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§ 1. – Introduction. 
 

 The union of Dirac ’s theory of the electron with the general theory of relativity has 
already been attacked repeatedly by Wigner (1), Tetrode (2), Fock (3), Weyl (4), Zaycoff 
(5), Poldolsky (6).  Most authors introduce an orthogonal axis-cross at each world-point, 
along with Dirac matrices that are numerically-specialized relative to it.  With that 
process, it is a bit hard to see whether Einstein’s notion of teleparallelism, which will be 
referred to in a partially-direct way, actually plays a role or if things are independent of it.  
Furthermore, it will then be necessary to recast the Riemannian concepts in the less-
familiar and decidedly more cumbersome form of “bein components.”  It seems desirable 
to me to avoid all of that by using only the generalized commutation relations [cf., infra, 
equation (2)], like Tetrode (7).  It shows that one will be led to the important operators 
Γk, whose traces give the four-potential and which Fock introduced as “components of 
the parallel translation of a spinor” in an exceptionally simple and direct way, and 
likewise directly to the important system of equations [cf., infra, (8)] that Fock arrived at 
by way of the detour of bein components.  By a restriction to the allowable reference 
systems (cf., infra, § 4) that is completely analogous to the one in the usual special theory 
of relativity, one will then infer the Hermiticities that are desirable for interpretations, as 
well as a correspondence between tensor operators and local c-tensors that is likewise 
completely analogous to the one that von Neumann (8) presented in the special theory 
[cf., equation (57) below].  It seems to me that a fundamental advantage of this is that all 
of the machinery can be constructed almost completely upon pure operator calculus, 
without referring to the ψ-function.  Hopefully, one will not be scared away from the 
exact foundation of that machinery by its scope, for which the author’s broad notation is 
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partially responsible.  Once those preliminaries have been completed, the implementation 
and the comprehension of the theory might then prove to be simple. – I would like to 
acknowledge my great debt to the work of my predecessors once and for all, but ask to be 
allowed to derive everything anew on methodological grounds that have still not been 
found by anyone else. 
 
 

§ 2. – Construction of the metric from matrix fields. 
 

 We shall call the world-variables: 
 

x0 = ict,      x1 = x,      x2 = y,      x3 = z. 
 
The first is always pure-imaginary, while the other three are real.  Dirac ’s basic idea was 
to regard the Euclidian wave operator: 
 

2 2 2 2

2 2 2 2
0 1 2 3x x x x

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 

as the square of a linear operator: 
 

2
o o o o

0 1 2 3
0 1 2 3x x x x

γ γ γ γ
 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

, 

 

in which the 
o

kγ  are 4×4 matrices (1) that must satisfy: 

 
o o o o

i k k iγ γ γ γ+  = 2δik ;     (1) 

 
i.e., that will be equal to the zero matrix or twice the identity matrix according to whether 

i ≠ k or i = k, resp.  One knows that the 
o

kγ  are determined by the requirement (1) 

precisely, up to a so-called similarity transformation: 
 

o

kγ ′ = 
o

1
kS Sγ− , 

 
with an arbitrary, non-singular 4×4 transformation matrix S.  That freedom in the choice 

of the 
o

kγ  is obvious, and one knows, as one says, that the freedom is exhausted in that 

way. 
 Since one can also start from the square of the line element: 
 

2 2 2 2
0 1 2 3dx dx dx dx+ + + , 

                                                
 (1) The number of rows will not figure at all in what follows.  



3 Schrödinger – The Dirac electron in a gravitational field I. 

in place of the wave operator, that suggests that one can regard the requirements (1) in 

such a way that the matrices 
o

kγ , along with the other givens that are involved with the 

description of the electron also have the purpose of describing the world-metric, which 
was tentatively assumed to be Euclidian.  Should that not be the case, but rather: 
 

ds2 = gµν dxµ dxν , 
 
then one would have to replace (1) with (Tetrode): 
 

γi γk + γk γi = 2 gik .     (2) 
 
The γk are functions of space and time; i.e., they are 4×4 matrices whose elements are 
functions of the xi . 
 Equations (2) certainly have solutions for the γk at every point P when one thinks of 
the gik as being given in any way (but naturally, in such a way that they correspond to a 
non-singular metric).  The freedom in the γk that still exists for a given gik is precisely the 

same as the freedom in the 
o

kγ  above, namely: Under a transformation by an arbitrary 

non-singular matrix S.  One sees the validity of that statement when one argues along the 
following line: 
 
 1. Above all, equations (2) can always be solved by four suitably-chosen linear 

aggregates of an arbitrary Dirac basis system 
o

kγ − That Ansatz will lead to requirements 

on the coefficients that can possibly be fulfilled. 
 
 2. Conversely: If one has a system of γk , about which, one knows only that (2) is 
fulfilled, then one can give four linear aggregates of those γk that fulfill (1), and thus 
define a Dirac basis.  If one then has, say, two systems γk and kγ ′  of solutions of (2) then 

one can convert them into a Dirac basis for each of them by the same linear 
transformation.  However, those two Dirac bases certainly go to each other by an S-
transformation.  γk and kγ ′  will also be converted into each other in the same way. 

 
 3. The fact that any S-transformation will leave (2) untouched is immediate. 
 
With that, the statements are proved. 
 

 A very essential difference between the 
o

kγ  and the γk is this: It is known that there is 

a Hermitian system of 
o

kγ , but there is, in general, no Hermitian system of γk , nor even 

one in which some of the γk are Hermitian and the others are skew-Hermitian.  That is 
connected with the well-known reality properties that are demanded of the gik , namely, 
they are pure-imaginary when one and only one index 0 is present, and otherwise real. 
(One must recall that the symmetric product – viz., the anti-commutator – of two 
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Hermitian matrices will always be Hermitian.)  We shall go into the question of 
Hermiticity in detail later on, but for now, we shall only mention that in order to show 
that for the time being there is not the slightest ground for restricting the transformation 
S, which is arbitrary at each point, to a unitary one.  Since the γk will not be Hermitian 
without that restriction, one would initially have no reason for imposing the condition of 
the “conservation of Hermiticity.” 
 We can now derive an important system of differential equations for the γk from (2).  
We think of the γk as being given and equations (2) as having been solved at any point P, 
and indeed in such a way that these solutions will be combined into four continuous, 
differentiable matrix fields, which will obviously be possible. 
 We now go from a point P to a neighboring point P′ and define the complete 
differential of equation (2) in that sense: 
 

δγi ⋅⋅⋅⋅ γk + γi ⋅⋅⋅⋅ δγk + δγi ⋅⋅⋅⋅ γk + γi ⋅⋅⋅⋅ δγk = 2 lik

l

g
x

x
δ∂

∂
.   (3) 

 
If we now observe the theorem of Ricci, according to which, the covariant derivative of 
the fundamental tensor gik vanishes identically: 
 

gik; l ≡ ik
kl i il k

l

g
g g

x
µ µ

µ µ
∂ − Γ − Γ
∂

 ≡ 0,     (4) 

 
then the right-hand side of (3) will be equal to: 
 

2( ) l
kl i il kg g xµ µ

µ µ δΓ + Γ . 

 
One can endow the right-hand side of (3) with that value when one sets: 
 

δγi = l
il xµ δΓ       (5) 

 
and observes (2).  That is, the matrices: 
 

γi +δγi = γi + l
il xµ

µγ δΓ     (6) 

 
will satisfy equation (2) at the point P′ when the γi satisfy it at the point P. 
 The Ansatz (5) would generally be contradictory if one wished to apply it to all points 
P′ in the vicinity of P.  One can convince oneself by a simple calculation that the 
expression (5) is a complete differential if and only if the curvature vanishes at P.  
However, from what was said above, the γi -values at P′ (we would like to call them γi 
+δ′ γi) can and will still differ from our solution Ansatz (5) [(6), resp.] that was guessed 
in some way by a similarity transformation, and indeed it will naturally be an infinitely-
small one, if continuity is to be valid.  That is, there must be an infinitely-small matrix ε 
such that: 

γi +δ′ γi = (1 – ε)(γi +δγi) (1 + ε) = γi +δγi + γi ε – ε γi , 
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or 
δ′ γi = l

il xµ
µγ δΓ  + γi ε – ε γi .     (7) 

 
In itself, ε can have a different, completely arbitrary, value for any neighboring point.  
However, should γi have a correct differential quotient with respect to xl , then ε would 
have to be proportional to δγl for an advance in the xl direction (i.e., for δγl ≠ 0, while all 
other components = 0), and so on for each l.  Therefore, should the change in γi under an 
advance in an arbitrary direction be truly calculable from its differential quotients, then ε 
would have to be the sum of those four terms.  One will then come to the Ansatz: 
 

ε = − Γl δxl, 
 
in which the Γl are four matrices that depend upon position and time (naturally, the minus 
sign is totally arbitrary).  When that is substituted in (7), one will get the important 
system of differential equations that we announced above (1): 
 

i

lx

γ∂
∂

= il
µ

µγΓ  + Γl γi – γi Γl .    (8) 

 
We will later express this in the form: The covariant derivative of the fundamental vector 
γk vanishes, in complete analogy to Ricci’s theorem, equation (4).  On the other hand, the 
source-free character of the four-current is closely connected with this system of 
equations.  I would like to place special emphasis on the fact that here we have derived it 
purely from the demands on the metric, with no reference being made to the ψ-function, 
so we must take advantage of the transformation degree of freedom in the Dirac matrices.  
The new operations Γl will appear in that way − and indeed unavoidably – from which, 
we will see that they are intimately linked with the four-potential (but they do not define 
a vector!). 
 We shall examine the necessary conditions for the compatibility of equations (8), 
namely, that the mixed second differential quotients, when they are calculated in two 
ways, must agree.  When one again expresses the first derivatives that are to be 
differentiated by (8), one will find that: 
 

Φkl γi – γi Φkl = kliR µ
µγ⋯ .    (9) 

 
Here, kliR µ⋯  is the mixed Riemannian curvature tensor in the usual notation (cf., e.g., Levi-

Civita , Der absolute Differentialkalkul, pp. 91; Springer, Berlin, 1928).  Φkl is an 
abbreviation that we shall introduce for the six matrices: 
 

                                                
 (1) This agrees with Fock, loc. cit., equation (24), in content.  The meaning of the sign here is somewhat 
different from what it was there.  If one would like to bring the two into agreement then one should read 
our Section 5 on Hermiticity! 
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Φkl = l k

k lx x

∂Γ ∂Γ−
∂ ∂

 + Γl Γk – Γk Γl ,    (10) 

 
which are antisymmetric in the indices k, l, and which, as we will show, have a close 
relationship to the electromagnetic field.  For a given γi -field, Γl is fixed by (8) and Φkl is 
fixed by (9), up to an addend that commutes with all γi , so it must be a multiple of the 
identity matrix.  The Φkl are easy to calculate from (9).  Along with the γi , one introduces 
the contravariant ones: 

γ i = gik γk .     (11) 
Furthermore, one states that: 

sµν = 1
2 (γ µγ ν − γ νγ µ).     (12) 

 
(For µ, ν = 1, 2, 3, the sµν correspond in some way to the spin, and for µ = 0, ν = 1, 2, 3, 
they correspond to velocity.  See below.)  We point out that, from (2) and (11): 
 

γi
 γ k + γ k γi =2 k

iδ .     (13) 

Now, one easily finds that: 
 

γi s
µν − sµν γi = 2( )i i

µ ν ν µδ γ δ γ− .     (14) 

 
The sµν then produce another γ when one commutes it with another γ.  That is precisely 
what one needs in order to solve (9) for Φkl .  Indeed, the right-hand side of (9) can also 
be written Rkl,iµ γ µ , in which Rkl,iµ is the symmetric Riemann tensor.  With the 
commutation rules (14), one then confirms that: 
 

Φkl = − 1
4 Rkl,µν s

µν + fkl ⋅⋅⋅⋅ I    (15) 

 
is the general solutions of (9) (1).  fkl is the remaining free multiplier of unity.  The fkl 
(when multiplied by i) will take on the role of the electromagnetic field.  One sees that 
the appearance of those quantities through the construction of the metric from matrices 
will indeed be very suggestive, but that it is precisely the fkl that are not determined by the 
γ-field, for the time being, but will remain completely free of it. 
 The sµν have trace zero as commutators.  Hence: 
 

Tr Φkl = fkl ⋅⋅⋅⋅ Tr I = 4 fkl . 
On the other hand, from (10): 
 

Tr Φkl = 
kx

∂
∂

(Tr Γl) −
lx

∂
∂

(Tr Γk), 

 

                                                
 (1) In content, this essentially coincides with the many-indexed bein equations (46), (48) in Fock, loc. 
cit.  
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because differentiation and taking the trace commute with each other, and the 
commutation yields no contribution to the trace.  If one sets, say: 
 

1
4  Tr Γl = ϕl 

then: 

fkl = l k

k lx x

ϕ ϕ∂ ∂−
∂ ∂

.     (16) 

 
The traces of the Γl are then the four-potential (except for a factor of i). 
 
 

§ 3. – Transformation theory, part one. 
 
 From the basic notions of general relativity, a renaming of all points: 
 

kx′  = kx′  (x0, x1, x2, x3), k = 0, 1, 2, 3   (17) 

 
should not change the form of the description of things.  Therefore, the function 0x′  

should assume only pure-imaginary values, while 1x′ , 2x′ , 3x′  must assume only real ones, 

so the functional determinant should remain positive.  We call that a point substitution.  
The gik then transform as a second-rank covariant tensor. 
 As long as we make no other demands upon the γi besides that they should satisfy 
equations (2), the question of how they will transform under a point-substitution cannot 
be answered uniquely, by any means.  A similarity transformation with a transformation 
matrix S that varies from point to point will then remain completely free before the point 
substitution, as well as after it.  We can generally determine that the γi transform as a 
covariant vector under a pure point substitution, which means that (8) will still be true.  
The commutator Γl γi − γi Γl will then transform as a covariant tensor, as will the rest of 
the equation: 

i
il

kx
µ

µ
γ γ∂ − Γ

∂
,     (18)  

 
when γi is substituted as a vector.  The similarity transformation: 
 

kγ ′ = S−1γk S     (19) 

 
is then a thing-in-itself to be considered, so as one easily convinces oneself, the Γl will 
transform as follows: 

l
′Γ  = S−1 Γl S − S−1 

l

S

x

∂
∂

,    (20) 
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in order to preserve (8), and thus, differently from the γk .  By contrast, one would find 
that with that convention, the following aggregate, for which we would like to introduce 
the symbol ∇k : 

∇k = 
kx

∂
∂

− Γk ,      (21) 

 
will first of all (and this is obvious) behave like a covariant vector substitution under a 
pure point substitution (because that is certainly true for the ∂ / ∂xk by themselves and 
was established for the Γk) and that secondly, because of (20), the ∇k will transform under 
an S-transformation precisely as the γk transform as a result of (19), namely: 
 

k
′∇ = S−1 ∇k S.      (22) 

The meaning of is k
′∇  then that: 

 

k
′∇ = k

kx

∂ ′− Γ
∂

= 1 1
k

k k

S
S S S

x x
− −∂ ∂− Γ −

∂ ∂
,   (23) 

and one will then have: 
 

kx

∂
∂

= 
kx

∂
∂

S−1 S = 
1

k k

S
S S

x x

−∂ ∂−
∂ ∂

 = 1 1

k k

S
S S S

x x
− −∂ ∂+

∂ ∂
,  (24) 

 
the latter of which is due to the identity: 
 

S−1 S ≡ I, 
1

1

k k

S S
S S

x x

−
−∂ ∂+

∂ ∂
≡ 0. 

 
One confirms (22) by substituting (24) in (23). 
 The Φkl that are introduced from (10) will first of all (and this is obvious) behave like 
a covariant tensor under point substitutions, and secondly, they will behave analogously 
to (19) under an S-transformation: 
 

kl
′Φ  = S−1 Φkl S,     (25) 

 
where the latter is due to (22), and since, from the definitions (10) and (21), the 
commutators of the ∇k are: 

Φkl = ∇l ∇k − ∇k ∇l .     (26) 
 
It should still be added that the traces of the Φkl  − viz., the fkl – will not change under a 
similarity transformation, due to (25), but the traces of the Γl  which we should call ϕl , 
probably will, because no transformation law that is analogous to (19) [(25), resp.] is true 
for them, but only (20). 
 We have presented all of this in “would be” form, because the convention that was 
made is stuck with the arbitrariness that was mentioned to begin with: Since a point 
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substitution generally implies a change in the γi in any case [indeed, the old γi will 
generally no longer satisfy equations (2)!], for the new choice, an entire manifold of γi -
fields will again be available, whose members will emerge from any one of them by an 
arbitrary, coordinate-dependent S-transformation.  Moreover, none of those members is 
initially distinguished intrinsically in any way, nor is the one that was chosen above. 
 Now, it is strongly suggested (at least, for many purposes) that one might greatly 
restrict that freedom of choice by employing a (to some, not unavoidable, but still 
suggestive) desire that Hermiticity should be satisfied, as one likewise cares to do in the 
special-relativistic Dirac theory.  In order to see what one can achieve in that regard, one 
must draw one’s attention to the eigenvalues of the γk and their double products. 
 
 

§ 4. – Eigenvalues and Hermitization. 
 

 Since: 
γk γk = gkk (no summation!), 

 

from (2), γk will have the eigenvalues kkg± , and indeed each of them twice, because it 

has a zero trace.  One sees the latter when one sets: 
 

sµν = 1
2 (γµ γν − γµ γν),     (26) 

 
analogous to (12).  One will then have: 
 

γ i sµν − sµν γ i = 2( )i i
µ ν ν µδ γ δ γ− ,    (27) 

 
analogous to (14).  Each γ can then be represented as a commutator in many ways, and a 
commutator will always have trace zero. 
 Nevertheless, the γ have nothing but real eigenvalues, and as a result, each of them 
can be made Hermitian by an S-transformation, but that generally does not happen 
simultaneously (for example, for γ0 and γ1), because from (2) their symmetric product 
equals 2g01 ⋅⋅⋅⋅ I, so it will be skew-Hermitian (since g01 is pure-imaginary). 
 We shall now further consider the products γi γ k, first for i ≠ k.  The square is [cf., 
(13)]: 

(γi γ k)2 = γi γ k ⋅⋅⋅⋅ γi γ k = − γi γi γ kγ k = − gii g
kk (no sum!). 

 

The eigenvalues are then kk
iig g± , and indeed each of them are double, since: 

 
γi γ k = 1

2 (γi γ k − γ k γi), 

  
as a commutator, must have trace zero.  The eigenvalues of γ k γi are equal and opposite 
to the latter, and therefore the same.  By contrast, for i = k, one will have: 
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(γk γ k)2 = γk γ k γk γ k = γk (2 − γk γ k) γ k = 2 γk γ k − gkk g
kk (no sum!),   

 
(γk γ k − 1)2 = 1 − gkk g

kk  (no sum!).   
 

γk γ k − 1 will then have the eigenvalues 1 kk
kkg g± − , and since it can be described as a 

commutator: 
γk γ k − 1 = 1

2 (γk γ k − γ kγk)   (no sum),   

 
each of them will be double.  γk γ k will then have the eigenvalues: 
 

1 1 kk
kkg g± − , 

 
and indeed, each of them will double.  For k = 0, those values are real, since g00 g

00 ≤ 1. 
 Of the four matrices: 

γ0 γ 0, γ1 γ 1, γ2 γ 2, γ3 γ 3,    (28) 
 
only the first one is real then, while the other three have pure-imaginary values.  They 
will then possess (up to a factor i) precisely the real behavior that would be reasonable for 
a physical four-vector (1).  That suggests that one might explore whether those four 
matrices can be made simultaneously Hermitian (skew-Hermitian, resp.).  One can show 
that this is true as follows, with which, a number of other matrices will be Hermitian at 
the same time: 
 When the metric tensor gik is real and positive-definite, equations (2) can be satisfied 

by Hermitian γk , just as equations (1) can be satisfied by Hermitian 
o

kγ .  I might 

probably regard that as being known without proof, so one will indeed be dealing with 

only the projection of a system of 
o

kγ  that is assumed to be Hermitian from a rectangular 

axis-cross to a skew one, so nothing but real coefficients will appear as direction cosines.  
Since the gik are real in that case, the contravariant γ k will also prove to be Hermitian; 
that is, one can also satisfy the contravariant equations: 
 

γ i γ k + γ k γ i = 2 gik,     (29) 

                                                
 (1) In the Euclidian case, they do, in fact, go over to the Dirac four-vector (up to a factor i).  The 
complication that hinders us from making the γk themselves Hermitian, namely, that their symmetric 
product does not exhibit the required reality properties, will also no longer exist.  For i ≠ k, one has: 
 

γ0 γ i γ0 γ k + γ0 γ k γ0 γ i = γ0 ( 0
2 iδ  − γ0 γ i) γ k + γ0 ( 0

2 kδ  − γ0 γ k) γ i = 
0 0 0 0

2 )2( i k k iδ γ γ δ γ γ+ − 2g00 g
ik. 

 
That is, in fact, real when neither of the indices i, k is zero, while for i = 0, k ≠ 0, one will have: 
 

2 γ0 γ k – 2 g00 g
0k. 

 
This has, in fact, pure-imaginary eigenvalues, because we know that this is true for γ0 γ k, and g0k is pure-
imaginary. 
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which are analogous to (2), by Hermitian γ k when the tensor gik is real and positive-
definite.  Now, that is not generally our tensor gik, but we can make it so when we distort 
it and set the “mixed” space-time g0k (k = 1, 2, 3), which were simply omitted initially, 
equal to zero.  Let: 

a0, a1, a2, a3      (30) 
 
be a quadruple of Hermitian matrices that satisfy equations (29) with the distorted metric 
tensor.  That is: 

ai ak + ak ai = 2 gik    (31) 
 
when none or both indices i, k are equal to zero, and: 
 

a0 ak + ak a0 = 0    (32) 
for k ≠ 0.  One now sets: 

γ k = 00

i

g
a0 ak,  for k ≠ 0   (33) 

and 

γ 0 =
0

00
0000

1a

gg g
− (g01 γ 1 + g02 γ 2 + g03 γ 3).   (34) 

 
One can convince oneself by calculation that these γ k satisfy the undistorted equations 
(29). 
 Since, from (32), a0 will anticommute with ak (k ≠ 0), a0 ak will be skew-Hermitian, 
so from (33), γ 1, γ 2, γ 3 will be Hermitian.  One further calculates from (34) that: 
 

γ0 = g0k γ k = 0 00
00

g
a

g
 = Hermitian.    (35) 

 
By our construction, we have then made the contravariant γ 1, γ 2, γ 3, as well as the 
covariant γ0 Hermitian.  Some further Hermiticities that we establish are: The 
contravariant pure-space matrices: 
 

skl = 1
2 (γ k γ l − γ l γ k)  for k, l = 1, 2, 3  (36) 

 
will be skew-Hermitian, since they are the commutators of Hermitian matrices.  
Furthermore, for k  ≠ 0, the γ0 γ k, and likewise the γ kγ0 , will be skew, because already 
from (13), γ0 will anticommute with γ k (k ≠ 0).  We will then find from (34) and (35) that 
γ0 γ 0 and γ 0γ0  are Hermitian.  It will then follow from this very easily by lowering the 
index that for k ≠ 0, both γ0 γk and γk γ0 , and therefore: 
 

s0k = 1
2 (γ0 γk − γk γ0), 
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will prove to be skew-Hermitian.  However, we expressly observe that nothing can be 
said about the covariant skl for k, l ≠ 0, and likewise about the contravariant s0k !  Similar 
statements will be true for γ 0, γ1 , γ2 , γ3 .  We shall combine all conventions together.  By 
construction: 
 γ0 , γ 1, γ 2, γ 3, γ0 γ 0, γ 0 γ0  are Hermitian, 

(37) 
  γ0 γk , γk γ0 , γ0 γ k, γ k γ0 , s0k , s

kl are skew-Hermitian (k, l ≠ 0). 
 
We would now like to free ourselves of the special choice of matrix construction, which 
served only to prove existence.  One can easily see that the requirement that four 
suitably-chosen matrices from the ones that were cited in (37) have the property that was 
established in it (for example, the requirement that γ0 , γ 1, γ 2, γ 3 should prove to be 
Hermitian) is sufficient to imply that for given gik , the γ-field is established uniquely, up 
to a unitary transformation.  Even more freedom will then exist for a given gik in order for 
the γ-field to not be that way: namely, transformations by an arbitrary matrix.  Should 
that transformation make the matrices γ0 , γ 1, γ 2, γ 3 Hermitian, from which, any matrix, 
and thus also any Hermitian matrix, can be derived by addition and multiplication (1) 
then the transformation of any Hermitian matrix must be Hermitian; i.e., the 
transformation must be unitary.  Q. E. D. 
 
 In the future, we would like to admit only those γ-fields (one can also say, only those 
reference systems) for which the matrices γ0 , γ 1, γ 2, γ 3 prove to Hermitian.  Everything 
that was established in (37) will then be true automatically.  An “allowable” reference 
system is determined by the metric up to a unitary transformation. 
 It is very convenient that we have reduced the allowable S-transformations to unitary 
ones by the new requirement, since they are very easy to work with and trifling.  We shall 
not need to think about them at all, in general, so we can proceed as if the γ-field were 
determined uniquely by the metric.  Naturally, that now poses the problem of how we can 
determine the transformation law of the γ more finely when we start from an allowable γ-
field and perform a point substitution (17), namely, in such a way that we will again 
produce an allowable γ-field.  The provisional prescription that was given at the 
beginning of Section 3 – namely, substituting the γk as if they formed a covariant vector – 
does not at all satisfy that requirement, so it does not at all correspond to what happens in 

special relativity, where one does not remotely substitute the 
o

kγ .  When speaking in the 

language of Section 3, we can say: Any point substitution must be coupled with a 
completely-determined S-transformation (actually, one that is determined up to a unitary 
factor, but is naturally not unitary, in its own right), and that transformation will serve to 
                                                

 (1) First, it is known of the Dirac 
o

kγ  that any matrix can be derived from them rationally.  One then 

infers that for the γk alone or the γ k alone.  The fact that γ 0 is missing from the quadruple above and γ0 
enters in its place does not harm anything, because: 
 

γ0 = g00 γ 0 + g01 γ 1 + g02 γ 2 + g03 γ 3, 
 
from which, γ 0 can be calculated, since one certainly has g00 ≠ 0. 
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determine the substitution.  For that reason, one can aptly speak of an extended point 
substitution.  We will deal with that problem in the next section for infinitely-small point 
substitutions. 
 
 

§ 5. – Transformation theory, part two. 
 

 We start from an allowable γ-field and go over to the primed variables by the 
infinitely-small point substitution: 
 

kx′  = xk + δxk      or xk = kx′  − δxk ,    (38) 

 
which we extend to an infinitely-small S-transformation in the sense that was proposed 
by way of: 

S = 1 + Θ, S−1 = 1 – Θ.    (39) 
 
As usual, we shall not explicitly state the replacement of variables in the arguments.  The 
equations between primed and unprimed operators then relate to each other them, not as 
equal values of the arguments, but as corresponding ones; i.e., at the same point.  Now, 
let: 

k

l

x

x

δ∂
∂

= k
la ,     (40) 

to abbreviate. 
 Those quantities are pure imaginary when one and only one index equals zero, and 
otherwise real.  One will then have: 
 
 iγ ′  = γi − l

i la γ  + γi Θ – Θ γi , 

(41) 
 kγ ′  = γ k + k l

la γ  + γ k Θ – Θ γ k . 
 
If one takes the first equation for i = 0 and multiplies it on the left by the second one then 
that will give (always precise to only first-order quantities): 
 

0
kγ γ′ ′ = γ0 γ k − 0 0

l k k l
l la aγ γ γ γ+  + γ0 γ k Θ – Θ γ0 γ k.  (42) 

 
We use the right to dispose of Θ in order to remove the second term in the right-hand side 
of this equation (replace it with another, resp.), since it thwarts the Hermiticity of the 
result.  That can be accomplished by way of: 
 

Θ = − 0 0
00

1

2
l

la
g

γ γ .       (43) 

Namely, we will then have: 
− 2 Θ γ0 γ k = 0

l k
la γ γ ,     (44) 

and that will give: 
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0
kγ γ′ ′  = γ0 γ k + 0

k l
la γ γ + Θ γ0 γ k + Θ γ0 γ k. 

 
 We argue on the basis of our conventions (37) that, from (43), Θ is Hermitian.  Its 
symmetric product with γ0 γ k is Hermitian or skew according to whether γ0 γ k is.  The 
same thing will be true for the second term on the right-hand side, namely, it will be skew 
for k ≠ 0 and Hermitian for k = 0.  Thus, the 0

kγ γ′ ′  will actually possess the same 

Hermiticity as the γ0 γ k.  With that, the status of the γ′-field as “allowable” is legitimized. 
 Naturally, Θ is not unique, but the value for it that was stated in (43) will have the 
following meaning: It is uniquely the Hermitian component of the infinitely-small matrix 
that is applied.  An arbitrary infinitely-small skew component can enter into it.  One sees 
by some reasoning that it would leave all results unchanged; obviously, it indeed also 
corresponds to only one additional unitary transformation! 
 We shall now connect this with the rigorous definition of a tensor operator: 
 
 When it is known or has been established for a system of operators: 
 

T ρσ
αχ
⋯

⋯
 

 
that it transforms under any infinitely-small extended point substitution like a tensor with 
a rank that is suggested by its indices and their positions, but with the introduction of the 
commutator: 

T ρσ
αχ
⋯

⋯
Θ – ΘT ρσ

αχ
⋯

⋯
, 

 
we shall refer to the system of operators as a tensor operator with the rank in question. 
 
 The following important theorem is true (1), which will be obtained from a very easy 
generalization of the results above: 
 
 Let T ρσ

αχ
⋯

⋯
 be a tensor operator and let it be known that in some reference system, the 

operators: 

0 T ρσ
αχγ ⋯

⋯
     (46) 

 
will be Hermitian or skew according to whether the zero in the indices αβ…ρσ appears 
an even or odd number of times, resp.; that state of affairs will then remain the same in 
any reference system. 
 
 One can obviously switch the words “even” and “odd” in that theorem; i.e., one might 
or might not include the zero in γ0 .  However, what one cannot do is to worry about the 
Hermiticity of T ρσ

αχ
⋯

⋯
 itself.  That is entirely trivial, because it relates to the 0 T ρσ

αχγ ⋯

⋯
! 

 One easily confirms that the symbol: 

                                                
 (1) The Hermiticity statements have an immediate meaning only when T ρσ

αβ
⋯

⋯
 does not include the 

derivative ∂ / ∂xk , but is simply a 4×4 matrix with coordinate-dependent elements. 
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∇k = 
kx

∂
∂

 − Γk     (21) 

 
that was introduced in (21) is a vector operator.  However, Γk by itself is not; it obviously 
transforms [recall (20)] under an extended point substitution thus: 
 

k
′Γ  = Γk − i

k ia Γ + Γk Θ − Θ Γk − 
kx

∂Θ
∂

.    (47) 

 
The last term in this is superfluous, and conflicts with the vector property.  On the other 
hand, the pure derivative ∂ / ∂xk transforms covariantly in the elementary sense, so it 
lacks the Θ-commutator.  If one combines the two then that inconvenience will cancel 
out, because ∂Θ / ∂xk can be regarded as the commutator of ∂ / ∂xk and Θ.  When one 
speaks of “Hermitian” or “skew,” naturally, operators like ∇k that include differentiations 
will have no immediate sense.  Indeed, we have not incorporated this into the definition 
of a tensor operator. 
 If one has two tensor operators then one easily confirms by multiplying out their 
transformation formulas [similarly to what was done above in the passage from (41) to 
(42)] that under “writing them next to each other” (i.e., matrix multiplication), one will 
get another tensor when the operator that is written to the left does not include the 
differential operator.  Otherwise, that will not be true, because it usually does not 
commute with the substitution coefficients k

ia . (Indeed, that is no different from the usual 

tensor calculus, either.  Although ∂ / ∂xk would then be a vector, one would still not get a 
tensor under ordinary differentiation of tensor components, but only under covariant 
differentiation.)  The tensor character of Φkl , which is defined by (10) or (26), must be 
particularly debatable then.  However, since we have already seen in § 3 that the Φkl 

transform under pure point transformations as a tensor in the elementary sense that one 
found there, but transform according to (25) under any S-substitution, so they obviously 
define a tensor operator under extended point substitutions in the present refined sense of 
the term. 
 We would now like to concern ourselves with the question of what we should 
understand the term “covariant differentiation” of a tensor operator to mean.  We then 
restrict ourselves to those operators that do not include the differential operator, so to 
4×4 matrices whose elements are coordinate functions. (That does not obstruct the fact 
that they can have the form of differential quotients; for example, Φkl is acceptable, but 
not ∇k .)  We will then be dealing with a tensor operator T ρσ

αβ
⋯

⋯
 under differentiation with 

respect to xk and the derivation of supplementary terms that would be suitable additions 
that transform as a contravariant tensor operator in ρσ… and a covariant one in αβ… 
under extended point substitution. 
 We shall make use of the fact that an extended point substitution will formally 
decompose into a pure substitution and a Θ-transformation under which the latter will 
simply add the commutator Θ.  We shall further use the fact that those two infinitely-
small transformations obviously commute.  If we now consider the covariant differential 
quotients in the elementary sense: 
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T
T

x

ρσ
αβ µ ρσ

αλ µβ
λ

∂
− Γ

∂

⋯

⋯ ⋯

⋯
 − … + …,    (48) 

 
and it will be obvious that this substitutes like a tensor of rank ρσ

αβ λ
⋯

⋯
 under a pure point 

substitution.  It would still be necessary to show that one would simply add the 
commutator with Θ under a Θ-transformation, like T ρσ

µβ
⋯

⋯
 itself.  Now, in the foregoing 

expression, that will be true of all terms, with the exception of the first one, for which the 
term: 

( )T T

x

ρσ ρσ
µβ µβ

λ

∂ Θ − Θ
∂

⋯ ⋯

⋯ ⋯  

will get added, instead of: 
T T

x x

ρσ ρσ
µβ µβ

λ λ

∂ ∂
Θ − Θ

∂ ∂

⋯ ⋯

⋯ ⋯ , 

 
under the Θ-transformation.  The term: 
 

T T
x x

ρσ ρσ
µβ µβ

λ λ

∂Θ ∂Θ−
∂ ∂

⋯ ⋯

⋯ ⋯
     (49) 

 
will then appear to be superfluous.  We discard it by adding: 
 

T Tρσ ρσ
µβ λ λ µβΓ − Γ⋯ ⋯

⋯ ⋯
 

 
in (48) as an extension of the commutator, and thus arrive at the final definition of the 
covariant differentiation of a tensor operator: 
 

;T ρσ
αβ λ
⋯

⋯
 = 

T
T

x

ρσ
αβ µ ρσ

αλ µβ
λ

∂
− Γ

∂

⋯

⋯ ⋯

⋯
− ... + … + T Tρσ ρσ

µβ λ λ µβΓ − Γ⋯ ⋯

⋯ ⋯
.   (50) 

 
Proof: According to (47), the added term behaves like this: Under a pure point 
transformation, it is a tensor of the desired rank, and under a Θ-transformation, one first 
adds its commutator with Θ and secondly drops the superfluous term (49).  The proof that 
(50) is a tensor is complete with that.  One can also write (50) in the form: 
 

;T ρσ
αβ λ
⋯

⋯
 = T T Tρσ ρσ µ ρσ

λ µβ µβ λ αλ µβ∇ − ∇ − Γ⋯ ⋯ ⋯

⋯ ⋯ ⋯
− … + …,   (51) 

 
which differs from the elementary formula only by the fact that the derivative ∇λ enters 
in place of the simple ∂ / ∂xλ . 
 One now recognizes that the important system of differential equations (8), upon 
which we based our arguments to begin with, say nothing more than that the vanishing of 
the covariant derivatives of the metric vector γk .  That is completely analogous to Ricci’s 
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theorem, which says the same thing about the metric tensor gik .  Moreover, entirely the 
same thing is true for the tensor that is derived from the γk by multiplication and addition 
with constant coefficients; e.g., γ k, sµν , sµν, etc.  All of these have zero covariant 
derivatives.  That is an immediate consequence of equations (8). 
 
 

§ 6. – Interpretation in terms of the Ψ-spinor. 
 

 The restriction of the γ-field to the ones that we called “allowable” will seem 
particularly convenient when one uses a four-component ψ-function – i.e., a so-called 
spinor – upon which the operators act as the basis for the interpretation of those 
operators.  Should a system of equations: 
 

T ρσ
µβ
⋯

⋯
ψ = 0     (52) 

 
be true in any reference system when it is true in one of them, then one would have to 
determine that ψ transforms as an invariant under a pure point substitution, but as follows 
under an S-transformation: 

ψ′ = S−1 ψ.     (53) 
 
The first statement is obvious, and under an S-transformation, it will actually follow from 
(52) upon left-multiplying by S−1 that: 
 

S−1T ρσ
µβ
⋯

⋯
S S−1ψ = T ρσ

µβ ψ′ ′⋯

⋯
 = 0. 

 
Under an extended infinitely-small point substitution, one will then have to set: 
 

ψ′ = ψ – Θψ,      (54) 
 
in which Θ is the Hermitian matrix (43).  Now, since ∇k is a vector operator, it will 
follow that, among other things: When all four numbers: 
 

∇k ψ = 
kx

ψ∂
∂

 − Γk ψ      (55) 

 
vanish in some reference system, they will vanish in all of them.  It would then be 
appropriate to refer to them as the covariant derivative of the spinor ψ. 
 One will get ordinary numbers from the operators (q-numbers) that will be interpreted 
physically as having the flavor and notations of occupation probabilities, densities of 
electricity, current densities, transition probabilities, et al., in the following way: One 
applies the operator A in question to a spinor ψ (viz., Aψ) and thus defined the so-called 
Hermitian inner product of the two spinors ψ and Aψ ; i.e., one multiplies the first 
component of the complex conjugate ψ * by the first component of Aψ, the second 
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component of ψ * with the second of Aψ, etc., and adds those four products.   We would 
like to write: 

ψ *Aψ       (56) 
 
for that, for brevity (1).  If A does not include the differential operator ∂ / ∂xk , but is 
simply a 4×4 matrix with coordinate-dependent elements, then we can also say: We enter 
the components of ψ * and ψ as arguments in the bilinear form that is defined by that 
matrix. 
 Now, when the matrix is Hermitian (skew, resp.), the c-number (56) will always 
prove to be real (pure imaginary, resp.), which would be necessary for the components of 
c-tensors if one is to interpret them physically.  Now, we saw in § 5 that: When T ρσ

αβ
⋯

⋯
 is a 

tensor operator, the Hermiticity of its components will not be preserved at all under an 
allowable transformation (i.e., under an extended point substitution), but only those of 

0T
ρσ
αβγ ⋯

⋯
.  Hence, it will not be, say, the c-numbers ψ * T ρσ

αβ
⋯

⋯
ψ, but the c-numbers: 

 
ρσ
αβ
⋯

⋯
T = ψ * 0T

ρσ
αβγ ⋯

⋯
ψ,     (57) 

 
that exhibit the required reality behavior for a physical tensor of rank ρσ

αβ
⋯

⋯
.  We would 

now like to show that it is also those c-numbers that actually transform like a c-tensor of 
rank ρσ

αβ
⋯

⋯
, and for that reason, can be used for the physical interpretation of the tensor 

operators.  Namely, when one performs the extended point substitution (38), (40), one 
will first obtain the following: 
 

ρσ
αβ

′⋯
⋯

T = (ψ * − Θ* ψ *)(γ0 − 0
l

la γ + γ0 Θ – Θγ0) ( )l
lT a Tρσ ρσ

αβ α β− − +⋯ ⋯

⋯ ⋯
⋯ (ψ – Θψ) 

 
= 0 0 0 0

l l
lT T a T aρσ ρσ ρσ ρσ ρσ

αβ αβ αβ αβ αβψ γ ψ ψ γ ψ ψ γ ψ∗ ∗ ∗ ∗− Θ − Θ − −⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
T T − + … (58) 

 
(Two terms in Θ, namely, the ones that arise from – Θψ and γ0 Θ, will cancel each other.  
Obviously, terms of second order in Θ and l

ka  have been suppressed.)  The second, third, 

and fourth term on the right-hand side drop out, so: The second and third ones are equal 
to each other, since Θ* will go over to the other factor under “transposition” and 
therefore, since it is Hermitian, to Θ.  From (43): 
 

− 02 T ρσ
αβψ γ ψ∗Θ ⋯

⋯
= 0 0 0

00

1 l
la T

g
ρσ
αβψ γ γ γ ψ∗ ⋯

⋯
 = 0

l
la Tρσ

αβψ γ ψ∗ ⋯

⋯
 

 
will then cancel the fourth term, as asserted.  One will then get the usual substitution 
formula for the c-tensor (57): 

                                                
 (1) The notation that was chosen here will not factor in what follows.  Aϕ Bχ will mean the same thing 
as Bχ Aϕ, namely, it will always mean: First component of Aϕ times the first one of Bχ plus the second of 
Aϕ times the second of Bχ plus, etc. 
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ρσ
αβ

′⋯
⋯

T = l
l

ρσ ρσ
αβ α βα−⋯ ⋯

⋯ ⋯
T T − +,    (59) 

 
etc.  One specifically observes that in this proof, the operator T ρσ

αβ
⋯

⋯
 itself will have to be 

either transposed with an lka  or switched with it.  The proof will then also be true then; 

i.e., ρσ
αβ
⋯

⋯
T will also transform as a c-tensor then when T ρσ

αβ
⋯

⋯
 includes the differential 

operator ∂ / ∂xk .  It is merely the statements about Hermiticity that will then have no 
immediate sense for the local tensor components. 
 It will be convenient for what follows to extend formula (55) to the case in which one 
is not dealing with a spinor, but its complex-conjugate.  The complex conjugate of (55) 
would be: 

k
kx

ψ ψ
∗

∗ ∗
∗

∂ − Γ
∂

, 

 
but that would not go to the ordinary derivative for k = 0 (x0 = ict !) in the Euclidian case, 
but to its negative, which would be very inconvenient.   Unfortunately, it will, in turn, be 
necessary to change the sign for k = 0 and to define the covariant derivative of ψ * to be: 
 

∇κ ψ * = k
kx

ψ ψ
∗

∗ ∗∂ Γ
∂
∓      (60) 

 
(upper sign for k = 1, 2, 3; lower for k = 0). 
 We would now like to investigate the covariant derivative of the c-tensor (57), which 
probably must be connected with the covariant derivative of the tensor operator that was 
defined in (50) in some way.  We first obtain: 
 

 ;
ρσ
αβ λ
⋯

⋯
T  = 

x

ρσ
αβ µ ρσ

λα µβ
λ

∂
− Γ

∂

⋯

⋯ ⋯

⋯

T
T − ... + … 

= 0
0 0 0 0

T
T T T T

x x x x

ρσ
αβρσ ρσ ρσ µ ρσ

αβ αβ αβ λα µβ
λ λ λ λ

γψ ψγ ψ ψ ψ ψ γ ψ ψ γ ψ γ ψ
∗

∗ ∗ ∗ ∗∂∂∂ ∂+ + + − Γ
∂ ∂ ∂ ∂

⋯

⋯⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯
− +… 

 
We can extend the four derivatives that enter into this to covariant derivatives using (60), 
(8), (50), (55), in which the derivatives of γ0 will vanish.  We will then get: 
 

;
ρσ
αβ λ
⋯

⋯
T = 0 0 0 ; 0T T T Tρσ ρσ ρσ ρσ

λ αβ λ αβ αβ λ αβ λψ γ ψ ψ γ ψ ψ γ ψ ψ γ ψ∗ ∗ ∗ ∗∇ + ∇ + + ∇⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯
,  (61) 

 
plus a remainder, which we will now show must vanish.  That remainder is: 
 
 remainder = 0T

µ ρσ
λ αβψ γ ψ∗± Γ ⋯

⋯
 

 
= 0 0 0 0 0 0[ ( ) ]T T T T Tµ ρσ ρσ ρσ ρσ ρσ

α µ αβ λ λ αβ αβ λ λ αβ αβ λψ γ γ γ γ γ ψ ψ γ ψ∗ ∗Γ + Γ − Γ − Γ + Γ + Γ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
. 
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The underlined terms cancel each other.  λ
∗± Γ , like †

λ± Γ , will go to the other factor (1).  

What will remain is: 
  remainder = ATρσ

αβψ ψ∗ ⋯

⋯
 with 

  A = †
0 0( )µ

λ µ λ λγ γΓ + Γ ± Γ . 

 
The proof will be complete when we can show that: 
 

00

1

2g
A γ0 ≡ †1

0 02
00

1
( )

2g
µ

λ λ λ µγ γΓ ± Γ + Γ    (62) 

 
vanishes. [It will then follow from this that A ≡ 0, since γ0 has the non-vanishing 

eigenvalue 00g± .  If A = 0 then the “remainder” will vanish, and equation (61) will be 

proved.] 
 Now, in the case of the upper sign, which will be true for λ = 1, 2, 3, the operator (62) 
will be the Hermitian component of: 
 

Γλ + 0 0
00

1

2g
µ

λ µγ γΓ ,     (63) 

 
while in the case of the lower sign, it will be the skew-Hermitian component.  One can 
see with no great effort that when one commutes this operator with the Hermitian 
matrices γ0 , γ 1, γ 2, γ 3 according to (37), in the cases λ = 1, 2, 3, it will be Hermitian 
without exception, while in the case of λ = 0, it will be skew-Hermitian without exception.  
Therefore, its Hermitian (skew-Hermitian, resp., when λ = 0) component commutes with 
γ0 , γ 1, γ 2, γ 3, and will thus be a multiple of the identity.  In other words, the component 
whose vanishing is at issue will reduce to: 
 

 real part of Trace (Γλ + 0 0
00

1

2g
µ

λ µγ γΓ ) for λ = 1, 2, 3 

 Imaginary part of Trace (Γ0 + 00 0
00

1

2g
µ

µγ γΓ ) . 

 
Now, Trace γµ γ0 = 4 g00 and: 

  0 0g µ
µ λΓ = Γ0,0λ = 001

2

g

xλ

∂
∂

; for λ = 0, 1, 2, 3. 

 
The question then comes down to whether one actually has: 
 

                                                
 (1) The dagger † refers to the transposed complex-conjugate matrix, which is almost always the 
convention (but sadly, one can only say almost always). 
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 real part of Trace Γλ = − 00ln g

xλ

∂
∂

,   for λ = 1, 2, 3 (64) 

 Imaginary part of Trace Γλ = − 00

0

ln g

x

∂
∂

. 

 
We will now show that we have promised too much.  Namely, we cannot establish the 
foregoing equations, and indeed that is due to the fact that the Γλ were originally 
introduced and employed up to now exclusively in such a way that only their 
commutators with other matrices played any role, which implies precisely that their 
traces will vanish.  The first time that they played a role was in the covariant derivatives 
of spinors, equations (55) and (60), which we first made use of in precisely equation (61), 
which was to be proved.  What we can prove is only that we are free to define the trace 
part in question by (64), and that is actually the case.  First of all, it is certainly true in 
some reference system, because the right-hand side of (64) possesses the required reality.  
Thanks to (47) and (43), we can then show that the convention that was made at the time 
is invariant under allowable transformations.  I shall suppress the proof of that. 
 The covariant derivative of the spinor will be made precise by that convention.  
However, the convention is actually desirable in yet another regard.  Namely, if the trace 
parts that were spoken of were not represented as the derivatives of one and the same 
function (− ln g00) then the traces of the Φkl would then produce pure-imaginary 
electromagnetic field strengths.  One could avoid that in the following way: The real part 
of Trace Γ0 and the imaginary part of Trace Γλ (λ = 1, 2, 3), from which the real field 
strengths are derived, remain free, as before. 
 We must now cast our gaze upon the pure unitary transformations, which are in and 
of themselves also allowable, along with the extended point substitutions.  The only thing 
that remains to be said is that such a unitary transformation, which one would like to 
perform, must obviously also be performed on ψ, from the prescription (53).  Thus, such 
a unitary transformation will be completely harmless and irrelevant.  In particular, the 
components of the c-tensors (57) will be completely insensitive to it, and likewise for the 
trace part, which was defined in (64). 
 
 The essential results of this section are: 
 
 1. The determination of the transformation law (54) and the covariant derivative (55) 
for the spinor. 
 
 2. The association of c-tensor components with the tensor operator by (57) and the 
proof that they actually transform like ordinary tensor components of the same rank. 
 
 3. The presentation of a relatively-simple formula (61) for the calculation of the 
covariant derivative of a c-tensor, which is a formula that is of interest mainly because its 
validity requires the in itself welcome (… text missing from original) 
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 4. The normalization of those trace components of Γλ that would give rise to the 
appearance of pure-imaginary electromagnetic field strengths if they were not 
normalized. 
 
 

§ 7. – The Dirac equation. 
 

 The operator γ k ∇k is an invariant that one can aptly refer to as the “magnitude of the 
gradient.”  The generalized Dirac equation demands that (1): 
 

γ k ∇k ψ = µ ψ,     (65) 
in which µ is a universal constant: 

µ = 
2 mc

h

π
. 

 
 The c-vector that belongs to γ k under the assignment (57) is i S k, so: 
 

i S k = ψ* γ0 γ k ψ.    (69) 
 
Since the covariant derivative of the operator γ k vanishes, from (61), that will reduce the 
covariant derivative of S k to: 
 

i S k
; λ = ∇λ ψ* γ0 γ k ψ + ψ* γ0 γ k ∇λψ. 

 
If one forms the covariant divergence of this by contraction: 

                                                
 (1) One can generally try to “symmetrize” this and take: 
 

1
2 (γ k ∇k + ∇k γ k)      (66) 

 
to be the left-hand side of (65). However, this expression can be converted.  The vanishing of the covariant 
derivative of γ k says that: 

∇l γ k − γ k ∇l = − k

l

µ
µ γΓ . 

Contraction will yield: 

∇k γ k − γ k ∇k = − k k

kµ γΓ = −
ln g

x

µ

µ

γ
∂

∂
.   (67) 

As a result: 

1
2 (γ k ∇k + ∇k γ k)  = γ k ∇k −

ln g

x

µ

µ

γ
∂

∂
= g1/4 gk ∇k g

−1/4.  (68) 

 
That is not an invariant operator, which should not surprise us.  Namely, ∇k γ k is not one either, nor does it 
have any obligation to be such a thing.  We have already emphasized above that the product of two tensor 
operators will be certain to have the tensor property only when the left-hand factor does not include the 
derivative.  Furthermore, the use of the Ansatz (66) would still proceed in the same way again, except that 
one must merely put g−1/4 ψ in place of ψ ; that is, g−1/4 ψ must transform as a spinor.  For that reason, we 
shall keep the Ansatz (65). 
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i S λ
; λ = ∇λ ψ* γ0 γ λ ψ + ψ* γ0 γ λ ∇λψ, 

 
then the first summand will be negative of the complex conjugate of the second one (1), 
but from (65), that will be: 

µ ψ*γ0 ψ, 
 
which will then be real, since γ0 is Hermitian.  Hence: 
 

S λ
; λ = 0.     (70) 

 
The source-free character of the four-current, which, from our assignment (57), belongs 
to the contravariant metric vector as a c-vector, will then follow from the Dirac equation 
and the fundamental equations (8) (cf., Fock, loc. cit., pp. 267) 
 We would now like to square the Dirac equation in order to compare the result with 
the ones that are familiar from the special theory (ψ has been omitted, for brevity): 
 

γ λ ∇λ γ l ∇l = µ2.     (71) 
 
One switches the first two factors by means of equation (67) (in the remark) and employs 
the fact that from (2) and (12), one will have: 
 

γ λ γ l = gkl + skl.     (72) 
That will give: 

∇k (g
kl + skl) ∇l + 

ln g

xµ

∂
∂

γ λ γ l ∇l = µ2. 

 
It follows from the vanishing of the covariant derivative of skl that: 
 

∇k s
kl − skl ∇k = − 

ln g

xµ

∂
∂

 sµ l. 

That gives [with another use of (72)]: 
 

∇k g
kl ∇l + skl ∇k ∇l + 

ln g

xµ

∂
∂

 gµ l ∇l =  µ2. 

 
From (26), and due to the antisymmetry in skl, the second term will be equal to – 1

2 skl Φkl.  

The first and third ones (in which one replaces µ with k) combine into the generalized 
Laplace operator; one therefore ultimately gets: 
 

                                                
 (1) The Hermitian operator γ0 γ 0 goes over to (γ0 γ 0)* in the first factor, while the skew operator γ0 γ λ (λ 
≠ 0) will go to − (γ0 γ λ)*.  However, in exchange, ∇0 will include a sign change, but not ∇λ (λ ≠ 0).  
Compare the above to equation (60) in the text, as well as noting the remarks that were made in regard to 
equation (56). 
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1
2

1 kl kl
k l klg g s

g
∇ ∇ − Φ  = µ2.     (73) 

 
It is interesting to substitute the expression for Φkl in the expression (15) that was found 
before.  In that way, the invariant: 

1
8 Rkl,µν s

kl sµν 

 
will appear.  Due to the symmetry of the covariant Riemannian curvature tensor in the 
first and second index-pair, that will equal: 
 

1
16 Rkl,µν (s

kl sµν + sµν skl). 

 
If one actually calculates the symmetric product of the skl now (which I would not like to 
do here in extenso) then one will use the known cyclic symmetry: 
 

Rkl,µν + Rlµ,kν + Rµk,lν = 0. 
 
Having made use of that, one will finally get: 
 

1
8 Rkl,µν s

kl sµν = − 1
4  skµ slν Rkl,µν = −

4

R
,  

 
in which R is the invariant curvature.  Hence, the substitution of Φkl from (15) in (73) 
will yield the following: 

1
2

1

4
kl kl

k l kl

R
g g f s

g
∇ ∇ − −  = µ2.     (74) 

 
In the third term on the left-hand side, one recognizes the well-established effect of the 
field strengths on the spin tensor, and indeed the pure trace part of Φkl has already been 
solved for in fkl , which should probably be referred to as field strengths in the real sense, 
and as we have often mentioned, they will be completely free of the metric. 
 The second term seems to me to have considerable theoretical interest.  Of course, it 
is many, many powers of ten too small to be capable of replacing, say, the term on the 
right-hand side.  µ will then be the reciprocal Compton wave length, which is 
approximately 1011 cm−1.  At any rate, it seems meaningful that in the generalized theory, 
any term that is equivalent to the enigmatic mass term would come into play at all (1). 
 
 

____________________ 
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 (1) See above, Veblen and B. Hoffman, Phys. Rev. 36 (1930), 821.  


