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 As is known, graphical statics gives rise to a remarkable reciprocity for planar 
figures, under which any line of the one figure corresponds to a line in the other figure 
that is parallel to it.  Once Culmann had sought in vain to exhibit this reciprocity as a 
projective one, Maxwell succeeded in doing that by letting the two figures arise as 
orthogonal projections of two spatial figures that were polar to each other relative to a 
paraboloid of rotation, for which one of the two figures must generally be rotated through 
a right angle.  Cremona (*) avoided that rotation by replacing the reciprocity relative to a 
paraboloid of rotation by one that was relative to a so-called “null system.”  Although the 
connection between the two planar figures can be expressed most felicitously in that way, 
the rigorous development of the theory of frameworks derives no advantage from these 
investigations, in that respect, so can one, like Cremona, leave unanswered the question 
of whether two given reciprocal figures in graphical statics can always be represented as 
projections of two reciprocal figures of a null system.  As far as the author knows, this 
closely-related question did not find an answer anywhere in the later literature (** ).  The 
author would therefore like to bring Cremona’s examination to a conclusion, in the sense 
that it will be shown that Cremona force planes can be constructed with the help of null 
systems for all frameworks, as long as one can ignore their multiplicity.  For the sake of 
ease of understanding, we link everything to a specific example. 
 
 

                                                
 (†) Translator’s note: Those figures were not available in the version of the original that was used.  
 (*) In particular, see Cremona: “Les figures réciproques en statique graphique, trad. par Bossut,” 
Paris 1885, where one also finds a more precise bibliography.  
 (** ) Only after this article had gone to press was the author informed of the treatise of G. Hauck: 
“Ueber die reciproken Figuren der graphischen Statik,” Journal f. reine u. angew. Math. 100 (1887), pp. 
365, fig., in which the solution of the corresponding problem for the so-called Neumann type of projection 
is suggested (pp. 388).  
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 I.  First recall some theorems on null systems (*).  Consistent with our objective, we 
will then do best to start with their definition in the context of statics.  As is known, an 
arbitrary system of forces in space can be reduced to either a single force or a couple of 
equal and opposite parallel forces or to two skew forces g and k.  We are interested in 
only the last, so-called general, case.  One of the lines of action of the two forces can be 
chosen entirely arbitrarily in space, with which, both the position and magnitude can be 
determined.  Namely, if g and g′ intersect at G, and if K is the point of intersection of k 
with the plane [g, g′] then we will decompose g into two components g′ and n along g′ 
and GK, resp., and look for the force k′ through K that yields k for its resultant with the 
force – n that acts along KG.  The forces g′ and k′ will then be obviously equivalent to the 
two given forces g and k then.  Since g′ needs only to lie in a plane with g, one can come 
to any line of action in space by means of it.  Our reduction would then be absurd, in 
general, if g′ were also to intersect the line of action k.  Such lines are called null lines of 
the force system, since it will produce a rotational moment of zero with respect to any 
such axis.  If we call two lines that can be the lines of action of two skew forces that can 
replace the forces conjugate then null lines will be the lines that simultaneously intersect 
two conjugate lines.  They fill up all of space in such a way that the null lines that run 
through a point will lie in a plane – viz., the null plane of the point – and the null lines in 
a plane will run through a point – viz., the null point of the plane.  If one rotates the null 
plane around a line then the null point will move along the conjugate line, and 
conversely.  Since, on the one had, g = g′ + n, and on the other hand, k = k′ – n, in the 
sense of the calculus of segments, we see that after g and k have been displaced to a 
common point of attachment they must yield the same resultant as g′ and k′ after they 
have been displaced to the same point.  If we call this distinguished direction the axis 
direction of the force or null system then it will emerge from its definition that any two 
conjugate lines can be projected onto two planes that are parallel to the axis direction.  
If we now imagine that our construction of conjugate lines – and thus, the null lines – 
must produce the same resultant when we leave the positions of g and k unchanged, but 
they must be increased or decreased by the same ratio, then it will be clear that a null 
system is determined completely by a pair of conjugate lines and the axis direction, in 
which, the latter must naturally be chosen in such a way that the directions of the two 
lines will be projected onto two parallel planes.  The ratio of the forces that act along g 
and k will then indeed be known, and so will the line k′ that is conjugate to each line g′. 
 If we would like to find, e.g., the line k′ that is conjugate to a line g′ that is parallel to 
g then it must certainly go through the point of intersection K of k with the plane [g, g′].  
If we then give an arbitrary magnitude and sense to the force that acts along g, with 
which, the force that acts along k will also be determined, then we will decompose g into 
two components along g′ and the line through K that is parallel to it.  Now, the direction 
of k′ is determined by the fact that it yields the resultant g + k with the component g′ 
when it has been brought to K.  If g′ cuts g at G then k′ will be determined more simply as 
the line of intersection of the plane [Gk] with the plane K, which is parallel to the axis 
direction and g′. 
 

                                                
 (*) See loc. cit., introduction by M. J. Jung.  
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 II. We now begin with the consideration of an entirely simple framework that 
possesses the nodes P1, P2, P3, P4 (Fig. 1) and consists of the two trigons P1P2P4 and 
P2P3P4 .  The forces g1, g2, g3, g4 (which are denoted by G0G1, G1G2, G2G3, G3G0, resp., 
in the figure), which are found to be in equilibrium, might act at the nodes.  If we then 
think of these forces as having been brought together into the closed force polygon K0 K1 

K2 K3 K0, and understand C to mean any pole then the associated funicular polygon S0 S1 

S2 S3 S4 S5 must also be closed, so S0 S1 must coincide with S4 S5 . 
 Moreover, it just so happens that the planar tetragon g1 g2 g3 g4 can be represented as 
the projection of a spatial tetragon 1 2 3 4g g g g′ ′ ′ ′  that is obtained in the direction of the axis 

of a null system, and the latter spatial tetragon is conjugate in this null system to a 
tetragon 0 1 2 3K K K K′ ′ ′ ′   whose projection is the force polygon K0 K1 K2 K3 .  In order to 

arrive at that, we consider the reference plane to be the plane of the base, the direction 
that is perpendicular to it, to be the axis of the null system, and draw the spatial figures in 
folded outline (umgeklappten Aufriss).  In order to fix the null system, we then take the 
two conjugate lines 1g′  and 1k′  to be otherwise arbitrary, except that g1 and k1 = K0 K1 are 

their base lines, so we choose their outlines 1g′  and 1k′  to be completely arbitrary, with 

which, the points 0K ′  and 1K ′  will be likewise determined.  Now, the next side 2g′  of the 

first spatial tetragon must first of all have g2 for its outline and secondly, be conjugate to 

1 2K K′ ′  = 2k′  or lie in the null plane 1 1[ ]K g′ ′  of 1K ′ , so 2g′  will be easy to construct.  

Conversely, 2k′  is now determined as the line conjugate to 2g′ .  One then finds 2k′  as the 

base line in the null plane 1 1[ ]G k′ ′  of 1G′ , in the event that g1 and g2 intersect at G1 (so 1g′  
and 2g′  will intersect at 1G′ ) or by the method that was given in the previous paragraph 

(cf., also Fig. 2), in the event that g1 and g2 are parallel to 1g′  and 2g′ , resp..  The actual 

construction is easy to manage in both cases.  We can proceed in that way and obtain, in 
succession, 2K ′  over K2 from 3k′ , then 3g′  over g3, from that, 3k′  over k3 = K2K3 and 3K ′ , 
furthermore, 4g′  over g4, and finally, 4k′  over k4 = K3K0 , one must ask only whether 4k′  

once more goes over 0K ′ . 
 If we now denote the point of 4k′  that lies over K0 by 0K ′′  and understand C′ to mean 

any point over the pole C then the five rays from C′ to 0K ′ , 1K ′ , 2K ′ , 3K ′ , 0K ′′  will be 

conjugate to five rays of a plane that must intersect in four points 1S′ , 2S′ , 3S′ , 4S′  of 1g′ , 

2g′ , 3g′ , 4g′ , respectively; the same thing will then be true for their projections relative to 

g1, g2, g3, g4 .  These projections must then define a funicular polygon S0 S1 S2 S3 S4 S5, 
since they are parallel to the rays from C to K0, K1, K2, K2, K0 .  However, by assumption, 
the first and last side of it must coincide.  The same thing will also be true then for rays 
whose projections they are, since they will lie in the same plane, so it is ultimately true 
for 0C K′ ′  and 0C K′ ′′ , as well, such that 0K ′  and 0K ′′  then coincide, and as a result, 4g′ , 

along with 1g′ , must lie in the same plane that contains 0K ′ .  The first part of our problem 

is then solved, and one likewise sees that the same process can also be applied to 
arbitrarily many forces g1, g2, …, gn . 
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 The rest is very easy to obtain in our case.  The points 1P′ , 2P′ , 3P′ , 4P′ , whose 

projections are the nodes P1, P2, P3, P4 of the framework, resp., now lie on the sides 1g′ , 

2g′ , 3g′ , 4g′ , respectively, of the first spatial tetragon.  The generally open hexahedron 

that consists of the six triangles 1 2g g′ ′ , 2 3g g′ ′ , 3 4g g′ ′ , 4 1g g′ ′ , 1 2 4P P P′ ′ ′ , and 2 3 4P P P′ ′ ′  is now 

the spatial figure whose edges have the rods of the framework and the forces that act 
upon them for their projections.  It corresponds in the null system to the hexangle that 
consists of the points 1K ′ , 2K ′ , 3K ′ , 0K ′ , 1H ′ , and 2H ′ , whose edges have, on the one hand, 

the sides of the force polygon, and on the other hand, the stresses in the rods of the 
framework, as their projections.  The latter are, in each case, the connecting lines of those 
two points that are projections of the null points of the two faces of the hexahedron in 
which the edges that belong to the rods in question lie.  If one would like to find these 
stresses quickly from the figure then one would do well to assign the symbols K1, K2, K3, 
K4, H1, and H2 to the projections of those faces.  In practice, this notation will yield a 
much simpler overview than the one that is usually employed, which denotes the rods and 
their associated stresses with the same numbers, since the latter segments frequently 
partially overlap or go through each other. 
 
 
 III.  If one is dealing with a more complicated framework then the determination of 
the spatial n-gon 1 2g g′ ′ … ng′  whose projections are the lines of action of the given forces 

will come about in entirely the same way.  One likewise determines the spatial points 1P′ , 

2P′ , …, nP′  whose projections are the points of application of each force.  Since we do not 

intend to discuss all possible kinds of frameworks here, we will make the assumption that 
is made in practice that the points of application of the given forces lie on the boundary 
of the framework, so the rods that connect the nodes will always belong to a field of the 
framework.  We must then make the further assumption that at most three of the nodes 
P1, P2, …, Pn,  in general, will belong to the field of the framework.  The space point that 
belongs to a node of the field must then lie in a plane, which will be true for only three 
such cases with no further conditions.  Now, should more nodes lie on the boundary, at 
which no forces act, then we would think of them as each being distributed between two 
of the previously-treated nodes Pi and Pi+1, between which they will lie during a single 
traversal of the entire boundary.  Now, we have to think of a zero force as having been 
brought to these nodes, which will be represented by the point Ki in the force polygon, 
such that the space points that correspond to it are all to be found in the plane 1[ , ]i ig g +′ ′ .  

If j is the number of points that lie between iP′  and 1iP+′  then they and the points 1( , )i ig g +′ ′  

will define a j+3-edged face that belongs to the first spatial figure. 
 As far as the space points that correspond to the internal nodes are concerned, no 
general rules can be given for their determination.  We will first have to observe whether 
the framework decomposes into fields in such a way that every internal rod belongs to 
two and only two fields or the introduction of ideal nodes (*) would achieve that.  We 
understand that term to mean the point of intersection of segments that represent rods 
that, in reality, only pass over each other.  Four segments that correspond to rods in the 
                                                
 (*) See loc. cit., Appendice by Saviotti, pp. 63.  
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force plane that coincide in such an ideal node will, in fact, define a parallelogram, such 
that one will obtain the same stress for each rod in the various parts of it.  However, the 
case in which an ideal point has more than two rods passing over it requires special 
attention.  Ordinarily, an indeterminacy will then emerge that will be lifted by the 
condition that the stresses that result in every rod that is thought of as being broken by the 
ideal point are equal and opposite. 
 For the determination of the space points that correspond to the internal, real as well 
as ideal, nodes, one must start from the fact that they are associated with one and the 
same field of the framework and lie in the same plane.  One then looks for points that 
should lie in a plane with three already-known space points, and then seeks to gradually 
come to all space points of the first figure.  In that way, one will often not be able to go to 
work directly, but one must first choose one or more of the unknown points arbitrarily, in 
order to arrive at one’s objective by the study of their motion.  We will explain this 
process with some examples and content ourselves here with the general remark that the 
determination of the internal space point will become impossible, so the framework will 
become statically-indeterminate when all that is present are triangles that consist of 
internal, real or ideal, nodes. 
 
 
 IV.  As a first example, we choose the framework that consists of the four external 
nodes P1, …, P4 (Fig. 2) and the internal node P5 ; it decomposes into the two triangular 
fields P1P4P5and P3P4P5 and the tetrangular field P1P2P3P5 .  The three forces g1, g2, g3 
might act at P1, P2, P3, resp., whose force polygon is K0K1K2K0 .  One then determines 
the trigon 1 2 3g g g′ ′ ′  (the sketch is folded on one side in the figure) using the method that 

was given in II, and then 1P′ , 2P′ , 3P′ .  Furthermore, P4 is determined by the fact that it 

must lie in the plane 3 1[ , ]g g′ ′ , and finally, 5P′ , in such a way that it must line in the plane 

1 2 3P P P′ ′ ′ .  The first spatial figure is thus determined completely. 

 The so-called French roof truss carrier (Fig. 3) yields a similar example in which the 
advantage of our notation will, at the same time, become clear.  The equal and opposite 
forces g2, g3, …, g8 might act at the upper nodes P2, P3, …, P8, resp., while the support 
relations g1 = g6 = − 1

2 (g2 + … + g8) are verified at P1 and P9 ; the associated force 

polygon is K0K1…K8K0 . A choice of 1g′  and 1k′  first yields the lines 2g′ , …, 9g′  again, 

and with them, the points 1P′ , 2P′ ,…, 9P′ , and the points 10P′ , 11P′ , 12P′ , 13P′  are then 

determined in such a way that they must lie in the plane 1 9[ , ]g g′ ′ , and finally, 14P′  and 15P′  

are determined in such a way that must lie in the plane 5 11 12P P P′ ′ ′ .  The null system then 

immediately yields the force plane that belongs to the framework as the projection of the 
spatial twenty-two-hedron that corresponds to the twenty-two-gon.  As is known, one 
does not arrive at it by the ordinary methods of decomposition into components, so one 
requires some gimmicks.  (In the figure, one thinks of H4 as being mobile along the 
parallel to P3 P13 through H3, whereby H6 will move along a line that goes through S; H6 
can then be found from any position of the moving point 6H ′ .) 
 As a last example, we treat the framework with six nodes P1, P2, …, P6 (Fig. 4), and 
the sides and diagonals of the hexangle that they define as rods.  The latter will cross 
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over each other at three points A, B, C, which we must then introduce as ideal nodes.  The 
six forces g1, g2, …, g6 might then act at the six nodes, and we let K0K1…K5K0 be the 
associated force polygon.  By a choice of 1g′  and 1k′ , we will again find 2g′ , …, 6g′ , and 

from that, 1P′ , 2P′ , …, 6P′ .  We cannot give the points A′, B′, C′ that correspond to the 

ideal nodes directly at this point.  However, if we choose one of these points arbitrarily 
over A then B′ and C′ will also be determined immediately as lying in the planes 

1 1P P A′ ′ ′ (?) and 5 6P P A′ ′ ′ , and one then asks only whether B′ and C′ also lie in a plane with 

3P′  and 4P′ .  Naturally, that will not be the case for an arbitrary choice of A′.  However, 

when A′ moves along the vertical over A, 3 4P P B′ ′ ′  and 3 4P P C′ ′ ′  will describe two 

projective pencils of planes that have the corresponding vertical plane through 3 4P P′ ′  in 

common, such that one will generally obtain one and only one position that solves the 
problem.  The further pursuit of these considerations would also show us if more than one 
solution or only an imaginary solution exists.  Meanwhile, since some the easy 
understanding of this would entail some practice in the projective geometry of space, and 
the case in which the three diagonals run through a point must also be treated specially, 
we refrain from using a process that also links the actual drawing of the force plane to the 
train of thought that one must follow. 
 Obviously, we can think of every rod of the framework as being extended when we 
replace it with two equal and opposite points that are applied at its endpoints and 
correspond to the stress that acts in it.  If we then think of the framework as being fixed 
by the addition of an ideal rod then we can also give our problem the form: Determine the 
magnitudes and sense of the forces that are applied to the endpoints of the rod to be 
extended in such a way that they will provoke zero stress in the ideal rod with the given 
force system (*); one can once more neglect the ideal rod then.  However, we can break 
this problem into two parts: First, one determines that stress in the ideal rod that comes 
from the given force system, and then the stress in the ideal rod that comes from any two 
equal and opposite forces that act on the extended rod.  Corresponding to the demands of 
our problem, the determination of the force that acts on the extended rod then requires 
only the search for a fourth proportional.  The stresses that arise from the two force 
systems are then summed when they act simultaneously, and the stresses that are 
produced from the two equal and opposite forces will change that proportionally.  The 
problem will obviously yield only an indeterminate solution then or only infinite 
solutions when the stress in the ideal rod is zero for any magnitude of force in the 
extended rod. 
 In our case, we extend the rod P1P4 and add the ideal rod P2P6, such that only the 
ideal node B will remain.  The spatial figure that belongs to the given force system is 
indeed known immediately; B′ must then lie in the plane 3 4 5P P P′ ′ ′  here.  The force 

polygon T?T1T0 might belong to the second force systems s and – s, which acts in P1P4 ; 
we can then choose s′ and t′ over s and T0T1, with which, 0T′  and 1T′  will also be 

determined.  Moreover, 1P′ , 2P′ , 3P′ , and 4P′  lie in the null plane 0[ ]T s′ ′  of 0T′ , 4P′ , 5P′ , 6P′ , 

1P′  lie in the null plane 1[ ]T s′ ′  of 1T′ , and B′ again lies in the plane 3 4 5P P P′ ′ ′ .  Obviously, 

                                                
 (*) See Henneberg: Statik der starren systems, Darmstadt, 1886, pp. 228, figure.  
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zero stress will result in the ideal rod P2P6 if and only if the two planes 6 1 2P P P′ ′ ′  and 

2 6P B P′ ′ ′  coincide – that is, B′ lies along the line of intersection of the two planes 6 1 2P P P′ ′ ′  
and 3 4 5P P P′ ′ ′  or along the connecting lie of the two points α′ = 1 2 3 4( , )P P P P′ ′ ′ ′  and γ′ = 

4 5 6 1( , )P P P P′ ′ ′ ′ .  However, the three points α = (P1P2, P4P5), B = (P2P5, P3P6), and γ = 

(P5P4, P6P1) will also lie along a line, so the hexangle P1P2P5P4P3P6 will then be a 
Pascal hexangle, and the six given nodes must lie on a conic section (*).  Conversely, if 
the six nodes lie on a conic section, so α, B, γ lie along a line, then B′ will lie along the 
line α′γ′ or in the plane 6 1 2P P P′ ′ ′ , and the stress that results in the ideal rod P2P6, which 

might also have the magnitude s, will always be zero.  Therefore, if the given force 
system is not to be arranged such that it likewise produces zero stress in P2P6 then it must 
produce infinite stress in the original framework.  If the six nodes lie on a conic section 
then our framework will generally be impracticable. 
 This example will suffice to show how Cremona’s ideas can be employed in order to 
examine the static determinacy or feasibility of a given framework, and the use of the null 
system in the construction of force plane then takes on the character of a general method. 
 

___________ 
 

                                                
 (*) Cf., e.g., Müller-Breslau: Die graphische Statik der Bauconstructionen, 2nd ed., Leipzig, 1887; Bd. I, 
pp. 208, fig. 


