1 2
Tk = JH« (8.23)
or symbolically:
F
_j Rot( j (8.24)
G
with
2
Hk = (A + 7By) dA . (8.25)
(8.17) will then become:
2 2 3
Qw = DIH+I 2« (8.26)
or
2 2 2 3
Qx =— AH«k-J(DH«k—Zk). (8.27)

2
Let Q« be any solution of (8.15), so it represents a stress staquilibrium. We
split (8.27) into:

2 2

Q« = AH., (8.28)
2 3

DH = S, (8.29)

2
and calculateH ¢ from (8.28) (which is always possible), substitute ib i(8.29), and get

2
a H« that must fulfill (8.22). One convinces oneself thas ikj in fact, the case. That
achieves the proof of the completeness of the repreémenté8.17) [(8.20), resp.].
Naturally, (8.22) means nothing but:
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—AQk:Xk, —ARk:Yk . (830)

1 3
(8.17) will then consist of the two stress staiegw and #%«. One can now show that

1
D 7« represents a stress state for which the forces antents preserve equilibrium on
any closed surface inside the body. If the body hasityaahose outer surface is loaded
with forces and moments that are not themselves inil@gum then the second term

3
F2k in (8.17) must be added to them, and even when the vdanees and moments
3
and Y vanish. From (8.22) and (8.30%« will then be harmonic in all of the body.

3
However, Z« is not harmonic in the domain of the hole, and thelteasudyname would
then determine the loads on the hole. Nonethelesgjipgrhat idea further would have
to be a subject for a later lecture.

Literature and concluding remarks

As | have said before, | found the six differential m@pers Grad, Rot, Div, Grad
Rot, Div' by calculation using stress functions. However, t firsived at the basis for
that calculus after my Braunschweiger colleague Stitkfadvised me that | should look
into the calculus of differential forms. The resulas my paper “Analysis der
Motorfelder im Cosserat-Kontiuum,” ZAMM?7 (1967). In it, | went into the connection
with v. Mises’s motor calculus and calculated in densional motor space. It was
only later that | noticed that the use of dual numbers dumal vectors simplified the
calculation essentially. | published an apparently-agsmpaper on the representation of
the equilibrium states by stress functions in Bull. ddd@ol. Sci. (1)15 (1967), 63. The
symbolic notation that was found in, e.g., (8.20) wapleyed in it.

In connection with the two Padua lectures that | docuedehére, on 4 April 1968, |
lectured at a Symposium in Rome on “Das dreidimensio@aleserat-Kontinuum und
die Cosserat-Schale im Kalkil der DifferentialfornierOne will find the calculus in
general coordinates there. Generally, | did not succeedeéfining the codifferential on
curved shells. In the meantime, the Rome lecture appesrethe Symposia
Mathematica, Istituto Nazionale di Alta Matematitg;1968). For those who would like
to go deeper into the theory of differential formsietommend the bookifferential
Forms with Applications to the Physical Scienbgsl. Flanders, Acad. Press, 1963.



