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General-relativistic principles of continuum mechanics

By Hans-Georg Schopf

Translated by D. H. Delphenich

Abstract

Starting from a comparison of general-relativistieldi theory and continuum mechanics, we will
consider, above all, so-called conservative systefigese will be defined by the existence of an elastic
potential and the absence of a heat current. Thie kbasations that pertain to these systems will be
derived from a variational principle. The variatidntloe world lines that is thus implied will be clarified
intuitively. The entropy balance that relates to gaimaechanical continua will be formulated.

8 1. Field theory and continuum mechanics

If we consider a physical field that is described by aefiald quantitiesga (A = 1,
..., N) from a general-relativistic standpoint then we mushmate, not only the/ , but
also the componentp,s 1) of the metric tensor as functions of the spacetio@rdinates.
Thus, we have at our disposal the field equations:

Fo(¢n, 9p) =0,  B=1,...N, (1.1)

along with the Einstein field equations:
R,uv_%g,uvR:_XTyv- (1-2)

The field equations (1.1) are differential equations theolve the functionF®, as
well as the derivatives of the field quantities.

If no other variable quantities appear then one is mgalith matter in a closed
system, as described by thig. If the gravitational field is also produced by this matter
alone then the energy-impulse tensor that appeatsdnrfiust be a function of the form:

T =T (Ya Ypo)- (1.3)

The remaining quantities that appear in (1.2) have thewvergional meaning.

The problem that arises in a general-relativistic figldory then consists of the
simultaneous solution of (1.1) and (1.2). Thus, the fofM,© must be known and the
necessary condition:

T, .v=0 (1.4)

) Small Greek indices run from 1 to 4, while small hathes run from 1 to 3.
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must be satisfied). There are no additional requirements if a Lagran@iaction:

L =L (¢ 9oo) (1.5)

exists, in such a way that one has:

FB = é'l_—ﬁ (1.6)
g

Equation (1.4) is, in fact, satisfied as a consequentk Df as long as one sets:

J-gT=- 253/;9". (1.7)

7

Apparently, the construction @tf" by this process cannot be dubious.

What form does this field-theoretic aspect take in tlheatson where we are
concerned with phenomenological matter; i.e., witinechanical continuum? Here, we
ultimately seek a congruence of timelike world-lines ttegdresents a “droplet” of our
medium. Equivalent to this is the determination of amadized contravariant vector
field u“:

wu,=-1, 79 (1.8)

which is geometrically the tangent field of this congaeeand physically — up to the
factorc — the four-velocity field.
We carry out a coordinate transformation:
' = AXY (1.9)
in such a way that in the coordinate syst&rthe normalized four-velocity has the form:

U= Aoy (1.10)

We equip all of the quantities relative to the coorireystena" with an overbarfl, is
then computed from:
Uﬂ = gaﬁUa: A g4ﬁ .

According to (1.8), one must have:
A=1/\-9,,

) A semi-colon denotes the covariant derivative withpect to the coordinates, while a comma denotes
the ordinary one.
) We attribute a signature of + 2 (+ +¥to the spacetime manifold.
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such that we ultimately have:
a_ O ¢ I

u’= , .
v 04 vV —Ou

Thea" play the role of Lagrangian coordinates and the congeuefiworld-lines will be
described by:

(1.10)

a“ = const. (1.11)

The coordinate systead determines a “reference system” in the following way: We
call a fictitious mass point with constant spatial ctimatesa’ a “reference point” and
call the set of all such reference points that kgdoto the coordinate systeal a
“reference system®). In our case, we speak of a “co-moving reference msyste
Coordinate systema” that arise frona" through:

ak=ak@), a*=a*@ (1.12)

- i.e., through spatial transformations and a change itirtlee coordinate- define the
same reference system. In them, a representatitiredorm (1.10) is likewise valid for
the normalized four-velocity vector.

We denote the inverse transformations to (1.9) by:

xH = ¢ (', &, a°, a"). (1.13)
By holding & fixed, these equations define a parametric representafian selected

world-line of our medium, where&® acts as an arbitrary parameter. With the
abbreviation:

o a¢,u
H= 1.14
¢ P (1.14)
this yieldsu” in thex“-coordinate system as:
u u
W= go=__ 9 (1.15)

0a“ ' o o
_gaﬂ ¢H ¢ﬂ

An analogy between continuum mechanics and field yheomes about when we
possess field equations of the type (1.1)ubor for the functions® (1.9) in which the
Yn were identified with any functions. However, the eaurat that were first presented
for a mechanical continuum are relativistic analoguethefpre-relativistic continuity
equation for mass and the equations of motion; the lgitte a physical expression to the
balance of impulse. The relativistic generalization this combined complex of

*) For this nomenclature, cf., C. Mgller, The TheofyRelativity, Oxford, Clarendon Press (1955), §
88.
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equations likewise includes the balance of impulse and, diretequivalence of energy
and mass, also the balance of energy. If we deaomider external forces then we deal
with statements that are equivalent to eq. (1.4).

One can therefore say that (1.1) and (1.4) will bentdal in the case of the
mechanical continuum theory. A simultaneous computatidimeoworld-line congruence
and the gravitational field with the help of these equatiassumes, however, thas, in
(1.2) is a functional of the form (1.3), in which one kes the aforementioned
identification for theyy .

As a matter of fact, a representation of the ena@rgpulse tensor in the desired form
does not generally exist. On the contrary, we willnex& how one can introduce certain
physically plausible material equations, by whose aid rapyesentation is achievable.
However, these material equations will not relatdtbprimarily. Rather, in order to
characterize the state of motion of the meditifi must be connected with’ by the
introduction of its physical components. The mateeglations then relate to these
physical components.

8 2. Thephysical components of the energy-impulse tensor

The aforementioned connection betwd@éhandu” was first presented by C. Eckart
%) in order to formulate a special relativistic therryioamics of irreversible processes for
simple fluids. This Ansatz was taken up by G. A. Kluiend) /) ®), who generalized
this theory to multi-component fluids. It can, with fusther restrictions, be applied to
the treatment of an arbitrary mechanical medium. Bsams of this Ansatz, the
symmetric tensos,, is defined by:

S/IV = g/ju + U/I UV y (21)
and has the following properties:
s, =0, sig' =g, (2.2)

As for the physical components Bf", we point out the scalav, the four-vectom”, and
the symmetric tensav™, which are defined as follows:

w=T"U, Uy, (2.3)
wi=- Ty, (2.4)
wh= s T (2.5)

There then exists the identity:

C. Eckart, Phys. Re®8, 919 (1940).

G. A. Kluitenberg, S. R. de Groot, and P. Mazur,srta19, 689 (1953).
G. A. Kluitenberg, S. R. de Groot, and P. Mazur,srta19, 1079 (1953).
G. A. Kluitenberg and S. R. de Groot, Phys26a199 (1954).

0 N o O
N N N
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T=wu u+w u +w ' +w". (2.6)

We can shed light on the physical interpretation ofehisation when we consider it in a
local inertial rest system that we indicate by theex0. In it, one has:

gO,uv:/Zuv, Uél = 54{1, UO,u:_ 5:,
Sopv = S'.fﬂ= s = Diag(1 11 0),
and therefore:
T = Wék WS 2.7
il 2.7)

Whereasw naturally represents the energy density in the locatiaheest system, one
will interpret —w” as the stress tensor, and finally:

q“=cw
as the heat current, since no other macroscopic er@nggnt can exist in any rest
system.
Since:

w?uz=0, wu,=0, (2.8)

and due to (1.8), the 13 quantities includedrti are algebraically independent. One
thus needs nine more equations, in addition to (1.4). Tihmsbeuwill increase when it
becomes necessary to introduce further physical quemntitithe formulation of relations
of this type— for example, temperature in the discussionw/bf

Since the inertial rest system has only a local nmganii is appropriate to base the
further considerations on the co-moving reference systari, one has:

So5= Qap* U0, = Qap— —2 (2.9)
44
hence:
Poa = 0. (2.10)
Furthermore:
Sk:gik_M: Wk (2.11)

44
is the three-dimensional tensor, which, according to:

dI? = y dd dd,
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defines the spatial distandebetween neighboring reference poifjts One has:
Wk gik :é‘ij (2.12)

The form (2.11) ofy is reproduced naturally under the transformations (1.12). In
general, the property of a covariant tensor having nomponents in a coordinate
systemea" is conserved under the transformations (1.12) for whietsgiatial components
transform according to the rules of three-dimensiteradors. The latter statement is also
true for the spatial components of a contravariantotenshether or not the former
property is valid.

We further denote:

=8 +0,0" = of - Jac%s (2.13)
Qs
hence:
s’=0, §= 9 . (2.14)
Forw* andw this yields:
wk=T*, (2.15)
W'=-TWT,. (2.16)

The relation (2.15) that is true in our reference systgnees with the same one in the
local inertial rest system. One further deduces that ¢brresponding covariant

components are obtained by manipulating the indices yging

V_vik = yir yksv_vrs’ (217)
W= YW (2.18)
Finally, one can write:
0g* 09” _

w=sglg W, 2.19

X P aar aas ( )

_a 09" _

W= SEw (2.20)

in a coordinate systerf that is linked taa" by (1.13).

All of these relations make it easier for us to seenr and W* the independent
physical quantities in which to formulate the material &gua.

%) See loc. cit?), § 89 and L. D. Landau and E. M. Lifschitz. Feldthe@@erman translation) Berlin
(1963), § 84.
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§ 3. Conservative systems

The mechanical continua for which the analogy wididfitheory mentioned in the
first paragraph is valid may be called conservative systefissa first requirement that
we place on them, we assume that no heat curreds nede considered; i.av" = 0.

Furthermore, the stresses shall be of an “elastature. Thus, we require an
explanation of the concept of “deformation.” In theneral theory of relativity it is
connected with certain difficulties in such a way that.JSynge®®) has conceived of a
theory of elasticity that is based, not on the de&tion itself, but on its velocity of
variation. However, C. B. Raynéf) has recently developed a theory in which the
deformation is defined by comparing the actual metric wgle@nd one. Relative to it,
the true congruence of world lines shall describe a ngpdion in the sense of Born and
Rosemn?).

Whereas in the pre-relativistic theory of elasticine@assumes different world-lines
for the deformed and rigid comparison bodies, nonetfietee same (Euclidian) metric
will be used, while in the relativistic theory one muse the same world lines, but
different metrics. It seems to me that the lapeocedure can also be understood
intuitively when one introduces simply a “body-fixediardinate system in place of the
“space-fixed” one. Instead of saying that from the standpmdithe former system the
points of the body move relative to each other und#gfarmation (i.e., their coordinate
distances change), one can say that from the standgdim latter system these points
can be regarded as at rest relative to each othertéodvreoordinate distance), whereas
the metric changes temporally.

In order to mathematically formulate the thoughtsRa&yner, one introduces a

symmetric tensosE which shall have the coordinates:

o _ (W |0
S“”_{O 0} (3.1)

v !

in the co-moving reference system, such that in genemhas:
SEV u=0. (3.2)

The second metric will now be defined by:

O = Sy~ U Uy . (3.3)
One then has:

U, = g,U =uy (3.4)
and:

Ups = Qi - (3.5)

! Synge, Math Z72, 82 (1959).

0
) J. L.
1) C. B. Rayner, Proc. Roy. Soc. Londa#2, 44 (1963).
2) N. Rosen, Phys. Re¥1, 54 (1947).

[

1
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The demand that the motion describedWyshall be “rigid” with respect tngV was

posed by N. Rosen as:
Uy Uy U+ Uy Uy U + Uy + Uy, = 0, (3.6)

in which we have denoted the covariant derivative b&maeafgiv with a “[|”.

The assumption that we encountered here, when it Ieeddp an examination that
was carried out by E. T. Newman and A. I. Jdfisallows one to replace (3.6) with the
equivalent, and quite intuitive, condition:

W g (3.7)

oa*

From now on, we shall define the “deformation terisorthe sense of Rayner, as
follows:

8= W~ Vic- (3.8)

Finally, we require the existence of an elastic potedtidbr our conservative system
since it allows one to obtain the stress@g‘ by differentiating it byg, . In this case, we
denote the four-dimensional stress tensor by:

- ngwst.: Sﬂﬂ (3.9)

in order to characterize it in general cases, iniqdatr. In light of the classical analogy,
however, we single out the following Ansatz:

w = po, (3.10)

§*:2p99. (3.11)

08}

pis an analogue of the pre-relativistic mass density, &edefore ® specifies the
potential energy. Here, it shall depend, apart frongpnon material quantities that are

defined in a co-moving system. We express this by an égdipendence af' on®.

Now, there is no place in the theory of relativioy  mass density along with an
energy densityv. Rather, one must introduce a new definition. A paldrly closely
related path seem to us to be the following one: Véet stith the pre-relativistic
connection between the mass dengitgnd specific volume. We now define the latter
as a consequence of following through with the comparisetween the actual and
associated rigid motion, being the ratio of the volumben measured in the actual
metric y , to the associated one, which is then an infinitesan@ount of matter that a
world line takes on betweaf anda® + da. If yandy denote the determinants @

and y;! then the mathematical formulation of this definitie@ads:

13) E. T. Newman and A. I. Janis, Phys. REL, 1610 (1959).
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1 v ﬂ (3.12)

BN
V=9 = =0y (3.13)

for the determinang of g, then one recognizes thdu_/ and \/F behave like spatial
tensor densities under (1.12):

If one imagines that one h&$:

oa

= (3.14)

spatial

Jy =

Furthermore, one has the following analogue of the gagtiristic conservation law for
mass, namely, the equation of continuity:

(U =0. (3.15)
In the co-moving system it is:

o, == ow) =) <o

The definition (3.12) has the corollary thatindv do not have the well-known physical
dimensions. If one wishes to remedy this withowtng up the equation of continuity

(3.15) then one must obviously replagf@ with a functionf(a’, &, a*). The formula:

1 Jy (3.12a)

—=y=—"_
0 f(a',a* a)

is identical with the corresponding expressiorhim theories of Eckart and Kluitenberg.
We remark that we arrive at the special caseeideal fluid when we assume:

Dy = D(V). (3.16)
With:
9% __ p (3.17)
ov
one obtains: _
=~ pg" (3.18)

According to (2.19), it follows by a simple comptiva:

WY =p ¢, (3.19)

14) See, loc. cit!) Appendix 8.
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Henceforth, we write the energy-impulse tensor ofamnservative system as:
T?=wu -5, (3.20)
Due to the requirement off” that it be divergence-free, along with (2.9), one thas
T?u,=-wul, -w, i + Sy =0. (3.21)

On the other hand, if one computeg v’ from (3.10), while taking (3.11) into account,
then one finds (cf., Appendix A):

ws U’ = —wuf + S¥ Lg,.ﬂ+,0_d‘(a—q2j . (3.22)
Y Y aa expl.
One must then have:
(G—QZJ =0. (3.23)
aa expl.

The material quantities that enter irbomust therefore be “constant” with respect to the
co-moving system, a condition that is very intuitive.

If it is fulfilled then the relation (3.21) is strigtialid; i.e., independently of whether
(1.4) is true. In order to understand this, one imagimasin the previous situation only
the gravitational field and the world-line congruence assumed to be unknown.
However, the determination of the latter requireselsgacetime functions.

The strong specialization that the conservative syst@re based upon now leads, in
fact, to the aforementioned analogy with field theoamely, we can substitute the
expressions (3.10), (3.11) in (3.20), while taking (3.9) intmant. If we then write:

_0¢” 0¢°

“" da o9& So0

introduce the expression (1.15) faf everywhere, and finally express tbg” / 9a’ in
terms of 0&”/ a¢", then one has:

Talg = Taﬁ(gpa, a)(),

from which the analogy with field is established.

Finally, we mention that the theory that was cove@ihere can be regarded as, in a
certain sense, a general-relativistic analogue of teahat G. HerglotZ) formulated for
the special-relativistic theory of deformable media.place of the “rest deformations” of
Herglotz, we deal with the deformations (3.8) thatdakned in the co-moving system.

15) G. Herglotz, Ann. PhysiR6, 491 (1911).
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8 4. The balance of entropy

One arrives at the balance of entropy most simplynwiree, in the spirit of the
ordinary thermodynamics of irreversible processesfoon-conservative system, retains
the relations (3.10) and (3.11), althoughis now regarded as the specific internal
energy. It will depend on, not only the , but also the specific entropyin the co-
moving system, as well as systems composed of mattdr sditably defined

concentration gradients®. (Indices in parentheses denote the type of matteach.)
We thus write:

O =d(5,, 7D, ..., .. ), (4.1)

The differentiations in (3.11) are thus now to be undedsesocarried out for constant
andc®. The temperatur® and the chemical potentigf” are then defined by:
LA Ll
on ac™

(4.2)

As in the aforementioned special-relativistic theooksreversible thermodynamics (loc.
cit. °®)), we also work only with a scalar temperature quantitye append an argument
of M. Strauss®) that addresses the transformation of temperature.wiske thec® will
be treated as scalar quantities.

If one now recalls the computations that were carmedin Appendix A then one

obtains:
W’ +wif s
=SPUaptpTnplf+ Y p¥Mplf
(k)
=SPUgpt p T+ pfo M0 (4.3)

()
dg _
(Ge=n)

Thus, we assume that the remarks of the previous pategreorrespond to the
a455umption thab cannot depend upon other material quantities begbraf, a®, but not
a.

On the other hand, we consider the unabridged expresgiéh for T%. By
assumption, we also bring an external electromagfietet into consideration, although
our medium shall possess no polarization and magnetizatVith the electromagnetic
field strength tensdf? and the four-current densit§yone then has:

6) M. Strauss, Z. Naturforsch?7a, 827 (1962). The argument we mentioned may be found on pp. 845
and relates to the fact that whereas the transfoomé&irmulas for spatial and temporal distances in special
relativity follow from the fact that these quantitie® gorojections of four-vectors there, nevertheless, an
analogous conclusion cannot be established for temperature
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-I—aﬂ;ﬂ: Fa'gjﬁ,
and:
Taﬂﬂ UQ - UQ ﬂjﬂ , (44)
=-wpl-wi g=wWug s ¥ -wWg —wWPug g

We thus have (2.8), and therefore consider:
(\A/”u”+\l\f}u");/;ua:—\/\f’;/; —W"ua,/;u”.

The combination of (4.3) and (4.4) then yields:

d/] (K) (k)
— —
Yo, { (Ek) y (pC

— ngﬂyL!,+(S’ﬂ+ Wﬂ) yﬂ}

Du, .
=u U |.
( ds  “* j

This balance of entropy can likewise be brought into then derived by von
Kluitenberg, (loc. cit®) eq. (5.1) and loc. cf) eq. (6.12), when one, in the spirit of his
work, introduces the “mass current vecto®” for thek™ material, as well as the vector
1Y of the relative mass current for this material, which linked by way of:

mPv=1®0v 4 o y” (4.6)
Naturally, these equations do not succeed in defining thegnantities. They show that
the form of the balance of entropy that was derived dussdepend upon precise

definitions when only (4.6) is true, as well as showirg th the presence of a chemical
reaction with the stoichiometric coefficientt the balance equation:

m(k) V;ﬂ = |/k) Q 4.7)
is fulfilled, in whichQ is an analogue of the rate of reaction. If one thates:

ju= Ze"‘) MV)V (4.8)
(k)
and:

z,u"‘)v“‘) =-A (4.9)
(k)
(A = Affinity), (4.5) then transforms into:

pd_/7: {W’H Z’u(k) (k)ﬂ +WH d Ze(k) |(k)ﬂ|: uy+(S7/ﬂ+ V@G) T (}

(k) (k)



General-relativistic principles of continuum mechanics 13

_ ﬁ_zﬂ(k)l(k)ﬂ +V\,ﬂ(_Tv_/2’_1 Duﬂj+Z (006 | 0 Fﬂyuy_(ﬂj
T T ), T Tds) ® T T

1. A
—?(Sﬂ+V\7ﬂ) Us +? o (4.10)

The first term is the divergence of the energy currevitjle the remaining ones
collectively represent the entropy production.
In a conservative system{ = F,z= S% + w” = 0), one has, from (4.5):

797, uc® F=0  (conservative system). (4.11)
D) ’

The change in the entropy then results from diffusidone. Whether or not the
constancy of entropy and all concentrations in tlageds to be physically expected, we
would nonetheless like to retain the general expressiaf)(4.

85. Variation of theworld lines

Since we presented a far-reaching analogy with fieldrthat the end of the third
paragraph, it is to be expected that a variational prie@jdo exists. Thus, the variation
of the action integral relative @),, shall yield the Einstein egs. (1.2) and the variation of
the world-lines shall yield the equations of motion; viz.our case (1.4). The Lagrange
function shall, corresponding to the general schema, ndepg@on thea' and their
derivatives with respect to thé, as well as om,, . A procedure for the variation of
world lines was developed by A. H. Tatfp and refined by V. Fock). This procedure
relates to ideal fluids and seems to overlook theecloonnection with the variational
procedure that is employed in field theories. We Vidirefore see that this is not the
case, but that one is dealing with a straightforward ifisation of the calculations.
Thus, we will likewise have the general case of cordame systems in mind.

As an intuitive conception of the variational procedweethink of the world-lines of
our medium as infinitesimally distorted rubber bandsyimch we retain the naming of
material world-point of the medium by means of the domtesa”. Therefore, this entire
coordinate system will be distorted, such that, as betbe world-lines of a droplet will
be described bg* = const.a* = variable. A material world-point of the mediumttiaas
at the pointx” in the x“-coordinate system before the distortion will then beama
infinitesimally neighboring point with the coordinatés+ &. Moreover, the form of the
transformations (1.13), which lead from the co-moving syste the x“-coordinate
system, will change. One will then have:

) A. H. Taub, Phys. Re®4, 1468 (1954).
18) V. Fock, Theorie von Raum, Zeit, und Gravitati@e(man translation), Berlin (1960) §§ 47, 48.
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X+ &= g(a), (5.1)
&'= g (@) - ¢,

In order to investigate how these physical propertiethefmedium behave under
these distortions of the world lines, we think of onehspmperty as represented by a
function of the fundamental field quantities, namedys , &', and their derivatives.
Therefore, the latter may be expressed by:

_9¢"
9, = P (5.2)

We thus write for the propery
X=4(9,,(X), 8, a") (5.3)
=x(x*,¢;.a").

Now, if the material poin&" carries the property (5.3) before the distortion thier the
distortion of the world-lines, one will have:

X= x(x* +&*,¢;,a") (5.4)
— U VoAX a_/Y U a/Y Vo AV
X852 ){ax,,lxpl_f *ogr @ 0.
Thus, according to (5.1):
B~ 0= U= = E B (5.5)
a
= ¥y—-x= a_)( H a_X ogv
IX=X-X (Wjexp'_f *od #7¢ , (5.6)

represents the (infinitesimal) difference betweenctienged quality at the poirt + &
and the unchanged quality at the poihit However, one finds the difference between the
changed quality and the original one by means of thati@mniof the world-lines, both of
them at one and the same world-poihto be:

0
=0 x- (—{)j &, (5.7)
ax total
In this:
v X
(a—)(j = (a)(j + Ox 99, + oy oa . (5.8)
axp total axp expl. a¢/‘v axp aa)( a)(]

The operatord then acts on thep; and the explicite’. If one thinks of the former as

being further expressed in terms of #a& / 9x* then one can also say th®acts directly
upon the desired functions (and their derivatives) thatribesthe congruence of world-
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lines. The “variation of the world-lines” thus has pipally the same character as the
variational procedure that is used in field theory.
We now compute some variations that will be used.lafere has:

3das= 3,019, (5.9)
=0, (B85 +8200)E°
(cf., Appendix B)
in particular, one then has:

O0u = 29,,¢" ¢* &, (5.10)
and, as a result:
out= o"(1/-g,,) (5.11)

=U'u,uée, + Ul .
It follows that:

o= JD(¢°/’ TR (5.12)
=0 u, ur &y +UX‘?6;)(
and:
=0 -F,& (5.13)

=PU Uy v &y - &

One sees thab U, as the difference between two vectors at diffepmints, does not
represent a vector, bdi’, as the difference of two vectors at the sametpisim vector.
Furthermore, one easily sees that:

ot = 0(g,u’) (5.14)
= (u's, @) +ugi)&,,
from which it then follows that:
J(@T)= T'g) (U's, + y §)E°, . (5.15)
With the help of (5.9) and (5.14), this yields:
I = 0(G, +4T) (5.16)

= 5,5 (dier +08') &,
(cf., Appendix C).
If we contract this expression wifi* and we consider that:

g“¢’ g/ =g - terms proportional t¢* or ¢’
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then we obtain, sincs,, s [W‘ or ¢”J: 0:

05, = 25,5 067, = 29€°, 5.17)

(cf., Appendix C).
8 6. Thevariational principlefor conservative systems

We apply the variation that was described in the prepausgraph in order to derive
the equations of motion (1.4) for conservative systiears a variational principle. One

5[J-gLd*x=[{-gaLd'x=0, (6.1)

in which & shall vanish on the boundary surface of an arbitrary @doafdntegration.

has:

Next, we choose:

F(@) grm
L=w=p®= P(E,a). (6.2)
\/J_/ k
One then has:
Ad=w=ow-w,&, (6.3)
OW=p D+ dJp, (6.4)
0P
pI®=p—3aY,
08,
1 Qi g
=55 s, g (eior+otel) e, (6.5)
== Vvt)j-(gg;)( 1
in which we have taken (3.11), (5.16), (2.19), and (3.9) intoideration. In addition,
we compute, while considering (5.17):
ofa) o
® 5,0 == ( 3)6_1/ ik
o) %%
o f(a) _
LA 3) yg“ o'y, (6.6)
(2]
= POSIE, =-weE,.
If we put all of these advances together then whattseisu
(6.7)

0=- jﬁ{(v\g +wg)é +(oF V\);XE”} d >,
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or, after partial integration:
O:IH{MHN(g—Jj)};XE”d‘). 6.8)
We thus obtain, in fact, the equations of motion famservative systems:
(wj,( +Wwu, d():)(: T, =0,

Naturally, ideal fluids are included as a special ca$8.i6) through (3.19).
For the sake of heuristics, we assume ¢hatis a dependency updju*, in addition
to its dependency upog,. Then, from (5.15), the right-hand side of (6.5) acquares

supplementary term:

LI .
@) pi (Wso+u §)¢°,

If we can set the heat current equal to:

G(Ukﬁ4)

then, from (2.20), this supplementary term assutme$orm:

= (U Wy + us W) &%y,

and we arrive at the final result that the teng6)(is divergence-free. Thus, we can
ascribe no true physical sense to the form of s burrent that we chose here.

Instead of it, we seek to extend the variatiomadgiple in such a way that the relation
(4.11) that is demanded of conservative systemsegoreserved. Next, we consider a
single-species system such that one demands atly th

n=n@, a, ad).

This requirement is implicit in the choice of thadrangian function (6.2).
Henceforth, we replace the quant®yin (6.2), which corresponds to the specific
internal energy, with:
WYeEe, T)=d-Tn. (6.9)

This function is the analogue of the specific intdifree energy. One then has:
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w_1g
0§ 20
oV
——=Yr==n.
ot T

18

(6.10)

(6.11)

From the research of Taub, however, we do not vdmectly with T, but with a scalar

guantitya, which is connected with by:

T=a,U.
The action integral is now:

| = jﬁpw(ék,a#u”) d .

We next vary it relative tar for fixed world-lines and obtain:

0=2Jl :jﬁpr wo,a, d“x:—jﬁ(g% u)., 3, a dx

hence:
- (WU y=pu n =0,
as we desired.

In order to perform the variation of the worldds) we remark that:

JpW)=3(p¥W) - (W), s &
=-pWsi& —w & +pW 3T (pW), &7

Therefore, upon consideration of (5.12), one has:

aL|_:5(0',/1'J”)
S0 W E+TU W +a, &,y
=0 W E+TU W E y +a, W&,
Thus, one has:

0=4d
= [J-o{¢”, [w +pWs - pW (Ty d +a, )]

+$° [(d{pW)X —,olPTawuq} d*x

:J‘Hfg{[wﬁ_ ua' u)(IO(LIJ_LIJT T)] +[10LPTa;)(J Ui(_(IOLIJTQ',J lj))(]} d 2

X

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

However, from (6.15), the latter square brackeistaes, and one h&ig — W+ T = ®, such

that we are again led back to (6.8).

For the case of multi-species systems, we wokilth think of the relation (4.11) as
being fulfilled in such a way that depends upon and thec® by way ofN independent
functionsf', f%, ..., ", which are constant along the world-lines. Tture now has:



General-relativistic principles of continuum mechanics 19

O =d(g,, -, f5 - V)

K=, Y, ..., c¥, ..., c") (6.19)
Y A _ & oot 0) _
0= Eu‘l_f utf'= (k)Z:O 9c c u =)
One then has, in fact:
d/7 (n) (n) 10
T—+ ey = — ¢y 6.20
ds (éllu . (;0 ack ( )

:ZN: 0P (Zn): of ¥ W =o.
= of (k)=0 ock

We now write:

= A« (6.21)
N K

WE, A) =W - D AF",
K=1

such that henceforth, in addition to (6.10), we have:

0D
i - <. (6.22)

In addition, by analogy with (6.12), we introduce the acglantitiesak by way of:

Ak = ag, u U (6.23)
Now, let our action integral be:

J= -9 pW(E,, anult, ..., an u ) d'x, (6.24)

so variation relative to thex delivers the relations (6.19). One obtains the restiliseo
variation of world-lines when one replac#s J T with Z(GW/MK)FAK in (6.16) and
K

then in (6.18) one replacsT with Y (0W/0A) A , Wra. xo with > (0W/0A)a,
K K

K;xo 1
andW¥ra: , with Z(GW/MK)O’K;X . We then obtain the same result as in the preiyou
K

treated special case.
Finally, in order to arrive at the gravitationajuations (1.2), we must consider the

variation ofJ relative tog,, for fixed ax and unvaried world-lines; i.e., for fixegf' . To
that end, we notice:

1
I,\-9 = EH 9" Jg,,, (6.25)
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a u":% W B (6.26)

From a simple computation, it then follows that:

% W = ¢ia¢lfa—gsaﬂ
=4/ 9/s/'s,0q, (6.27)
By way of similar consequences to the ones that wesented in (5.17) and (6.6), one

then obtains:
1 v
ap=-= " G- (6.28)

Furthermore, one has:

oV oV
Y=—99y +y —a, ou"
% aék gy|k ;('MK K,u>g

_i_ik a 4B _E
_2,08 b9/ 4 $9 g, ZZK: fA b o g (6.29)

- %(Wﬂ ey fK)IKjégW.
K

P
Putting everything together yields:
= —%jdgw\/—_g{plv(é‘”— g )+p d d> FA + \/«r} 4 (6.30)
K
1 v
= _EjangTg(u"ur\m ) d .

Apparently, eq. (1.7) is thus fulfilled. Since,eonas:

5,[V-gRd %= [39,,J-g(R" -~ ¢" B d .

in which R is the Riemannian curvature scalar, the totabadmntegral, whose variation
relative to ak, gu, and the world-lines gives all of the basic equeiof the theory,
reads:

1
Jootal = jﬁ(pw +ERJ d x. (6.31)
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Appendix A
One has:
Wl =0 psuf+p®d s1f.
From (3.15):
Dpsf=—-wilib.
Furthermore:

9D dy, (GCD j -
= + u.
p(aék aa4 a a4 expl.

In the following summation, vanishing — canceling, resprmsewill be added. One can
conclude:

oo

pa_ék 1/ik,4 U4 = §ik_§(,4 _Lf

N =

189 (3, 30,5 0)

- % S (85, U+75, U, +7570,)
:%50"8(Ucr,pUpuﬂ‘F Ug p U Ug+ Ug s+ Ug o)
=SP Uy 5.

The combination of all of these results delivers (3.22).

Appendix B
The formula (5.9) can be derived in the following way:
3G, = 0UP1019,,)= 82819,,,E° + 9, 80855" , + 9, 8587¢7
a ag 1 a

= 000058 o+ 005058 5 + (0085 + 8505 )(Gro + o~ G )€
= g)p¢;¢§gpy)( + g)p¢;¢§r§ggg + gﬂp¢2¢;{gpy)( + gﬁp¢2¢;{r§g§(0
=0, (0300 +0003) ¢,

Appendix C

In the following computations, which lead up to (5.16),hmbol + { - k) means
that the previous terms are to be added once more withdioesi andk switched.

She =079, +5UT=E" {4970, +TU W S,8) + U yp +(ic B}
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BB G BB S, B8y Y+ (i B
“ A BB + 5,808y d+ (i B
A

{

g

A S Bi87 (0 +u, u) +(i o K
 As. S (Bl0 + 80}

'3
'3
'3
'3

Greifswald, Institut fur Theoretische Physik derivérsitat.

Received for editing on 9 April, 1963.

22



