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The Dirac electron in a gravitational field |.

By E. Schrodinger
(Presented on 25 February 1932 [cf. supra, pp. 46])

Translated by D. H. Delphenich

8§ 1. — Introduction.

The union ofDirac’s theory of the electron with the general theoryalétivity has
already been attacked repeatediytigner (%), Tetrode (%), Fock (%), Weyl (%), Zaycoff
(®), Poldolsky (°). Most authors introduce an orthogonal axis-crossett orld-point,
along with Dirac matrices that are numerically-specialized relativeitto With that
process, it is a bit hard to see whetherstein’s notion of teleparallelism, which will be
referred to in a partially-direct way, actually playso& or if things are independent of it.
Furthermore, it will then be necessary to recastRmannian concepts in the less-
familiar and decidedly more cumbersome form of “beimponents.” It seems desirable
to me to avoid all of that by using only the generalizedroatation relations [cf.infra,
equation (2)], likeTetrode (*). It shows that one will be led to the important rapers
', whose traces give the four-potential and wikoltk introduced as “components of
the parallel translation of a spinor” in an excepibn simple and direct way, and
likewise directly to the important system of equatifois infra, (8)] thatFock arrived at
by way of the detour of bein components. By a regiricto the allowable reference
systems (cf.infra, 84) that is completely analogous to the one in the ugeadial theory
of relativity, one will then infer the Hermiticitigbat are desirable for interpretations, as
well as acorrespondencéetween tensooperatorsand localc-tensors that is likewise
completely analogous to the one thanh Neumann (®) presented in the special theory
[cf., equation (57) below]. It seems to me that a furelgal advantage of this is that all
of the machinery can be constructed almost completely yoo@ operator calculus,
without referring to theyrfunction. Hopefully, one will not be scared awagnr the
exactfoundationof that machinery by its scope, for which the author&at notation is
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partially responsible. Once those preliminaries haenltompleted, thenplementation

and the comprehension of the theory might then provgetsimple. — | would like to
acknowledge my great debt to the work of my predecessoesammtfor all, but ask to be
allowed to derive everything anew on methodological gisuhat have still not been
found by anyone else.

§ 2. — Construction of the metric from matrix fields.
We shall call the world-variables:

Xo=iCt, X1 =X X =Y, Xz=z

The first is always pure-imaginary, while the other ¢haee real.Dirac’s basic idea was
to regard the Euclidian wave operator:

9> 0>  0° 9°
+ + +
. aE 09X 0X
as the square of a linear operator:

PO o0 20 00
Oaxo 16)(1 26)(2 3 !

[0}
in which they, are &4 matrices {) that must satisfy:

[O ] o o

YWt VeV = 25 (1)

i.e., that will be equal to the zero matrix or twibe tdentity matrix according to whether

[0}
i # kori =Kk resp. One knows that thg are determined by the requirement (1)
precisely, up to a so-called similarity transformation:

Vk S‘yk :

with an arbitrary, non-singular<4 transformation matri§. That freedom in the choice

[0}
of the y, is obvious, and one knows, as one says, that the freedexhausted in that
way.
Since one can also start from the square of theeleraent:

dx + dx + d¥+ dX,

() The number of rows will not figure at all in wifatiows.
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in place of the wave operator, that suggests that ameecgrd the requirements (1) in

[0}
such a way that the matricgs , along with the other givens that are involved with the

description of the electron also have the purpose ofidesg the world-metric, which
was tentatively assumed to be Euclidian. Should thiabe the case, but rather:

ds’ = g d¥' dx’,

then one would have to replace (1) wille{rode):

WK+ W W=20k. (2)

The K are functions of space and time; i.e., they afé dhatrices whose elements are
functions of thex; .

Equations (2) certainly have solutions for thet every poinP when one thinks of
the gk as being givein any way(but naturally, in such a way that they correspond to a
non-singular metric). The freedom in thehat still exists for a givegi is precisely the

[0}
same as the freedom in the above, namely: Under a transformation by an arbitrary

non-singular matrib& One sees the validity of that statement whenawngees along the
following line:

1. Above all, equations (2) can always be solved by &uitably-chosen linear

[0}
aggregates of an arbitrabjrac basis systeny, — That Ansatz will lead to requirements
on the coefficients that can possibly be fulfilled.

2. Conversely: If one has a systemypf about which, one knows only that (2) is
fulfilled, then one can give four linear aggregates oéhg that fulfill (1), and thus
define aDirac basis. If one then has, say, two systes@nd y, of solutions of (2) then

one can convert them into Birac basis for each of them bthe samelinear
transformation. However, those tviirac bases certainly go to each other bySn

transformation. x and y, will also be converted into each other in the samg wa

3. The fact thaany Stransformation will leave (2) untouched is immediate.

With that, the statements are proved.

(0]
A very essential difference between the and they is this: It is known that there is

[0}
a Hermitian system of;, , but there is, in general, no Hermitian systenyofnor even

one in which some of thg are Hermitian and the others are skew-Hermitianat
connected with the well-known reality properties theg demanded of thgy , namely,
they are pure-imaginary whame and only onendex O is present, and otherwise real.
(One must recall that the symmetric product — viz., dmd-commutator — of two
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Hermitian matrices will always be Hermitian.) Wéali go into the question of
Hermiticity in detail later on, but for now, we shafilp mention that in order to show
that for the time being there is not the slightesugdbfor restricting the transformation
S which is arbitrary at each point, touaitary one. Since thgx will not be Hermitian
without that restriction, one would initially have neason for imposing the condition of
the “conservation of Hermiticity.”

We can now derive an important system of differer@@lations for theg from (2).
We think of they as being given and equations (2) as having been solved poamf?,
and indeed in such a way that these solutions will bebgwd into four continuous,
differentiable matrix fields, which will obviously be pdss.

We now go from a poinP to a neighboring poinP’ and define the complete
differential of equation (2) in that sense:

5MDW+MD5W+5MW+ME5W:2?—X|"‘5X'. 3)

If we now observe the theorem Ricci, according to which, the covariant derivative of
the fundamental tensgj vanishes identically:

00.
gik;lgaixlik_rﬁ 9,19 =0, (4)

then the right-hand side of (3) will be equal to:
2(M g, +Ti g, )oX.
One can endow the right-hand side of (3) with tadtie when one sets:
oy = ox (5)
and observes (2). That is, the matrices:
W+ =y + Ty, ox (6)

will satisfy equation (2) at the poiR®t’when they satisfy it at the poin®.

The Ansatz (5) would generally be contradictorgne wished to apply it tall points
P’ in the vicinity of P. One can convince oneself by a simple calculatitat the
expression (5) is a complete differential if andyoif the curvature vanishes atP.
However, from what was said above, thevalues atP’ (we would like to call theny
+90" )f) can and will still differ from our solution Ansa(5) [(6), resp.] that was guessed
in some way by a similarity transformation, andeied it will naturally be an infinitely-
small one, if continuity is to be valid. That teere must be an infinitely-small matréx
such that:

o' y=1-g(y+op) L+ =p+H+ye—-£y,
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or
IU=TiyoX +ye—ey. (7)

In itself, £ can have a different, completely arbitrary, value day neighboring point.
However, shoulds have a correct differential quotient with respecktothene would
have to be proportional tdy for an advance in the direction (i.e., fordy # 0, while all
other components = 0), and so on for elaciherefore, should the changeymunder an
advance in an arbitrary direction be truly calculablenfits differential quotients, then
would have to be the sum of those four terms. Onehah come to the Ansatz:

E=—-1T, 5(',

in which thel’; are four matrices that depend upon position and time (higtuhe minus
sign is totally arbitrary). When that is substituted ), (one will get the important
system of differential equations that we announced afijve

=iy, +TiH-HT ®)
We will later express this in the form: The covaridativative of the fundamental vector
K vanishes, in complete analogyRacci’'s theorem, equation (4). On the other hand, the
source-free character of the four-current is closeiynected with this system of
equations. | would like to place special emphasis on tieHlat here we have derived it
purely from the demands on theetric with no reference being made to #dunction,

so wemusttake advantage of the transformation degree of freeddheDirac matrices.
The new operationB; will appear in that way and indeedinavoidably— from which,

we will see that they are intimately linked with tloeif-potential (but they do not define
a vector!).

We shall examine the necessary conditions for thmpedibility of equations (8),
namely, that the mixed second differential quotientsgerwthey are calculated in two
ways, must agree. When one again expresses the fiishatoes that are to be
differentiated by (8), one will find that:

D Y= U P = RV, - 9)
Here, R;” is the mixed Riemannian curvature tensor in the usualioota., e.g.Levi-

Civita, Der absolute Differentialkalkulpp. 91; Springer, Berlin, 1928).®y is an
abbreviation that we shall introduce for the six masic

() This agrees witlrock, loc. cit, equation (24), in content. The meaning of the sign isesemewhat
different from what it was there. If one would likeliong the two into agreement then one should read
our Section 5 on Hermiticity!



6 Schrddinger — The Dirac electron in a gravitationdd fie

Py = ﬁ—ﬂ +0 =Tl (10)

ox, 0x%

which are antisymmetric in the indic&sl, and which, as we will show, have a close
relationship to the electromagnetic field. For a giyefield, I'} is fixed by (8) andby is
fixed by (9), up to an addend that commutes withyallso it must be a multiple of the
identity matrix. Theby are easy to calculate from (9). Along with theone introduces
the contravariant ones: o
y'=d“ k. (11)

Furthermore, one states that:

=27 =Y. (12)

(Foru, v=1, 2, 3, the” correspond in some way to the spin, andifer0,v =1, 2, 3,
they correspond to velocity. See below.) We pointloat, from (2) and (11):

wy + Yy y=23" (13)
Now, one easily finds that:

=g y=2"y" -3 y"). (14)

The ¢ then produce anothgrwhen one commutes it with another That is precisely
what one needs in order to solve (9) 4oy . Indeed, the right-hand side of (9) can also
be written Raj, y* , in which Rq,, is the symmetricRiemann tensor. With the
commutation rules (14), one then confirms that:

Dy =—1Rapw §Y +fa O (15)

is the general solutions of (9))( fq is the remaining free multiplier of unity. Tlig
(when multiplied byt) will take on the role of the electromagnetic fiel®ne sees that
the appearance of those quantities through the construaftidie metric from matrices
will indeed be very suggestive, but that it is precisedfiiithat arenot determined by the
Wield, for the time being, but will remain completeigé of it.

Thes" have trace zero as commutators. Hence:

Tr @y :fk| rrl = 4fk| .
On the other hand, from (10):

Tr CDk| = i(TI’ F|) —i (TI’ Fk),
0%, 0x

() In content, this essentially coincides with the marexed bein equations (46), (48)Fack, loc.
cit.
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because differentiation and taking the trace commutdéh wach other, and the
commutation yields no contribution to the traceorié sets, say:

% IrF|:¢|
then:
_0¢, 09,
=7 Pk 16
. 0%, 0X (16)

The traces of thE, are then the four-potential (except for a factoi) of

8 3. — Transformation theory, part one.

From the basic notions of general relativityeaamingof all points:
X = X (X0, X1, X, Xa), k=0,1,2,3 (17)

should not change the form of the description of thingherefore, the functionx,
should assume only pure-imaginary values, wkjlex,, X, must assume only real ones,
so the functional determinant should remain positive. Wletlcat apoint substitution
Thegi then transform as a second-rank covariant tensor.

As long as we make no other demands uponytihesides that they should satisfy
equations (2), the question of how they will transforrderma point-substitution cannot
be answered uniquely, by any means. A similarity transdtion with a transformation
matrix Sthat varies from point to point will then remain coetply free before the point
substitution, as well as after it. \WWan generally determine that the transform as a
covariant vector under a pure point substitution, whichnaehat (8) will still be true.
The commutatof, )y — y 'y will then transform as a covariant tensor, as thl rest of
the equation:

oV
a—XV;—r#yﬂ, (18)

wheny is substituted as a vector. The similarity transdiom:
Y.=S'KS (19)

is then a thing-in-itself to be considered, so as onigyeamvinces oneself, thg, will
transform as follows:

r :srlr.s—srlﬁ, (20)
| 6)(,
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in order to preserve (8), and thusfferently from the x . By contrast, one would find
that with that convention, the following aggregate, fdick we would like to introduce
the symbolly :

0

Dk = —- Fk, (21)
0%,

will first of all (and this is obvious) behave like a covariant vectostgubion under a

pure point substitution (because that is certainly tonettfed / dxc by themselves and
was established for tHg) and thatsecondly because of (20), thex will transform under

anStransformation precisely as thetransform as a result of (19), namely:

0 =S'kS (22)
The meaning of is], then that:
=2 =2 _srs 555 @
28 28 0%

and one will then have:

-1
0 _0 :iS_GS S=S' "~ S+ Slﬁ, (24)

0% 0% 0%, 0% 0%, 0%

the latter of which is due to the identity:

-1
P s+5:95:20,

sts=|,
0%, 0%,

One confirms (22) by substituting (24) in (23).

The ®y that are introduced from (10) wilkst of all (and this is obvious) behave like
a covariant tensor under point substitutions, secbndly they will behave analogously
to (19) under a®-transformation:

), =Sty S (25)

where the latter is due to (22), and since, from thenitiehs (10) and (21), the
commutators of thély are:
CDk| = D| Dk - Dk D| . (26)

It should still be added that the traces of ¢he — viz., thef — will not change under a
similarity transformation, due to (25), but the tracéshe ' which we should calp, ,
probably will, because no transformation law thatnalagous to (19) [(25), resp.] is true
for them, but only (20).

We have presented all of this in “would be” form, hessathe convention that was
made is stuck with the arbitrariness that was mentidoelegin with: Since a point
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substitution generally implies ehangein the y in any case [indeed, the ol will
generally no longer satisfy equations (2)!], for the mdwice, an entirenanifoldof y -
fields will again be available, whose members will emdrge any one of them by an
arbitrary, coordinate-depende®&transformation. Moreover, none of those members is
initially distinguishedntrinsically in any way, nor is the one that was chosen above.

Now, it is strongly suggested (at least, for many purpoed one might greatly
restrict that freedom of choice by employing a (to sonw, unavoidable, but still
suggestive) desire that Hermiticity should be satistsdone likewise cares to do in the
special-relativistiirac theory. In order to see what one can achieve inrégyatrd, one
must draw one’s attention to the eigenvalues ofglaad their double products.

8 4. — Eigenvalues and Hermitization.

Since:
M e = Ok (no summation!),

from (2), k will have the eigenvalues/ g, , and indeed each of them twice, because it
has a zero trace. One sees the latter when one sets

Suv =5 (Vi o = Yu W) (26)

analogous to (12). One will then have:
V' sw=swy' =23, y,-3,y,), (27)

analogous to (14). Eaghcan then be represented as a commutator in many walysa, an
commutator will always have trace zero.

Nevertheless, thg have nothing but real eigenvalues, and as a result,céablem
can be made Hermitian by atransformation, but that generally does not happen
simultaneously(for example, fory and )1), because from (2) their symmetric product
equals Bo1 O, so it will be skew-Hermitian (sinag; is pure-imaginary).

We shall now further consider the produgtg, first fori # k. The square is [cf.,
(23)]:

WV =uy Dy v ==y ¥ yy*=-gi ¢*(no sumy).

The eigenvalues are then/gii g, and indeed each of them are double, since:
Wy =1y -vm,

as a commutator, must have trace zero. The eigenvalyésyoare equal and opposite
to the latter, and therefore the same. By contf@ist,= k, one will have:
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MYV = UV R,V = @= % V) V= 2%y~ g d®  (no sum),
(K V=1 = 1- ga g“ (no sum!).

% v* = 1 will then have the eigenvalues/1- g, g, and since it can be described as a
commutator:
WV =1=1(hy = y'n (no sum),

each of them will be doubley y* will then have the eigenvalues:

1+,/1- g, 9%,

and indeed, each of them will double. kar 0, those values are real, simpeg™ < 1.
Of the four matrices:

wy' wyh nyh wy (28)

only the first one is real then, while the otherethhave pure-imaginary values. They
will then possess (up to a facipprecisely the real behavior that would be realtentor
a physical four-vector’), That suggests that one might explore whethesetfour
matrices can be made simultaneously Hermitian (9kewnitian, resp.). One can show
that this is true as follows, with which, a numloérother matrices will be Hermitian at
the same time:

When the metric tensa@j is real andpositive-definite equations (2) can be satisfied

by Hermitian ) , just as equations (1) can be satisfied by He'mmil;;k. I might
probably regard that as being known without preof,one will indeed be dealing with

[0}
only the projection of a system ¢f that is assumed to be Hermitian from a rectangular

axis-cross to a skew one, so nothing but real mefits will appear as direction cosines.
Since thegj are real in that case, the contravarighiwill also prove to be Hermitian;
that is, one can also satisfy the contravarianagojos:

v y<+ <y =24k, (29)

() In the Euclidian case, they do, in fact, go overhmDirac four-vector (up to a facta. The
complication that hinders us from making tiethemselves Hermitian, namely, that their symmetric
product does not exhibit the required reality propertidsalso no longer exist. Farz k, one has:

WV Yy wy =mw(25 -1 V) V+w (25 -6 V)V =208,y V +20,y,y') - 2900 9"
That is, in factreal when neither of the indicésk is zero, while foi = 0,k# 0, one will have:

2 )6 ¥~ 2000 0™

This has, in fact, pure-imaginary eigenvalues, becaasknow that this is true fog y*, andg™ is pure-
imaginary.
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which are analogous to (2), tyermitian y* when the tensog” is real and positive-
definite. Now, that is not generally our tengiy but we can make it so when we distort
it and set the “mixed” space-ting®* (k = 1, 2, 3), which were simply omitted initially,
equal to zero. Let:

a’ at, a a° (30)
be a quadruple of Hermitian matrices that satisfy equsii@9) with the distorted metric
tensor. That is:

a a+a“a =2¢g* (31)

whennoneor bothindicesi, k are equal to zero, and:

aad+aa’=0 (32)
for k# 0. One now sets:
yk:é%aP$, fork# 0 (33)
and
0 a° 1 1 2 3
y =——=—=""——(001 )y *+ Qo2 )" + Qo3 )"). (34)
O O Joo

One can convince oneself by calculation tihetse* satisfy the undistorted equations
(29).

Since, from (32)a° will anticommute witha® (k # 0), a° a will be skew-Hermitian,
so from (33),/%, ¥/, ¥° will be Hermitian One further calculates from (34) that:

16 = Ook yk =a° fg—gg = Hermitian. (35)
g

By our construction, we have then made toatravariant y*, )% y° as well as the
covariant ) Hermitian Some further Hermiticities that we establish : afiéde
contravariant pure-space matrices:

= %(yk y' - yI yk) fork,1=1,2,3 (36)

will be skew-Hermitian, since they are the commatstof Hermitian matrices.
Furthermore, fok # 0, theys ¥ and likewise the/*)s , will be skew, because already
from (13), j6 will anticommute withy* (k # 0). We will then find from (34) and (35) that
% y° and y°y are Hermitian. It will then follow from this veryasily by lowering the
index that fork # 0, bothy \ and i )6, and therefore:

Sok = 3 (J6 W — W )0),
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will prove to be skew-Hermitian. However, we expressbserve thanhothing can be
said about theovariant g for k, | # 0, and likewise about thntravariant & ! Similar
statements will be true fgr°, )4, 15, 5. We shall combine all conventions together. By
construction:
1 2 3 0 0 -
.y Vv,V ny,.y w are Hermitian,
(37)
1 W, M0, 6 VS V16, 50, ¢ are skew-Hermitian k(1% 0).

We would now like to free ourselves of the special ah@tmatrix construction, which
served only to prove existence. One can easily seetlibatequirement thafour
suitably-chosen matrices from the ones that weeglgit (37) have the property that was
established in it (for example, the requirement thaat >, % y° should prove to be
Hermitian)is sufficientto imply that for givergy , the yfield is established uniquely, up
to aunitary transformation. Evemorefreedom will then exist for a givegy in order for
the )/field to not be that way: namely, transformationsdoyarbitrary matrix. Should
that transformation make the matriges y*, y*, y° Hermitian, from whichany matrix,
and thus also anklermitian matrix, can be derived by addition and multiplicatidh (
then the transformation ofiny Hermitian matrix must be Hermitian; i.e., the
transformation must benitary. Q. E. D.

In the future, we would like to admit only thogéields (one can also say, only those
reference system$)r which the matricess, y*, )% y° prove to Hermitian.Everything
that was established in (37) will then be true automégical\n “allowable” reference
system is determined by the metric up tanéary transformation.

It is very convenient that we have reduced the allow&tansformations to unitary
ones by the new requirement, since they are veryteasgrk with and trifling. We shall
not need to think about them at all, in general, sacareproceed as if thefield were
determined uniquely by the metric. Naturally, that now palse problem of how we can
determine the transformation law of thenore finelywhen we start from an allowabje
field and perform a point substitution (17), namely, in sacWay that we will again
produce an allowablesfield. The provisional prescription that was given at the
beginning of Section 3 — namely, substituting ghas if they formed a covariant vector —
does not at all satisfy that requirement, so it doeshall correspond to what happens in

[0}
special relativity, where ongdoes not remotelgubstitute they, . When speaking in the

language of Section 3, we can say: Any point substitutiont rbescoupled with a
completely-determine&-transformation (actually, one that is determined up tmitary
factor, but is naturallyot unitary in its own right), and that transformation will gerto

o

() First, it is known of thdirac y, that any matrix can be derived from them rationalBne then

infers that for they alone or the/* alone. The fact that® is missing from the quadruple above apd
enters in its place does not harm anything, because:

=000 ¥°+ Qo1 V' + 0oz ¥ + Qo3 1,

from which, ° can be calculated, since one certainlydpag O.
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determine the substitution. For that reason, one p#y speak of arextendedpoint
substitution. We will deal with that problem in the ns&ttion forinfinitely-smallpoint
substitutions.

8 5. — Transformation theory, part two.

We start from an allowablg«field and go over to the primed variables by the
infinitely-small point substitution:

X =Xt I OF X=X — K, (38)

which we extend to an infinitely-smaBtransformation in the sense that was proposed
by way of:
S=1+0, S'=1-06. (39)

As usual, we shall not explicitly state the replaceinué variables in the arguments. The
equations between primed and unprimed operators then elageh other them, not as
equalvalues of the arguments, but@grespondingones; i.e., athe samepoint. Now,
let:

- - a, (40)

to abbreviate.
Those quantities are pure imaginary when one and onlyndes equals zero, and
otherwise real. One will then have:

Y =y-ay +y0-0y,
(41)
Y=y +ay +yf<o-o k.

If one takes the first equation fo= 0 and multiplies it on the left by the second tren
that will give (always precise to only first-order quaes):

By gy radyy t ey e-oKy (42)
We use the right to dispose ®fin order to remove the second term in the right-hathel si

of this equation (replace it with another, resp.), sinddwarts the Hermiticity of the
result. That can be accomplished by way of:

1
O=- : : 43
2000 ROE “
Namely, we will then have:
-20 Ky =a yy~, (44)

and that will give:
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VoV =wy+a yr+0y+0 Ky

We argue on the basis of our conventions (37) that {#3), © is Hermitian Its
symmetric product withe y* is Hermitian or skew according to whethery® is. The
same thing will be true for the second term on thettigimd side, namely, it will be skew

for k # 0 and Hermitian fok = 0. Thus, they, y’* will actually possess the same
Hermiticity as theys *. With that, the status of thefield as “allowable” is legitimized.

Naturally, ® is not unique, but the value for it that was stated in {B)have the
following meaning: It is uniquely thidermitian component of the infinitely-small matrix
that is applied. An arbitrary infinitely-smalkewcomponent can enter into it. One sees
by some reasoning that it would leave all results uncharg®dously, it indeed also
corresponds to only one additionmlitary transformation!

We shall now connect this with the rigorous definitadra tensor operatar

When it is known or has been established for a system of operators:
TR

that it transforms under any infinitely-small extended point substitdtike a tensor with
a rank that is suggested by its indices and their positions, but withttoeuction of the
commutator:

we shall refer to the system of operators &engor operator with the rank in question.

The following important theorem is trud),(which will be obtained from a very easy
generalization of the results above:

Let T/’ be a tensor operator and let it be known that in some referentsrsyte

operators:
VoToi (46)

will be Hermitian or skew according to whether the zero in theceshf... po appears
an even or odd number of times, resp.; that state of affairs will then rentlaénsame in
any reference system.

One can obviously switch the words “even” and “odd” gt tineorem; i.e., one might
or might not include the zero . However, what oneannotdo is to worry about the
Hermiticity ofT;’)‘;'j_' itself. That is entirely trivial, because it r&atto theyOTj,’)‘(’_j‘_'!

One easily confirms that the symbol:

() The Hermiticity statements have an immediate meanimy when T;’;f does not include the
derivatived / dx. , but is simply a ¥4 matrix with coordinate-dependent elements.
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Dk = — = Fk (21)

that was introduced in (21) is a vector operator. Howévdry itself is not; it obviously
transforms [recall (20)] under an extended point substitutias:

FL:Fk—aLFi+FkG)—G)Fk—a—@. (47)

28

The last term in this is superfluous, and conflicts i vector property. On the other
hand, the pure derivative / 0x transforms covariantly in the elementary sense, so it
lacks the ©-commutator. If one combines the two then that incomrer@ will cancel
out, becaus@0® / dxx can be regarded as the commutatod éfox, and®. When one
speaks of “Hermitian” or “skew,” naturally, operatokelily that include differentiations
will have no immediate sense. Indeed, we have notpocated this into the definition
of a tensor operator.

If one hastwo tensor operators then one easily confirms by mulhglyout their
transformation formulas [similarly to what was dofmwe in the passage from (41) to
(42)] that under “writing them next to each other” (imatrix multiplication), one will
get another tensor when the operator that is writtethe left does not include the
differential operator. Otherwise, that will not be tryebecause it usually does not

commute with the substitution coefficiera$. (Indeed, that is no different from the usual

tensor calculus, either. Although dx would then be a vector, one would still not get a
tensor undemrdinary differentiation of tensor components, but only undevariant
differentiation.) The tensor character®f , which is defined by (10) or (26), must be
particularly debatable then. However, since we haready seen in 8 that thedy
transform under pure point transformations as a teinstire elementary sense that one
found there, but transform according to (25) under &Buybstitution, so they obviously
define a tensor operator under extended point substitutidhse jpresent refined sense of
the term.

We would now like to concern ourselves with the questérnwhat we should
understand the term “covariant differentiation” of asi@ operator to mean. We then
restrict ourselves to those operators thatnotinclude thedifferential operator so to
4x4 matrices whose elements are coordinate functiomt (@oes not obstruct the fact
that they can have tHerm of differential quotients; for exampl€y is acceptable, but

not [y .) We will then be dealing with a tensor operaT(jg'j_' under differentiation with

respect ta and the derivation of supplementary terms that would haldeiadditions
that transform as a contravariant tensor operatgrain. and a covariant one iag...
under extended point substitution.

We shall make use of the fact that an extended point itstiost will formally
decompose into a pure substitution an®-&ransformation under which the latter will
simply add the commutat@®. We shall further use the fact that those two irgigit
small transformations obviously commute. If we nowstoer the covariant differential
guotients in the elementary sense:
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o
R N LA (48)

0X;

and it will be obvious that this substitutes like a tereforank %7, under apure point
substitution. It would still be necessary to show tbae would simply add the
commutator with® under a@-transformation, likeT ;7" itself. Now, in the foregoing

expression, that will be true of all terms, with theeption of the first one, for which the
term:

o(T?3"0-0TA")

0X,
will get added, instead of:
aTre oo oA
ox, ox,

under the@-transformation. The term:

00 00
T pa-- _ Tpg'...
e ox ox, M

(49)
will then appear to bsuperfluous Wediscardit by adding:
TR T

in (48) as an extension of the commutator, and thus aatithe finaldefinition of the
covariant differentiation of a tensor operator:

o OTEE
Taﬂ...;) -
0X;

STHTES — 4 AT, =T T5 (50)

Proof. According to (47), the added term behaves like tbisder a pure point
transformation, it is a tensor of the desired rankl, @amder a@-transformation, one first
adds its commutator wit® and secondly drops the superfluous term (49). The proof that
(50) is a tensor is complete with that. One canwal#e (50) in the form:
T =0, e =T O, =TT =+, (51)

which differs from the elementary formula only by fiaet that the derivativél, enters
in place of the simplé / 0x, .

One now recognizes that the important system ofréifteal equations (8), upon

which we based our arguments to begin with, say nothirrg than that the vanishing of
the covariant derivatives of the metric vecgpr That is completely analogousRicci’'s
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theorem, which says the same thing about the metriortgrs Moreover, entirely the
same thing is true for the tensor that is derived froaruttoy multiplication and addition
with constantcoefficients; e.g.,/, sw , &, etc. Al of these have zero covariant
derivatives. That is an immediate consequence of ensaf8).

8 6. — Interpretation in terms of theW-spinor.

The restriction of theyfield to the ones that we called “allowable” will see
particularly convenient when one uses a four-compogefunction — i.e., a so-called
spinor — upon which the operators act as the basis for thepietation of those
operators. Should a system of equations:

To =0 (52)

be true inany reference system when it is trueane of themthen one would have to
determine thaty transforms as an invariant under a pure point substitudidras follows
under arS-transformation:

Y=S*y. (53)

The first statement is obvious, and undefSaransformation, it will actually follow from
(52) upon left-multiplying by§™* that:

ST SSly=T Y =0.
Under an extended infinitely-small point substitutione avill then have to set:

W'=y¢-0y, (54)

in which © is the Hermitian matrix (43). Now, sinc¢é is a vector operator, it will
follow that, among other things: When all four numbers:

Dsza—w—rkw (55)
0%,

vanish insomereference system, they will vanish in all of thert. would then be
appropriate to refer to them as twvariant derivativeof the spinomny.

One will get ordinary numbers from the operatgrsimbers) that will be interpreted
physically as having the flavor and notations of occupapimbabilities, densities of
electricity, current densities, transition probabilities al, in the following way: One
applies the operatdk in question to a spinay (viz., Ag) and thus defined the so-called
Hermitian inner product of the two spinogs and Ay ; i.e., one multiplies the first
component of the complex conjugafe by the first component ofy, the second
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component ofy~ with the second oAy, etc., and adds those four products. We would
like to write:

W AY (56)

for that, for brevity ). If A doesnot include the differential operatar/ dx. , but is
simply a 4«4 matrix with coordinate-dependent elements, then welsansay: We enter
the components ofy~ and ¢ as arguments in the bilinear form that is defined by that
matrix.

Now, when the matrix is Hermitian (skew, resp.), taisumber (56) will always
prove to be real (pure imaginary, resp.), which would lvessary for the components of

c-tensorsf one is to interpret them physically. Now, we savi 5 that: WhenT /7" is a

tensor operator, the Hermiticity @6 components will not be preserved at all under an
allowable transformation (i.e., under artendedpoint substitution), but only those of

Vol o5 - Hence, it will not be, say, thenumbersw*T;’;f_' Y, but thec-numbers:
T =W T W (57)

that exhibit the required reality behavior for a phyisteasor of rank77 . We would
now like to show that it is alsihose c-numberthat actually transform like @tensor of
rank 77, and for that reason, can be used for the physicadpirgtation of the tensor

operators. Namely, when one performs the extended pobdtitution (38), (40), one
will first obtain the following:

T =W -0 ¢)-ay )+ 6O —Op) (TLe —a, T —+-) (¢y—Oy)
= T QU Y T WOy T -y Ty w-aTo —+ ... (58)

(Two terms in@, namely, the ones that arise fron®4 and )p ©, will cancel each other.
Obviously, terms of second order@and a, have been suppressed.) The second, third,
and fourth term on the right-hand side drop out, so:SHm®nd and third ones are equal
to each other, sinc® will go over to the other factor under “transpositionida
therefore, since it is Hermitian, ®. From (43):

- 1 - -
- ZwD@yngﬂm :_atl)wmyl Yo yngﬂ-.-l/’ = a(l)‘/’DM va)ﬂ-.-w
00

will then cancel the fourth term, as asserted. @ilethen get the usual substitution
formula for thec-tensor (57):

() The notation that was chosen here wil factor in what follows.Ag By will meanthe same thing
asBy Ag, namely, it will always mean: First component?gf times the first one dBy plus the second of
Ag times the second &y plus, etc.
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To = T Al T~ +, (59)

etc. One specifically observes that in this proof,aperatorT/7 itself will have to be
either transposed with ag, or switched with it. The proof will then also be trinen;
i.e., T2 will also transform as a&-tensor then wher /7" includes the differential

operatord / 0% . It is merely the statements about Hermiticitgttivill then have no
immediate sense for the local tensor components.
It will be convenient for what follows to extend forrayb5) to the case in which one
is not dealing with a spinor, but its complex-conjugaide complex conjugate of (55)
would be:
oy

o 7/

but that wouldhot go to the ordinary derivative fédr= 0 (o =ict!) in the Euclidian case,
but to its negative, which would be very inconvenientnfodtunately, it will, in turn, be
necessary to change the signker 0 and to define the covariant derivativeyofto be:

ay"

Oy = 5T " (60)
0%,

(upper sign fok = 1, 2, 3; lower fok = 0).

We would now like to investigate the covariant derivat¥¢hec-tensor (57), which
probably must be connected with the covariant derivativhexensor operatothat was
defined in (50) in some way. We first obtain:

TP
TPo = B PHTAT g
e . aT?e 9
= af yon,’ﬂ...w+wDa—£°T5ﬂ_..w+wDyoa—X"w+wDyoT5ﬂ_._%—r;’awﬂymﬂ_._w—a_
‘A A |

We can extend the four derivatives that enter in®tthcovariantderivatives using (60),
(8), (50), (55), in which the derivatives wfwill vanish. We will then get:

T = Oy T W+ 0,y Tor W+ y T+ y T O, (61)
plus aremainder which we will now show must vanish. That remainder is:
remainder =ty ), T2

= YAy T (T, Vo =T, VT —VoToa Tty U To T+ Tog T
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The underlined terms cancel each other;, like !, will go to the other factor'.
What will remain is:
remainder =/ ATY ¢ with
A=TE Y, + (T 200 .

The proof will be complete when we can show that:

1 1
Ap=i(,x0)+—Th .y, (62)

2gOO 00

vanishes. [It will then follow from this thaf = 0, since )y has the non-vanishing
eigenvalue+./ g,, . If A =0 then the “remainder” will vanish, and equat{6t) will be

proved.]
Now, in the case of the upper sign, which willthee forA = 1, 2, 3, the operator (62)
will be theHermitian component of:

M+

Con VYo (63)

00

while in the case of the lower sign, it will be tbleew-Hermitiancomponent. One can
see with no great effort that when one commutes tperator with theHermitian
matrices)s , y*, y?, y° according to (37), in the casds= 1, 2, 3, it will beHermitian
without exceptionwhile in the case of = 0, it will be skew-Hermitian without exception
Therefore, its Hermitian (skew-Hermitian, resp.,ewid = 0) componentommutesvith
%, ', 2 v3, and will thus be a multiple of the identity. dther words, the component
whose vanishing is at issue will reduce to:

real part of  Tracel(; +2irg; YY) forA=1,2,3

00

Imaginary part of  Tracd ¢ +2i Coo VYo -

00

Now, Tracey, 6 = 4 goo and:

gﬂo rg) = r0,0/1 = %%, for A = 0, l, 2, 3.
A

The question then comes down to whether one agtoad:

() The dagger t refers to the transposed complex-conjugatex,mahich is almost always the
convention (but sadly, one can only sdyostalways).
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real part of Trac€, = —%, forA=1,2,3 (64)
X/1

Imaginary part of  TracE, = —M :

0%
We will now show that we have promised too mucham¥ély, wecannotestablishthe
foregoing equations, and indeed that is due tof#oe that thel , were originally
introduced and employed up to now exclusively irchsuta way thatonly their
commutatorswith other matrices played any role, which implg®cisely that their
traceswill vanish. The first time that they played deravas in the covariant derivatives
of spinors equations (55) and (60), which we first madeafsae precisely equation (61),
which was to be proved. What we can prove is tindy we are free tdefinethe trace
part in question by (64), and that is actually thee. First of all, it is certainly true in
somereference system, because the right-hand sid@dfpossesses the required reality.
Thanks to (47) and (43), we can then show thattimention that was made at the time
is invariant under allowable transformations. dlsbuppress the proof of that.

The covariant derivative of the spinor will be readrecise by that convention.
However, the convention is actually desirable ihamother regard. Namely, if the trace
parts that were spoken of wemet represented as the derivatives of one and the same
function & In goo) then the traces of thé, would then producepure-imaginary
electromagnetic field strengths. One could avoat tn the following way: Theeal part
of Tracel, and theimaginary partof Tracel , (A = 1, 2, 3), from which theeal field
strengths are derived, remdiiee, as before.

We must now cast our gaze upon the pumigary transformations, which are in and
of themselves also allowable, along with the exéehgoint substitutions. The only thing
that remains to be said is that such a unitarystoamation, which one would like to
perform, must obviously also be performed¢rirom the prescription (53). Thus, such
a unitary transformation will be completely harnslend irrelevant. In particular, the
components of the-tensors (57) will beompletelyinsensitive to it, and likewise for the
trace part, which was defined in (64).

The essential results of this section are:

1. The determination of the transformation law)(&dd the covariant derivative (55)
for the spinor.

2. The association aftensor components with the tensor operator by éid) the
proof that they actually transform like ordinarp$er componentsf the same rank

3. The presentation of a relatively-simple form@d) for the calculation of the
covariant derivative of e-tensor, which is a formula that is of interest mhabecause its
validity requires the in itself welcome (... text siisg from original)
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4. Thenormalizationof those trace components I6f that would give rise to the
appearance of pure-imaginary electromagnetic field strengththey were not
normalized.

§ 7. — The Dirac equation.

The operatoy® Oy is an invariant that one can aptly refer to as thagmitude of the
gradient.” The generalizddirac equation demands thay:(

Y Ocy=uy, (65)
in which g is a universal constant:
2rrme

h

Thec-vector that belongs tg* under the assignment (57)iiS¥, so:
iS“ =y )y y (69)

Since the covariant derivative of thperator y’* vanishes, from (61), that will reduce the
covariant derivative o to:

iSKa=Dh ¢ 6y w+y w6y Dy

If one forms the covariant divergence of this by caction:

() One can generally try to “symmetrize” this and take:
Lo+ oy (66)

to be the left-hand side of (65). However, this expressiarbe converted. The vanishing of the covariant
derivative ofy* says that:

Oy = y<O=-T} .
Contraction will yield:

dln
Oy = POz =T, = axﬁyﬂ. (67)

)%
As aresult:

dln _
%(Vka"'Dkyk):Vka‘a\/ayyzgmgkﬂkglm- (68)
X
'

That isnotan invariant operator, which should not surprise uamély, [, y*is not one either, nor does it
have any obligation to be such a thing. We have alreaqphasized above that the product of two tensor
operators will be certain to have the tensor propenty when thdeft-handfactor does not include the
derivative. Furthermore, the use of the Ansatz (66) dvetill proceed in the same way again, except that
one must merely pug™* in place ofy ; that is,g™* ¢ must transform as a spinor. For that reason, we
shall keep the Ansatz (65).
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IS =0y wy w+ry wy Dy,

then the first summand will be negative of the compmienjugate of the second or®, (
but from (65), that will be:

HY W,

which will then be real, sincg is Hermitian. Hence:
s’ ,=o. (70)

The source-free character of tmr-current which, from our assignment (57), belongs
to thecontravariant metric vectoas ac-vector, will then follow from théirac equation
and the fundamental equations (8) (Ebck, loc. cit., pp. 267)

We would now like to square tligirac equation in order to compare the result with
the ones that are familiar from the special thegrigés been omitted, for brevity):

y Oay' Oi= 2. (71)

One switches the first two factors by means of eqnd6@) (in the remark) and employs
the fact that from (2) and (12), one will have:

y/1 yl — gkI + Skl. (72)
That will give:

Ok (@ +sN O, + alg):/a vy O =42

]

It follows from the vanishing of the covariant detive ofs? that:

DkSkI—Skl Dk:—algT\/E SUI.

i
That gives [with another use of (72)]:

Dkgk|D|+SkIDkDI+aII;T\/E 'O = (A

]

From (26), and due to the antisymmetnginthe second term will be equal tokg! dy.

The first and third ones (in which one replagewith k) combine into the generalized
Laplace operator; one therefore ultimately gets:

() TheHermitianoperatory y° goes over toy y°)" in the first factor, while the skew operatgr” (1
# 0) will go to- (6 ). However, in exchangé), will include a sign change, but nat, (A  0).
Compare the above to equation (60) in the text, as welbtiisg the remarks that were made in regard to
equation (56).
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1
— 0,90 -3 b, =/~ (73)
Chak

It is interesting to substitute the expressiondyrin the expression (15) that was found
before. Inthat way, the invariant:
% I:ekl,,uv gd Suv

will appear. Due to the symmetry of the covariRtmannian curvature tensor in the
first and second index-pair, that will equal:

LRy (38" +87 .

If one actually calculates the symmetric product ofshaow (which | would not like to
do heren extenspthen one will use the known cyclic symmetry:

I:ekl,,uv + Rl,u,kv + R,uk,lv =0.

Having made use of that, one will finally get:

%Rkl,,uv§<I SUV:_% §<'ungkl,,w/:__,

|0

in which R is theinvariant curvature. Hence, the substitution @y from (15) in (73)
will yield the following:

1 R
— 04990 -——-11¢ =i£ (74)
Joeeh

In the third term on the left-hand side, one recognikesatell-established effect of the
field strengths on the spin tensor, and indeed the pace part ofdy has already been
solved for infy , which should probably be referred to as field strengthiserreal sense,
and as we have often mentioned, they will be comiylétee of the metric.

The second term seems to me to have considerablesticabmterest. Of course, it
is many, many powers of ten too small to be capablemécing say, the term on the
right-hand side. x will then be the reciprocaCompton wave length, which is
approximately 18 cmit. At any rate, it seems meaningful that in the geizemttheory,
any term that is equivalent to the enigmatic mass tesmid come into play at alf).
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() See aboveyeblenandB. Hoffman, Phys. Rev36 (1930), 821.



