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SUMMARY REPORT

The Cosserat Continuum )

By H. SCHAEFER

Translated by D. H. Delphenich

Since about 1962, there has been a rapidly increasing nuhhiblications on
continuum mechanics that relate to the labors of th&SERAT brothers that go back
more than fifty years.

In order to understand the fate of these almost-fongatterks, one must know the
résumés of the COSSERAT brothedd. [ EUGENE, the younger of the two, was a
mathematician from the school of DARBOUX and in 1896,was the successor to
STIELTJES at the University of Toulouse at the age hoftyt At that time, his
collaboration with his older brother FRANCOIS on &ty theory had already begun.
FRANCOIS, who was likewise highly gifted in mathematibad attended the Ecole
Polytechnique and had the rank of “chef des Ponts et Cleslissggaged by the eastern
France railroad company. Here, one recalls CASTIGL@AMNho had occupied a similar
position with the northern Italian railroads. Thellaooration of the COSSERAT
brothers extended over thirteen years and culminatetieiroook “Théorie des corps
déformables” that was published in 1909 by Hermann in Pariseady in 1908,
EUGENE COSSERAT has assumed the leadership role foTdh®use observatory,
and this high office soon caused his mathematical outpudig¢oaway. After the
premature death of his brother FRANCOIS in the year 19Maseno longer answerable
to elasticity theory. He did not want to face thenpaf remembering their years of
fruitful collaboration. EUGENE COSSERAT died in 1931ts age of 65.

The first work of the COSSERAT brothers “Sur la théale I'élasticité” in the year
1896 P] began with the sentences: “One knows what a powenftrument the
introduction of the moving triad (triedre mobile) into sagaheory was in the hands of
RIBACOUR and DARBOUX. Based on the lectures of KOENI@Skinematics, one
recognizes that in the mechanics of rigid bodies thedniction of moving triads was not
merely fortunate. We have resolved to extend the us@ds to the study of deformable
bodies, and we were led by numerous important questioresudis that recently came to
us.”

In the first chapter of their book, one reads “A defable line is a continuous one-
parameter manifold of triads, a deformable surface isvaparameter one, and a
deformable body is a three-parameter manifold.” Thigmlhates the fact that the

") Presented at the GAMM Meeting in March, 1967 in Ziirich.
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mathematical continuity that one assumes in suchiaititeh associates each point of the
trace with a rigid body. From the standpoint of meat®mne can already assume that
the well-known moments will appear that have been istudince EULER and
BERNOULLI for lines and surfaces, and which LORD KELVIMdAHELMHOLTZ
attempted to rediscover in three-dimensional continua.

Any point of the deformable continuum will be associatgith a rigid orthogonal
dreibein. The point thus takes on an orientation (pokldium), and it makes sense to
speak of the rotation of a point. Any material pointtef COSSERAT continuum is an
infinitesimal rigid body. Thus, in an elastic COSSHRéontinuum, not only the usual
stresses appear, but also moment stresses (momeiat®ihation). They are something
completely new, and one should not confuse themtivéhmoments of force stresses.

In Figure la, we consider a quadratic piece of a two-diimeal continuum (for the
sake of simplicity). The measurelas sufficiently small that one may regard the change
in stresses with position as linear. We would like tmswer the conditions of
equilibrium. For this, one makes use of the so-calgdification principle, as a result
of which, any excised part of the continuum can be regaadeal rigid body3]. We
have the force geometry of a rigid body at our disposal.a statically-equivalent force
system in the cut in questiog = const., we choose a unit force in the middle ofsiles
and a force-couple. From this, we finally define the radrstresso, that is uniformly
distributed over the cut surface and the statically-edpmtamoment distribution
(moment per unit surface area):

_1?a0,
1) Mp3 12 ox,

that corresponds to the force-couple (Fig. 1b). One pdscm that way with all four cut
surfaces. (One refers to the conventional notationgaré 1c.) We now write down the
equilibrium conditions in the usual way. It is chaeaistic of the moment distribution
mi that it vanishes likd?> when one passes to the linhit—= O while the gi remain
constant. For that reason, thg cannot appear in the equilibrium conditions for an
infinitesimal element. The analogous consideratioa three-dimensional continuum, in
which one also must define the moment distribution efghear stresses, leads to the
same result:

(28.), (2b) 0404+ Xc=0, €ap Oap = 0.

These equilibrium conditions are not only necesshuy, also sufficient. Then, when
equilibrium exists at any infinitesimal element, sa@lexists for an arbitrary piece of the
continuum. We thus confirm that the three equilibriconditions (2b) for the moments
of all forces at the element yield the symmetry ofdtress tensor.e(;s g, = 0 means
that the skew-symmetric part of the stress tensoens.y It is remarkable that we can
present six necessary and sufficient equilibrium caoastifor a spatial continuum whose
points have three functional degrees of freedom. Thangscompletely different when
we present the equations of motion for the continuumereHwe have the basic
NEWTONIAN laws of mechanics at our disposal, and we hawemore than three
equations of motion for the material points:
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3) 000 + Xic = S, .

At first, it makes no sense to speak of the rotationation of a material point. The
definition of the impulse moment (of the spin) affordsausertain substitute. We expect
a theorem of the form: “The change in the impulse mampenunit time (of an arbitrary
volume) is equal to the moment sum of all externatds (volume and outer surface
forces).” Thus, the volume integral over the skewus\etric part of the stress tensay
appears on the right-hand side as an extra term:

d \
4) ajvp% %S V= 8% X dv+[ g, xo, ndof ga, d

However, the vanishing of this integral can only be assdatethe case of equilibrium;
then, as we have shown, the stress tensor is syrama@trthis point, classical continuum
mechanics poses an axiom: “The impulse moment thearealid in the aforementioned
form: or the equivalent convention: “The stress tengpis also symmetric under the
motion of the continuum.” G. HAMELJ calls this convention the BOLTZMANN
axiom. The distinguished physicist and philosopher LUDVBGLTZMANN had
expressly proved the axiomatic charac)enf the assertion of the symmetry of the stress
tensor in his lectures “Uber die Grundprinzipien und Grigidgungen der Mechanik” at
Clark University in 18994]. Continuum mechanics with an asymmetric stressoten
can be referred to as non-Boltzmannian mechanics (alogy to non-Euclidian
geometry). However, the COSSERAT continuum is suttteary of mechanics.

The COSSERAT brothers, by their efforts, towered altbgditerature on continuum
mechanics of the last 100 years. However, in ordelirtdb¢his tower, one must accept
unimaginable work. Their mechanics is nonlinear from theses and their elaborate
notation compels the modern reader to find an adequeater\end tensor representation
for himself. Nowhere were the arguments that wermgethout in full generality clarified
by a single example.

Thus, it is not surprising that the work of the COSSERB/Dthers remains
practically unnoticed, to the extent that the survivingdBMNE did not concern himself
with that work for the last twenty years of his lifeThe book “Théorie des corps
déformables” has been thoroughly ignored and often unéaughthe libraries. | can
quickly procure a copy from a used bookstore that thearlbof the mathematical
institute at Gottingen University had discontinued on 14 May 1964y teachers,
GEORG PRANGE of Hannover and MAX WINKELMANN of Jenatroduced me to
the significance of the COSSERAT work thirty years agoound 1909 — the year of his
Habilitation — WINKELMANN was an assistant to KARL KB of Karlsruhe (and, as
such, a follower of GEORG HAMEL). HEUN had grasped tBOSSERAT ideas
immediately and made them the subject of a semihle. encyclopedia article by HEUN
[5] also paid tribute to the work of the COSSERAT brothe&nce about 1953, my
colleague GUNTHER and | have discussed stress funcéindsdislocation theory and

1) Cf., on this, the footnote on pp. 546 of the article byTRUESDELL and R. TOUPIN: “The
classical fields theories,Handbuch der PhysjkBd. 1ll/1. Berlin/Géttingen/Heidelberg, 1960. “The
German literature persists in attributing credit to B@MANN here.”
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we eventually came to the conclusion that both cirdégroblems belong to the
COSSERAT continuum. The “Théorie des corps déformalglage us no information in
that regard. Thus, GUNTHER had to develop the statidsliaear kinematics of the
COSSERAT continuum independently in order to show thatmodel for dislocation
theory is an incompatible COSSERAT continuuh [On the basis of this work, | could
give a static interpretation of the stress functiohthe three-dimensional continuum in
1959 [7]. | already made an attempt at a linear elasticigothh of the COSSERAT
continuum in 1957 and presented it at the Lower Saxony Nexh&olloquium. It
seems appealing to me to develop non-Boltzmannian contimashanics by analogy to
non-Euclidian geometry and to work out some simple @kasnof the special properties
of this continuum. | dedicated the manuscript of thiskw@& to W. TOLLMANN in
1960.

In the sequel, we would like to restrict ourselves —camplete contrast to the
COSSERAT brothers — to the linear theory of the CO®&E continuum. Thus, the
things that are peculiar to continuum mechanics willb®ltost to us. In a linear theory,
the translation and rotation of the material poimesiafinitesimal, and, in particular, the
infinitesimal rotation may be represented by a rotavectorg. Therefore, any point of
the continuum is associated with a translation veat@nd a rotation vectog. For
GUNTHER, the deformation state of the continuum ‘el described by an asymmetric
deformation tensor:

(5) Yic = 0i Ux —Eka Pa

and the likewise asymmetric tensor of the curvaturekNienmung):

(6) Xik = 0i ¢.

(We employ Cartesian coordinates x;, Xs throughout and the abbreviatiod®x = 0i ;
ew is the alternating tensor of LEVI-CIVITA..) The symtric part of the deformation
tensoryi is identical with the deformation tensgy of the classical continuum:

1
(7) Wik) = > (0i Uk + Ok Uy) = &k .

w = (1/2) rotu, the vector of the mean rotation in the displacanieid, must be
distinguished from the vecta#, which describes the rotation of the position-dependent
triad that is bound to the material point. This becomagicularly clear when one
considers:

1
(8) Yig =5 (0i Uk — Ok W) = &k« Pa,
which is the anti-symmetric part of the deformatiorstany. In vectorial notation:

(9) == rotu-g=w-¢.

N =
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It describes the relative rotation of the position-delgen triad compared to the mean
rotation of the displacement field.

Xk must be related to the tensors of twisting (Verdndluand curvature, since its
three components with equal indices describe torsiorfakmations and the unequal
indices, the curvature deformations. One convinces Grise the two deformation
tensorsyk and i vanish simultaneously when the continuum displagesdirigid body.

We now assume that the elastic potential:

(10) D = D(p, Xik)

depends upon the 18 variablgs and xi , and define the force stresseg and the
moment stresse&$ L4 by:

0P
(11) Ok = —, Mk = —.
a ik a)(lk

We further define the kinetic energy per unit volupe= (density):
1 .1
(12) T:E,oukuk+§,ol¢k¢k :

In this, we have distributed a rotational enemglyover the infinitesimal volume element
of the material point — we assume kinetic isotropy (spaksymmetry) — but not a mass
moment of inertia per unit volume (such a thing would go to »eth the square of the
linear measure of a volume element), but a quantityadsdciates the material point with
a “proper spin’pol @ or “spin.” We have defined kinetic and potential enerlyith the
help of HAMILTON'’s principle we then obtain the equets of motion for translation
and rotation of the material point:

(13a), (13b) 040w + X =pU, , 000k + €ap OgptYc=pI @,

with the six boundary conditions:
(14a), (14b) Ng Oak =Pk, Na Mok = Ok -

Obviously, not only is classical continuum theory gelimzd, but also NEWTONIAN
mechanics. In detail: We have associated the volunmemby, with the volume forces
Xx and the outer surface momenptwith the outer surface forga ; the tensor of force
stressesii is asymmetric, in general. Naturally, the appearandeeomoment stresses
L is also novel, which are, as we will show, compjewistinct from the moment
distribution my that we considered above. We shall now once momaulate the
impulse-momentum theorem (relative to the origiroaf Cartesian coordinate system)
by substituting the integrand in the volume integral oa tlyht-hand side of (4)

3 “Moments de déformation,” “couple-stress,” or (accogdito TRUESDELL) “conatus
momentorum.”
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according to (13b), applying GAUSS’s theorem, introducing th&erosurface forces
(14a) and the outer surface moments (14b):

(15) %jvp(l B+l Us) AV = [ (Yot g% %) dvr | (g+ gy X p

In words: “The change in impulse-momentum per tine is equal to the sum of the
static moments of all external moments and forbes$ &ct onv andO.” In our non-
Boltzmannian mechanics, the spin theorem then besaansimple consequence of the
equations of motion (13) and the boundary condifiizt).

In the case considered here of linear elastidigoty, the potential energp is a
homogeneous function of degree 2 in jh@and i, such that one can write:

1( 0D 0P
(16) ¢ = —[—yi +—
" Xy

= 2 (G e + Hhe o)
5 Xik 5 ik Wk ik Xik)-

Here, the ternoy i serves a special purpose. Namely, one has, amgték), (8), and
(9) into account:

(17) Ok Yk = TiiyMicy + Tl Mk = Olixy &k + O V'

The first summand on the right is well-known frotassical elasticity. The second one
describes the work that the anti-symmetric parthef stress tensol) exerts on the
relative rotational deformation:

(18) Chiki fik) = %(O-ik _Uki){_;(aiuk —04)- %%} = UAEFOIU —¢j-

One would search in vain through the entire bookhey COSSERAT brothers for the
linear material law of an elastic continuum. Thegre not concerned with such trivia.
They addressed a much more general question asndie problem of their book,
namely, how the integrand of the HAMILTONIAN vai@tal problem l@ densité
d’action) would appear. For a continuum, the action isaas functional of geometric,
kinematic, and kinetic variables, and the actiorstmamain invariant when one subjects
these variables to a transformation of the Eualidjeoup. The associated group of the
infinitesimal transformations has seven paramesersh that the demand of invariance is
equivalent to the existence of seven conservaaas for energy, impulse, and rotational
impulse. On this main problem of COSSERAT, thesethie monograph “L’action
euclidienne de déformation et de mouvement,” ocBUDRIA [9]. A very beautiful
presentation of this circle of problems for thesgtacontinuum in the nonlinear case was
given by TOUPIN 10].

% In SOMMERFELD,Mechanik der deformierbaren Medies" ed., pages 66 and 67, one finds a
pseudo-proof of the symmetry of the stress tensor in flutise will deduce the logical fallacy in it on the
basis of (18).
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Along with the elastic bodies of one, two, and thr@aemsions, the COSSERAT
brothers treated ideal fluids and the ether theorfeSI@CULLAGH up to KELVIN.
Here, one also naturally finds the gyrostatic botlhes KELVIN had imagined in order
to conceive of the elastic properties of the liglteet along with the concept of kinetic
anisotropy for the explanation of double refraction. Ikemore, it treated the circle of
themes: “Etude de l'action euclidienne a distance, a¢ida de contrainte et de l'action
dissipative.” In conclusion, there was a large chaptethe Euclidian action in EULER
variables, in which they also sought to that to the vadiROINCARE and LORENTZ on
the dynamics of the electron. One may indeed say dratantruly grandiose quest was
undertaken: to present mechanics, optics, and electrodygmama unified field theory
under the fundamental principle of the Euclidian actioWWhen EINSTEIN and
MINKOWSKI soon showed that such a unified field theorypdssible only under the
LORENTZ group, this did not trivialize the work of the CE’ERAT brothers, and all
that one could do was to regret that they had not cowedetheir work from that new
viewpoint. Their great work was completely ignored byotkécal physicists. The
thought that the variational problem of a physical fidldary, when postulated in the
conservation laws, must remain invariant under a groupaosformations, was first
taken up again in 1918 in the works of FELIX KLEIN and EMMOBNTHER.

In the linear elasticity theory of COSSERAT contintiae potentiakP(pi , xi) is
trivially EUCLIDIAN invariant, because the deformatiopsand ik vanish by definition
when the continuum moves like a rigid body. Furthean® is a homogeneous function
of degree 2 of the 18 tensor componagftand ik . The case of general anisotropy was
discussed exhaustively in 1964 by KESSHI1][ In the same year, the papers of
NEUBER [12], MINDLIN [ 13], ERINGEN-SUHUBI [14] appeared, which likewise
contained the material law (i.e., constitutive equabofor the isotropic, centrally-
symmetric case:

v
(19a), (19b) Tiik) = ZG[y(ik) +Edlkyaa:l : Gk = 2G N1y »
L2 2
(20a), (20b) ) :261—2[)((nq 110 Xaa | Hi = 2G = 12 i

One adds four new constants to the two elastictaotsof classical elasticity theoryp;
and 77, couple the anti-symmetric parts of the two defdromatensors with the anti-
symmetric parts of the associated stress tensgiss,, andss are dimensionless. By
contrast, the new constdnthas the dimension of a length. The two-dimendispacial
case was already treated by H. SCHAEFBR 1962.

We now have to express the force and moment eg@sshe six equations of motion
(13) in terms of the displacement vectoand the rotation vecta# with the help of the
material laws (19) and (20). By restricting to ttese of equilibrium and vanishing
volume forces and moments, this produces the syst@quations:

(21a) Lu)-2my =0,
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1+7,

(21b) (1 +72) DAY + (1- 2 + 2175) grad diy! —%f/mﬁ— Arotu = 0.

In this, we have — as is recommended — introduced thigveetatationy” in place ofg.
We put these two groups of equations lioemdyA together with the NAVIER equation
for the displacement vectaorof the classical elastic isotropic continuum:

1
1-%

(22a), (22b) L(u) =Av + grad divw =0, Arotv =0,

One observes the appearance of the operator (21a). A is the three-dimensional

LAPLACIAN operator in Cartesian coordinates. H. NEUBRAZ2] and R. D. MINDLIN
[15] gave the general solution of these equations. Theygee®s the PAPKOWICH-
NEUBER Ansatz for the classical continuum to the GBBAT continuum.

In the classical continuum, retis harmonic, from (22b) and the fact tryétz 0. One
then recognizes thainy equilibrium state in the classical continuum with a displacement
vectoru whose componentg possess continuous second derivatives is also a compatible
equilibrium state of the Cosserat continuum.

From this particular solution, one computes the morsiassegs from, in turn,@ =
(1/2) rotv, xk = 0; ¢ , and the material law (20). Singe = 0, the tensot of force
stresses is now symmetric, and one has for the eguiibof moment stresses:

(23) aaﬂaﬂ: 0

The moments and forces that belong to this particudartisn and act on the outer
surface preserve the equilibrium in themselves. In #3e ¢two-dimensional case, there
exists a corresponding particular solution, as was drestablished in 1962 by H.
SCHAEFER §.

The general solution can be found in a relatively stmydy with the use of this
particular solution. For the vectg?, use will be made of the well-known HELMHOLTZ
Ansatz from continuum mechanics:

(24) y' = rot rotH + gradh.

the vector potentiaH and the scalar potentiblsatisfy an oscillation equation with an
imaginary frequency:

2
(25a) L @*+72)A+7) aj_H =0,
12 a4
2
(25b) LI*% an_h=o.
12 2

With (24), (21a) has the solution:
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(26) u=v-2mrotH, L(v)=0.

Equations (25) are highly characteristic of a COSSERATimamm. According to the
tests of J. SCHIVE 16], the L for a metallic engineering material has the order of
magnitude of 0.1 mm. Fdr = 0, it follows from (25) thaH = 0,h = 0, and one finds
oneself in a classical continuum. Thtsandh satisfy typical boundary layer equations.
Only in such boundary layers can the stress tetigtde asymmetric. On the other hand,
H andh will require six boundary conditions on the boundaryamefof the continuum —
for instance, one might let the displacements aratioois or the forces and moments be
prescribed.

Boundary layers appear when the continuity of the bhedjisturbed so there is an
outer surface and an inner one, where forces or moraetiter where incompatibilities
(dislocations) are present. The problem of sheardeseling also has an exact solution
in a COSSERAT continuum that belongs to the claspaoficular solutions that was
described above, moreover. The relative rotation gfhimring triads provokes moment
stresses that are uniformly distributed over the cresses). If one replaces the linearly
distributed force stresses by a statically-equivalent umifdistribution of force-couples
then one clearly recognizes that we are dealing with teeoment distributions of
completely different characters (Fig. 2). Indeed, botments are proportional to the
distortion, although they remain constant under a reduabib the measure of the
COSSERAT moment stress, while the moments of thee fetiessei go to zero with
the square of the linear measurement. On surface ameopieces that have linear
measurements with the order of magnitudéhe moment stresses have the same order of
magnitude as the moments of the force stressese Hahding distandeof the beam has
the order of magnitude/10 then the bending moment will be practically definedusy |
the moment stresses. The assumption that is basddsamatL has the same order of
magnitude as the boundary-layer thickness will be coefirrhy a series of worked
examples. For holes or grooves whose measures hasartieeorder of magnitude Bs
the stress concentration deviates markedly from theegoonding one in a classical
continuum.

One obtains the special case that was considerecel@@ASSERAT brothers of the
“triédre caché” when the rotation of the position-defent triad makes the mean rotation
of the displacement field equal to:

(27) V=

N =

rotu—¢=0.

This kinematic constraint condition is the root of fhet that the anti-symmetric past'
of the force stress tensor degenerates into a redctioe (in the sense of HAMEL3]).
With (27) and (19b), it then follows from (21b):

GL?
(28) o+ 28 (1 + ) Arotu =0,
and from (21a):
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2

(29) L(u) + %(1 +172) A rot rotu = 0.

The displacement state:

(30) u=yv, L(u) =0, Arotu=0
is also a specialization of (29) here. In the ganeolution:
(31) u=v-—roty

the vector potentigy must satisfy the equation:

LZ
32 —@+n,)A-1lxy =0
(32) {48( +17,) }X
Thus:
(33) d" =G rot roty.

The first works on this pseudo-COSSERAT continudrthe triédres cachégq, 18, 19]
were written with no knowledge of the true COSSERAdory, and the fact that one can
fulfill only five boundary conditions on the outsurface in this reduced theory (instead
of the six in the true COSSERAT theory) seems cainfuat first. A lucid presentation
of the elasticity theory of the pseudo-COSSERATticmum was given later by W. T.
KOTTER [20]. The assertion of a series of author tfamust remain undetermined in
this theory becausg® does no work is refuted by eq. (33).

For the problem of the stress concentration ahtiles and grooves, there are a series
of worked examples by MINDLIN and TIERSTEINLY] for the pseudo-COSSERAT
continuum and by NEUBER2]] for the true COSSERAT continuum. The charactieris
lengthL in both theories is also the origin of the dispardan the propagation of elastic
waves (MINDLIN [13], PALMOV [22], ERINGEN and SUHUBI 14], ADOMEIT
[23]). An experimental confirmation of the calculaftect is still lacking, up to now.

The continuum theory of the dislocations and prggieesses came about in the last
fifteen years. For an introduction of this new @mof physics, we recommend the
chapter “Plasticity and dislocation” by E. KRONER volume two of the lectures of
SOMMERFELD on theoretical physicklechanics of Deformable Medi&" ed., 1964.
Dislocations are defects in regular crystal strrecttEmpirically, they are so dense that a
continuum theory is sensible. Continuously distigl dislocations can arise from a
distortion or twisting of the crystal structure. loAg with the classical deformation
tensor, the distortion deformation tensor thus playole here. In 1958, W. GUNTHER
[6] showed that the kinematic model for the dislawatitheory is a COSSERAT
continuum with incompatible deformations. For giveformationsyix and yk:

(34) $d(P) = 4P + [ 1oy
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is a functional of the curv€ that links the point®, andP. On the same curv@, one
has:

(35) duc = (W + i) dx% .

If Cis a double-point-free closed curve then:

(36) b_xidx = Ac g
gives a rotational jump and:
(37) b e +€af) X = Be e

gives a displacement jump. From STOKES's theorem:

1 2

(38), (39) @y = 8ka Oa Xk Qi = €ka Oa Y + Ak Xaa = Xk,

are different from each other one a surface thabisnded byC. With GUNTHER p],

1 2
we call a, and a, theincompatibilities. The vanishing of these tensors is necessary and
sufficient for the existence of a single-valuedothsement and rotation field in a simply-
connected body.

1
If a, = 0 then the distortion deformatioyg are compatible; one hag = 0i ¢« ,

2
and there exists a single-valued rotation fiedd . Naturally, sincea, # O, the

COSSERAT deformationgi are incompatible, as before. Anyway, one can no i
the form:

(40) Y = Bk — €ka Pa-

Since gy drops out of the compatibility condition (39)can be written:

2
(41) €ap0a B =
or:
0
(42) rotB=a.

We have thus found one of the basic equationsstdchtion theory. Thgy are rotation-
free (@« = 0) COSSERAT deformations. One can interprettls plastic deformations

0
that arise from relative slips in adjacent crysagers (Fig. 3), ro3= a # 0 means the
dislocations stay stuck in the volume element. Fig. 4, we see such remaining

0
dislocations, which are naturally the sources afppr stresses. The first index of
gives the direction of the “dislocation line” (hereis thexs direction), the second index

0
gives the slip direction, and the absolute valuerpfives the magnitude of the relative
slip. One must regard these dislocation lines astimuously distributed. Such
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dislocations are present in any crystal as latticectiefelf the externally-applied stress is
sufficiently large then it is set in motion and thusngrates a large number of new
dislocations. With this, the crystal becomes plastic.

If one would like to calculate the proper stressegieen incompatibilities then one
must next ascertain the incompatible deformatignsand i in (38) and (39) by
integration. This problem was solved in complete gergriayi H. SCHAEFER 24]. If
one is not interested in the moment stresses thercameby eliminating the distortion
tensoryi, directly arrive at a second-order differential equaf@mrthe symmetric part of
the deformation tensomi that has the form of the linearized field equations of
EINSTEIN’s theory of gravitation:

2 O

1 o 1
(43) &ar Bpu 0a 08 Yy = A+ 6440, au+§ Qa0 O = Ty -

As EINSTEIN has shown, by the introduction of the aaryl condition on allowed
divergence:

1
(44) 0, (V(kn _Eaklymj =0
the integration problem reduces to the POISSONtemua

o o
(45) AJ’(kl) =Qy~ A a,, -

From theyi) thus obtained, one then calculates the symmedricqs the stress tensor
with the help of HOOKE's law and the equilibriumnzhitions of the classical continuum.
E. KRONER P5] has very elegantly abbreviated this integratiomcpss by the
introduction of stress functions.

Regarding the question of whether or whép vanishes, dislocation theory seems to
be somewhat unclear. If one Cah2§< the translation dislocation density then one must
refer to alik as the rotational dislocation density. Both aralegous to the VOLTERRA
distortions of type 1 and 2 in the classical cantim. These 6 distortions have still not
been computed for the COSSERAT continuum up to n@m. the other hand, tha;ik

O
may always be determined such tiagt — i.e., the “resultant incompatibility” — vanishes.

Thus, the externally unloaded continuum is freénadicro-stressesry , and as long as
one sets the relative rotatighto zero, the simple connection:

2 2

(46) Ok=-0,0,,-0ay

N =
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exists between incompatible curvature and dislocation tyenghich is likewise one of
the fundamental equations of dislocation theory. \Widse achievements, we must let it
go at that in the context of our discussion.

A new dislocation theory that is apparently quitstidct from one the that is
presented here was announced in 1965 by NOLL (Hdb. d. Physik,|B8l. 1965, pages
88-92) and propagated by TRUESDEL26] 27]. The presentation by TRUESDELL
and NOLL in the Handbuch der Physik, which should be redaadequite provisional,
seems to me to place elevated demands on the comprehehtie reader.

In case the stressex and i of the COSSERAT continuum satisfy the equilibrium
equations:

(47a), (47b) 0igk = 0, Oifhk + €ap Ogp= 0,

following W. GUNTHER ], there exists the covariant representation for them

(48a), (48b) Ok =~ 6&ap 0aSp, Mk =—€aa 0aFp + Sk — & S

in terms of the two tensorSy, Fik with 18 components in all. In general, the
representation (48) is not attained when the body intipmegossesses closed cavities in
its interior. However, this case, which was examime[24] and [28], shall now be left
aside.

In the classical continuum, the moment streggeare zero and the stress functions
Sk may be eliminated from the representation (48). Oug ¢ibtains the symmetric stress
tensorg), expressed in terms of the second derivatives of tengyric stress function
tensorsF(ik) .
(49) i) = &ap Sy 0201 Figy -

This representation, which is degenerate from the stamdmd the COSSERAT
continuum, has been known since BELTRAMIO]. The problem of giving the
symmetric tensoF ) an intuitive static interpretation like the AIRY strdasactions of a
two-dimensional stress state is certainly raised wdamene ponders the spatial stress
functions. However, H. SCHAEFER]([first arrived at the static interpretation in coritex
of the COSSERAT continuum on the basis of the afontioeed representation of
GUNTHER; it is just as simple as that of the AlIRiYess functions. One considers the
outer surface of the continuum that is loaded withdsr@nd moments as a thin shell (i.e.,
a crust). The&g are then the membrane forces and transverse fovhds,theFy are the
bending, torsional, and normal moments of this closedl.shOne thus also has the
boundary conditions fofx andFi on the loaded outer surface of the continuum.

In Fig. 5a and and 5b, these static connections ar&glalad on a body outer surface
X3 = const. The crust degenerates to a plate (lamina) tresre. In Fig. 5a, one reads off
the equilibrium conditions for the plate:

a1821 - 61§1+ 03~ 0,
(50) 0,S,,-0,9,+05,=0,
a1|:23 -0 2F13+ 511+ Szz+ H 3= 0,
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and in Fig. 5b, the equilibrium conditions for the lamina:

0,Fy =0,F =Syt 13=0,
(51) 0,Fp, =0F 1= Syt 11 5,=0,
0,5,;-0,9;+0;=0,

and one infers from this that (50) and (51) are included in (4&)e finds a thorough
discussion of the boundary conditions for curved outeasasfin G. RIEDER30].

In the elastic continuum, the stress functidis Fx must satisfy compatibility
conditions. Meanwhile, their determination for the SSERAT continuum, which
threatens to lead one into inextricable systems of mmsatwas attained by S. KESSEL
[31].

Let us make a comment that is peripheral to thessftegtions. The scalar product
of stress functions times dislocation density:

2

1
(52) I:ik aik + Sk a'ik

has the interpretation of the energy density of a prepess state. Here, the stress
functions seem to be “impressed forces,” while in atiooum with no dislocation
density, they degenerate to “reaction forces;” hery geem to hinder the existence of
dislocations. The concepts “impressed force” and “readorce” will also be employed
in the sense of HAMEL 3. One would like to suppose that the still-unknown
connection between fluid hypotheses and dislocationittesén plastic bodies must be
approached with the help of stress functions.

| shall now speak of the role that is played by @@SSERAT continuum as an
engineering model for approximate theories of rods, platesshells.

First, | shall cite the COSSERAT brothers (page &eir book): “If one lets one or
more dimensions of an elastic body become infinitehals then one must consider the
so-called thin body (corps mince). This concept was dpeedl in 1828 by POISSON
and somewhat later by CAUCHY. Their objective, like tbiall others that were later
concerned by this very difficult problem of elasticityetiny, was to find a transition
between the otherwise distinct theories of one, twd,taree-dimensional bodies. As is
known, a good number of the papers of BARRE DE SAINT-VENA and
KIRCHHOFF were concerned with discussions of the ingagsbns of POISSON and
CAUCHY. These teachers, as well as their studertge lthus misjudged the actual
difficulty of the problem. Namely, the difficulty osists in the fact that in general the
zero value of the parameters in question is not amanyglipoint, as CAUCHY and
POISSON had assumed, nor even a pole, but an essemgialar point. This important
fact justifies the separate consideration of linedases, and continua in this book.

As an example of the COSSERAT picture of a two-dinograd continuum that is
simultaneously an example of an approximate theorgnkider the bending of plates
with the formation of transverse forces. Fig. 6 shdhws plane plate as a two-
dimensional manifold of triads. From Fig. 7, one exsdélce equilibrium conditions:
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0,Q,;+0,Q,+ p=0,
(53) alM 11+62M 21+Q23: 0,
alM 12 +0 2|VI 22_Q13: 0,

which correspond to be the equilibrium conditions (47) foe three-dimensional
continuum with that indexing and also appeared in BIEZANRAGIMEL [32],
moreover. The direction of the displacemenbf the origin of the triad is perpendicular
to the plane of the plate, so one can infer theativn of the absolute triad rotatiops
and ¢, from Fig. 8. As the deformations of the continuum,hage called up, on the one

hand, the relative triad rotations:

(54) iz=01 Uz + @2, Vo3=02 Uz — @1,

and, on the other hand, the curvatykeoy means of the absolute triad rotations:
(55) Xk = 0i P, (i,k=1,2).

Let the elastic potential of the isotropic continuuen b

(56) P = G(Cijk| Xi Xa T CY W)
with
(57). (58) Cr=1o(@d &+ @ dd+ad d), o=0a.

Since® is positive definite, the constartamust satisfy the inequalities:
(59), (60), (61) m+m+a>0, w>|as|, a>0.

On dimensional groundh,must be a length. It then follows in the usuayweat:

5[0
(62) Q3= =G has ys,
a 13
fh[0) Gh®
(63) My = = [aa(x11 + Y22) + (a2 + a3) Y11l
oxu 6
f3[0) Gh®
(64) My, = = (aa Y11 + a3X21),
X, 6
h3
(65) Mi1 + Mg = 5 2o+ a2 + a3)(xy11 + x22)-
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The further calculation is unavoidable, but simple: THree equilibrium conditions (53)
yield three equations fas, @1, @¢> . Their coupling is achieved by the Ansatz:

(66) ¢1 =0,W+04H, ¢2 =—-0/W + 05H,

and the displacement functioséandH must satisfy the differential equations:

Gh’ P
67), (68 a,AAW = p, Auz =AW - :
(67), (68) 5 - p 3 Gha,
2
(69) {% (a,+a, +a3)A—a4} AH = 0.

Here,A = 0101 + 0205.

The questions remain of finding the magnitudeshef constantsr; to a, and the
meaning ot. If we take the position that the theory thapiissented here shall correct
the established classical theory of thin platesyom regard to the transverse
deformations then we may set:

h = plate thickness, = i, s =——.
1-v 1-v

Due to the equality of the torsion momehts, = — My, , it follows from (65) thain = -
1/2. Thus, from (69), one has:

hZ
70 —A-a, |[AH=0.
(70) [12 4j

From (62),a; subsumes the uniform distribution of the sheassks over a cross-section
of the plate. The gross approximation= 1 brings complete agreement with the theory
of HENCKY [33], which, although it was concealed and unexpressetployed the
same model, so it reached the goal in a roundavayt The theory of E. REISSNER
[34] is generally not associated with the COSSERADthat all. However, his results
agreed, except for minor deviations, with the (daldogically later) theory of HENCKY.
Eq. (69) for the displacement functieh which —cum grano salis — represents the
transverse deformations, has the type of the CO33H®undary-layer equations: The
transverse force deformations are meaningful amlg the boundary zone of widthat
the boundary of the plate. Thus, whoever commeacd®ll theory that writes down six
equilibrium equations for the shell element nextdé himself in a COSSERAT
continuum with its six displacement quantities. the further development of an
engineering shell theory the kinematic constraquagions for a COSSERAT continuum
will be imposed when one expresses the three oowin terms of the derivatives of the
three displacements; the position-dependent tridd emnerge from the displacement
field. Once again, this is the special case of‘thiédres cachés” that the COSSERAT
brothers studied. The first complete linear shadory in which the shell was, in turn,

DHD: i.e., with a grain of salt!
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regarded as a two-dimensional COSSERAT continuum wasmieesby W. GUNTHER
in 1961 B5].

In concluding my lecture, | would like to briefly menti@m@me other continuum
theories that extend the concept of the COSSERATireannh. Whoever is interested in
them might confer the beautiful paper of TOUPIN in tear 1964 10]. In 1958,
ERICKSEN and TRUESDELLJ36] has already considered the COSSERAT continuum
as a special case of a continuum with “directors.’'a MOSSERAT continuum, the triad
that is attached to a material point is rigid and aytimal, and we would like to suggest
that this triad is spanned by three mutually orthogonal westors. In the theory of
ERICKSEN and TRUESDELL, the length and directions laedste three unit vectors —
calleddirectors— are independent of each other under the deformatitreafontinuum.
They therefore define a homogeneous deformation of &terral point — i.e., @nicro-
deformationof the continuum.

It is worth mentioning that recently C. M@LLER assated every point of the space-
time continuum with a “Vierbein” (i.e., tetrad) in geakrelativity theory. Numerous
authors have already commented on the formulatiathisfextended gravitation theory
[37].

In Fig. 9a, the directors are carried along by thelakigment field, while in Fig. 9b
they define a position-dependent incompatible deformatitm.the year 1964, many
papers appeared almost simultaneously on the elastieityyt of such a continuum with
micro-structure by the authors MINDLIN, ERINGEN and SUBIU GREEN and
RIVLIN. Inthe linear theory, one has the deformasio

(71), (72), (73) &k = % (0i Uk + ok W), Mk = 0i U — Wi, Xik =0 Y.

The division of i into symmetric and anti-symmetric parts vyields théatiee
deformation:

(74) Mik) = &k — Wik
and the relative rotation:
1
(75) Mk = > (0i Uk — Ok ) — i -

& Will be referred to as thenacro-deformationswhile yiy and yix are themicro-
deformations Here, the COSSERAT rotation vector takes the fofthe anti-symmetric
part of ¢4 . The gradient of the tensgh defines deformations that do not consist of just
twists and curves — as in the COSSERAT continuum. Ferréason, along with the
moment stresses that known for the COSSERAT continuama also obtains couple
stresses without lever arms that are called “selflbgaied hyper-stress.” One finds
illustrations of these micro-deformations and stressddINDLIN [13]. GREEN and
RIVLIN [38] gave still more far-reaching generalizations of thetioomm model
(“multipolar media”), in which presumably time plus ultrais attained. The innovation
of this theory is the appearance of self-equilibratedsses. One believes that outer
surface stresses on elastic bodies can be regardéusimay. Up to now, not one
example of these extensions of the COSSERAT thewsybbkan worked out. For that
reason, one must regard such theories with a healtipyicken. It is common to all of
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these theories that they deviate from the classwmatirmuum theory noticeably only for
boundary layers.

In the last years, | often found the opinion expreskatithe revival of the already-
forgotten COSSERAT theory is a passing fad. It would pleas if | were to succeed in
making it clear in this lecture that anyone who reflegfon the foundations of
continuum mechanics will eventually find themselves m risalm that the COSSERAT
brothers once imagined.

| am obliged to extend my deepest thanks to my colleayieSUNTHER, S.
KESSEL, and E. KRONER for their continual willingness afford me their written
discussions.
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