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 I presented the fundamental law and some propositions about the essential properties of gravity 

in triply-extended Gaussian spaces in these Nachrichten on 13 July 1870. As I have now learned, 

Dirichlet also addressed that topic recently during his visit to Berlin. He discussed it with his 

friends but did not publish his investigations. 

 Exhibiting the laws for the fictitious forces in such spaces, of which the one that surrounds us 

is only a special case, means to us, on the one hand, that we have to make a better decision in 

regard to the natural forms of the laws for the forces that are known to us, but it also means that 

the investigation of such a more general law will offer us a glimpse into the realm of pure analysis 

by means of new tools that are to be extended in a way that is similar to what has been done many 

times in the study of the known forces of nature. That hope has already been fulfilled in one case 

by Kronecker’s paper “Ueber Systeme von Funktionen mehrer Variabeln.” The property of gravity 

in multiply-extended planar spaces has given rise to the introduction of the concept of 

“characteristic of a system of functions” that has proved so fruitful in analysis. I would like to add 

the following propositions to the one that I presented before: 

 

 Proposition I. 

 

 Let Rn , Rn , and Pn be regions of space that can overlap or intersect arbitrarily. Let x1, …, x , 

…, xn be the n rectilinear rectangular coordinates of a point in the spatial element dRn in an n-

fold extended planar space while 1, …,  , …, n are the coordinates of a point in the spatial 

element dPn . Let a1, …, a , …, an be the coordinates of a point in the element dRn or also a point 

in the element dRn−1 , which belongs to an (n − 1)-fold extended spatial form Rn−1 that bounds the 

spatial region Rn . Let m (…, x , …) and  (…,  , …) be functions of the coordinates for points 

in the spatial regions Rn and Pn , resp. Let r denote the positive value of √∑(𝑥𝜈 − 𝑎𝜈 − 𝜉𝜈)2, while 

dN is the normal to the spatial form dRn−1 at the point …, a , … on the side where the spatial 

region Rn is found. If the function  has the same meaning that Gauss gave it then: 
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    for odd n, 

 

 

 

    for even n, 

 

 

and if one sets: 

 
for n = 2, while: 

 
for n > 2 then one will have: 

 

 
 

in which the integral with respect to dRn−1 extends over the entire space form Rn−1 that bounds 

the spatial region Rn . 

 The integrals with respect to dRn and dPn extend over the entire spatial regions Rn and Pn , 

respectively, but the integrals with respect to dRn and dPn extend over only all of the pairs of 

elements dRn at the point x1 , …, x , …, xn and dPn at the point 1 , …,  , …, n , resp., that lie 

in the spatial regions Rn and Pn, respectively, and the coordinates of a point that lies in the spatial 

region Rn are given by x1 − 1 , …, x  −  , …, xn  − n . If the masses m and  are not continuously-

distributed throughout the spatial regions Rn and Pn , resp., but over less-multiply-extended forms 

Rn−n and Pn− , resp., or concentrated at points then integrals with respect to dRn−n, dRn−n and 

dPn− , dPn− , resp., will enter in place of the dRn dRn and dPn dPn , resp., or also finite sums. 

 

 Lipschitz has also published investigations into the study of motion in multiply-extended non-

planar spaces in his treatises on the subject of homogeneous forms of differentials. 

 The article that I published in the previous volume of these Nachrichten on multiply-extended 

Gaussian and Riemannian spaces contains the tools for proving the following propositions for 

gravity in such spaces. 

 

 Proposition II. 

 

 If r means the distance between the mass-particles m and , as measured with an arbitrary 

unit of length, and √−1 /  denotes the length for a Gaussian space, while 1 /  denotes the length 

for a Riemannian one, which depends upon the special nature of the space and is measured with 
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the unit that is based upon the determination of the remaining lengths, which can be considered to 

be the absolute unit of length that is peculiar to the space, and if  and K (n) have the same 

meaning as above and one sets: 

 

  

 for odd n, 

 

while 

 

 

 

 for even n 

 

 

 

 

then 

m  wn (r) 

 

will be the potential function for the attraction between the positively-taken mass-particles m and 

 in the n-fold extended homogeneous spaces. 

 

 Proposition III. 

 

 If V means the potential function for the action that is exerted upon a unit mass that is found 

at a point, which shall be considered to originate from masses that are distributed throughout 

space in any way and are regarded as positive or negative according to whether the action is one 

of attraction or repulsion, resp., then one will have: 

 

 
when r denotes the distance from the mass-particle m to the variable point that determines the 

function V. The total mass that is found in any spatial region Rn that is bounded completely, but 

only simply, by the (n – 1)-fold extended spatial form Rn−1 will be represented by: 

 

 
 

in which K (n) has the meaning that it was given above, dN means the normal to the element dRn−1 

of the (n – 1)-fold extended spatial form Rn−1 , which is raised on the side of the spatial region Rn 

that it bounds, and the integral extends over the entire boundary of the spatial region Rn . 
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 Proposition III [sic]. 

 

 If one determines the position of a point by any sort of rectangular curvilinear coordinates 1, 

…,  , …, n and one denotes any two infinitely-small changes of position of that point by d1, 

…, d , …, dn and 1, …,  , …, n then the product of the lengths of the shortest lines that 

are drawn from the first position of that point to any two neighboring positions with each other 

and the cosine of the angle that those lines subtend will have the form: 

 

 
 

in which 1, …,  , …, n are positive functions of only 1, …,  , …, n . 

 

 Proposition IV. 

 

 If the unit mass to which the potential V refers is found at the point that is determined by the 

coordinates 1, …, , …, n , as in the previous proposition, and if the active mass at that location 

is distributed continuously in n-fold extended space then the density of the mass there will be equal 

to: 

 
 

in which  is set equal to the product 1  2 … n . 

 

 Proposition VI [sic]. 

 

 If the mass is condensed into an (n – 1)-fold extended spatial form Rn−1, and if the mass varies 

continuously within that form then: 

 
 

will be the density at that location on the form Rn−1 , on both sides of which the normals dN1 and 

dN2 to the spatial form dRn−1 are raised. 

 

 Proposition VII. 

 

 If the mass is condensed into an (n – )-fold extended spatial form Rn− , and if the mass varies 

continuously inside of that form then the limiting values of: 
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  for n –  = n – 2    

 

and 

 for n –  < n – 2    

 

 

as n goes to zero will be the density at the location on the form Rn− at which the normal N to dRn− 

is drawn to an external point that is infinitely-close to the form and at which the potential function 

V is determined. 

 

 Proposition VIII. 

 

 Let Rn denote a certain spatial region, and let dRn denote its spatial element, which includes 

the point 1, …, , …, n . Furthermore, let Rn−1 denote the (n – 1)-fold space form that bounds 

the spatial region dRn , while dRn−1 is an element of that form, and dN denotes a normal to the 

bounded spatial region Rn that is raised to dRn−1 . One then has: 

 

 

 

 
 

 
 

when U and V are functions of the coordinates that vary continuously in the space Rn and are such 

that the integrals over dRn and dRn−1 can assume finite values. 

 

 Suppose that n shortest lines start from a point, each of which is normal to all of the other ones, 

and which shall be called coordinates axes. If a shortest line is drawn from the point 0 to a point x 

and the section that goes from the point 0 to the midpoint of the shortest line is projected onto the 

coordinate axes and the lengths of those projections are denoted by 
1
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2
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, … , x , …, xn shall be called the rectangular symmetric coordinates of the point x. 

 

 Proposition IX. 

 

 Let Rn , Rn , and Pn be spatial regions, which can overlap or intersect arbitrarily, Let 1, …, 

 , …, n , x1 , … , x , …, xn , and 1 , … ,  , …, n be the rectangular symmetric coordinates of 

three points that are each found in one of the three spatial regions Rn , Rn , and Pn , resp. Let m(…, 
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x , …) and  (…,  , …) be continuous functions inside the spatial regions Rn and Pn . Let dN be 

the normal to the space form dRn−1 at the point 1, …,  , …, n on the side where the spatial 

region Rn that it bounds is found. Set: 

 

 
 

in which the summation  extends over the numbers  = 1, 2, 3, …, n. If one ultimately sets: 

 

 
 

then one will have the fundamental equation: 

 

 
 

in which the integral with respect to the element dRn−1 with the point that is determined by the 

rectangular symmetric coordinates 1, …,  , …, n extends over the entire space form Rn−1 , 

which bounds the spatial region Rn simply, and the integrals with respect to dRn and dPn extend 

over the entire spatial regions Rn and Pn , resp., but the integrals with respect to dRn and dPn 

extend over only all of the pairs of elements with dRn at the point x1 , … , x , …, xn and dPn at 

the point 1 , … ,  , …, n , which lie in the spatial regions Rn and Pn , respectively, and the 

rectangular symmetric coordinates 1, …,  , …, n of any point that lies in the spatial region 

Rn are given by: 
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for  = 1, 2, …, n. According to the nature of m and , integrals that are extended over less-

multiply-extended spatial forms can enter in plane of the integrals with respect to dRn , dRn and 

dPn , dPn , as well as finite sums. 
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