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Abstract 
 

 Starting from a comparison of general-relativistic field theory and continuum mechanics, we will 
consider, above all, so-called conservative systems.  These will be defined by the existence of an elastic 
potential and the absence of a heat current.  The basic equations that pertain to these systems will be 
derived from a variational principle.  The variation of the world lines that is thus implied will be clarified 
intuitively.  The entropy balance that relates to general mechanical continua will be formulated. 
 
 

§ 1.  Field theory and continuum mechanics 
 

 If we consider a physical field that is described by certain field quantities ψA (A = 1, 
…, N) from a general-relativistic standpoint then we must compute, not only the ψA , but 
also the components gρσ 1) of the metric tensor as functions of the spacetime coordinates.  
Thus, we have at our disposal the field equations: 
 

   FB(ψA , gρσ) = 0, B = 1, …, N,    (1.1) 
 

along with the Einstein field equations: 
 

Rµν – 1
2 gµν R = − χTµν .    (1.2) 

 
 The field equations (1.1) are differential equations that involve the function FB, as 
well as the derivatives of the field quantities. 
 If no other variable quantities appear then one is dealing with matter in a closed 
system, as described by the ψA .  If the gravitational field is also produced by this matter 
alone then the energy-impulse tensor that appears in (1.2) must be a function of the form: 
 

Tµν  = Tµν (ψA, gρσ).     (1.3) 
 

The remaining quantities that appear in (1.2) have their conventional meaning. 
 The problem that arises in a general-relativistic field theory then consists of the 
simultaneous solution of (1.1) and (1.2).  Thus, the form of Tµν must be known and the 
necessary condition: 

Tµ
ν
; ν = 0     (1.4) 

                                                
 1)  Small Greek indices run from 1 to 4, while small Latin ones run from 1 to 3. 
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must be satisfied 2).  There are no additional requirements if a Lagrangian function: 
 

L = L(ψA, gρσ)      (1.5) 
 
exists, in such a way that one has: 
 

FB = 
B

gδ
δψ

−L
.     (1.6) 

 
Equation (1.4) is, in fact, satisfied as a consequence of (1.1), as long as one sets: 
 

g Tµν− = − 2
gL

gµν

δ
δ

−
.    (1.7) 

 
Apparently, the construction of Tµν by this process cannot be dubious. 
 What form does this field-theoretic aspect take in the situation where we are 
concerned with phenomenological matter; i.e., with a mechanical continuum?  Here, we 
ultimately seek a congruence of timelike world-lines that represents a “droplet” of our 
medium.  Equivalent to this is the determination of a normalized contravariant vector 
field uµ: 

uµ uµ = − 1,  3)     (1.8) 
 

which is geometrically the tangent field of this congruence and physically – up to the 
factor c – the four-velocity field. 
 We carry out a coordinate transformation: 
 

aχ = Aχ(xλ)     (1.9) 
 

in such a way that in the coordinate system aχ the normalized four-velocity has the form: 
 

uα = 4
αλ δ .     (1.10) 

 
We equip all of the quantities relative to the coordinate system aχ with an overbar; uβ is 

then computed from: 
uβ = gαβ uα = λ g4β . 

 
According to (1.8), one must have: 

λ = 441/ g− , 

 

                                                
 2) A semi-colon denotes the covariant derivative with respect to the coordinates, while a comma denotes 
the ordinary one. 
 3 ) We attribute a signature of + 2 (+ + + −) to the spacetime manifold. 
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such that we ultimately have: 

uα = 4

44g

αδ
−

,  uβ = 4

44

g

g
β

−
.   (1.10) 

 
The aχ play the role of Lagrangian coordinates and the congruence of world-lines will be 
described by: 

ak = const.     (1.11) 
 

 The coordinate system aχ determines a “reference system” in the following way: We 
call a fictitious mass point with constant spatial coordinates aχ a “reference point” and 
call the set of all such reference points that belongs to the coordinate system aχ a 
“reference system” 4).  In our case, we speak of a “co-moving reference system.” 
Coordinate systems a′λ that arise from aχ through: 
 

a′k = a′k(aj), a′4 = a′4(aχ)    (1.12) 
 

− i.e., through spatial transformations and a change in the time coordinate − define the 
same reference system.  In them, a representation of the form (1.10) is likewise valid for 
the normalized four-velocity vector. 
 We denote the inverse transformations to (1.9) by: 
 

xµ = ϕµ (a1, a2, a3, a4).    (1.13) 
 

By holding ak fixed, these equations define a parametric representation of a selected 
world-line of our medium, where a4 acts as an arbitrary parameter.  With the 
abbreviation: 

o
µϕ = 

4a

µϕ∂
∂

     (1.14) 

 
this yields uµ in the xµ-coordinate system as: 
 

uµ = u
a

µ
α

α
ϕ∂

∂
= 

o

o o

g

µ

α β
αβ

ϕ

ϕ ϕ−
.   (1.15) 

 
 An analogy between continuum mechanics and field theory comes about when we 
possess field equations of the type (1.1) for uµ or for the functions aχ (1.9) in which the 
ψA were identified with any functions.  However, the equations that were first presented 
for a mechanical continuum are relativistic analogues of the pre-relativistic continuity 
equation for mass and the equations of motion; the latter give a physical expression to the 
balance of impulse.  The relativistic generalization of this combined complex of 

                                                
 4 ) For this nomenclature, cf., C. Møller, The Theory of Relativity, Oxford, Clarendon Press (1955), § 
88. 
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equations likewise includes the balance of impulse and, due to the equivalence of energy 
and mass, also the balance of energy.  If we do not consider external forces then we deal 
with statements that are equivalent to eq. (1.4). 
 One can therefore say that (1.1) and (1.4) will be identical in the case of the 
mechanical continuum theory.  A simultaneous computation of the world-line congruence 
and the gravitational field with the help of these equations, assumes, however, that Tµν in 
(1.2) is a functional of the form (1.3), in which one makes the aforementioned 
identification for the ψA . 
 As a matter of fact, a representation of the energy-impulse tensor in the desired form 
does not generally exist.  On the contrary, we will examine how one can introduce certain 
physically plausible material equations, by whose aid any representation is achievable.  
However, these material equations will not relate to Tµν primarily.  Rather, in order to 
characterize the state of motion of the medium Tµν must be connected with uµ by the 
introduction of its physical components.  The material equations then relate to these 
physical components. 
 
 

§ 2.  The physical components of the energy-impulse tensor 
 

 The aforementioned connection between Tµν and uµ was first presented by C. Eckart 
5) in order to formulate a special relativistic thermodynamics of irreversible processes for 
simple fluids.  This Ansatz was taken up by G. A. Kluitenberg 6) 7) 8), who generalized 
this theory to multi-component fluids.  It can, with no further restrictions, be applied to 
the treatment of an arbitrary mechanical medium.  By means of this Ansatz, the 
symmetric tensor sµν is defined by: 
 

sµν  ≡ gµν + uµ uν ,     (2.1) 
 
and has the following properties: 
 

uµ sµν  = 0,  s sµ λ
λ ν =sµ

ν .    (2.2) 

 
As for the physical components of Tµν, we point out the scalar w, the four-vector wα, and 
the symmetric tensor wαβ, which are defined as follows: 
 

w ≡ Tρσ uρ uσ ,      (2.3) 
wα ≡ − s T uα ρσ

ρ σ ,     (2.4) 

wαβ ≡ s s Tα β ρσ
ρ σ .     (2.5) 

 
There then exists the identity: 

                                                
 5 ) C. Eckart, Phys. Rev. 58, 919 (1940). 
 6 ) G. A. Kluitenberg, S. R. de Groot, and P. Mazur, Physica 19, 689 (1953). 
 7 ) G. A. Kluitenberg, S. R. de Groot, and P. Mazur, Physica 19, 1079 (1953). 
 8 ) G. A. Kluitenberg and S. R. de Groot, Physica 20, 199 (1954). 
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Tµν ≡ w uµ uν + wµ uν + wν uµ + wµν .    (2.6) 
 

We can shed light on the physical interpretation of this equation when we consider it in a 
local inertial rest system that we indicate by the index 0.  In it, one has: 
 

g0µν = ηµν , 0uµ  = 4
µδ , u0µ = − 4

µδ , 

s0µν = 0s
ν

µ = s0
µν = Diag(1 1 1 0), 

and therefore: 

0T µν = 0 0

0

jk k

k

w w

w w

 
  
 

.     (2.7) 

 
Whereas w naturally represents the energy density in the local inertial rest system, one 
will interpret – wαβ as the stress tensor, and finally: 
 

qα = c wα 
 
as the heat current, since no other macroscopic energy current can exist in any rest 
system. 
 Since: 

wαβ uβ = 0, wα uα = 0,    (2.8) 
 

and due to (1.8), the 13 quantities included in Tµν are algebraically independent.  One 
thus needs nine more equations, in addition to (1.4).  This number will increase when it 
becomes necessary to introduce further physical quantities in the formulation of relations 
of this type − for example, temperature in the discussion of wα. 
 Since the inertial rest system has only a local meaning, it is appropriate to base the 
further considerations on the co-moving reference system.  In it, one has: 
 

sαβ = gαβ + u uα β = gαβ − 4 4

44

g g

g
α β ;    (2.9) 

hence: 
ρα4 = 0.     (2.10) 

Furthermore: 

sik = gik − 4 4

44

i kg g

g
= γik ,    (2.11) 

 
is the three-dimensional tensor, which, according to: 
 

dl2 = γik dai dak, 
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defines the spatial distance dl between neighboring reference points 9).  One has: 
 

γik g
jk = j

iδ      (2.12) 

 
The form (2.11) of γik is reproduced naturally under the transformations (1.12).  In 
general, the property of a covariant tensor having no 4-components in a coordinate 
system aχ is conserved under the transformations (1.12) for which the spatial components 
transform according to the rules of three-dimensional tensors.  The latter statement is also 
true for the spatial components of a contravariant tensor, whether or not the former 
property is valid. 
 We further denote: 

sβ
α = u uβ β

α αδ + = 4 4

44

g

g

α
β α

α
δδ −     (2.13) 

hence: 

4sβ = 0,  k
is = k

iδ .    (2.14) 

 
For wik and wk this yields: 

ikw = ikT ,     (2.15) 
kw = − kT uγ

γ .     (2.16) 

 
The relation (2.15) that is true in our reference system agrees with the same one in the 
local inertial rest system.  One further deduces that the corresponding covariant 
components are obtained by manipulating the indices using γik : 
 

ikw = rs
ir kswγ γ ,      (2.17) 

kw = j
kjwγ .      (2.18) 

Finally, one can write: 

wµν = rs

r s
s s w

a a

χ ρ
µ ν
χ ρ

ϕ ϕ∂ ∂
∂ ∂

,    (2.19) 

wα = k

k
s w

a

χ
α
χ

ϕ∂
∂

     (2.20) 

 
in a coordinate system xµ that is linked to aχ by (1.13). 
 All of these relations make it easier for us to see in ikw and kw  the independent 
physical quantities in which to formulate the material equations. 
 
 

                                                
 9 ) See loc. cit. 4), § 89 and L. D. Landau and E. M. Lifschitz.  Feldtheorie (German translation) Berlin 
(1963), § 84. 
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§ 3.  Conservative systems 
 

 The mechanical continua for which the analogy with field theory mentioned in the 
first paragraph is valid may be called conservative systems.  As a first requirement that 
we place on them, we assume that no heat current needs to be considered; i.e., wα = 0. 
 Furthermore, the stresses shall be of an “elastic” nature.  Thus, we require an 
explanation of the concept of “deformation.”  In the general theory of relativity it is 
connected with certain difficulties in such a way that J. L. Synge 10) has conceived of a 
theory of elasticity that is based, not on the deformation itself, but on its velocity of 
variation.  However, C. B. Rayner 11) has recently developed a theory in which the 
deformation is defined by comparing the actual metric with a second one.  Relative to it, 
the true congruence of world lines shall describe a rigid motion in the sense of Born and 
Rosen 12). 
 Whereas in the pre-relativistic theory of elasticity one assumes different world-lines 
for the deformed and rigid comparison bodies, nonetheless, the same (Euclidian) metric 
will be used, while in the relativistic theory one must use the same world lines, but 
different metrics.  It seems to me that the latter procedure can also be understood 
intuitively when one introduces simply a “body-fixed” coordinate system in place of the 
“space-fixed” one.  Instead of saying that from the standpoint of the former system the 
points of the body move relative to each other under a deformation (i.e., their coordinate 
distances change), one can say that from the standpoint of the latter system these points 
can be regarded as at rest relative to each other (constant coordinate distance), whereas 
the metric changes temporally. 
 In order to mathematically formulate the thoughts of Rayner, one introduces a 
symmetric tensor sµν

∗ , which shall have the coordinates: 

 

sµν
∗ = 

0

0 0
ikγ ∗ 

  
 

     (3.1) 

 
in the co-moving reference system, such that in general one has: 
 

s uν
µν
∗ = 0.      (3.2) 

 
The second metric will now be defined by: 
 

gµν
∗ = sµν

∗ − uµ uν .     (3.3) 

One then has: 
uµ

∗  ≡ g uν
µν
∗ = uµ      (3.4) 

and: 

4gµ
∗ = gµ4 .      (3.5) 

                                                
 10 ) J. L. Synge, Math Z. 72, 82 (1959). 
 11 ) C. B. Rayner, Proc. Roy. Soc. London 272, 44 (1963). 
 12 ) N. Rosen, Phys. Rev. 71, 54 (1947). 
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The demand that the motion described by uµ shall be “rigid” with respect to gµν
∗ was 

posed by N. Rosen as: 
uν uµ||χ u

χ + uµ| uν||χ u
χ + uµ||ν + uν|µ = 0,   (3.6) 

 
in which we have denoted the covariant derivative by means of gµν

∗  with a “||”. 

 The assumption that we encountered here, when it is applied to an examination that 
was carried out by E. T. Newman and A. I. Janis 13), allows one to replace (3.6) with the 
equivalent, and quite intuitive, condition: 
 

4
ik

a

γ ∗∂
∂

= 0.     (3.7) 

 
 From now on, we shall define the “deformation tensor,” in the sense of Rayner, as 
follows: 

ike ≡ γik − ikγ ∗ .     (3.8) 

 
Finally, we require the existence of an elastic potential Φ for our conservative system 
since it allows one to obtain the stresses − ikw by differentiating it by ike .  In this case, we 

denote the four-dimensional stress tensor by: 
 

− const.wαβ = Sαβ      (3.9) 

 
in order to characterize it in general cases, in particular.  In light of the classical analogy, 
however, we single out the following Ansatz: 
 

w = ρΦ,     (3.10) 
ikS = 2

ike
ρ ∂Φ

∂
.     (3.11) 

 
ρ is an analogue of the pre-relativistic mass density, and therefore Φ specifies the 
potential energy.  Here, it shall depend, apart from on ike , on material quantities that are 

defined in a co-moving system.  We express this by an explicit dependence of aχ on Φ. 
 Now, there is no place in the theory of relativity for a mass density along with an 
energy density w.  Rather, one must introduce a new definition.  A particularly closely 
related path seem to us to be the following one: We start with the pre-relativistic 
connection between the mass density ρ and specific volume v.  We now define the latter 
as a consequence of following through with the comparison between the actual and 
associated rigid motion, being the ratio of the volume, when measured in the actual 
metric γik , to the associated one, which is then an infinitesimal amount of matter that a 
world line takes on between ak and ak + dak .  If γ and γ* denote the determinants of γik 
and ikγ ∗  then the mathematical formulation of this definition reads: 

                                                
 13 ) E. T. Newman and A. I. Janis, Phys. Rev. 116, 1610 (1959). 
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1

ρ
≡ v ≡ 

γ
γ ∗

.     (3.12) 

If one imagines that one has 14): 

g−  = 44g γ−     (3.13) 

 

for the determinant g of gµν  then one recognizes that γ  and γ ∗  behave like spatial 

tensor densities under (1.12): 

γ  =
spatial

a

a
γ ′∂′

∂
.    (3.14) 

 
Furthermore, one has the following analogue of the pre-relativistic conservation law for 
mass, namely, the equation of continuity: 
 

(ρ uµ); µ = 0.     (3.15) 
In the co-moving system it is: 
 

;( )u µ
µρ  = ( )

,

1
g u

g
µ

µ
ρ−

−
= ( )

,4

1

g
γ ∗−

−
 = 0. 

 
The definition (3.12) has the corollary that ρ and v do not have the well-known physical 
dimensions.  If one wishes to remedy this without giving up the equation of continuity 

(3.15) then one must obviously replace γ ∗  with a function f(a1, a2, a3).  The formula: 

 

1

ρ
= v = 1 2 3( , , )f a a a

γ
     (3.12a) 

 
is identical with the corresponding expression in the theories of Eckart and Kluitenberg. 
 We remark that we arrive at the special case of the ideal fluid when we assume: 
 

Φfl. = Φ(v).     (3.16) 
With: 

fl.

v

∂Φ
∂

= − p      (3.17) 

one obtains: 

fl.
ikS = − pgik.     (3.18) 

 
According to (2.19), it follows by a simple computation: 
 

fl.wµν = p sµν .     (3.19) 

                                                
 14 ) See, loc. cit. 4) Appendix 8. 
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Henceforth, we write the energy-impulse tensor of our conservative system as: 
 

Tαβ = w uα uβ – Sαβ .     (3.20) 
 

Due to the requirement on Tαβ that it be divergence-free, along with (2.9), one then has: 
 

;T uαβ
β α = − ; , ;wu w u S uβ β αβ

β β α β− + = 0.   (3.21) 

 
On the other hand, if one computes w,β u

β from (3.10), while taking (3.11) into account, 
then one finds (cf., Appendix A): 
 

w,β u
β = − 4

; ; 4
expl.

wu S u u
a

β αβ
β α β ρ ∂Φ + +  ∂ 

.   (3.22) 

One must then have: 

4
expl.a

∂Φ 
 ∂ 

= 0.     (3.23) 

 
The material quantities that enter into Φ must therefore be “constant” with respect to the 
co-moving system, a condition that is very intuitive. 
 If it is fulfilled then the relation (3.21) is strictly valid; i.e., independently of whether 
(1.4) is true.  In order to understand this, one imagines that in the previous situation only 
the gravitational field and the world-line congruence are assumed to be unknown.  
However, the determination of the latter requires three spacetime functions. 
 The strong specialization that the conservative systems are based upon now leads, in 
fact, to the aforementioned analogy with field theory.  Namely, we can substitute the 
expressions (3.10), (3.11) in (3.20), while taking (3.9) into account.  If we then write: 
 

γik = 
i k

s
a a

ρ σ

ρσ
ϕ ϕ∂ ∂

∂ ∂
, 

 
introduce the expression (1.15) for uµ everywhere, and finally express the ∂ϕρ / ∂aλ in 
terms of  ∂aµ / ∂ϕν , then one has: 

Tαβ = Tαβ(gρσ, aχ), 
 
from which the analogy with field is established. 
 Finally, we mention that the theory that was conceived here can be regarded as, in a 
certain sense, a general-relativistic analogue of the one that G. Herglotz 15) formulated for 
the special-relativistic theory of deformable media.  In place of the “rest deformations” of 
Herglotz, we deal with the deformations (3.8) that are defined in the co-moving system. 

                                                
 15 ) G. Herglotz, Ann. Physik 36, 491 (1911). 
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§ 4.  The balance of entropy 
 

 One arrives at the balance of entropy most simply when one, in the spirit of the 
ordinary thermodynamics of irreversible processes for a non-conservative system, retains 
the relations (3.10) and (3.11), although Φ is now regarded as the specific internal 
energy.  It will depend on, not only the ike , but also the specific entropy η in the co-

moving system, as well as systems composed of matter with suitably defined 
concentration gradients c(k).  (Indices in parentheses denote the type of matter in each.)  
We thus write: 
 

Φ = Φ( ike , η, c(1), …, c(k), …, c(n)).    (4.1) 

 
The differentiations in (3.11) are thus now to be understood as carried out for constant η 
and c(k).  The temperature T and the chemical potential µ(k) are then defined by: 
 

η
∂Φ
∂

= T, 
( )kc

∂Φ
∂

= µ(k).    (4.2) 

 
As in the aforementioned special-relativistic theories of irreversible thermodynamics (loc. 
cit. 5-8)), we also work only with a scalar temperature quantity.  We append an argument 
of M. Strauss 16) that addresses the transformation of temperature.  Likewise, the c(k) will 
be treated as scalar quantities. 
 If one now recalls the computations that were carried out in Appendix A then one 
obtains: 
    w,β u

β + w uβ
;β 

     = Sαβ uα; β + ρ T η,β u
β + 

( )k
∑ ρ µ(k) c(k)

,β u
β    

    = Sαβ uα; β + ρ T η,β u
β + 

( )k
∑ ρ µ(k) c(k)

,β u
β .       (4.3) 

     ,

d
u

ds β β
η η ≡ 

 
. 

 
Thus, we assume that the remarks of the previous paragraphs correspond to the 
assumption that Φ cannot depend upon other material quantities beyond a1, a2, a3, but not 
a4. 
 On the other hand, we consider the unabridged expression (2.6) for Tαβ.  By 
assumption, we also bring an external electromagnetic field into consideration, although 
our medium shall possess no polarization and magnetization.  With the electromagnetic 
field strength tensor Fαβ and the four-current density jα one then has: 
 

                                                
 16 ) M. Strauss, Z. Naturforsch. 17a, 827 (1962).  The argument we mentioned may be found on pp. 845 
and relates to the fact that whereas the transformation formulas for spatial and temporal distances in special 
relativity follow from the fact that these quantities are projections of four-vectors there, nevertheless, an 
analogous conclusion cannot be established for temperature. 
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Tαβ
;β = Fαβjβ , 

and: 
Tαβ

;β uα = uα Fαβ jβ ,            (4.4) 
= − w,β u

β − w uβ
; β − wα uα; β u

β  − wβ
; β  − wαβ uα; β .   

   
We thus have (2.8), and therefore consider: 
 

(wα uβ + wβ uα); β uα = − wβ
; β  − wα uα; β u

β . 
 

The combination of (4.3) and (4.4) then yields: 
 

d

ds

ηρ = − ( ) ( )
; ; ;

( )

1
( ) ( )k k

k

Du
c u w w j F u S w u

T ds
β β α βγ αβ αβα

β β β γ α βµ ρ
 

+ + − + + 
 
∑  

;

Du
u u

ds
βα

α β
 ≡ 
 

. 

 
This balance of entropy can likewise be brought into the form derived by von 
Kluitenberg, (loc. cit. 6) eq. (5.1) and loc. cit 8) eq. (6.12), when one, in the spirit of his 
work, introduces the “mass current vector” m(k)ν for the kth material, as well as the vector 
I(k)ν of the relative mass current for this material, which are linked by way of: 
 

m(k)ν = I(k)ν + ρ c(k) uν .    (4.6) 
 

Naturally, these equations do not succeed in defining the new quantities.  They show that 
the form of the balance of entropy that was derived does not depend upon precise 
definitions when only (4.6) is true, as well as showing that in the presence of a chemical 
reaction with the stoichiometric coefficients r(k) the balance equation: 
 

m(k)ν
; β  = ν(k) Q    (4.7) 

 
is fulfilled, in which Q is an analogue of the rate of reaction.  If one then writes: 
 

jν = ( ) ( )

( )

k

k

e mν
ν∑     (4.8) 

and: 
( ) ( )

( )

k k

k

µ ν∑ = − A.    (4.9) 

 
(A = Affinity), (4.5) then transforms into: 
 

d

ds

ηρ = − ( ) ( ) ( ) ( )
; ; ;

( ) ( )

1
( )k k k k

k k

Du
w I w e I F u S w u AQ

T ds
β β α β γ αβ αβα

β β βγ α βµ
 

− + − + + − 
 

∑ ∑  
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=
( ) ( ) ( )

, ( ) ( )
2

( ) ( ) ;;

1k k k
k k

k k

T Du F uw I
w I e

T T T T ds T T

γβ β
β β βγβ β

ββ

µ µ     
− + − − + −     

       
∑ ∑  

;

1
( )

A
S w u Q

T T
αβ αβ

α β− + + .       (4.10) 

 
The first term is the divergence of the energy current, while the remaining ones 
collectively represent the entropy production. 
 In a conservative system (wα = Fαβ = Sαβ + wαβ = 0), one has, from (4.5): 
 

( ) ( )
,

( )

k k

k

d
T c u

ds
β

β
η µ+∑ = 0 (conservative system). (4.11) 

 
The change in the entropy then results from diffusion alone.  Whether or not the 
constancy of entropy and all concentrations in that case is to be physically expected, we 
would nonetheless like to retain the general expression (4.11). 
 
 

§ 5.  Variation of the world lines 
 

 Since we presented a far-reaching analogy with field theory at the end of the third 
paragraph, it is to be expected that a variational principle also exists.  Thus, the variation 
of the action integral relative to gµν shall yield the Einstein eqs. (1.2) and the variation of 
the world-lines shall yield the equations of motion; viz., in our case (1.4).  The Lagrange 
function shall, corresponding to the general schema, depend upon the aχ and their 
derivatives with respect to the xµ, as well as on gνµ .  A procedure for the variation of 
world lines was developed by A. H. Taub 17) and refined by V. Fock 18).  This procedure 
relates to ideal fluids and seems to overlook the close connection with the variational 
procedure that is employed in field theories.  We will therefore see that this is not the 
case, but that one is dealing with a straightforward modification of the calculations.  
Thus, we will likewise have the general case of conservative systems in mind. 
 
 As an intuitive conception of the variational procedure we think of the world-lines of 
our medium as infinitesimally distorted rubber bands, in which we retain the naming of 
material world-point of the medium by means of the coordinates aχ. Therefore, this entire 
coordinate system will be distorted, such that, as before, the world-lines of a droplet will 
be described by ak = const., a4 = variable.  A material world-point of the medium that was 
at the point xµ in the xµ-coordinate system before the distortion will then be at an 
infinitesimally neighboring point with the coordinates xµ + ξµ.  Moreover, the form of the 
transformations (1.13), which lead from the co-moving system to the xµ-coordinate 
system, will change.  One will then have: 
 

                                                
 17 ) A. H. Taub, Phys. Rev. 94, 1468 (1954). 
 18 ) V. Fock, Theorie von Raum, Zeit, und Gravitation (German translation), Berlin (1960) §§ 47, 48. 
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xµ + ξµ = ( )aµ χϕɶ ,     (5.1) 

ξµ = ( )aµ χϕɶ − ϕµ(aχ).      
 
 In order to investigate how these physical properties of the medium behave under 
these distortions of the world lines, we think of one such property as represented by a 
function of the fundamental field quantities, namely, gρσ , aχ, and their derivatives.  
Therefore, the latter may be expressed by: 
 

ν
λϕ  ≡ 

a

ν

λ
ϕ∂

∂
.     (5.2) 

We thus write for the property χ: 
χ = ( ( ), , )g x aµ ν χ

ρσ λζ ϕ            (5.3) 

= ( , , )x aµ ν χ
λχ ϕ .      

 
Now, if the material point aχ carries the property (5.3) before the distortion then after the 
distortion of the world-lines, one will have: 
 

χɶ = ( , , )x aµ µ ν χ
λχ ξ ϕ+ ɶ             (5.4) 

=
expl.

( , , ) ( )x a
x

µ ν χ µ ν ν
λ λ λµ ν

λ

χ χχ ϕ ξ ϕ ϕ
ϕ

∂ ∂ + + − ∂ ∂ 
ɶ .   

Thus, according to (5.1): 
ν ν
λ λϕ ϕ−ɶ = ν

λδ ϕ∗ =
a

ν
λ ξ∂

∂
= ,

ν σ
σ λξ ϕ ,    (5.5) 

δ*χ = χɶ − χ = ,
expl.x

µ σ ν
λ σµ ν

λ

χ χξ ϕ ξ
ϕ

∂ ∂  + ∂ ∂ 
    (5.6) 

 
represents the (infinitesimal) difference between the changed quality at the point xµ + ξµ 
and the unchanged quality at the point xµ.  However, one finds the difference between the 
changed quality and the original one by means of the variation of the world-lines, both of 
them at one and the same world-point xµ to be: 
 

 δχ = δ*χ − 
totalx

ρ
ρ

χ ξ∂ 
 ∂ 

.    (5.7) 

In this: 

totalxρ
χ∂ 

 ∂ 
= 

expl.

a

x x a x

ν χ
λ

ρ ν ρ χ ρ
λ

ϕχ χ χ
ϕ

∂∂ ∂ ∂ ∂  + + ∂ ∂ ∂ ∂ ∂ 
.  (5.8) 

 
The operator δ then acts on the νλϕ  and the explicit aχ.  If one thinks of the former as 

being further expressed in terms of the ∂aρ / ∂xµ  then one can also say that δ acts directly 
upon the desired functions (and their derivatives) that describe the congruence of world-
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lines.  The “variation of the world-lines” thus has principally the same character as the 
variational procedure that is used in field theory. 
 We now compute some variations that will be used later.  One has: 
 

δ*gαβ = ( )gλ χ
α β λχδ ϕ ϕ∗         (5.9) 

= ;( )g λ χ λ χ σ
λσ α β β α χϕ ϕ ϕ ϕ ξ+ ;     

(cf., Appendix B) 
in particular, one then has: 

δ*g44 = 
o o

;2g λ χ σ
λσ χϕ ϕ ξ ,    (5.10) 

and, as a result: 
4uδ ∗ = 44(1/ )gδ ∗ −      (5.11) 

= 4
; ,u u u uχ σ χ β

σ χ χξ ξ+ .     

It follows that: 

δ*uβ = 
o

4( )uβδ ϕ∗      (5.12) 
= uβ uσ  uχ ξσ

; χ  + uχ ξβ
; χ        

and: 
δuβ = δ*uβ – uβ

, σ ξσ      (5.13) 
= uβ uσ  uχ ξσ

; χ  + uχ ξβ
; χ  − uβ

; σ ξσ  .    
 

One sees that δ*uβ, as the difference between two vectors at different points, does not 
represent a vector, but δuβ, as the difference of two vectors at the same point, is a vector. 
 Furthermore, one easily sees that: 
 

  kuδ ∗ = 4
4( )kg uδ ∗      (5.14) 

= ( ) ;k ku s uχ λ χ σ
λσ σ χϕ ϕ ξ+ ,     

from which it then follows that: 
 

4( )ku uδ ∗ = 4
;( )ku u s u sλ χ σ σ

λσ σ λ χϕ ξ+ .   (5.15) 

 
 With the help of (5.9) and (5.14), this yields: 
 

δ*γik = ( )ik i kg u uδ ∗ +      (5.16) 

= ( ) ;k i k is sχ λ µ µ λ σ
λσ µ χϕ ϕ ϕ ϕ ξ+      

(cf., Appendix C). 
 If we contract this expression with ikg  and we consider that: 
 

ik
i kg λ µϕ ϕ  = gλµ – terms proportional to 

o
µϕ  or 

o
λϕ  
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then we obtain, since s sχ
λσ µ  

o o

or µ λϕ ϕ 
 
 

= 0: 

 
ik

ik
g δ γ∗  = ;2s s gχ λµ σ

λσ µ χξ = ;2sχ σ
σ χξ     (5.17) 

(cf., Appendix C). 
 
 

§ 6.  The variational principle for conservative systems 
 

 We apply the variation that was described in the previous paragraph in order to derive 
the equations of motion (1.4) for conservative systems from a variational principle.  One 
has: 

4g L d xδ −∫  = 4g L d xδ−∫  = 0,    (6.1) 

 
in which ξµ shall vanish on the boundary surface of an arbitrary domain of integration. 
 Next, we choose: 

L = w = ρ Φ = 
( )

( , )
k

k
ik

f a
e a

γ
Φ .    (6.2) 

One then has: 
δL = δw = δ*w – w,σ ξσ,     (6.3) 
δ*w = ρ δ*Φ + Φδ*ρ,      (6.4) 

    ρ δ*Φ = ik
ike

ρ δ γ∗∂Φ
∂

 

= ( ) ;

1

2
ik

k i k iS s sχ λ µ µ λ σ
λσ µ χϕ ϕ ϕ ϕ ξ+         (6.5) 

= − ;wχ σ
σ χξ ,        

 
in which we have taken (3.11), (5.16), (2.19), and (3.9) into consideration.  In addition, 
we compute, while considering (5.17): 
 

Φ δ*ρ  = − 
( )3

( )

2

j

ik
ik

f a γ δ γ
γγ

∗Φ ∂
∂

      

= − 
( )3

( )

2

j
ik

ik

f a
gγ δ γ

γ
∗Φ

         (6.6) 

= − ;sχ σ
σ χρ ξΦ  = − ;wsχ σ

σ χξ .      

 
If we put all of these advances together then what results is: 
 

0 = − ( ) ( ){ } 4
; ;

g w ws w d xχ χ σ χ σ
σ σ χ σ χ

ξ δ ξ− + +∫ ,  (6.7) 
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or, after partial integration: 
 

0 = ( ){ } 4

;
g w w s d xχ χ χ σ

σ σ σ χ
δ ξ− + −∫ .   (6.8) 

 
We thus obtain, in fact, the equations of motion for conservative systems: 
 

( )
;

w wu uχ χ
σ α χ

+ = ;T χ
σ χ  = 0. 

 
Naturally, ideal fluids are included as a special case in (3.16) through (3.19). 
 For the sake of heuristics, we assume that Φ has a dependency upon 4

ku u , in addition 

to its dependency upon ike .  Then, from (5.15), the right-hand side of (6.5) acquires a 

supplementary term: 

( )4
;4( ) k

k

u u s u s
u u

λ χ χ σ
λσ σ λ χρ ϕ ξ∂Φ +

∂
. 

 
If we can set the heat current equal to: 
 

kw = − 4
4( )k

u
u u

ρ ∂Φ
∂

 

 
then, from (2.20), this supplementary term assumes the form: 
 

− (uχ wσ + uσ wχ) ξσ
; χ , 

 
and we arrive at the final result that the tensor (2.6) is divergence-free.  Thus, we can 
ascribe no true physical sense to the form of the heat current that we chose here. 
 Instead of it, we seek to extend the variational principle in such a way that the relation 
(4.11) that is demanded of conservative systems can be preserved.  Next, we consider a 
single-species system such that one demands only that: 
 

d

ds

η
= η, β u

β = 0, 

i.e.: 
η = η(a1, a2, a3). 

 
This requirement is implicit in the choice of the Lagrangian function (6.2). 
 Henceforth, we replace the quantity Φ in (6.2), which corresponds to the specific 
internal energy, with: 

( , )ike TΨ = Φ – T η.     (6.9) 

 
This function is the analogue of the specific internal free energy.  One then has: 
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ike

∂Ψ
∂

= 
1

2
ikS

ρ
,     (6.10) 

T

∂Ψ
∂
≡ ΨT = − η.    (6.11) 

 
From the research of Taub, however, we do not work directly with T, but with a scalar 
quantity α, which is connected with T by: 
 

T = α, µ uµ.     (6.12) 
The action integral is now: 

I = 4
,( , )ikg e u d xµ
µρ α− Ψ∫ .   (6.13) 

 
We next vary it relative to α for fixed world-lines and obtain: 
 

0 = δαI = 4
,Tg u d xµ

α µρ δ α− Ψ∫  = − 4
;( )Tg g u d xµ
µ αδ α− Ψ∫ ; (6.14) 

hence: 
− (ρ ΨT u

µ); µ = ρ uµ η, µ = 0,    (6.15) 
as we desired. 
 In order to perform the variation of the world-lines, we remark that: 
 
     δ(ρ Ψ) = δ*(ρ Ψ) – (ρ Ψ), σ ξσ  

= − ; ; ,( )Ts w Tχ σ χ σ σ
σ χ σ χ σρ ξ ξ ρ δ ρ ξ∗Ψ − + Ψ − Ψ .  (6.16) 

 
Therefore, upon consideration of (5.12), one has: 
 
           δ*T = δ*(α, µ uµ) 

= α, µσ  uµ ξσ + T uσ  uχ ξσ
; χ  + α; µ  uµ ξσ, µ    (6.17) 

       = α; µσ  uµ ξσ + T uσ  u
χ ξσ

; χ  + α;,µ  uµ ξσ; µ  . 
Thus, one has: 
 
     0 = δI 

   = − { ; ,( )Tg w s Tu u uσ χ χ χ χ
χ σ σ σ σξ ρ ρ α − + Ψ − Ψ + ∫  

( ) } 4
;; T u d xσ χ χ

σ χσχ
ξ δ ρ ρ α + Ψ − Ψ

 
    (6.18) 

= { } 4
; , ;

;
( ) ( )T T Tg w u u T u u d xσ χ χ χ χ

σ σ χσ σ χχ
ξ ρ ρ α ρ α   − − Ψ − Ψ + Ψ − Ψ   ∫ . 

 
However, from (6.15), the latter square bracket vanishes, and one has Ψ – ΨT T = Φ, such 
that we are again led back to (6.8). 
 For the case of multi-species systems, we would like to think of the relation (4.11) as 
being fulfilled in such a way that Φ depends upon η and the c(k) by way of N independent 
functions f1, f2, …, fN, which are constant along the world-lines.  Thus, one now has: 
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       Φ = 1( , , , , , )K N
ike f f fΦ ⋯ ⋯  

fK = fK(η, c(1), …, c(k), …, c(n))   (6.19) 

0 = 4
4

Kf
u

a

∂
∂

= fK
, µ uµ = 

( )
( )

,( )
( ) 0

Kn
k

k
k

f
c u

c
µ

µ
=

∂
∂∑  (c(0) ≡ η). 

 
One then has, in fact: 
 

( )
( ) ( )

,
( ) 1

n
k k

k

d
T c u

ds
µ

µ
η µ

=

+ ∑  = 
( )

( )
,( )

( ) 0

n
k

k
k

c u
c

µ
µ

=

∂Φ
∂∑     (6.20) 

     = 
( )

( )
,( )

1 ( ) 0

KnN
k

K k
K k

f
c u

f c
µ

µ
= =

∂Φ ∂
∂ ∂∑ ∑ = 0. 

We now write: 

Kf

∂Φ
∂

≡ λK       (6.21) 

        ( , )ik Ke λΨ  = Ψ − 
1

N
K

K
K

fλ
=
∑ , 

 
such that henceforth, in addition to (6.10), we have: 
 

Kλ
∂Φ
∂

= − fK .     (6.22) 

 
In addition, by analogy with (6.12), we introduce the scalar quantities αK by way of: 
 

λK = αK, µ uµ.      (6.23) 
 Now, let our action integral be: 
 

J = g−∫  ρ Ψ( ike , α4, µ uµ, …, αN, µ uµ) d4x,  (6.24) 

 
so variation relative to the αK delivers the relations (6.19).  One obtains the results of the 
variation of world-lines when one replaces ΨT δ*T with ( / )K K

K

λ δ λ∗∂Ψ ∂∑ in (6.16) and 

then in (6.18) one replaces ΨTT with ( / )K K
K

λ λ∂Ψ ∂∑ , ΨTα; χσ  with ;( / )K K
K

χσλ α∂Ψ ∂∑ , 

and ΨTα; χ  with ;( / )K K
K

χλ α∂Ψ ∂∑ .  We then obtain the same result as in the previously-

treated special case. 
 Finally, in order to arrive at the gravitational equations (1.2), we must consider the 
variation of J relative to gµν for fixed αK and unvaried world-lines; i.e., for fixed λνϕ .  To 

that end, we notice: 

g gδ −  = 
1

2
g g gµν

µνδ− ,    (6.25) 
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δg u
σ =

1

2
uσ uµ uν δgµν .     (6.26) 

 
From a simple computation, it then follows that: 
 
          δg γik = i k gsα β

αβϕ ϕ δ  

      = i k s s gα β µ ν
α β µνϕ ϕ δ     (6.27) 

 
By way of similar consequences to the ones that were presented in (5.17) and (6.6), one 
then obtains: 

δgρ = − 1

2
 ρ sµν δgµν .     (6.28) 

Furthermore, one has: 

          δgΨ = ,g ik K g
Kik K

u
e

µ
µδ γ α δ

λ
∂Ψ ∂Ψ+
∂ ∂∑  

     = 
1 1

2 2
ik K

i k K
K

S s s g f u u gα β µ ν µ ν
α β µν µνϕ ϕ δ λ δ

ρ
− ∑   (6.29) 

       = − 
1

2
K

K
K

w
u u f g

µν
µ ν

µνλ δ
ρ

 
+ 

 
∑ . 

 
Putting everything together yields: 
 

δgJ = 41
( )

2
K

K
K

g g s g u u f w d xµν µν µ ν µν
µνδ ρ ρ λ − − Ψ − + + 

 
∑∫  (6.30) 

   = 41
( )

2
g g u u w w d xµ ν µν

µνδ− − +∫ . 

 
Apparently, eq. (1.7) is thus fulfilled.  Since, one has: 
 

4
g g R d xδ −∫ = 41

( )
2

g g R g R d xµν µν
µνδ − −∫ , 

 
in which R is the Riemannian curvature scalar, the total action integral, whose variation 
relative to αK, gµν, and the world-lines gives all of the basic equations of the theory, 
reads: 

Jtotal = 41

2
g R d xρ

χ
 − Ψ + 
 

∫ .   (6.31) 
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Appendix A 
 

One has: 
w, β u

β = Φ ρ, β u
β + ρ Φ, β u

β. 
From (3.15): 

Φ ρ, β u
β = − w uβ; b . 

Furthermore: 

     ρ Φ, β u
β = 4

4
u

a
ρ ∂Φ

∂
 

         = 4
4 4

expl.

ik

ik

u
e a a

γρ
 ∂∂Φ ∂Φ +   ∂ ∂ ∂  

. 

 
In the following summation, vanishing – canceling, resp. – terms will be added.  One can 
conclude: 

    4
,4ik

ik

u
e

ρ γ∂Φ
∂

  = 4
,4

1

2
ik

ikS s u  

      = 4 4 4
,4 4 , 4 ,

1
( )

2
S s u s u s uαβ

αβ α β β α+ +  

      = , , ,

1
( )

2
S s u s u s uαβ ρ ρ ρ

αβ ρ αρ β ρβ α+ +  

      = 
1

2
Sαβ (uα; ρ u

ρ uβ + uβ; ρ u
ρ uα + uα; β + uβ; α) 

      = Sαβ uα; β . 
 
The combination of all of these results delivers (3.22). 
 

Appendix B 
 
 The formula (5.9) can be derived in the following way: 
 
  gαβδ ∗  = ( )gλ χ

α β λχδ ϕ ϕ∗ = , , ,g g gλ χ σ λ σ χ χ σ λ
α β λχ σ λχ α β σ λχ β α σϕ ϕ ξ ϕ ϕ ξ ϕ ϕ ξ+ +  

   = ( )( ), , , , ,

1

2
g g g g gλ χ σ χ σ λ λ χ λ χ σ

λχ α β σ λχ β α σ α β β α λχ σ λσ χ χσ λϕ ϕ ξ ϕ ϕ ξ ϕ ϕ ϕ ϕ ξ+ + + + −  

   = , ,g g g gλ χ ρ λ χ ρ σ λ χ ρ λ χ ρ σ
λρ α β χ λρ α β χσ λρ β α χ λρ β α χσϕ ϕ ξ ϕ ϕ ξ ϕ ϕ ξ ϕ ϕ ξ+ Γ + + Γ  

   = ( ) ;g λ χ λ χ ρ
λρ β α α β χϕ ϕ ϕ ϕ ξ+ . 

 
Appendix C 

 
 In the following computations, which lead up to (5.16), the symbol + (i ↔ k) means 
that the previous terms are to be added once more with the indices i and k switched. 
 

  δ*γik = ik i kg u uδ δ∗ ∗+ = { }; ( )k i i k i kg u u s u u i kσ λ χ χ λ χ
χ λσ λσ σξ ϕ ϕ ϕ ϕ+ + + ↔  
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   = { }; ( )k i k i i kg u u s u u i kσ λ χ λ µ χ λ µ
χ λσ µ λσ λ σξ ϕ ϕ ϕ ϕ ϕ ϕ+ + + ↔  

   = { }; ( )k i k is s u u i kσ λ χ λ µ χ
χ λσ λσ µξ ϕ ϕ ϕ ϕ+ + ↔  

   = { }; ( ) ( )k is u u i kσ λ χ χ χ
χ λσ µ µξ ϕ ϕ δ + + ↔  

   = { }; ( )k i i ks sσ χ λ µ λ µ
χ λσ µξ ϕ ϕ ϕ ϕ+ . 
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