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The stress functions of a dyname

By Hermann Schaefer
With 2 figures

Translated by D. H. Delphenich

Summary: The tensor of stress functions is investigated foarathat is loaded with a dyname (force
screw). Connections with Volterra’s “Theory of distons” are discussed.

1. Introduction

W. Gulnther[1] has recently shown how the outer surface forcesa othree-
dimensional stress state are connected with the terisbe stress functions. The six
components of the dyname of the outer surface forcassafface patch that is bounded
by the surface curv€ will be represented by functionals ©@fthat include linear forms of
the six stress functions and their first derivatives.

Simpler connections exist for a two-dimensional ststate. The dyname of the
boundary forces on a curve segment that links the paiatsdB will possess only three
components that now appear as functionals of the paintAB. One will find the
corresponding formulas ini[, (3.9)) ().

In Cartesian coordinates, they take the form:
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® is the single stress function of the two-dimensioti@ss state — viz., the Airy stress
function — and the stress tensor has the form:

2
S=--2% 4 5 o, (1.2)
0X, 0%

in which, & means th&roneckersymbol and\ means théaplacianoperator.

In stress-free domains of the continuubgxi, x2) will be a linear function, namely,
the null stress function:

P =a+wX—wx, (1.3)

() In contrast to]], we have allowed ourselves an inessential changeofasid denoted the moment
relative to the origin of the coordinate systemhy.
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with the constanta, w, & .
The dyname (1.1) is reduced at the origin of thex;) coordinate system (Fig. 1).
Its moment with respect to a poltx, X2) in the plane is:

M=Mg+KixX—KsX; . (14)

Suppose that a thin rod that is acted upon by this dynamaldieg thexy-axis of the
coordinate system (Fig. 2).
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Figure 1. Fiaure 2

The two half-planes to the left and right of the aod stress-free. If we choosew,
and «» to be zero in the left half-plane then their valueshe right half-plane will be
established by (1.1). One will have:

and
Mo = @by, by) + biay —braa = a, (1.6)

such tha? will have the form:
¢0:M0+K1X2—K2 X1 (17)

in the right half-plane, so, from (1.4), it will be me&al with M. Upon passing thg-
axis, ® will jump from zero toMp + K1 X2 by the magnitude of the moment of the dyname
atxs .

Naturally, we are still at liberty to assign non-zeatues to the three constantsdg¥
arbitrarily in the left half-plane. The componentdhef dyname will then be expressed in
terms of the differences between the constants), and ap in the right and left half-
planes. We would like to call (1.7), which is obviouslyiregslar solution of (1.2), the
stress function of a planar dynam€orresponding arguments shall be presented for just
the spatial case.
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2. Notations and summary of the required formulas

We shall link our notations closely @inther’'spaper 1], although we would like to
work in Cartesian coordinates throughout.
The fourth-rank tensor:

Ticim = @ka 8@mg Sup (2.1)

will be defined from the symmetric tens& according to (I], (1.23)). From (],
(1.24)), Ti,m can be represented as the rotation of a third-rankitens

0 0
Tikim = a_xiyk,lm _Kyi,lm' (2.2)

When we introduce the tensor of stress functibps which is likewise a symmetric
tensor, we will get:

0 0
Mik = & F, _6_ ; (2.3)
and the cyclic symmetry:
Mia + Wai + Y = 0. (2.4)
One will then have:
2 2 2 2
Tikm 0 9 g g (2.5)

= Fem * F - Fo - Fin-
0x 0%, 0X% 0X% 0X%0 X% 0 %0 X

The six components of a dyname will be denote®bgndM, . FromGunther[1],
their connection with thgy andFi can be represented very simply when one introduces
the “skew-symmetric force tensor”:

Kim = @ma Ko . (2.6)

The moment vector relative to the origin of the cowatk system has the
components:

M(O)| =Xa Km. (2.7)

From ([1], (1.14)), the force vector that is attributed to thementdfyx on the outer
surface is:

dKim = Tagim dfag, (2.8)
and from (2.7), its moment at the origin is:

As a result of (2.2)dKm is a total differential. If we give ourselves a eldsurveC
in a simply-connected part of the body in question themtiter surface integral aK,
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over an outer surface that is bounded by this curve wilhbependent of the form of the
outer surface. From Stokes’s theoréim, will be a functional of the curve:

Kin = §_Vem0X, - (2.10)

However, as a result of (2.3JM(0), will also be a total differential. From (2.2) and
(2.4), one will next have:

0 0
Tik,lp Xp = a_xi(xpyk,lp)_a(xpyi,lp)*-yilk 1 (211)

from which, after introducing (2.3) and applyingkegs’s theorem, the functional:

M(O) = §_[Fy +X,¥1,] dx (2.12)

will arise.

(2.10) and (2.12) are, up to an inessential chamigsign in Fi, the Glnther
representations that were mentioned in the intrbalucin the special of Cartesian
coordinates.

3. The stress function of a straight rod that occupies space

The rod might now lie on the-axis of our coordinate system, which is embeddaed i
a stress-free continuum.
From (2.5), the tensor of the stress functidiisis constructed from the singular
solutions on thes-axis of:
Tik, m=0. (31)

In ([1], (2.1) to (2.7)) andd], it was shown that any solution of (3.1) can épresented
as the symmetric gradient tensor:

F”? :E %.}.ﬂ , (32)
2\ 0x 0%

which is called theensor ofnull stress functions In the present case, tlieare regular
over all of space, except for thgaxis, on which they must possess a singularity itha
characteristic of the dyname. According to (2:8),will get:

0 |1(0dv, ov
)= —| = = -1, 3.3
a 6&{2&% 6>&H &3

and we will get the force vector of the dyname fr@10):
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Kin = ¢ —— 9 {a" av‘}dxk zcﬁchV a"'} (3.4)

0% | 0%  0x, ox  0x,

in which the integral is taken over an arbitrary closad/eC that encircles the rod.
The same thing will be true for the circuit integrall?), which will take the form:

M(O), = 95 d{v +>gnE}[a)q axnﬂ (3.5)

here, after some brief intermediate calculatioas shall be omitted here.

The integrands of our circuit integrals are tatifflerentials. The integrals will thus
be non-zero in general only when the vector fidldids multi-valued. Such a vector
field can, however, be defined very simply from thement field of the dyname. The
moment vector at any poif{(xi, X, X3) in space is:

Mi = M(0) —Xa Kig . (3.6)

In the field v, = M,, one will now have:

(c‘w o

1
2\ ox a)ﬁﬂj 2( | ) =K (3.7)

We will thus obtain the desired multi-valued figlthen we set:

vi=M, IZIi =M E—Il—Earctanﬁ. (3.8)
2ir 2ir X

The derivatives of arcta / x; are single-valued functions, such that we will roave:

LoV _ OV | _ Kim IZIi + single-valued function. (3.9)
ax, 0X%, 2m
One immediately sees that the circuit integralg)(&nd (3.5) will yield the required
components of the dyname. The tensdr of stress functions can now be calculated

with the help of (3.2) and (3.8). Its componentd e single-valued in all space,
although they will the singular on thg-axis. We will refrain from calculating them
here.
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4. The analogy with Volterra’s distortions

One can establish an analogy between the nulksieesor:

Fo = 1 ﬂ+al (4.1)
2\ 0%, 0X
and the distortion tensor:
&k = E ﬂ.}.a_w (42)
2\ 0x  0x

of a continuum.

If we pursue this analogy further for the example thas just treated then we must
first establish that the distortion field of our cowtiim is, in fact, single-valued, even
though the associated displacement field is multi-valued.

Volterra treated the theory of such distortion fields and dispient fields in his
celebrated treatise “Sur I'équilibre des corps élastiquéspiement connexes’3].

A thick-walled hollow cylinder of elastic material star@sthe &, x2) plane in such
a way that its figure axis coincides with theaxis. A plane of intersection through the
Xz-axis cuts it on one side in such a way that it becoomgs simply-connected. If a
“distortion” is now present, and indeed one that is gshahthe plane of the one edge of
the cut is fixed, while the other edge is subjected tarsstation and a rotation, in such a
way that the displacement of its points is:

The three components of the vecépare the components of the translation, and the three
components of the skew-symmetric tenagr are those of the rotation. Thus, the second
cut plane will be displaced like a rigid body. One subsaty establishes the double
connection of the cylinder again when one welds both edgi#e @ut together, with the
addition or removal of material. The deformations averywhere single-valued in the
proper stress state that now prevails. It is theutation of the displacements from the
deformations that first gives one an insight into tla¢ure of the distortions that were
performed.

The multi-valued vector field that we gave in (3.8) canmmediately be regarded as
the displacement field of the distorted cylinder. ltindeed a kinematically possible
displacement field of a continuum. However, the daftions that are calculated from it
for an elastic body by using Hooke’s law will lead taesses that satisfy the equilibrium
conditions inside the body. In other words, the dispents of an elastic body will
have to satisfy differential equations whose solutians to be found amongst the
biharmonic functions. They themselves will be composedaombnic functions and
products of linear and harmonic functions. Now, since gheplest multi-valued
harmonic function is the imaginary part of the complemction Ink; + ixz), Volterra
made the Ansatz:

U = (& —Xg Wa) CRICtanXy / X3 + (Cio + Cia Xg) ONAIX2 + X (4.4)
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and determined the still-unspecified constaats and ¢, in such a way that the
differential equations of the displacemeunt®f the elastic body would be fulfilled. One
thus has the following analogy in connection with tresesiderations: The deformations

& of a distorted body can be regarded as the stress fusidEd of the dyname whose

componentdM(0), and Ky, agree with the componenss and w, of the distortion that
corresponds to it.

5. Summary

The stress functions of a rod that was acted upondyypame were examined on the
basis of the connection between the tensor of sluestions and the dyname of the outer
surface forces that was given Binther[1]. Its tensor could be interpreted as the
deformation tensor of a continuum that was subjectedMolterra distortion, for which
the six components of the distortion agreed with theesponding components of the
dyname.
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