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 Since about 1962, there has been a rapidly increasing number of publications on 
continuum mechanics that relate to the labors of the COSSERAT brothers that go back 
more than fifty years. 
 In order to understand the fate of these almost-forgotten works, one must know the 
résumés of the COSSERAT brothers [1].  EUGÈNE, the younger of the two, was a 
mathematician from the school of DARBOUX and in 1896, he was the successor to 
STIELTJES at the University of Toulouse at the age of thirty.  At that time, his 
collaboration with his older brother FRANÇOIS on elasticity theory had already begun.  
FRANÇOIS, who was likewise highly gifted in mathematics, had attended the École 
Polytechnique and had the rank of “chef des Ponts et Chaussées” engaged by the eastern 
France railroad company.  Here, one recalls CASTIGLIANO, who had occupied a similar 
position with the northern Italian railroads.  The collaboration of the COSSERAT 
brothers extended over thirteen years and culminated in the book “Théorie des corps 
déformables” that was published in 1909 by Hermann in Paris.  Already in 1908, 
EUGÈNE COSSERAT has assumed the leadership role for the Toulouse observatory, 
and this high office soon caused his mathematical output to die away.  After the 
premature death of his brother FRANÇOIS in the year 1914 he was no longer answerable 
to elasticity theory.  He did not want to face the pain of remembering their years of 
fruitful collaboration.  EUGÈNE COSSERAT died in 1931 at the age of 65. 
 The first work of the COSSERAT brothers “Sur la théorie de l’élasticité” in the year 
1896 [2] began with the sentences: “One knows what a powerful instrument the 
introduction of the moving triad (trièdre mobile) into surface theory was in the hands of 
RIBACOUR and DARBOUX.  Based on the lectures of KOENIGS on kinematics, one 
recognizes that in the mechanics of rigid bodies the introduction of moving triads was not 
merely fortunate.  We have resolved to extend the use of triads to the study of deformable 
bodies, and we were led by numerous important questions to results that recently came to 
us.” 
 In the first chapter of their book, one reads “A deformable line is a continuous one-
parameter manifold of triads, a deformable surface is a two-parameter one, and a 
deformable body is a three-parameter manifold.” This illuminates the fact that the 

                                                
 *) Presented at the GAMM Meeting in March, 1967 in Zürich. 
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mathematical continuity that one assumes in such a definition associates each point of the 
trace with a rigid body.  From the standpoint of mechanics, one can already assume that 
the well-known moments will appear that have been studied since EULER and 
BERNOULLI for lines and surfaces, and which LORD KELVIN and HELMHOLTZ 
attempted to rediscover in three-dimensional continua. 
 Any point of the deformable continuum will be associated with a rigid orthogonal 
dreibein.  The point thus takes on an orientation (polar medium), and it makes sense to 
speak of the rotation of a point.  Any material point of the COSSERAT continuum is an 
infinitesimal rigid body.  Thus, in an elastic COSSERAT continuum, not only the usual 
stresses appear, but also moment stresses (moments of deformation).  They are something 
completely new, and one should not confuse them with the moments of force stresses. 
 In Figure 1a, we consider a quadratic piece of a two-dimensional continuum (for the 
sake of simplicity).  The measure of l is sufficiently small that one may regard the change 
in stresses with position as linear.  We would like to consider the conditions of 
equilibrium.  For this, one makes use of the so-called rigidification principle, as a result 
of which, any excised part of the continuum can be regarded as a rigid body [3].  We 
have the force geometry of a rigid body at our disposal.  As a statically-equivalent force 
system in the cut in question x2 = const., we choose a unit force in the middle of the sides 
and a force-couple.  From this, we finally define the normal stress σ22 that is uniformly 
distributed over the cut surface and the statically-equivalent moment distribution 
(moment per unit surface area): 

(1)      m23 = 
2

22
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l

x
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that corresponds to the force-couple (Fig. 1b).  One proceeds in that way with all four cut 
surfaces.  (One refers to the conventional notation in Figure 1c.)  We now write down the 
equilibrium conditions in the usual way.  It is characteristic of the moment distribution 
mik that it vanishes like l2 when one passes to the limit l → 0 while the σik remain 
constant.  For that reason, the mik cannot appear in the equilibrium conditions for an 
infinitesimal element.  The analogous consideration in a three-dimensional continuum, in 
which one also must define the moment distribution of the shear stresses, leads to the 
same result: 
(2a), (2b)   ∂ασαk + Xk = 0, ekαβ σαβ = 0. 
 
These equilibrium conditions are not only necessary, but also sufficient.  Then, when 
equilibrium exists at any infinitesimal element, it also exists for an arbitrary piece of the 
continuum.  We thus confirm that the three equilibrium conditions (2b) for the moments 
of all forces at the element yield the symmetry of the stress tensor.  (ekαβ σαβ = 0 means 
that the skew-symmetric part of the stress tensor is zero.)  It is remarkable that we can 
present six necessary and sufficient equilibrium conditions for a spatial continuum whose 
points have three functional degrees of freedom.  Things are completely different when 
we present the equations of motion for the continuum.  Here, we have the basic 
NEWTONIAN laws of mechanics at our disposal, and we have no more than three 
equations of motion for the material points: 
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(3)      ∂ασαk + Xk = ksρ ɺ . 

 
At first, it makes no sense to speak of the rotational motion of a material point.  The 
definition of the impulse moment (of the spin) affords us a certain substitute.  We expect 
a theorem of the form: “The change in the impulse moment per unit time (of an arbitrary 
volume) is equal to the moment sum of all external forces (volume and outer surface 
forces).”  Thus, the volume integral over the skew-symmetric part of the stress tensor σik 
appears on the right-hand side as an extra term: 
 

(4)  kV

d
e x s dV

dt αβ α βρ∫  = k k k kV O V
e x X dV e x n dO e dVαβ α β αβ α λβ αβ αβσ σ+ −∫ ∫ ∫ . 

 
However, the vanishing of this integral can only be asserted for the case of equilibrium; 
then, as we have shown, the stress tensor is symmetric.  At this point, classical continuum 
mechanics poses an axiom: “The impulse moment theorem is valid in the aforementioned 
form: or the equivalent convention: “The stress tensor σik is also symmetric under the 
motion of the continuum.”  G. HAMEL [3] calls this convention the BOLTZMANN 
axiom.  The distinguished physicist and philosopher LUDWIG BOLTZMANN had 
expressly proved the axiomatic character 1) of the assertion of the symmetry of the stress 
tensor in his lectures “Über die Grundprinzipien und Grundgleichungen der Mechanik” at 
Clark University in 1899 [4].  Continuum mechanics with an asymmetric stress tensor 
can be referred to as non-Boltzmannian mechanics (in analogy to non-Euclidian 
geometry).  However, the COSSERAT continuum is such a theory of mechanics. 
 The COSSERAT brothers, by their efforts, towered above the literature on continuum 
mechanics of the last 100 years.  However, in order to climb this tower, one must accept 
unimaginable work.  Their mechanics is nonlinear from the outset and their elaborate 
notation compels the modern reader to find an adequate vector and tensor representation 
for himself.  Nowhere were the arguments that were carried out in full generality clarified 
by a single example. 
 Thus, it is not surprising that the work of the COSSERAT brothers remains 
practically unnoticed, to the extent that the surviving EUGÉNE did not concern himself 
with that work for the last twenty years of his life.  The book “Théorie des corps 
déformables” has been thoroughly ignored and often untouched in the libraries.  I can 
quickly procure a copy from a used bookstore that the library of the mathematical 
institute at Göttingen University had discontinued on 14 May 1964.  My teachers, 
GEORG PRANGE of Hannover and MAX WINKELMANN of Jena, introduced me to 
the significance of the COSSERAT work thirty years ago.  Around 1909 – the year of his 
Habilitation – WINKELMANN was an assistant to KARL HEUN of Karlsruhe (and, as 
such, a follower of GEORG HAMEL).   HEUN had grasped the COSSERAT ideas 
immediately and made them the subject of a seminar.  The encyclopedia article by HEUN 
[5] also paid tribute to the work of the COSSERAT brothers.  Since about 1953, my 
colleague GÜNTHER and I have discussed stress functions and dislocation theory and 

                                                
 1) Cf., on this, the footnote on pp. 546 of the article by C. TRUESDELL and R. TOUPIN: “The 
classical fields theories,” Handbuch der Physik, Bd. III/1. Berlin/Göttingen/Heidelberg, 1960.  “The 
German literature persists in attributing credit to BOLTZMANN here.” 
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we eventually came to the conclusion that both circles of problems belong to the 
COSSERAT continuum.  The “Théorie des corps déformables” gave us no information in 
that regard.  Thus, GÜNTHER had to develop the statics and linear kinematics of the 
COSSERAT continuum independently in order to show that the model for dislocation 
theory is an incompatible COSSERAT continuum [6].  On the basis of this work, I could 
give a static interpretation of the stress functions of the three-dimensional continuum in 
1959 [7].  I already made an attempt at a linear elasticity theory of the COSSERAT 
continuum in 1957 and presented it at the Lower Saxony Mechanics Colloquium.  It 
seems appealing to me to develop non-Boltzmannian continuum mechanics by analogy to 
non-Euclidian geometry and to work out some simple examples of the special properties 
of this continuum.  I dedicated the manuscript of this work [8] to W. TOLLMANN in 
1960. 
 In the sequel, we would like to restrict ourselves – in complete contrast to the 
COSSERAT brothers – to the linear theory of the COSSERAT continuum.  Thus, the 
things that are peculiar to continuum mechanics will not be lost to us.  In a linear theory, 
the translation and rotation of the material points are infinitesimal, and, in particular, the 
infinitesimal rotation may be represented by a rotation vector ϕϕϕϕ.  Therefore, any point of 
the continuum is associated with a translation vector u and a rotation vector ϕϕϕϕ.  For 
GÜNTHER, the deformation state of the continuum will be described by an asymmetric 
deformation tensor: 
(5)     γik = ∂i uk – eikα ϕα , 
 
and the likewise asymmetric tensor of the curvature (Verkrümmung): 
 
(6)      χik = ∂i ϕk . 
 
(We employ Cartesian coordinates x1, x2, x3 throughout and the abbreviations ∂/∂xi = ∂i ; 
eikl is the alternating tensor of LEVI-CIVITÀ..)  The symmetric part of the deformation 
tensor γik is identical with the deformation tensor εik of the classical continuum: 
 

(7)     γ(ik) = 
1

2
(∂i uk + ∂k ui) = εik . 

 
ωωωω = (1/2) rot u, the vector of the mean rotation in the displacement field, must be 
distinguished from the vector ϕϕϕϕ, which describes the rotation of the position-dependent 
triad that is bound to the material point.  This becomes particularly clear when one 
considers: 

(8)     γ[ik] = 
1

2
(∂i uk − ∂k ui) − εik α ϕα , 

 
which is the anti-symmetric part of the deformation tensor γik .  In vectorial notation: 
 

(9)     γA = 
1

2
 rot u – ϕϕϕϕ = ωωωω – ϕϕϕϕ . 
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It describes the relative rotation of the position-dependent triad compared to the mean 
rotation of the displacement field. 
 χik must be related to the tensors of twisting (Verdrillung) and curvature, since its 
three components with equal indices describe torsional deformations and the unequal 
indices, the curvature deformations.  One convinces oneself that the two deformation 
tensors γik and χik vanish simultaneously when the continuum displaces like a rigid body. 
 We now assume that the elastic potential: 
 
(10)     Φ = Φ(γik, χik) 
 
depends upon the 18 variables γik and χik , and define the force stresses σik and the 
moment stresses 2) µik by: 
 

(11)   σik = 
ikγ

∂Φ
∂

,  µik = 
ikχ

∂Φ
∂

. 

  
We further define the kinetic energy per unit volume (ρ = density): 
 

(12)    T = 
1 1

2 2k k k ku u Iρ ρ ϕ ϕ+ ɺ ɺɺ ɺ  . 

 
In this, we have distributed a rotational energy ρ I over the infinitesimal volume element 
of the material point – we assume kinetic isotropy (spherical symmetry) – but not a mass 
moment of inertia per unit volume (such a thing would go to zero with the square of the 
linear measure of a volume element), but a quantity that associates the material point with 
a “proper spin” ρ I ɺϕϕϕϕ  or “spin.”  We have defined kinetic and potential energy.  With the 
help of HAMILTON’s principle we then obtain the equations of motion for translation 
and rotation of the material point: 
 
(13a), (13b)  ∂ασαk + Xk = kuρ ɺɺ , ∂ασαk + ekαβ σαβ +Yk = ρ I ɺϕϕϕϕ , 

 
with the six boundary conditions: 
(14a), (14b)   nα σαk = pk , nα µαk = qk . 
 
Obviously, not only is classical continuum theory generalized, but also NEWTONIAN 
mechanics.  In detail: We have associated the volume moment Yk with the volume forces 
Xk and the outer surface moment qk with the outer surface force pk ; the tensor of force 
stresses σik is asymmetric, in general.  Naturally, the appearance of the moment stresses 
µik is also novel, which are, as we will show, completely distinct from the moment 
distribution mik that we considered above.  We shall now once more formulate the 
impulse-momentum theorem (relative to the origin of our Cartesian coordinate system) 
by substituting the integrand in the volume integral on the right-hand side of (4) 

                                                
 2) “Moments de déformation,” “couple-stress,” or (according to TRUESDELL) “conatus 
momentorum.” 
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according to (13b), applying GAUSS’s theorem, introducing the outer surface forces 
(14a) and the outer surface moments (14b): 
 

(15) ( )k kV

d
I e x u dV

dt αβ α βρ ϕ +∫ ɺ ɺ  = ( ) ( )k k k kV O
Y e x X dV q e x p dOαβ α β αβ α β+ + +∫ ∫ . 

 
In words: “The change in impulse-momentum per unit time is equal to the sum of the 
static moments of all external moments and forces that act on V and O.” In our non-
Boltzmannian mechanics, the spin theorem then becomes a simple consequence of the 
equations of motion (13) and the boundary condition (14). 
 In the case considered here of linear elasticity theory, the potential energy Φ is a 
homogeneous function of degree 2 in the γik and χik, such that one can write: 
 

(16)   Φ = 
1

2 ik ik
ik ik

γ χ
γ χ

 ∂Φ ∂Φ+ ∂ ∂ 
 = 

1

2
(σik γik + µik χik). 

 
Here, the term σik γik serves a special purpose.  Namely, one has, on taking (7), (8), and 
(9) into account: 
(17)    σik γik = σ(ik)γ(ik) + σ[ik]γ[ik] = σ(ik) εik + σσσσA γγγγA . 
 
The first summand on the right is well-known from classical elasticity.  The second one 
describes the work that the anti-symmetric part of the stress tensor 3) exerts on the 
relative rotational deformation: 
 

(18)  σ[ ik]γ[ik] = 
1 1

( ) ( )
2 2ik ki i k k i iku u e α ασ σ ϕ − ∂ − ∂ − 

 
 = 

1
rot

2
A  − 
 

uσ ϕσ ϕσ ϕσ ϕ . 

 
One would search in vain through the entire book by the COSSERAT brothers for the 
linear material law of an elastic continuum.  They were not concerned with such trivia.  
They addressed a much more general question as the main problem of their book, 
namely, how the integrand of the HAMILTONIAN variational problem (la densité 
d’action) would appear.  For a continuum, the action is a scalar functional of geometric, 
kinematic, and kinetic variables, and the action must remain invariant when one subjects 
these variables to a transformation of the Euclidian group.  The associated group of the 
infinitesimal transformations has seven parameters, such that the demand of invariance is 
equivalent to the existence of seven conservation laws for energy, impulse, and rotational 
impulse.  On this main problem of COSSERAT, there is the monograph “L’action 
euclidienne de déformation et de mouvement,” of I. SUDRIA [9].  A very beautiful 
presentation of this circle of problems for the elastic continuum in the nonlinear case was 
given by TOUPIN [10]. 

                                                
 3) In SOMMERFELD, Mechanik der deformierbaren Medien, 5th ed., pages 66 and 67, one finds a 
pseudo-proof of the symmetry of the stress tensor in fluids.  One will deduce the logical fallacy in it on the 
basis of (18). 
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 Along with the elastic bodies of one, two, and three dimensions, the COSSERAT 
brothers treated ideal fluids and the ether theories of McCULLAGH up to KELVIN.  
Here, one also naturally finds the gyrostatic bodies that KELVIN had imagined in order 
to conceive of the elastic properties of the light ether, along with the concept of kinetic 
anisotropy for the explanation of double refraction.  Furthermore, it treated the circle of 
themes: “Étude de l’action euclidienne à distance, de l’action de contrainte et de l’action 
dissipative.” In conclusion, there was a large chapter on the Euclidian action in EULER 
variables, in which they also sought to that to the work of POINCARÉ and LORENTZ on 
the dynamics of the electron.  One may indeed say that here a truly grandiose quest was 
undertaken: to present mechanics, optics, and electrodynamics in a unified field theory 
under the fundamental principle of the Euclidian action.  When EINSTEIN and 
MINKOWSKI soon showed that such a unified field theory is possible only under the 
LORENTZ group, this did not trivialize the work of the COSSERAT brothers, and all 
that one could do was to regret that they had not commenced their work from that new 
viewpoint.  Their great work was completely ignored by theoretical physicists.  The 
thought that the variational problem of a physical field theory, when postulated in the 
conservation laws, must remain invariant under a group of transformations, was first 
taken up again in 1918 in the works of FELIX KLEIN and EMMY NOETHER. 
 In the linear elasticity theory of COSSERAT continua, the potential Φ(γik , χik) is 
trivially EUCLIDIAN invariant, because the deformations γik and χik vanish by definition 
when the continuum moves like a rigid body.  Furthermore, Φ is a homogeneous function 
of degree 2 of the 18 tensor components γik and χik .  The case of general anisotropy was 
discussed exhaustively in 1964 by KESSEL [11].  In the same year, the papers of 
NEUBER [12], MINDLIN [ 13], ERINGEN-SUHUBI [14] appeared, which likewise 
contained the material law (i.e., constitutive equations) for the isotropic, centrally-
symmetric case: 

(19a), (19b)  σ(ik) = ( )2
1 2ik ikG αα

νγ δ γ
ν

 + − 
, σ[ ik] = 2G η1γ[ik] , 

 

(20a), (20b)  µ(ik) =
2

( ) 32
12 ik ik

L
G ααχ η δ χ +  , µ[ik] = 2G 

2

12

L η2 γ[ik] . 

 
One adds four new constants to the two elastic constants of classical elasticity theory.  η1 
and η2 couple the anti-symmetric parts of the two deformation tensors with the anti-
symmetric parts of the associated stress tensors.  η1, η2, and η3 are dimensionless.  By 
contrast, the new constant L has the dimension of a length.  The two-dimensional special 
case was already treated by H. SCHAEFER [8] in 1962. 
 We now have to express the force and moment stresses in the six equations of motion 
(13) in terms of the displacement vector u and the rotation vector ϕϕϕϕ with the help of the 
material laws (19) and (20).  By restricting to the case of equilibrium and vanishing 
volume forces and moments, this produces the system of equations: 
 
(21a)     L(u) – 2 η1 γγγγA = 0, 
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(21b)  (1 + η2) ∆γγγγA + (1 − η2 + 2η3) grad divγγγγA −
2

48

L
η1γγγγA – 31

2

η+
 ∆ rot u = 0. 

 
In this, we have – as is recommended – introduced the relative rotation γγγγA in place of ϕϕϕϕ.  
We put these two groups of equations for u and γγγγA together with the NAVIER equation 
for the displacement vector v of the classical elastic isotropic continuum: 
 

(22a), (22b)  L(u) ≡ ∆v + 
1

1 2ν−
 grad div v = 0,  ∆ rot v = 0, 

 
One observes the appearance of the operator L in (21a).  ∆ is the three-dimensional 

LAPLACIAN operator in Cartesian coordinates.  H. NEUBER [12] and R. D. MINDLIN 
[15] gave the general solution of these equations.  They generalized the PAPKOWICH-
NEUBER Ansatz for the classical continuum to the COSSERAT continuum. 
 In the classical continuum, rot v is harmonic, from (22b) and the fact that γγγγA = 0.  One 
then recognizes that any equilibrium state in the classical continuum with a displacement 
vector u whose components uk possess continuous second derivatives is also a compatible 
equilibrium state of the Cosserat continuum. 
 From this particular solution, one computes the moment stresses µik from, in turn, ϕϕϕϕ = 
(1/2) rot v, χik = ∂i ϕk , and the material law (20).  Since γγγγA = 0, the tensor σik of force 
stresses is now symmetric, and one has for the equilibrium of moment stresses: 
 
(23)     ∂α µαβ = 0. 
 
The moments and forces that belong to this particular solution and act on the outer 
surface preserve the equilibrium in themselves.  In the case two-dimensional case, there 
exists a corresponding particular solution, as was already established in 1962 by H. 
SCHAEFER [8]. 
 The general solution can be found in a relatively simple way with the use of this 
particular solution.  For the vector γγγγA, use will be made of the well-known HELMHOLTZ 
Ansatz from continuum mechanics: 
 
(24)    γγγγA = rot rot H + grad h. 
 
the vector potential H and the scalar potential h satisfy an oscillation equation with an 
imaginary frequency: 

(25a)    
2

1 2

1

(1 )(1 )

12 4

L η η
η

+ +
 ∆H – H = 0. 

 

(25b)    
2

3

1

1

12 2

L η
η

+
 ∆h – h = 0. 

 
With (24), (21a) has the solution: 
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(26)    u = v – 2 η1 rot H, L(v) = 0. 

 
Equations (25) are highly characteristic of a COSSERAT continuum.  According to the 
tests of J. SCHIVE [16], the L for a metallic engineering material has the order of 
magnitude of 0.1 mm.  For L = 0, it follows from (25) that H = 0, h = 0, and one finds 
oneself in a classical continuum.  Thus, H and h satisfy typical boundary layer equations.  
Only in such boundary layers can the stress tensor σik be asymmetric.  On the other hand, 
H and h will require six boundary conditions on the boundary surface of the continuum – 
for instance, one might let the displacements and rotations or the forces and moments be 
prescribed. 
 Boundary layers appear when the continuity of the body is disturbed so there is an 
outer surface and an inner one, where forces or moments act, or where incompatibilities 
(dislocations) are present.  The problem of shear-free bending also has an exact solution 
in a COSSERAT continuum that belongs to the class of particular solutions that was 
described above, moreover.  The relative rotation of neighboring triads provokes moment 
stresses that are uniformly distributed over the cross-section.  If one replaces the linearly 
distributed force stresses by a statically-equivalent uniform distribution of force-couples 
then one clearly recognizes that we are dealing with two moment distributions of 
completely different characters (Fig. 2).  Indeed, both moments are proportional to the 
distortion, although they remain constant under a reduction of the measure of the 
COSSERAT moment stress, while the moments of the force stresses σik go to zero with 
the square of the linear measurement.  On surface or volume pieces that have linear 
measurements with the order of magnitude L, the moment stresses have the same order of 
magnitude as the moments of the force stresses.  If the bending distance l of the beam has 
the order of magnitude L/10 then the bending moment will be practically defined by just 
the moment stresses.  The assumption that is based on this that L has the same order of 
magnitude as the boundary-layer thickness will be confirmed by a series of worked 
examples.  For holes or grooves whose measures have the same order of magnitude as L, 
the stress concentration deviates markedly from the corresponding one in a classical 
continuum. 
 One obtains the special case that was considered by the COSSERAT brothers of the 
“triédre caché” when the rotation of the position-dependent triad makes the mean rotation 
of the displacement field equal to: 
 

(27)    γγγγA = 
1

2
rot u – ϕϕϕϕ = 0. 

 
This kinematic constraint condition is the root of the fact that the anti-symmetric part σσσσA 
of the force stress tensor degenerates into a reaction force (in the sense of HAMEL [3]).  
With (27) and (19b), it then follows from (21b): 
 

(28)    σσσσA + 
2

48

GL
(1 + η2) ∆ rot u = 0, 

and from (21a): 
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(29)    L(u) + 
2

48

L
(1 + η2) ∆ rot rot u = 0. 

The displacement state: 
 
(30)   u = v,  L(u) = 0, ∆ rot u = 0 

 
is also a specialization of (29) here.  In the general solution: 
 
(31)    u = v – rot χχχχ 
 
the vector potential χχχχ must satisfy the equation: 
 

(32)    
2

2(1 ) 1
48

L η 
+ ∆ − 

 
χχχχ  = 0 

Thus: 
(33)    σσσσA = G rot rot χχχχ. 
 
The first works on this pseudo-COSSERAT continuum of the triédres cachés [17, 18, 19] 
were written with no knowledge of the true COSSERAT theory, and the fact that one can 
fulfill only five boundary conditions on the outer surface in this reduced theory (instead 
of the six in the true COSSERAT theory) seems confusing at first.  A lucid presentation 
of the elasticity theory of the pseudo-COSSERAT continuum was given later by W. T. 
KOTTER [20].  The assertion of a series of author that σσσσA must remain undetermined in 
this theory because σσσσA does no work is refuted by eq. (33). 
 For the problem of the stress concentration at the holes and grooves, there are a series 
of worked examples by MINDLIN and TIERSTEIN [19] for the pseudo-COSSERAT 
continuum and by NEUBER [21] for the true COSSERAT continuum.  The characteristic 
length L in both theories is also the origin of the dispersion in the propagation of elastic 
waves (MINDLIN [13], PALMOV [22], ERINGEN and SUHUBI [14], ADOMEIT 
[23]).  An experimental confirmation of the calculated effect is still lacking, up to now. 
 The continuum theory of the dislocations and proper stresses came about in the last 
fifteen years.  For an introduction of this new domain of physics, we recommend the 
chapter “Plasticity and dislocation” by E. KRÖNER in volume two of the lectures of 
SOMMERFELD on theoretical physics, Mechanics of Deformable Media, 5th ed., 1964.  
Dislocations are defects in regular crystal structure.  Empirically, they are so dense that a 
continuum theory is sensible.  Continuously distributed dislocations can arise from a 
distortion or twisting of the crystal structure.  Along with the classical deformation 
tensor, the distortion deformation tensor thus plays a role here.  In 1958, W. GÜNTHER 
[6] showed that the kinematic model for the dislocation theory is a COSSERAT 
continuum with incompatible deformations.  For given deformations χik and γik : 
 

(34)    ϕk(P) = ϕk(P0) + 
0

P

ik iP
dxχ∫  
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is a functional of the curve C that links the points P0 and P.   On the same curve C, one 
has: 
(35)     duk = (γik + χik) dxi . 
 
If C is a double-point-free closed curve then: 
 

(36)     ik iC
dxχ∫� = ∆C ϕk 

gives a rotational jump and: 

(37)     ( )ik ik iC
e dxα αγ ϕ+∫� = ∆C uk  

 
gives a displacement jump.  From STOKES’s theorem: 
 

(38), (39)  
1

ikα  = eikα ∂α χβk , 
2

ikα = eikα ∂α γβk + δik χαα − χik , 

 
are different from each other one a surface that is bounded by C.  With GÜNTHER [6], 

we call 
1

ikα  and 
2

ikα the incompatibilities.  The vanishing of these tensors is necessary and 

sufficient for the existence of a single-valued displacement and rotation field in a simply-
connected body. 

 If 
1

ikα  = 0 then the distortion deformations χik  are compatible; one has χik = ∂i ϕk , 

and there exists a single-valued rotation field ϕk .  Naturally, since 
2

ikα ≠ 0, the 

COSSERAT deformations γik are incompatible, as before.  Anyway, one can now give it 
the form: 
(40)      γik = βik − eikα  ϕα . 
 
Since ϕk drops out of the compatibility condition (39), it can be written: 
 

(41)     eiαβ ∂α ββk = 
2

ikα  

or: 

(42)     rot ββββ = 
0

αααα . 
 
We have thus found one of the basic equations of dislocation theory.  The βik are rotation-
free (ϕk = 0) COSSERAT deformations.  One can interpret them as plastic deformations 

that arise from relative slips in adjacent crystal layers (Fig. 3), rot ββββ = 
0

αααα  ≠ 0 means the 
dislocations stay stuck in the volume element.  In Fig. 4, we see such remaining 

dislocations, which are naturally the sources of proper stresses.  The first index of 
0

ikα  

gives the direction of the “dislocation line” (here, it is the x3 direction), the second index 

gives the slip direction, and the absolute value of 
0

ikα gives the magnitude of the relative 

slip.  One must regard these dislocation lines as continuously distributed.  Such 
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dislocations are present in any crystal as lattice defects.  If the externally-applied stress is 
sufficiently large then it is set in motion and thus generates a large number of new 
dislocations.  With this, the crystal becomes plastic. 
 If one would like to calculate the proper stresses for given incompatibilities then one 
must next ascertain the incompatible deformations χik and γik in (38) and (39) by 
integration.  This problem was solved in complete generality by H. SCHAEFER [24].  If 
one is not interested in the moment stresses then one can, by eliminating the distortion 
tensor χik, directly arrive at a second-order differential equation for the symmetric part of 
the deformation tensor γik that has the form of the linearized field equations of 
EINSTEIN’s theory of gravitation: 
 

(43)   ekαλ elβµ ∂α ∂β γ(λµ) = 
1 0 21

2kl l l kle eαλ α λ α α λλα α α+ ∂ + ∂ = klα
∗

. 

 
As EINSTEIN has shown, by the introduction of the auxiliary condition on allowed 
divergence: 

(44)     ( )

1

2k kl kl ααγ δ γ ∂ − 
 

 = 0 

 
the integration problem reduces to the POISSON equation: 
 

(45)     ∆γ(kl) = klα
∗

− δkl λλα
∗

. 

 
From the γ(ik) thus obtained, one then calculates the symmetric part of the stress tensor σik 
with the help of HOOKE’s law and the equilibrium conditions of the classical continuum.  
E. KRÖNER [25] has very elegantly abbreviated this integration process by the 
introduction of stress functions. 

 Regarding the question of whether or when 
1

ikα  vanishes, dislocation theory seems to 

be somewhat unclear.  If one calls 
2

ikα  the translation dislocation density then one must 

refer to 
1

ikα  as the rotational dislocation density.  Both are analogous to the VOLTERRA 

distortions of type 1 and 2 in the classical continuum.  These 6 distortions have still not 

been computed for the COSSERAT continuum up to now.  On the other hand, the 
1

ikα  

may always be determined such that klα
∗

 − i.e., the “resultant incompatibility” – vanishes.  

Thus, the externally unloaded continuum is free of “macro-stresses” σ(ik) , and as long as 
one sets the relative rotation γγγγA to zero, the simple connection: 
 

(46)     σik = 
2 21

2 ik kiλλδ α α−  
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exists between incompatible curvature and dislocation density, which is likewise one of 
the fundamental equations of dislocation theory.  With these achievements, we must let it 
go at that in the context of our discussion. 
 A new dislocation theory that is apparently quite distinct from one the that is 
presented here was announced in 1965 by NOLL (Hdb. d. Physik, Bd. III, 3, 1965, pages 
88-92) and propagated by TRUESDELL [26, 27].  The presentation by TRUESDELL 
and NOLL in the Handbuch der Physik, which should be regarded as quite provisional, 
seems to me to place elevated demands on the comprehension of the reader. 
 In case the stresses σik and µik of the COSSERAT continuum satisfy the equilibrium 
equations: 
(47a), (47b)   ∂iσik = 0, ∂iµik + ekαβ σαβ = 0, 
 
following W. GÜNTHER [6], there exists the covariant representation for them: 
 
(48a), (48b)  σik = − ekαβ  ∂α Skβ , µik = − eαβi  ∂α Fβk  + Sik – δik Sαα   
 
in terms of the two tensors Sik, Fik with 18 components in all.  In general, the 
representation (48) is not attained when the body in question possesses closed cavities in 
its interior.  However, this case, which was examined in [24] and [28], shall now be left 
aside. 
 In the classical continuum, the moment stresses µik are zero and the stress functions 
Sik may be eliminated from the representation (48).  One thus obtains the symmetric stress 
tensor σ(ik), expressed in terms of the second derivatives of the symmetric stress function 
tensors F(ik) : 
(49)    σ(ik) = ekαβ  ekλµ  ∂α ∂λ F(βµ) . 
 
This representation, which is degenerate from the standpoint of the COSSERAT 
continuum, has been known since BELTRAMI [29].  The problem of giving the 
symmetric tensor F(ik) an intuitive static interpretation like the AIRY stress functions of a 
two-dimensional stress state is certainly raised whenever one ponders the spatial stress 
functions.  However, H. SCHAEFER [7] first arrived at the static interpretation in context 
of the COSSERAT continuum on the basis of the aforementioned representation of 
GÜNTHER; it is just as simple as that of the AIRY stress functions.  One considers the 
outer surface of the continuum that is loaded with forces and moments as a thin shell (i.e., 
a crust).  The Sik are then the membrane forces and transverse forces, while the Fik are the 
bending, torsional, and normal moments of this closed shell.  One thus also has the 
boundary conditions for Sik and Fik on the loaded outer surface of the continuum. 
 In Fig. 5a and and 5b, these static connections are elucidated on a body outer surface 
x3 = const. The crust degenerates to a plate (lamina, resp.) here.  In Fig. 5a, one reads off 
the equilibrium conditions for the plate: 
 

(50)    
1 21 1 11 31

1 22 1 12 32

1 23 2 13 11 22 33

0,

0,

0,

S S

S S

F F S S

σ
σ

µ

∂ − ∂ + =
∂ − ∂ + =
∂ − ∂ + + + =
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and in Fig. 5b, the equilibrium conditions for the lamina: 
 

(51)    
1 21 1 11 13 31

1 22 1 12 23 32

1 23 2 13 33

0,

0,

0,

F F S

F F S

S S

µ
µ

σ

∂ − ∂ − + =
∂ − ∂ − + =
∂ − ∂ + =

 

 
and one infers from this that (50) and (51) are included in (48).  One finds a thorough 
discussion of the boundary conditions for curved outer surfaces in G. RIEDER [30]. 
 In the elastic continuum, the stress functions Sik, Fik must satisfy compatibility 
conditions.  Meanwhile, their determination for the COSSERAT continuum, which 
threatens to lead one into inextricable systems of equations, was attained by S. KESSEL 
[31]. 
 Let us make a comment that is peripheral to the stress functions.  The scalar product 
of stress functions times dislocation density: 
 

(52)     
1 2

ik ik ik ikF Sα α+  

 
has the interpretation of the energy density of a proper stress state.  Here, the stress 
functions seem to be “impressed forces,” while in a continuum with no dislocation 
density, they degenerate to “reaction forces;” here, they seem to hinder the existence of 
dislocations.  The concepts “impressed force” and “reaction force” will also be employed 
in the sense of HAMEL [3].  One would like to suppose that the still-unknown 
connection between fluid hypotheses and dislocation densities in plastic bodies must be 
approached with the help of stress functions. 
 I shall now speak of the role that is played by the COSSERAT continuum as an 
engineering model for approximate theories of rods, plates, and shells. 
 First, I shall cite the COSSERAT brothers (page 5 of their book): “If one lets one or 
more dimensions of an elastic body become infinitely small then one must consider the 
so-called thin body (corps mince).  This concept was developed in 1828 by POISSON 
and somewhat later by CAUCHY.  Their objective, like that of all others that were later 
concerned by this very difficult problem of elasticity theory, was to find a transition 
between the otherwise distinct theories of one, two, and three-dimensional bodies.  As is 
known, a good number of the papers of BARRÉ DE SAINT-VENANT and 
KIRCHHOFF were concerned with discussions of the investigations of POISSON and 
CAUCHY.  These teachers, as well as their students, have thus misjudged the actual 
difficulty of the problem.  Namely, the difficulty consists in the fact that in general the 
zero value of the parameters in question is not an ordinary point, as CAUCHY and 
POISSON had assumed, nor even a pole, but an essential singular point.  This important 
fact justifies the separate consideration of lines, surfaces, and continua in this book. 
 As an example of the COSSERAT picture of a two-dimensional continuum that is 
simultaneously an example of an approximate theory, I consider the bending of plates 
with the formation of transverse forces.  Fig. 6 shows the plane plate as a two-
dimensional manifold of triads.  From Fig. 7, one extracts the equilibrium conditions: 
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(53)    
1 13 2 23

1 11 2 21 23

1 12 2 22 13

0,

0,

0,

Q Q p

M M Q

M M Q

∂ + ∂ + =
∂ + ∂ + =
∂ + ∂ − =

 

 
which correspond to be the equilibrium conditions (47) for the three-dimensional 
continuum with that indexing and also appeared in BIEZANO-GRAMMEL [ 32], 
moreover.  The direction of the displacement u3 of the origin of the triad is perpendicular 
to the plane of the plate, so one can infer the direction of the absolute triad rotations ϕ1 
and ϕ2 from Fig. 8.  As the deformations of the continuum, we have called up, on the one 
hand, the relative triad rotations: 
 
(54)    γ13 = ∂1 u3 + ϕ2 , γ23 = ∂2 u3 − ϕ1 , 
 
and, on the other hand, the curvature χik by means of the absolute triad rotations: 
 
(55)    χik = ∂i ϕk ,  (i, k = 1, 2). 
 
Let the elastic potential of the isotropic continuum be: 
 
(56)    Φ = G(Cijkl χij χkl + c γij γkl) 
with 

(57), (58)  Cijkl = 
3

12

h
(α1 δij δkl + α2 δik δjl + α3 δil δjk), c = 

2

h α2 . 

  
Since Φ is positive definite, the constants α must satisfy the inequalities: 
 
(59), (60), (61)  α1 + α2 + α3 > 0, α2 > | α3 |, α4 > 0. 
 
On dimensional grounds, h must be a length.  It then follows in the usual way that: 
 

(62)   Q13 = 
13γ

∂Φ
∂

 = G h α4 γ13 , 

 

(63)   M11 = 
11χ

∂Φ
∂

 = 
3

6

Gh
[α4(χ11 + χ22) + (α2 + α3)χ11], 

 

(64)   M12 = 
12χ

∂Φ
∂

 = 
3

6

Gh
(α4 χ11 + α3χ21), 

 

(65)   M11 + M22 = 
3

6

Gh
(2α1 + α2 + α3)(χ11 + χ22). 
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The further calculation is unavoidable, but simple: The three equilibrium conditions (53) 
yield three equations for u3, ϕ1, ϕ2 .  Their coupling is achieved by the Ansatz: 
 
(66)   ϕ1 = ∂2W + ∂1H, ϕ2 = − ∂1W + ∂2H, 
 
and the displacement functions W and H must satisfy the differential equations: 
 

(67), (68)   
3

26

Gh
Wα ∆∆ = p, ∆u3 = ∆W − 

4

p

Ghα
, 

(69)    
2

1 2 3 4( )
6

h
Hα α α α 

+ + ∆ − ∆ 
 

= 0. 

Here, ∆ = ∂1∂1 + ∂2∂2 . 
 The questions remain of finding the magnitudes of the constants α1 to α4 and the 
meaning of h.  If we take the position that the theory that is presented here shall correct 
the established classical theory of thin plates only in regard to the transverse 
deformations then we may set: 
 

h = plate thickness,  α2 = 
1

1 ν−
,  α3 =

1

ν
ν

−
−

. 

 
Due to the equality of the torsion moments M11 = − M22 , it follows from (65) that α1 = − 
1/2.  Thus, from (69), one has: 

(70)     
2

412

h α 
∆ − 

 
∆H = 0. 

 
From (62), α4 subsumes the uniform distribution of the shear stresses over a cross-section 
of the plate.  The gross approximation α4 = 1 brings complete agreement with the theory 
of HENCKY [33], which, although it was concealed and unexpressed, employed the 
same model, so it reached the goal in a roundabout way.  The theory of E. REISSNER 
[34] is generally not associated with the COSSERAT theory at all.  However, his results 
agreed, except for minor deviations, with the (chronologically later) theory of HENCKY. 
 Eq. (69) for the displacement function H, which – cum grano salis * – represents the 
transverse deformations, has the type of the COSSERAT boundary-layer equations: The 
transverse force deformations are meaningful only in a the boundary zone of width h at 
the boundary of the plate.  Thus, whoever commences a shell theory that writes down six 
equilibrium equations for the shell element next finds himself in a COSSERAT 
continuum with its six displacement quantities.  In the further development of an 
engineering shell theory the kinematic constraint equations for a COSSERAT continuum 
will be imposed when one expresses the three rotations in terms of the derivatives of the 
three displacements; the position-dependent triad will emerge from the displacement 
field.  Once again, this is the special case of the “triédres cachés” that the COSSERAT 
brothers studied.  The first complete linear shell theory in which the shell was, in turn, 

                                                
 *  DHD: i.e., with a grain of salt! 
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regarded as a two-dimensional COSSERAT continuum was presented by W. GÜNTHER 
in 1961 [35]. 
 In concluding my lecture, I would like to briefly mention some other continuum 
theories that extend the concept of the COSSERAT continuum.  Whoever is interested in 
them might confer the beautiful paper of TOUPIN in the year 1964 [10].  In 1958, 
ERICKSEN and TRUESDELL [36] has already considered the COSSERAT continuum 
as a special case of a continuum with “directors.”  In a COSSERAT continuum, the triad 
that is attached to a material point is rigid and orthogonal, and we would like to suggest 
that this triad is spanned by three mutually orthogonal unit vectors.  In the theory of 
ERICKSEN and TRUESDELL, the length and directions of these three unit vectors – 
called directors – are independent of each other under the deformation of the continuum.  
They therefore define a homogeneous deformation of the material point – i.e., a micro-
deformation of the continuum. 
 It is worth mentioning that recently C. MØLLER associated every point of the space-
time continuum with a “Vierbein” (i.e., tetrad) in general relativity theory.  Numerous 
authors have already commented on the formulation of this extended gravitation theory 
[37]. 
 In Fig. 9a, the directors are carried along by the displacement field, while in Fig. 9b 
they define a position-dependent incompatible deformation.  In the year 1964, many 
papers appeared almost simultaneously on the elasticity theory of such a continuum with 
micro-structure by the authors MINDLIN, ERINGEN and SUHUBI, GREEN and 
RIVLIN.  In the linear theory, one has the deformations: 
 

(71), (72), (73) εik = 
1

2
(∂i uk + ∂k ui),  γik = ∂i uk − ψik , χlik = ∂l ψik . 

 
The division of γik into symmetric and anti-symmetric parts yields the relative 
deformation: 
(74)     γ(ik) = εik − ψ(ik)  
and the relative rotation: 

(75)    γ[ik] = 
1

2
(∂i uk − ∂k ui) − ψ[ik] . 

 
εik will be referred to as the macro-deformations, while γ(ik) and χlik are the micro-
deformations.  Here, the COSSERAT rotation vector takes the form of the anti-symmetric 
part of ψik .  The gradient of the tensor ψik defines deformations that do not consist of just 
twists and curves – as in the COSSERAT continuum.  For this reason, along with the 
moment stresses that known for the COSSERAT continuum, one also obtains couple 
stresses without lever arms that are called “self-equilibrated hyper-stress.”  One finds 
illustrations of these micro-deformations and stresses in MINDLIN [ 13].  GREEN and 
RIVLIN [ 38] gave still more far-reaching generalizations of the continuum model 
(“multipolar media”), in which presumably the ne plus ultra is attained.  The innovation 
of this theory is the appearance of self-equilibrated stresses.  One believes that outer 
surface stresses on elastic bodies can be regarded in this way.  Up to now, not one 
example of these extensions of the COSSERAT theory has been worked out.  For that 
reason, one must regard such theories with a healthy skepticism.  It is common to all of 
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these theories that they deviate from the classical continuum theory noticeably only for 
boundary layers. 
 In the last years, I often found the opinion expressed that the revival of the already-
forgotten COSSERAT theory is a passing fad.  It would please me if I were to succeed in 
making it clear in this lecture that anyone who reflects upon the foundations of 
continuum mechanics will eventually find themselves in the realm that the COSSERAT 
brothers once imagined. 
 
 I am obliged to extend my deepest thanks to my colleagues W. GÜNTHER, S. 
KESSEL, and E. KRÖNER for their continual willingness to afford me their written 
discussions. 
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