“Ueber die in der Wellengleichung verwendeten hyperkompl&eahlen,” Proc. Kon. Akad. Wet. Amst.
32 (1929), 105-108.

On the hyper complex number sthat are employed
In the wave equation
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Translated by D. H. Delphenich

In his paper “A symmetrical treatment of the wave equa(’), A. S. EDDINGTON
showed that the well-known asymmetry in the DIRAguations can be extended when
one starts with the theory of matrices. Whether mhetihod, which has, in the meantime,

led to the mathematical establishment of the naturataatic/ 27*(?), must probably
be acknowledged to be a meaningful improvementetin@tess, it still lacks a secure
foundation, since it is constructed upon certamaskable imaginary “rotations” that are
introduced from the outset that serve only to mtevihe operatorg;, ..., Es with their
properties, but are not used again.

Now, it shall be shown in what follows that theammary rotations can be
acknowledged to be the entire foundation, as losigrmre takes one step further and
begins with the theory of complex number systermi$iat will show that the smallest
number system that can come under question as #flel “primary” system of sixteen
units, and that will imply the properties of theeogtorskE, including the possibility of
their matrix representation from the known progartof that system.

1. — LetE;, By, Es, E4 be four higher complex numbers with the rulesal€wlation:

- E =1,

EE_ } Lj=1,..4 (1)
EE =-EE,

which are subject to thassociative law, in addition. It will then follow that the>deen
numbers 1E:;, ....En =B B, ....BEl;s=E1BE Es, ..., Elpsu=E;1 E; B3 E4 define a
closed, associative system. It is the fourth systethe sequence of so-called “primary
systems” {) — viz., systems that contain no invariant sulesyst— and we would like to

) Proc. Roy. Soc. LondoA 121 (1928), 524-542.

()
() “The charge of the electron,” Proc. Roy. Soc. Londdl?1 (1929), 358-369.
() Also called the systems of “sedenions” or “quadriqueéoes.”
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denote to them by, accordingly. The real form of the rules of cadtidn that emerges
from (1) (i.e., the form with real coefficients) Wikad back to CLIFFORD.

A second real form, which can nonetheless be derived tine first one by means of
complex transformations, is formed from four-rowed ma# by the product rules (more
precisely: the mixed second-degree quantities in four dimes)sio

ZREJQJ_[R: RY, i, k=1, ..., 4. (2)

It will then follow from the associative law thalet sixteen numberk can be
regarded as four-rowed matrices.

A third real form, which is likewise coupled to teeeond one in a complex way, but
with thefirst one in a real way, will arise when one remarks thak. likewise behaves
anticommutatively in regard tB; , E;>, Es, andE,, while Ej234 E1234= 1. If one now
writes Ej234 = Es then one will have:

55=1 } ij=1,..,5, (3)

E E, =-EE,

which will imply the rules of calculation for thexseen units 1E;, ...,Ein=E E;, ...

Those rules likewise lead back to CLIFFORD. The réatale relations between
four-dimensional and five-dimensional invariance find thegsis in this self-extending
property of the four hypercomplex numbéis, E,, Es, andEs. A system of five
numbersE;, ..., Es, that are subject to the rules (3) shall be calledrthmgonal system.
Obviously, there is no orthogonal system in the sydtrthat contains more than five
numbers.

A fourth real form follows from the property of thessgmU, that it is the product of
two systems of quaternions. If thel, A,, A3, on the one hand, and the4, (&, 15, On
the other, are systems of quaternions with the ruleslo@ilation:

A =-1, My =-1,
/]1/]2:_/]2/]1:/]3’ M H o=~ 1= (4)
cycl. cycl.

then LA, 14, A= Ay 1,) =1, 2, 3 will define a systetd, . It is easy to see that an
orthogonal system can be defined perhaps as follows:

Ei=Mts, E=Aw, EBE=Awm, E=-im, E=-if. (5)

Conversely, for any orthogonal system, one can &hbwes systemd (u, resp.) such
that they satisfy'j the equations (5):

() One will get Dirac’'scandpwhen one setsz =i A, g =i 44 .
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H =i E4’ H, =i E51 lu3:i E45’ } (6)

/]1 = _E23’ /]2 = _Esr /]3: _Elz

2. — The matrices that correspondHq ..., Es are roots of the identity matrix. As a
result, they have only linear elementary divisors] aach of them can be put into
diagonal form with the help of suitable coordinate $farmations such that either +-,
1,+1,-1or+1+1,-1,-1 wil appear in the diagonal. However, any of the five
numbersE can be written as the difference of a product aneasrse, e.g.:

Ei1=3(E1E12- E2Ey), (7)

from which, the known theorem that the trace is zalbemerge. Hence, only matrices
with the elementary divisorsi 1), A — 1), A + 1), A + 1) will remain. It will follow
from the theory of elementary divisors that all nai>euantities of second degree can be
converted into each other by linear transformationd that will guarantee that when one
has any number whose matrix possesses the elementsorsi(d — 1), 4 — 1), (A + 1),
(A + 1), one can start with an orthogonal system aditst number, and one can always
define an orthogonal system that contains that number.

Similar results can be derived for the numbéendy . The elementary divisors of
the matrices of the numbers that belong to that topleumbers areA(—i), (1 —1), (1 +
i), A +1), and it will emerge from this that when one has attrary number whose
matrix possesses those elementary divisors, onetadnngth a triple of numbers as the
first number, and one can always define a triple thatases that number and a second
triple that is associated with it in such a way thatrules of calculation (4) are valid.

3. — If one poses the problem of finding how many orthogegatems exist that
containEs then one should first remark thef, ..., E,, Es; E; =i EsF,j=1, ..., 4
define such a system. That result goes back to EDDDIGThowever, for him, those
two systems are the only ones possible (up to a chargjgn)f which is connected with
the fact that his “perpendicular sets” of five numbare defined in terms of the
imaginary rotations that were mentioned to begin wathd do not therefore overlap
precisely with our orthogonal systems. One easilkaes that the general form of the
desired system (up to a change of sign) will read:

QEi+ ... +BE, .., aE+ .. +BE, & +B°=1. (8)

If we ignore the change of sign then there wilkdereal systems that contdiia , and
they will be pair-wise associated with each other (\vz with — 5, ).

Each of those systems - e.d, ..., Es — is invariant under orthogonal
transformations of the five operators. One multipdidsmear equation in the — e.qg.:
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[ZtiEijw:o, i=1,...,5, (9)

which exhibits five-dimensional invariance in that setseesEs then that will yield the
equation:

[ZtE +tj i=1,..,0, (10)

which is equivalent to (9) and possesses four-dimensionaliance. This important
result of EDDINGTON is then independent of his definitafrthe “perpendicular sets,”
which was based upon the imaginary rotations, and is purelgnaequence of the
properties of the number systém.

Any homogeneous form in thE;, ..., Es can be written as an inhomogeneous
quadratic form ing; , ..., E, ():

Zt”E,E = D tREE +i) (ty —te)El a5, . (11)
a,b a

4. — In conclusion, we shall discuss the questiomwbith numbers can assume the
form ztiE‘ ,1 =1, ..., 5, to begin with. It follows from the pisility of orthogonal

transformations of th& that such a number will differ from a number whasatrix
possesses the elementary divisors-(1), @ — 1), A + 1), A + 1) by only an ordinary
numerical factor. The desired numbers are theroties whose matrices possess linear
elementary divisors and a characteristic equatitim two doubly-counted opposite roots.

() 1 must thank Herrn D. van Dantzig for this remark.



