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FOREWORD 
 

 Hermann Schaefer was one of the promoters of the “International Center for 
Mechanical Sciences.”  He took part in various meetings that were organized in Trieste, 
Aachen, Braunschweig, and other places with the purpose of drafting up the statutes and 
choosing the original department and activities of the center. 
 He was cordially connected with my Institute for Mechanics at the University of 
Trieste, at which he held seminars, courses, and lectures on various topics.  In particular, 
his lectures on the Cosserat continuum were quite meaningful, which were lectures to 
which I also contributed to a modest extent, and whose publication by my institute was 
undertaken in Volume 7 of its “Lezioni e Conferenze.” 
 The short lecture that I would like to present here following the death of Professor 
Schaefer was given by Hermann Schaefer at the Universities of Padua and Trieste in 
March of 1968.  Professor Schaefer sent us the manuscript some days before his death. 
 I shall present this lecture as a CISM publication, instead of as part of the collection 
of the institute, since he was more closely linked with the former institution than the latter 
one. 
 As a colleague of the CISM and the University of Trieste and an unambiguous, 
consistent, lively, and amiable human being, Hermann Schaefer deserves the deepest 
gratitude. 
 We are all saddened by his passing. 
 
 
  Luigi Sobrero 
 
Udine, April 1970 
 

____________ 
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CHAPTER I 
 

SOME NOTIONS FROM  
THE CALCULUS OF DIFFERENTIAL FORMS  

 
 

 We shall consistently use Cartesian coordinates x1, x2, x3 in Euclidian space E3.  We 

denote a differential form of degree p by 
p

ω ; e.g.: 
 

p

ω  = a1 dx1 + a2 dx2 + a3 dx3 = 
3

1
k k

k

a dx
=
∑ .   (1.1) 

 
In what follows, the summation sign will always be omitted (viz., the Einstein 
convention).  We then write: 

1

ω  = ak dxk .      (1.2) 
 
Let the ak be functions of position, so: 
 

ak = ak (x1, x2, x3) ;     (1.3) 
 
they can be regarded as components of a vector a (a1, a2, a3). 
 The exterior derivative (dérivation extérieure), or more simply, the differential of the 

form 
1

ω  will be defined as: 
 

1

dω  = (dak) dxk = k

i

a

x

∂
∂

 dxi ^ dxk  = ∂i ak dxi ^ dxk .   (1.4) 

 
 The symbol ^ (i.e., wedge) signifies the exterior product (multiplication extérieure), 
which is antisymmetric in the indices i and k: 
 

dxi ^ dxk = − dxk ^ dxi .    (1.5) 
Naturally, one will have: 

dxk ^ dxk = 0.      (1.6) 
 
Along with (1.5) and (1.6), (1.4) will read, in detail: 
 

1

dω  = (∂2 a3 − ∂3 a2) dx2 ^ dx3 + (∂3 a1 − ∂3 a1) dx3 ^ dx1 + (∂1 a2 − ∂2 a1) dx1 ^ dx2 .  (1.7) 
 
 The oriented volume element for E3 is: 
 

dV = dx1 ^ dx2 ^ dx3      (1.8) 
in Cartesian coordinates. 
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 We introduce the oriented (vectorial) surface element: 
 

dA = (dA1, dA2, dA3) = (dx2 ^ dx3 , dx3 ^ dx1 , dx1 ^ dx2).  (1.9) 
 
In more concise notation: 

εikl dAl = dxi ^ dxk .     (1.10) 
 
(εikl is the RICCI tensor, which is alternating in all three indices.  Its components will be 
+ 1 or – 1 whenever i, k, l defines an even or odd permutation of the numbers 1, 2, 3, 
respectively.  The components with two or three equal indices will have the value 0.) 
 
 It follows from (1.8) and (1.9) that: 
 

dxi ^ dAk = dAk ^ dxi = δik dV .    (1.11) 
 
(δik is the Kronecker symbol for the unit tensor.)  With (1.10), we now write (1.4) as: 
 

1

dω  = εikl ∂i ak dAl .     (1.12) 
 
This differential form of degree p = 2 represents the rotation of the vector a: 
 

1

dω  = (rot a)l dAl = rot 
1

ω .    (1.13) 
 
 The differential of a form of degree p = 2: 
 

2

ω = ak dAk       (1.14) 
will be defined as: 
 

2

dω  = (dak) dAk = ∂i ak dxi ^ dAk = ∂i ak δik dV = ∂ ak dV.  (1.15) 
 
The ak in (1.14) can, in turn, be regarded as the components of a vector, and (1.15) will 
be nothing but: 

2

dω  = div a dV = div 
2

ω .    (1.16) 
 

 
2

dω  is a form of degree p = 3.  Forms of higher degree will not exist in E3, since dxk ^ 
dV = 0 for k = 1, 2, 3.  By contrast, a form degree p = 0 can be defined to be a scalar 
function: 

0

ω  = a (x1, x2, x3),     (1.17) 
whose differential: 

0

dω  = ∂i a dxi = (grad a)i dxi = grad 
0

ω ,   (1.18) 
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is a form of degree p = 1. 
 One of the most important formulas of the calculus is: 
 

p

ddω  = 0,     (1.19) 
 
which is also called the Poincaré Lemma. 
 The validity of formula (1.19) can be verified directly in our examples.  One gets the 
identities: 

0

1

rot grad 0 for 0,

div rot 0 for 1.

p

p

ω

ω

= = 

= = 

   (1.20) 

 
This brief extract from the calculus of differential forms in E3 can suffice for our 
purposes to begin with. 
 

Literature  
 

 One will find an elementary introduction to the calculus of differential forms in the 
book by R. C. Buck, Advanced Calculus, New York, 1956 on pages 309-321.  The reader 
will enjoy perusing this stimulating book.  An already challenging, but still easily-
readable, presentation can be found in the chapter on “Alternierende Differentialformen” 
(written by Sommer, Reimann, and Rau) in the book by Behnke, Bachman, Fladt, and 
Süss, Grundzüge der Mathematik (for Gymnasium students, as well as mathematicians in 
industry and commerce), Band III, Analysis, Göttingen, 1962, pp. 133-200.  I shall give 
further bibliographic references later at the end of Chapter 8. 
 

________ 



CHAPTER 2 
 

DUAL NUMBERS AND DUAL VECTORS  
 
 

 In the book by I. M. Yaglom, Complex Numbers in Geometry, Academic Press, 
1968, one reads on page 14:  
 

“Dual numbers, apparently, were first considered by the famous German 
geometer E. Study (1862-1930, University of Bonn) of the end of the last Century 
and the beginning of this one; double numbers were introduced by a contemporary of 
Study, the English geometer W. Clifford  (1845-1879).  Clifford, who was concerned 
with the use of these numbers in mechanics, called them motors.” 

 
 That nice little book by Yaglom is generally too elementary for our purposes here.  I 
recommend that the reader confer the book by W. Blaschke (a student of Study), 
Vorlesungen über Differential-Geometrie, Band I, Springer-Verlag Berlin, 1945, and in 
particular, page 261 of the chapter on line geometry in it. 
 A dual number: 

A = a + τ â  
 
consists of a pair (a, â ) of real numbers a, â .  The new unit τ shall satisfy the rule of 
calculation: 

τ 2 = 0. 
 
The sums and products of two dual numbers A1 = a1 + τ 1̂a , A2 = a2 + τ 2â  will then be: 

 
A1 + A2 = (a1 + a2) + τ 1 2ˆ ˆ( )a a+ ,   (2.1) 

 
A1 A2 = a1 a2 + τ 1 2 2 1ˆ ˆ( )a a a a+ .   (2.2) 

 
We can regard τ as simply an auxiliary quantity that imparts a convenient overview to 
assigning: 

(a1 + a2 , 1 2ˆ ˆ )a a+ ,    (2.3) 

 
(a1 a2 , 1 2 2 1ˆ ˆa a a a+ )    (2.4) 

 
to the sum and product of the number-pairs (a1, 1̂a ), (a2, 2â ) on the basis of its property 

τ 2 = 0. 
 The idea that one could use the ∞4 lines in space as the building blocks for a spatial 
geometry goes back to J. Plücker (1801-1868, physicist and mathematician at the 
University of Bonn). 
 In his “line geometry,” a line is determined by two vectors: 
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a, â ,      (2.5) 
such that one should have: 

a ⋅⋅⋅⋅ a = 1, a ⋅⋅⋅⋅ â  = 0.    (2.6) 
 
(⋅⋅⋅⋅ is the symbol of the scalar product of two vectors.)  One calls the six coordinates of the 
vectors a and â  with the two auxiliary conditions (2.6) the Plücker line coordinates.  â  
is determined by the origin O of the Cartesian coordinate system: namely, â  is the static 
moment of the direction vector a with respect to O: 
 

x × a = â .     (2.7) 
 

(× is the symbol for vectorial multiplication.)  Refer to Fig. 1 for this. 
 

Line 

a 
P 

x 

Plane through the line 
and the origin O 

O a 

â  

 
Figure 1. 

 
The coordinates of the position vector x are the coordinates of the point P of the line. 
 Study combined the Plücker vectors (a, â ) into the dual vector: 
 

A = a + τ â .     (2.8) 
 

The basis for that can be made clearer by the following argument: The scalar product of 
two dual vectors is: 
 

A1 ⋅⋅⋅⋅ A2 = (a1 + τ 1â ) ⋅⋅⋅⋅ (a2 + τ 2â ) = a1 ⋅⋅⋅⋅ a2 + (a1 ⋅⋅⋅⋅ 2â + a2 ⋅⋅⋅⋅ 1â ).  (2.9) 

 
Consider Fig. 2: 
 A1 and A2 represent two lines whose shortest distance is p = | x2 – x1 | .  Obviously, 
the “real part” of the scalar product (2.9) is: 
 

a1 ⋅⋅⋅⋅ a2 = cos Φ.    (2.10) 
Furthermore, one has: 

(x2 – x1) ⋅⋅⋅⋅ a1  = 0, (x2 – x1) ⋅⋅⋅⋅ a2  = 0.  (2.11) 
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O 

x1 

x2 a1 

A1 
 

A2 

a2 

p 

Φ 

 
Figure 2. 

 
 We shall now consider the “dual part” of the scalar product (2.9), which one also calls 
the mutual moment of the lines: 
 

a1 ⋅⋅⋅⋅ 2â + a2 ⋅⋅⋅⋅ 1â = a1 ⋅⋅⋅⋅ (x2 × a2) + a2 ⋅⋅⋅⋅ (x1 × a1) = (a1 × a2) ⋅⋅⋅⋅ (x1 − x2) = − p sin Φ. (2.12) 

 
From (2.9), with (2.10) and (2.12), we have then obtained: 
 

A1 ⋅⋅⋅⋅ A2 = cos Φ – τ p sin Φ.    (2.13) 
 
(By the way: By means of a formal series development, one has: 
 

cos (Φ + τ p) = cos Φ cos τ p – sin Φ sin τ p = cos Φ ⋅⋅⋅⋅ 1 – (sin Φ) (τ p) 
 
for the dual angle Φ + τ p.) 
 As long as a1 ⋅⋅⋅⋅ a2 ≠ 1: 

a1 ⋅⋅⋅⋅ 2â + a2 ⋅⋅⋅⋅ 1â = 0     (2.14) 

 
means that the lines that are represented by A1 and A2 intersect at the point x = x1 = x2 . 
 From now on, we shall employ Cartesian coordinates (x1, x2, x3), which will be the 
case in all of this treatise. 
 At the point x (x1, x2, x3), we construct the orthogonal dreibein e1 , e2 , e3 from ei = 

i∂ x . (∂i is also the abbreviation for ∂ / ∂xi that shall be employed from now on.)  We shall 

now represent the three coordinate lines that go through the point x by the three dual 
vectors: 

Ei = ei + τ ˆ
ie , ˆ

ie  = x × ei .    (2.15) 

Obviously: 
ei ⋅⋅⋅⋅ ek = δik , ei ⋅⋅⋅⋅ ˆ

ke + ek ⋅⋅⋅⋅ ˆ
ie = 0,   (2.16) 

 



2. – Dual numbers and dual vectors. 7 

so the three coordinate lines do, in fact, intersect at the point x.  With that, we have also 
“fixed” the three unit vectors ei ; they are “line-bound” vectors, like forces on a rigid 
body.  Since the ei at each point of E3 are unit vectors in the coordinate direction, one will 
have: 

∂i ek = 0.     (2.17) 
 
 The moment vectors ˆ ke  behave differently.  Namely: 

 
ˆ

i k∂ e  = ∂i (x × ek) = ei × ek = εikl el .    (2.18) 

 
[εikl is the Ricci symbol, which is alternating in all three indices.  It has the value 1 (– 1, 
resp.) when ikl is an even (odd, resp.) permutation of the numbers 123.  Its value will be 
zero when two or three indices are equal.] 
 With (2.15), (2.17), and (2.18), we can write: 
 

∂i Ek = Γikl El  or dEk = Γikl dxi El ,   (2.19) 
in which: 

Γikl = τ εikl .     (2.20) 
 
(2.19) defines a linear connection in the space D3 of dual vectors.  One observes that the 
transport symbol Γikl of this connection is skew-symmetric. 
 We define a dual vector ΩΩΩΩ in D3 by way of: 
 

ΩΩΩΩ = Ek Ωk , Ωk = ωk + ˆ
kτ ω ,    (2.21) 

 
in which the ωk and ˆ

kω  are any three real numbers.  With (2.19) and (2.20), the 

differential of the dual vector ΩΩΩΩ will become: 
 
 d    ΩΩΩΩ = d (Ek Ωk)  = Ek dΩk + dEk Ωk  
  = Ek dΩk + Γikl dxi El Ωk  
 = Ek (dΩk + Γikl dxi Ωk) 

= DΩk Ek ,      (2.22) 
 
in which the covariant differential of the connection in D3 is: 
 

DΩk = dΩk + τ εikl dxi Ωk .     (2.23) 
 
 The separation into real and dual parts yields: 
 
 Dωk = dωk , 

(2.24) 
 ˆ

kDω  = ˆ
kdω  + εikl dxi ωk . 

 
__________



CHAPTER 3 
 

THE PARALLEL TRANSPORT OF A MOTOR  
 

 
 It is known that the individual forces that act upon a rigid body at a point P can be 
“reduced” and represented by a single force vector F (P) whose line of action goes 
through P, and a moment vector M  (P).  If one chooses another reduction point Q then 
one will have the transport law: 
 

F (Q) = F (P),  M  (Q) = M  (P) + F × −Q P
������

.   (3.1) 
 
One calls these two representations of the reduced force systems at P and Q equivalent or 
equipollent. 
 The same transport law will be true for the infinitesimal displacement state of a rigid 
body.  Infinitesimal rotations and translations can be described completely by giving a 
point P of the body, the infinitesimal rotation vector ϕϕϕϕ (P) and the infinitesimal 
translation u (P).  For a different choice of point Q on the body, one will have the 
transport law: 

ϕϕϕϕ (Q) = ϕϕϕϕ (P),  u (Q) = u (P) + ϕϕϕϕ × −Q P
������

.   (3.2) 
 
The vector-pair ϕϕϕϕ, u will be called a screw, while the pair F, M  will be called a force 
screw or dyname.  E. Study and R. v. Mises have adopted Clifford ’s term motor for 
vector-pairs that satisfy the transport law (3.1) or (3.2), which is identical to it.  A motor 
V is composed of the vectors v and v̂ : 

V = 
ˆ

 
 
 

v

v
,     (3.3) 

 
in which the second vector shall always be the moment vector of the motor. 
 If the reduction points P and Q of a motor have the infinitesimal distance dx then the 
transport law will read: 

v (x + dx) = v (x), v̂ (x + dx) = v̂ (x) + v × dx,  (3.4) 
or 

dv = 0,  d v̂  + dx × v = 0.   (3.5) 
 
 We shall define the absolute differential of the motor transport by: 
 

dV = 
ˆ

d

d d

 
 + × 

v

v x v
.     (3.6) 

 
If (3.5) is true (so dV = 0) then we can speak of a parallel transport, in the sense of 
differential geometry.  Therefore, dV in (3.6) is a measure of the deviation of a motor 
field from parallelism. 
 With: 
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v = vk ek , v̂  = ˆx xv e , and dx = ei dxi , 

we write: 

dV = 
( )

ˆ( )
k k

k k kil i i l k

d v

d v dx vε
 
 + 

e

e e e
.    (3.7) 

 
A comparison of (3.8) with (2.24) shows that the parallel transport of a motor in E3 
corresponds to the existence of a linear connection in the space D3 of dual vectors. 
 
 

Literature and remarks about Chapters 2 and 3. 
 

 E. Study wrote an extensive book that was rich in content called Geometrie der 
Dynamen (Teubner, Leipzig, 1903), which is not easy to read.  I know a woman who had 
studied that book from beginning to end, namely, the wife Elisabeth (nee Verständig) of 
my Braunschweiger colleague F. Rehbock, but she was killed in an air raid on 
Braunschweig in 1944.  She had studied in Berlin under R. v. Mises, and he posed the 
problem to her as an examination paper that she should correct the all-too-numerous 
flawed figures in Study’s book.  Unfortunately, her work no longer exists. 
 One has R. v. Mises to thank for the motor calculus, which is tailored completely to 
the needs of mechanics.  Two major publications on that subject exist in ZAMM 4 
(1924), which was issued by him at the time, and later reprinted in Selected Papers of 
Richard v. Mises, vol. 1, Amer. Math. Soc., 1964.  A mechanically-sensible scalar and 
motorial product is defined in it and calculated with motor-dyadics.  To my knowledge, 
that motor calculus has been used only a few times, and only in the German literature.  
One must refer to it, more precisely, as a linear motor algebra.  The restricted 
multiplication of 6×6 matrices that is employed in it is a thorn in the reader’s side.  V. 
Mises emphasized that he would make no use of Study’s dual vectors, in order to create a 
calculus that was free of dual numbers. 
 

____________ 
 



CHAPTER 4 
 

THE BASIC KINEMATIC AND STATIC EQUATIONS  
FOR A COSSERAT CONTINUUM  

 
 

 The Cosserat continuum can be described by motor fields.  To give an example, any 
point x of the continuum is associated with an infinitesimal rotation v = ϕϕϕϕ (x) and an 
infinitesimal translation ̂v  = u (x), and in it, dV in (3.6) measures the deviation of the 
displacement state of the continuum in the vicinity x + dx from the displacement state of 
a rigid body. Hence, dV is a measure of the deformation state of the continuum at the 
field-point x.  To give a second example, if V (x) is a force-motor (or dyname) then dV 
will measure the deviation from equilibrium in the neighborhood x + dx of the field point 
x.  We shall initially stick with our first example.  From (2.94) or (3.8), the deformation 
of the continuum is defined by: 
 Dϕk = ∂i ϕk dxi , 

(4.1) 
 Duk = (∂i uk – εikl ϕl) dxi , 
or 
 κik = ∂i ϕk , 

(4.2) 
 εik = ∂i uk − εikl ϕl . 
 
 κik is the tensor of curvature and torsion, while εik is the tensor of distortion and 
relative rotation.  Both tensors are asymmetric, and for that reason, they have 18 
components collectively.  Naturally, they cannot be given arbitrarily, since, from (4.2), 
they must be expressible in terms of the six vector components of the ϕk and uk .  The 
compatibility condition for this reads: 
 
  εsri ∂r κik = 0, 

(4.3) 
 εsri (∂r εik + εkrl ∂r κil) = 0. 
 
One convinces oneself that (4.3) is fulfilled by ϕk and uk identically by substituting (4.2) 
in (4.3). 
 We know that (4.1) or (4.2) can be combined into a single equation by way of the 
dual number τ.  Even when (2.23) is unknown to us, after a brief attempt, we will come 
back to: 
 (κik + τ εik) dxi = ∂i (ϕk + τ uk) dxi – τ εikl (ϕl + τ ul ) dxi  
 = d (ϕk + τ uk) – τ εikl dxi (ϕl + τ ul ) 

= D (ϕk + τ uk),     (4.4) 
and thus, to (2.23), when we set: 

Ωk = 
o

kΩ  = ϕk + τ uk .     (4.5) 
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 We shall now proceed in an entirely analogous way with (4.3).  However, if we are to 
do that then we must recall the calculus of differential forms, as they were set down in 
Chapter 1.  Obviously, (4.3) has something to do with a rotor picture.  We summarize 
(4.3) as: 

εsri ∂r (κik + τ εik) dAs + τ εsri εkrl (κik + τ εik) dAs = 0.   (4.6) 
 
Now, since one has: 

εsri dAs = dxr ^ dxi      (4.7) 
 
from (1.10), (4.6) can then be written: 
 

∂r (κik + τ εik) dxr ^ dxi + τ εkrl (κik + τ εik) dxr ^ dxi = 0  (4.8) 
or 

d (κik + τ εik) dxi + τ εkrl dxr ^ (κik + τ εik) dxi = 0.    (4.9) 
Now: 

Ωk =  
1

kΩ  = (κik + τ εik) dxi      (4.10) 
 

is a differential form of degree 1, while 
o

kΩ  in (4.5) was a form of degree 0. 
 With (4.10), (4.9) will become: 
 

1

kD Ω = 
o

kDD Ω  = 
1

kd Ω  + τ εkrl dxr ^ 
1

lΩ  = 0,   (4.11) 
 
which one might compare with (2.23). 
 In a Cosserat continuum, along with the tensor σik of force-stresses, there also exists 
the tensor µik of moment-stresses.  Both of them are asymmetric.  One infers the 
orientation of their components from Figures 3 and 4. 
 

σ21 σ22 

σ23 

σ11 
 

σ12 

σ13 

σ31 

σ33 

σ32 

µ21 µ22 

µ23 

µ11 
 

µ12 

µ13 

µ31 

µ33 

µ32 

x3 

x1 x2 
 

Figure 3.      Figure 4. 
 

 One finds the equilibrium conditions: 
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0,

0.
i ik k

i ik krl rl k

X

Y

σ
µ ε σ

∂ + = 
∂ + + = 

    (4.12) 

 
In them, Xk dV (Yk dV, resp.) are the volume-forces (-moments, resp.). 
 We now set: 

2

kΩ  = (σik + τ µik) dAi     (4.13) 
and calculate: 

2

kD Ω  = 
2

kd Ω + τ εrlk dxr ^ 
2

lΩ .   (4.14) 
We get: 

2

kD Ω = ∂s (σik + τ µik) dxs ^ dAi + τ εrlk dxr ^ (σil + τ µil) dAl . (4.15) 
 
Now, from (1.11): 

 dxs ^ dAi = δsi dV,     (4.16) 
such that (4.15) can be written: 
 

2

kD Ω = ∂i (σik + τ µik) dV  + τ εrlk (σrl + τ µrl) dV .  (4.17) 
 
After separating the real and dual parts, one will get: 
 

( ) ,

( ) ( ) .
ik i i ik

ik i i ik rlk rl

D dA dV

D dA dV

σ σ
µ µ ε σ

= ∂ 
= ∂ + 

   (4.18) 

 
(4.14) can then yield the equilibrium conditions (4.12) when we write it in the form: 
 

( ) 0,

( ) 0.
ik i k

ik i k

D dA X dV

D dA Y dV

σ
µ

+ = 
+ = 

    (4.18) 

 
As an exercise, the reader might verify that: 
 

1

kDD Ω  = DD (κik + τ εik) dxi 
 
vanishes identically in κik  and εik . 
 
 

___________ 
 



CHAPTER 5 
 

COVARIANT DIFFERENTIAL AND DIFFERENTIAL 
OPERATORS Grad, Rot, Div  

IN THE COSSERAT CONTINUUM  
 
 

 In order to establish the calculations of the foregoing chapter, in which one deals with 
the covariant differentials of differential forms of degree p, we recall equations (2.19) and 
(2.20) for the linear connection in D3: 
 

dEk = τ εikl dxi El      (5.1) 
 
are the Frenet-Cartan differential equations.  We regard (5.1) as a differential form of 
degree 1 and define: 

ddEk = τ εikl dEl ^ dxi .     (5.2) 
 
Due to τ 2 = 0, the substitution of dEl from (5.1) in (5.2) will yield the result: 
 

ddEk = 0.      (5.3) 
 
(5.3) says that the connection possesses zero curvature; i.e., teleparallelism prevails.  That 
result was to be expected, since a motor uniquely associates a moment vector at each 
point x of E3, from the transport law. 
 The absolute differential of a dual-vectorial differential form of degree p will now be 
defined: 

( )
p

kkd ΩE = 
p p

kkk kd dΩ + ∧ ΩE E = ( )
p p

k lk kil id dxτ εΩ + ∧ ΩE = 
p

kkD ΩE . (5.4) 

 
With that, we have obtained the covariant differential of a dual-differential form of 
degree p: 

.
p p p

k k lkil iD d dxτ εΩ = Ω + ∧ Ω     (5.5) 

 
We define the next one by using (5.4): 
 

( )
p

kkdd ΩE = 
p p p p

k k k kk k k kd d dd dd d d∧ Ω + Ω + ∧ Ω − ∧ ΩE E E E .  (5.6) 

 
Now, from the Poincaré Lemma (1.19) and the fact that ddEk = 0, due to (5.1), one will 
have kddE = 0.  One will then have: 

 

0 = ( )
p

kkdd ΩE = ( )
p

kkd DΩE  = 
p

kkDD ΩE ,   (5.7) 
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from (5.6) and (5.4).  With that, we have obtained the important result that: 
 

0,
p

kDD Ω =      (5.8) 

 
which is an analogue of the Poincaré Lemma (1.19). 
 The reader might be confused about the negative sign on the fourth summand in (5.6).  
In the calculus of differential forms, one has the rule: 
 

( )
pr

d π ω∧ = ( 1)
p pr r

rd dπ ω π ω∧ + − ∧ .    (5.9) 
 

However, due to (5.1), dEk is a form of degree r = 1 in (5.6). 
 In analogy to (1.13), (1.16), (1.18), we now introduce the three differential operators 
Grad, Rot, and Div by way of: 

0

kD Ω  = Grad 
0

kΩ ,     (5.10) 
 

1

kD Ω  = Rot 
1

kΩ ,     (5.11) 
 

2

kD Ω  = Div 
2

kΩ .     (5.12) 
 
(5.8) will then yield the identities: 
 

Rot Grad 
0

kΩ  = 0,     (5.13) 
 

Div Rot 
1

kΩ = 0,     (5.14) 
 
which are analogous to (1.20).  If we now skip over dual numbers and differential forms 
for the moment then what will remain as a result will be the definition of the operators: 
 

Grad 
 
 
 u

ϕϕϕϕ
 = i k

i k ikl lu u

ϕ
ε

∂ 
 ∂ − 

,    (5.15) 

 

Rot 
 
 
 

κκκκ
εεεε

 = 
( )

sri r ik

sri r ik krl il

ε κ
ε ε ε κ

∂ 
 ∂ + 

,    (5.16) 

 

Div 
 
 
 

σσσσ
µµµµ

 = i ik

i ik krl rl

σ
µ ε σ

∂ 
 ∂ + 

.    (5.17) 

 
In this, the bold quantities are vectors, while the underlined bold quantities are second-
rank tensors. 
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 With that, we now write the basic equations of the Cosserat continuum as follows: 
 

 
 
 

κκκκ
εεεε

 = Grad 
 
 
 u

ϕϕϕϕ
  [cf., 4.2)]  (5.18) 

 

Rot 
 
 
 

κκκκ
εεεε

 = 0   [cf., (4.3)]  (5.19) 

 

Div 
   

+   
  

X

Y

σσσσ
µµµµ

 = 0;  [cf., (4.12)]  (5.20) 

(5.14) corresponds to: 

Div Rot 
 
 
 

κκκκ
εεεε

 = 0.     (5.21) 

 
Confirming this directly was posed as an exercise at the end of the foregoing chapter. 
 Let us consider the homogeneous equilibrium conditions (5.20): 
 

Div 
 
 
 

σσσσ
µµµµ

 = 0.      (5.22) 

 
They can be fulfilled identically in the tensors F , G  when: 
 

 
 
 

σσσσ
µµµµ

= Rot 
 
 
 

F

G
.     (5.23) 

 
 F  and G  are the tensors of the stress functions of the Cosserat continuum, which 
number eighteen in all. 
 Corresponding to (5.13), the compatibility conditions (5.19) will be fulfilled 
identically by (5.18). 
 
 

Literature and remarks on Chapters 4 and 5 
 

 The basic equations of kinematics and statics were presented in 1958 by W. Günther 
(then at Braunschweig, now at Karlsruhe) in the Abhandlungen der 
Braunschweigerischen Wiss. Ges. 10 (1958).  One will find the representation of force-
stresses and moment-stresses by stress functions there.  In the elastic Cosserat continuum, 
the stress functions must satisfy compatibility conditions.  For quite some time, I sought 
to exhibit the differential equations for the two tensors Fik and Gik of the stress functions, 
which nonetheless remained mired in equations that were confusing for some time.  From 
my calculations, I then recognized the possibility of introducing operators like Grad, Rot, 
Div, along with their identities.  My young colleague S. Kessel (who works with W. 
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Günther at Karlsruhe) took up my incomplete work and has achieved the goal quite 
skillfully.  His definitive paper appeared in ZAMM 47 (1967).  One will find a brief 
summary of it in Mechanics of Generalized Cosserat Continua, IUTAM Symposium, 
Freudenstadt-Stuttgart, 1967, ed. E. Kröner, Springer-Verlag, 1968.  Three more 
operators are required for the calculations with stress functions, namely, Grad*, Rot*, and 
Div*.  They will follow from the considerations of the next chapter. 
 

___________ 
 



CHAPTER 6 
 

FURTHER NOTIONS FROM  
THE CALCULUS OF DIFFERENTIAL FORMS 

 
 
 One requires two more identities in vector analysis that link the operators grad, rot, 
div with the Laplacian operator: 
 

∆ = ∂i ∂i = 
2 2 2

2 2 2
1 2 2x x x

∂ ∂ ∂+ +
∂ ∂ ∂

, 

namely: 
div grad Φ = ∆Φ,     (6.1) 

 
rot rot a = − ∆a + grad div a .    (6.2) 

 
One calls Φ the scalar potential, while a is the vector potential.  Both play an important 
role; e.g., in electrodynamics (viz., the theory of Maxwell’s equations). 
 In the calculus of differential forms, (6.1) and (6.2) arise from the formula: 
 

p p

d dδ ω δ ω+ = (dδ + δd) 
p

ω  = − 
p

ω∆ .   (6.3) 
 
 δ is the so-called codifferential.  In order to explain what it is, we must first become 
acquainted with the star operator *.  In order to do that, I shall be content to define * for 
Euclidian space E3 with Cartesian coordinates: 
 

*dxi = dAi ,     (6.4) 
 

*dAi = dxi ,     (6.5) 
 

*dV  = 1,     (6.6) 
 

*1 = dV.     (6.7) 
Obviously, one has: 

** = 1.      (6.8) 
For example, if: 

1

ω  = ai dxi      (6.9) 
then let: 

1

*ω  = ai dAi .     (6.10) 
 

[More generally: *f (x1, x2, x3) 
p

ω  = f *
p

ω .] 
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 The star operator then converts a form of degree p (p = 0, 1, 2, 3) into a form of 
degree 3 – p. 
 The codifferential of a form of degree p is now defined by: 
 

p

δ ω  = (− 1)p *d *
p

ω .     (6.11) 
One has that: 

 *
p

ω  has degree 3 – p, 

 *
p

d ω  has degree 3 – p + 1 = 4 – p, 

 * *
p

d ω  has degree 3 – (4 – p) = p – 1. 
 

Whereas 
p

dω  is a form of degree p + 1, 
p

δ ω  will then be a form of degree p – 1.  One 

will then have that 
3

dω  = 0 and 
3

δ ω  = 0. 

 We shall now apply (6.3) to the form 
0

ω  = f (x1, x2, x3).  Since δf = 0, what will 
remain is: 

δdf = − ∆f.      (6.12) 
In detail: 

df = ∂i f dxi ,      (6.13) 
 

*df = ∂i f dAi ,       (6.14) 
 
 d *df = ∂k ∂i f dxk ^ dAi = ∂k ∂i f δki dV = ∆f dV, 
 

*d *df  = ∆f.      (6.15) 
 
Since df has degree 1, one will have: 
 

δdf = (− 1)1 *d *df.     (6.16) 
 
(6.15), together with (6.16), confirm (6.12).  By similar calculations, one confirms that 

1

δ ω  corresponds to the operator – div, and 
1

δ ω  corresponds to the operator rot. 

 When (6.3) is applied to 
2

ω  = ai dxi that will yield: 
 

1 1

d dδ ω δ ω+  = − ∆ai dxi ,    (6.17) 
or, in the same sequence: 

− grad div + rot rot = − ∆.    (6.18) 
 
The cases p = 2, p = 3 imply nothing new in (6.3).  However, it is noteworthy that: 
 

p

δδ ω = 0.     (6.19) 
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 In more detail, when one observes (6.8): 
 

p

δδ ω = − (*d *)(* d *)
p

ω  = − *dd *
p

ω = 0,   (6.20) 
 
from the Poincaré Lemma.  (6.19) once more implies the identities: 
 
 div rot = 0  for p = 2, 

(6.21) 
 rot grad = 0  for p = 3. 
 
One should compare these with (1.19) and (1.20). 
 In order to prepare for a main result in Chapter 8, we shall give a proof of the theorem 
of Helmholtz that every vector field v (x) can be represented by: 
 

v = rot a – grad Φ.     (6.22) 
 

In the calculus of differential forms, we must show that 
2

ω = vi dAi can be represented as: 
 

2

ω = 
1 3

dπ δ σ+ ,     (6.23) 
 

in which one has 
1

π = ai dxi and 
3

σ = Φ dV. 
 In order to do that, we set: 

1

π =
2

δ η , 
3

σ =
2

dη ,    (6.24) 
 

in which 
2

η = wi dAi ; when (6.24) is substituted in (6.23), and one observes (6.3), that will 
give: 

2

ω = (dδ + δd) 
2

η = − 
2

η∆ ,    (6.25) 
or 

ai = − ∆wi .      (6.26) 
 
However, from the theorems of potential theory, (6.26) always possess a solution wi .  

One substitutes wi or 
2

η  in (6.24) and calculates 
1

π  and 
3

σ , with which, the proof will be 
complete. 
 We now further stipulate that the vector v should satisfy the equation: 
 

div v + ρ = 0.      (6.27) 
 

2

ω  in (6.23) should then be a solution of the equation: 
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2

dω + ρ dV = 0.     (6.28) 
It follows from (6.23) that: 

2

dω = 
3

dδ σ  = − 
3

σ∆ ,     (6.29) 
 
such that, as a result of (6.28) and (6.29), one must have: 
 

3

σ∆ = − ρ dV.      (6.30) 
 

In this, we replace 
3

σ  with 
2

dη using (6.24) and obtain: 
 

2

dη∆ = 
2

d η∆ = ρ dV .     (6.31) 
 

(The operators ∆ and d commute.)  However, 
2

η was determined by (6.25).  Hence, (6.28) 

does, in fact, follow from (6.31).  In summary, we have shown that any solution 
2

ω  of 
equation (6.28) can be represented by (6.23), as long as (6.30) is fulfilled. 

 In the case of ρ = 0, (6.30) will say that 
3

σ  is harmonic.  A deeper, more advanced 

examination will show that 
3

σ  can generally be set to zero only when the domain 
considered of the equation: 

div v = 0      (6.32) 
 
does not possess a cavity (i.e., a hole).  Sources can indeed be present in such holes.  We 
shall come back to this problem in Chapter 8. 
 
 

_____________ 
 

 



CHAPTER 7 
 

THE COVARIANT CODIFFERENTIAL AND 
THE ASSOCIATED DIFFERENTIAL OPERATORS  

Grad*, Div*, Rot* 
 
 

 We recall the definition (5.5) of the covariant differential D and pose the problem of 
defining a codifferential ϑ such that the formula: 
 

( )
p p

k kD Dϑ ϑ+ Ω = −∆ Ω    (7.1) 

 
will be true, in analogy to (6.3).  Since our linear connection is skew-symmetric in the 
indices i and l, a closely-related problem is to define ϑ in terms of the connection: 
 

p

kD− Ω = 
p

kd Ω  − τ εilk dxi ^ 
p

lΩ .   (7.2) 
We then get, in succession: 

*
p

kD− Ω  = *
p

kd Ω − τ εilk dxi ^ *
p

lΩ ,   (7.3) 
 

(− 1)p *
p

kD− Ω  = (− 1)p *d *
p

kΩ  + τ (− 1)p+1 εilk *(dxi ^ *
p

lΩ ), (7.4) 
 

1( 1) *( * ).
p p p

p
k k kilk idxϑ δ τ ε+Ω = Ω + − ∧ Ω   (7.5) 

 
Corresponding to (6.19), we shall show that: 
 

0.
p

kϑϑ Ω =     (7.6) 

In analogy to (6.20), one will now have: 
 

p

kϑϑ Ω  = − (*D− *) (* D− *)
p

kΩ = − *D− D− *
p

kΩ .  (7.7) 
 
It will then suffice to show that: 

D− D− 
p

kΩ  = 0     (7.8) 
 
for the connection (7.2).  It follows from (7.2) that: 
 

D− (D−
p

kΩ ) = d (D−
p

kΩ ) – τ εilk dxi ^ D−
p

lΩ  

= dd 
p

kΩ  – τ εilk d (dxi ^ 
p

lΩ ) − τ εilk dxi ^ d
p

lΩ .  (7.9) 
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(τ 2 = 0!)  Now, one has dd 
p

kΩ  = 0, and from (5.9): 
 

d (dxi ^ 
p

lΩ ) = − dxi ^ 
p

ld Ω ,    (7.10) 
 
such that (7.8), and therefore (7.6), will actually be true. 
 Naturally, verifying the validity of (7.1) is essentially more complicated. 
 We next have (τ 2 = 0!): 

p

lDϑ Ω  = 
p

ldϑ Ω + τ εilk dxi ^ 
p

lδ Ω ,   (7.11) 
 

p

lDϑ Ω  = 
p

kDδ Ω + τ (− 1)p+2 εilk *(dxi ^ 
p

ld Ω ).  (7.12) 
We will then have: 
 

(Dϑ + ϑD) 
p

kΩ  = (dδ + δ d) 
p

kΩ  

+ τ εilk [(− 1)p+1 d *(dxi ^ 
p

lΩ ) + δ (dxi ^ 
p

lΩ ) + dxi ^ 
p

lδ Ω  + (− 1) p *(dxi ^ 
p

ld Ω )]. (7.13) 
 
We must show that the square bracket in (7.13) vanishes.  After some intermediate 
computations (going from δ to d, bring the sign out of the bracket, dropping the 
inessential index l), it will remain for us to show that the differential form of degree p: 
 

( )
p

Σ Ω  = − d *(dxi ^ 
p

Ω ) − *d *(dxi ^ 
p

Ω ) + dxi ^ *d *
p

Ω  + *(dxi ^ 
p

d Ω )  (7.14) 
 

vanishes identically in 
p

Ω .  Since Σ is linear in 
p

Ω = ˆ
p p

ω τ ω+ , we might replace 
p

Ω  with 
p

ω  
in (7.14).  We immediately convince ourselves that: 
 

(* )
p

ωΣ = * ( )
p

ωΣ ,     (7.15) 
 
since ** = 1.  If we can then verify that: 
 

( )
p

ωΣ = 0      (7.16) 
 

for p = 0, 1 then the proof for p = 2, 3 will also follow from (7.15). 

 Showing that 
0

( )ωΣ  = 0 is simple. 

 The calculation for  
1

ω  = ak dxk is somewhat complicated.  One should note the 
relation: 

εijk εilm = δjl δkm – δjm δkl    (7.17) 
in that regard. 

 The verification that 
1

( )ωΣ  = 0 might then be left to the reader. 
 The square bracket in (7.13) will then, in fact, vanish, and what will remain is: 
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(Dϑ + ϑD) 
p

Ω = (dδ + δd) 
p

Ω = −
p

∆ Ω ,   (7.18) 
 
which was to be proved. 
 Taking the codifferential lowers the degree of a differential form by one step: 
 

p

kϑ Ω  = 
1p

k

−
Ω .      (7.19) 

 
We once more introduce the operators: 
 

 
1

kϑ Ω = − Div*
1

kΩ ,     (7.20) 
 

 
2

kϑ Ω =    Rot* 
2

kΩ ,     (7.21) 
 

 
3

kϑ Ω = − Grad* 
3

kΩ .     (7.22) 
(7.6) yields the identities: 

Rot* Grad* 
3

kΩ = 0,    (7.23) 
 

Div* Rot* 
2

kΩ = 0.    (7.24) 
 
Ultimately, one will get from (7.1), with the operators of Chapter 5: 
 

− Rot* Grad    = − ∆;  (p = 0)    (7.25) 
 

− Grad* Div* + Rot* Rot*  = − ∆;         (p = 1)                     (7.26) 
 

− Grad* Div* + Rot* Rot* = − ∆;         (p = 1)         (7.27) 
 

− Div Grad* = − ∆.            (p = 1)             (7.28) 
 
Explicitly, these new differential operators have the form: 
 

Grad* 
 
 
 

S

T
 = i k

i k ikl l

S

T Sε
∂ 

 ∂ + 
    (7.29) 

 

Rot* 
 
 
 

Q

R
 = 

( )
sri i ik

sri i ik krl il

Q

R Q

ε
ε ε

∂ 
 ∂ − 

,   (7.30) 

 

Div* 
 
 
 

Q

R
= i ik

i ik ikl rl

Q

R Qε
∂ 

 ∂ − 
.   (7.31) 
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A comparison of these with the operators Grad, Rot, Div in (5.15), (5.16), and (5.17) will 
produce only a sign difference in the second terms of the second row. 
 
 

___________ 



CHAPTER 8 
 

THE COMPLETE REPRESENTATION OF TENSOR 
FIELDS ON A COSSERAT CONTINUUM  

 
 

 I shall recall the considerations of Chapter 6, eq. (6.22) regarding the complete 
representation of a vector field, in particular, a vector field that satisfies the condition 
(6.28). 
 On the grounds of the definition of the codifferential ϑ, we are now in a position to 
give the complete representation of the motor fields on a Cosserat continuum.  Of 
particular interest are the cases: 
 

p = 1:  
1

kΩ = (κik + τ εik) dxi ,    (8.1) 
 

p = 2:  
2

kΩ = (σik + τ µik) dAi .    (8.2) 
 
We would initially like to treat them together and show that the representation: 
 

p

kΩ  = 
1 1p p

kkD π ϑ
− +

+ Σ      (8.3) 
 
is always possible.  In order to prove (8.3), we substitute: 
 

1p

kπ
−

= 
p

kHϑ ,  
1p

k

+
Σ = 

p

kD H     (8.4) 
 

in (8.3) and get the Poisson equation for 
p

kH : 
 

p

kΩ  = (Dϑ + ϑD)
p

kH  = −
p

kH∆ .    (8.5) 
 

 There always exists a solution 
p

kH  for a given 
p

kΩ , which completes the proof. 

 Furthermore, 
p

kΩ  shall be a solution of the equation: 
 

1p p

k kD
+

Ω + Ψ  = 0,     (8.6) 
 

in which 
1p

k

+
Ψ  must satisfy the compatibility condition: 

 
1p

kD
+

Ψ  = 0.      (8.7) 
 
Substituting (8.3) in (8.6) will imply that: 
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1 1p p

k kDϑ
+ +
Σ + Ψ = 0,     (8.8) 

which we can write as: 

−
1 1 1p p p

k k kDϑ
+ + +

∆ Σ − Σ + Ψ = 0,    (8.9) 
 

since Dϑ + ϑD = − ∆.  Now, since 
1p

k

+
Σ  can be represented as: 

 
1p

k

+
Σ = 

p

kD H ,     (8.10) 
from (8.4), the condition: 

1p

kD
+
Σ = 0     (8.11) 

 
will be superfluous.  (8.9) then simplifies to: 
 

1p

k

+
∆ Σ  = 

1p

k

+
Ψ .     (8.12) 

 

Now, 
p

kH  in (8.10) was calculated from the given 
p

kΩ  using (8.5), such that
1p

k

+
Σ  is 

established already by (8.10).  It then remains to show that: 
 

1p

k

+
Σ  = 

p

kD H   with  
p p

k kH∆ + Ω  = 0   (8.13) 
fulfills (8.12). 
 We get: 

p

kD H∆ = 
p

kD H∆  = − 
p

kD Ω  = 
1p

k

+
Ψ .   (8.14) 

 

The operators ∆ and D commute, and thus 
p

kΩ  satisfies eq. (8.6), by assumption. 
 The case of p = 1 in eq. (8.2) is of especial interest, since one will then be dealing 
with the complete representation of the stresses by stress functions.  One once more 
considers equations (4.12), (5.20), (5.22), and (5.23): 
 

2 3

k kD Ω + Ψ  = 0 ,    (8.15) 
with 

3

kΨ  = (Xk + τ Yk) dV,     (8.16) 
 
to be the equilibrium conditions.  In order to fulfill (8.15) identically, we make the 
Ansatz: 

2

kΩ  = 
1 3

kkDπ ϑ+ Σ     (8.17) 
according to (8.3), in which: 

1

kπ  = (Fik + τ Gik) dxi ,    (8.18) 
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3

kΣ  = (Qk + τ Rk) dV.      (8.19) 
 

In symbolic notation, (8.17) reads: 
 

 
 
 

σσσσ
µµµµ

 = Rot 
 
 
 

F

G
 – Grad* 

 
 
 

Q

R
.   (8.20) 

 
The proof of the completeness of the Ansatz (8.17) [(8.20), resp.] will be simplified by 
the fact that (8.11) is fulfilled from the outset in the case of p = 2, since a form of degree 
4 will have to vanish, due to the fact that dV ^ dxi = 0.  Substituting (8.17) in (8.15) will 
yield: 

3 3

k kDϑ Σ + Ψ  = 0    (8.21) 
or 

−
3 3

k k∆ Σ + Ψ  = 0.    (8.22) 
 

A variant of the method of proof above is the following one: We initially set: 
 

1

kπ  = 
2

kHϑ ,     (8.23) 
or symbolically: 

 
 
 

F

G
 = Rot*

 
 
 

A

B
,    (8.24) 

with 
2

kH  = (Aik + τ Bik) dAi .   (8.25) 
(8.17) will then become: 

2

kΩ  = 
2 3

k kD Hϑ ϑ+ Σ     (8.26) 
or 

2

kΩ  = − 
2 2 3

( )k k kH D Hϑ∆ − − Σ .  (8.27) 
 

 Let 
2

kΩ  be any solution of (8.15), so it represents a stress state in equilibrium.  We 
split (8.27) into: 

2

kΩ  = 
2

kH∆ ,     (8.28) 
 

2

kD H  = 
3

kΣ ,     (8.29) 
 

and calculate 
2

kH  from (8.28) (which is always possible), substitute it into (8.29), and get 

a 
2

kH  that must fulfill (8.22).  One convinces oneself that this is, in fact, the case.  That 
achieves the proof of the completeness of the representation (8.17) [(8.20), resp.].  
Naturally, (8.22) means nothing but: 
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− ∆Qk = Xk , − ∆Rk = Yk .    (8.30) 
 

(8.17) will then consist of the two stress states 
1

kDπ  and 
3

kϑ Σ .  One can now show that 
1

kDπ  represents a stress state for which the forces and moments preserve equilibrium on 
any closed surface inside the body.  If the body has a cavity whose outer surface is loaded 
with forces and moments that are not themselves in equilibrium then the second term 

3

kϑ Σ  in (8.17) must be added to them, and even when the volume forces and moments Xk 

and Yk vanish.  From (8.22) and (8.30), 
3

kΣ  will then be harmonic in all of the body.  

However, 
3

kΣ  is not harmonic in the domain of the hole, and the resultant dyname would 
then determine the loads on the hole.  Nonetheless, pursuing that idea further would have 
to be a subject for a later lecture. 
 
 

Literature and concluding remarks 
 

 As I have said before, I found the six differential operators Grad, Rot, Div, Grad*, 
Rot*, Div* by calculation using stress functions.  However, I first arrived at the basis for 
that calculus after my Braunschweiger colleague Stickforth advised me that I should look 
into the calculus of differential forms.  The result was my paper “Analysis der 
Motorfelder im Cosserat-Kontiuum,” ZAMM 47 (1967).  In it, I went into the connection 
with v. Mises’s motor calculus and calculated in six-dimensional motor space.  It was 
only later that I noticed that the use of dual numbers and dual vectors simplified the 
calculation essentially.   I published an apparently-rigorous paper on the representation of 
the equilibrium states by stress functions in Bull. Acad. Pol. Sci. (1) 15 (1967), 63.  The 
symbolic notation that was found in, e.g., (8.20) was employed in it. 
  
 In connection with the two Padua lectures that I documented here, on 4 April 1968, I 
lectured at a Symposium in Rome on “Das dreidimensionale Cosserat-Kontinuum und 
die Cosserat-Schale im Kalkül der Differentialformen.”  One will find the calculus in 
general coordinates there.  Generally, I did not succeed in defining the codifferential on 
curved shells.  In the meantime, the Rome lecture appeared in the Symposia 
Mathematica, Istituto Nazionale di Alta Matematica, 1 (1968).  For those who would like 
to go deeper into the theory of differential forms, I recommend the book Differential 
Forms with Applications to the Physical Sciences by H. Flanders, Acad. Press, 1963. 
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