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 Summary:  The tensor of stress functions is investigated for a bar that is loaded with a dyname (force 
screw).  Connections with Volterra’s “Theory of distortions” are discussed. 
 
 

1.  Introduction  
 

 W. Günther [1] has recently shown how the outer surface forces of a three-
dimensional stress state are connected with the tensor of the stress functions.  The six 
components of the dyname of the outer surface forces of a surface patch that is bounded 
by the surface curve C will be represented by functionals of C that include linear forms of 
the six stress functions and their first derivatives. 
 Simpler connections exist for a two-dimensional stress state.  The dyname of the 
boundary forces on a curve segment that links the points A and B will possess only three 
components that now appear as functionals of the point-pair AB.  One will find the 
corresponding formulas in ([1], (3.9)) (*). 
 In Cartesian coordinates, they take the form: 
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Φ is the single stress function of the two-dimensional stress state – viz., the Airy stress 
function – and the stress tensor has the form: 
 

Sik = − 
2

i kx x

∂ Φ
∂ ∂

+ δik ⋅⋅⋅⋅ ∆Φ,    (1.2) 

 
in which, δik means the Kronecker symbol and ∆ means the Laplacian operator. 
 In stress-free domains of the continuum, Φ(x1, x2) will be a linear function, namely, 
the null stress function: 

Φ0 = a + ω1 x2 – ω2 x1 ,    (1.3) 

                                                
 (*) In contrast to [1], we have allowed ourselves an inessential change of sign and denoted the moment 
relative to the origin of the coordinate system by M0 .  
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with the constants a, ω1, ω2 . 
 The dyname (1.1) is reduced at the origin of the (x1, x2) coordinate system (Fig. 1).  
Its moment with respect to a point P(x1, x2) in the plane is: 
 

M = M0 + K1 x2 – K2 x1 .    (1.4) 
 
Suppose that a thin rod that is acted upon by this dyname lies along the x2-axis of the 
coordinate system (Fig. 2). 
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 The two half-planes to the left and right of the rod are stress-free.  If we choose a, ω1, 
and ω2 to be zero in the left half-plane then their values in the right half-plane will be 
established by (1.1).  One will have: 
 

K1 = ω1, K2 = ω2 ,    (1.5) 
and 

M0 = Φ0(b1, b2) + b1ω2 – b2ω1 = a,    (1.6) 
 
such that Φ0 will have the form: 

Φ0 = M0 + K1 x2 – K2 x1    (1.7) 
 
in the right half-plane, so, from (1.4), it will be identical with M.  Upon passing the x2-
axis, Φ will jump from zero to M0 + K1 x2 by the magnitude of the moment of the dyname 
at x2 . 
 Naturally, we are still at liberty to assign non-zero values to the three constants of Φ0 
arbitrarily in the left half-plane.  The components of the dyname will then be expressed in 
terms of the differences between the constants a, ω1, and ω2 in the right and left half-
planes.  We would like to call (1.7), which is obviously a singular solution of (1.2), the 
stress function of a planar dyname.  Corresponding arguments shall be presented for just 
the spatial case. 
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2.  Notations and summary of the required formulas 
 

 We shall link our notations closely to Günther’s paper [1], although we would like to 
work in Cartesian coordinates throughout. 
 The fourth-rank tensor: 

Tik,lm = eikα elmβ Sαβ      (2.1) 
 
will be defined from the symmetric tensor Sik according to ([1], (1.23)).  From ([1], 
(1.24)), Tik,lm can be represented as the rotation of a third-rank tensor: 
 

Tik,lm = , ,k lm i lm
i kx x
γ γ∂ ∂−

∂ ∂
.    (2.2) 

 
When we introduce the tensor of stress functions Fik, which is likewise a symmetric 
tensor, we will get: 

γl,ik = kl il
i k

F F
x x

∂ ∂−
∂ ∂

      (2.3) 

and the cyclic symmetry: 
γikl + γkli + γlik = 0.     (2.4) 

One will then have: 

Tik,lm = 
2 2 2 2

km il kl im
i j k m i m k l

F F F F
x x x x x x x x

∂ ∂ ∂ ∂+ − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

.  (2.5) 

 
 The six components of a dyname will be denoted by Kl and Ml .  From Günther [1], 
their connection with the γikl and Fik can be represented very simply when one introduces 
the “skew-symmetric force tensor”: 
 

Klm = elmα Kα .      (2.6) 
 
 The moment vector relative to the origin of the coordinate system has the 
components: 

M(0)l = xα Klα .     (2.7) 
 
From ([1], (1.14)), the force vector that is attributed to the element dfik on the outer 
surface is: 

dKlm = Tαβ,lm dfαβ ,     (2.8) 
 
and from (2.7), its moment at the origin is: 
 

dM(0)l = Tαβ,lρ xρ dfαβ .    (2.9) 
 
 As a result of (2.2), dKlm is a total differential.  If we give ourselves a closed curve C 
in a simply-connected part of the body in question then the outer surface integral of dKlm 
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over an outer surface that is bounded by this curve will be independent of the form of the 
outer surface.  From Stokes’s theorem, Klm will be a functional of the curve C: 
 

Klm = ,k lm kC
dxγ∫� .     (2.10) 

 
However, as a result of (2.3), dM(0)l will also be a total differential.  From (2.2) and 
(2.4), one will next have: 
 

Tik, lρ  xρ = , , ,( ) ( )k l i l i lk
i k

x x
x xρ ρ ρ ργ γ γ∂ ∂− +

∂ ∂
,   (2.11) 

 
from which, after introducing (2.3) and applying Stokes’s theorem, the functional: 
 

M(0)l = ,[ ]kl k l kC
F x dxρ ργ+∫�     (2.12) 

will arise. 
 (2.10) and (2.12) are, up to an inessential change of sign in Fik, the Günther 
representations that were mentioned in the introduction in the special of Cartesian 
coordinates. 
 
 

3.  The stress function of a straight rod that occupies space 
 

 The rod might now lie on the x3-axis of our coordinate system, which is embedded in 
a stress-free continuum. 
 From (2.5), the tensor of the stress functions Fik is constructed from the singular 
solutions on the x3-axis of: 

Tik, lm = 0.      (3.1) 
 
In ([1], (2.1) to (2.7)) and [2], it was shown that any solution of (3.1) can be represented 
as the symmetric gradient tensor: 

0
ikF  = 

1

2
k i

i k

v v

x x

 ∂ ∂+ ∂ ∂ 
,     (3.2) 

 
which is called the tensor of null stress functions.  In the present case, the vi are regular 
over all of space, except for the x3-axis, on which they must possess a singularity that is 
characteristic of the dyname.  According to (2.3), we will get: 
 

γl, ik = 
1

2
k i

l i k

v v

x x x

  ∂ ∂∂ −  ∂ ∂ ∂  
,    (3.3) 

 
and we will get the force vector of the dyname from (2.10): 
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Klm = m l
kC

k l m

v v
dx

x x x

 ∂ ∂∂ − ∂ ∂ ∂ 
∫�  = m l

C
l m

v v
d

x x
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in which the integral is taken over an arbitrary closed curve C that encircles the rod. 
 The same thing will be true for the circuit integral (2.12), which will take the form: 
 

M(0)l = 
1

2
m l

l mC
l m

v v
d v x

x x

  ∂ ∂+ ⋅ −  ∂ ∂  
∫�    (3.5) 

 
here, after some brief intermediate calculations that shall be omitted here. 
 The integrands of our circuit integrals are total differentials.  The integrals will thus 
be non-zero in general only when the vector field of vi is multi-valued.  Such a vector 
field can, however, be defined very simply from the moment field of the dyname.  The 
moment vector at any point P(x1, x2, x3) in space is: 
 

Ml = M(0)l – xα Klα .     (3.6) 
 
In the field lv  = Ml, one will now have: 

 

1

2
m l

l m

v v

x x

 ∂ ∂− ∂ ∂ 
 = 

1

2
(− Klm + Kml) = Klm .   (3.7) 

 
We will thus obtain the desired multi-valued field when we set: 
 

vl = Ml ⋅⋅⋅⋅ 
2

ϕ
π

 = Ml ⋅⋅⋅⋅
1

2π
⋅⋅⋅⋅ arctan 2

1

x

x
.    (3.8) 

 
The derivatives of arctan x2 / x1 are single-valued functions, such that we will now have: 
 

1

2
m l

l m

v v

x x

 ∂ ∂− ∂ ∂ 
 = Klm ⋅⋅⋅⋅ 

2

ϕ
π

 + single-valued function.  (3.9) 

 
One immediately sees that the circuit integrals (3.4) and (3.5) will yield the required 
components of the dyname.  The tensor 0

ikF  of stress functions can now be calculated 

with the help of (3.2) and (3.8).  Its components will be single-valued in all space, 
although they will the singular on the x3-axis.  We will refrain from calculating them 
here. 
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4.  The analogy with Volterra’s distortions 
 

 One can establish an analogy between the null stress tensor: 
 

0
ikF  = 

1

2
i k

k i

v v

x x

 ∂ ∂+ ∂ ∂ 
      (4.1) 

and the distortion tensor: 

εik = 
1

2
i k

l i

u u

x x

 ∂ ∂+ ∂ ∂ 
      (4.2) 

of a continuum. 
 If we pursue this analogy further for the example that was just treated then we must 
first establish that the distortion field of our continuum is, in fact, single-valued, even 
though the associated displacement field is multi-valued. 
 Volterra treated the theory of such distortion fields and displacement fields in his 
celebrated treatise “Sur l’équilibre des corps élastiques multiplement connexes” [3]. 
 A thick-walled hollow cylinder of elastic material stands on the (x1, x2) plane in such 
a way that its figure axis coincides with the x3-axis.  A plane of intersection through the 
x3-axis cuts it on one side in such a way that it becomes only simply-connected.  If a 
“distortion” is now present, and indeed one that is such that the plane of the one edge of 
the cut is fixed, while the other edge is subjected to a translation and a rotation, in such a 
way that the displacement of its points is: 
 

ul = al – xα ωlα .     (4.3) 
 
The three components of the vector al are the components of the translation, and the three 
components of the skew-symmetric tensor ωlm are those of the rotation.  Thus, the second 
cut plane will be displaced like a rigid body.  One subsequently establishes the double 
connection of the cylinder again when one welds both edges of the cut together, with the 
addition or removal of material.  The deformations are everywhere single-valued in the 
proper stress state that now prevails.  It is the calculation of the displacements from the 
deformations that first gives one an insight into the nature of the distortions that were 
performed. 
 The multi-valued vector field that we gave in (3.8) cannot immediately be regarded as 
the displacement field of the distorted cylinder.  It is indeed a kinematically possible 
displacement field of a continuum.  However, the deformations that are calculated from it 
for an elastic body by using Hooke’s law will lead to stresses that satisfy the equilibrium 
conditions inside the body.  In other words, the displacements of an elastic body will 
have to satisfy differential equations whose solutions are to be found amongst the 
biharmonic functions.  They themselves will be composed of harmonic functions and 
products of linear and harmonic functions.  Now, since the simplest multi-valued 
harmonic function is the imaginary part of the complex function ln(x1 + ix2), Volterra 
made the Ansatz: 
 

ul = (al – xα ωlα) ⋅⋅⋅⋅ arctan x2 / x1 + (cl0 + clα xα) ⋅⋅⋅⋅ ln 2 2
1 2x x+    (4.4) 
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and determined the still-unspecified constants cl0 and clα in such a way that the 
differential equations of the displacements ul of the elastic body would be fulfilled.  One 
thus has the following analogy in connection with these considerations: The deformations 
εik of a distorted body can be regarded as the stress functions 0

ikF  of the dyname whose 

components M(0)l and Klm agree with the components al and ωlα of the distortion that 
corresponds to it. 
 

5.  Summary 
 

 The stress functions of a rod that was acted upon by a dyname were examined on the 
basis of the connection between the tensor of stress functions and the dyname of the outer 
surface forces that was given by Günther [1].  Its tensor could be interpreted as the 
deformation tensor of a continuum that was subjected to a Volterra distortion, for which 
the six components of the distortion agreed with the corresponding components of the 
dyname. 
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