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On the discontinuitiesin eastic potentials.

Note by the member CARLO SOMIGLIANA

Translated by D. H. Delphenich

It is well-known that in the theory of Newtonian paial functions, the
discontinuities in these functions and their derivatply an essential role in both their
analytic properties, as well as their physical sigaifite. The same thing is true in the
theory of elastic statics. In that theory, the chions that represent the elastic
deformation are not given directly by integrals ovescgpand surfaces, but are defined
by means of differential equations whose integrals ameyever, susceptible to a
representation by integrals that are defined over spaceuaiades that will endow them
with properties that are analogous to those of Newtoniaenpal functions. It is
precisely that analogy that has given rise to almibsif &he more recent progress in the
theory of elasticity.

In two questions of noteworthy importance, | have a@sfigdad occasion to bring to
light the necessity of having a complete knowledgéefdiscontinuities in the functions
that are integrals of the equations of elastic stamckthat, by an obvious analogy, can be
calledelastic potentials The first of them is in regard to the deformatidmat texist in
the dielectrics that are interposed between conductiweitsare laden with electricity,
which is a question that is closely connected with the teswews of Maxwell in regard
to the way that forces act at a distance. The skeqaastion concerns the deformations
that are provoked in elastic bodies by slits in welirsed surfaces and successive
arbitrary displacements of the two edges of the sliiclv are deformations to which
Volterra gave the name dlistortions and which constitute the more recent chapter in
elastic statics.

The determination of those discontinuities, oncefanall, and in a general manner,
thus seems to be research that is particularlyastielg to me. It is all the more so since
that research can be carried out with methods thasiamgle and uniform when one
employs functions that are regular and differentiabléaaut limitation and play a role
that is analogous to that of the densities in Newtonigenpials, while the rest of it
conforms to the physical nature of the problem and tadhesonable criterion that one
must begin the study of the problems in their simplesinforConsistent with the
preceding viewpoint, it is also possible to summarize gbéperal result that | have
reached, and that can be presented as a conclusioratofedearch by saying that
everything reduces, in the final analysis, to the problénhe discontinuities in the
second derivatives of the ordinary surface potentiattfans. That problem has been
studied by various analysts and was given a completeécsoly Poincaréin hisThéorie
du Potential Newtonien.By various methods that were based upon formulaswbet
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established by C. Neumann and E. Beltrami, | have alsagubout a general solution in
a note that | recently communicated to this Acadefhwhich was intended precisely to
prepare the analytical elements that would be necefwatlye solution of the questions
that are treated in this paper.

Finally, it is very important to note that a complém®wledge of that property of
discontinuity will permit one to speak of a completechamnical interpretation of the
integral formulas of representation that exhibit a merégreement between the various
types of integrals that are presented in analysis andatiieus mechanical processes that
can provoke the deformations.

l.
The fundamental formulas

The componentss, v, w of the vector that gives the elastic displacemenia of
deformed elastic medium can be put into a form by whichvie been able to reduce the
formula, and which | discovered many years &)yotiiat represents those components by
means of definite integrals that are extended over sppat¢he surface of the deformed
body:

ob ¥, oV,
u=—+ -——=,
ox o0y 0z
W g2 0P 0%, av,
dy 0z O0X
0P v, ¥,
w= —+—2-——1,
0z O0x 0y

In these formulas, the functiods, W;, W,, W3 depend in a simple way upon three
other functionsA, B, C that are biharmonic potential and four other ogegh, (b, Us
that are harmonic or Newtonian potentials of the surfgaee then has:

= 1 a_A+@+a_C _;¢
8m(A+2u)\ ox Ay 0z) 4T+ 2u)’
1 (0B 0C 1
l'IJ = | |+t— )
' 877;1(62 ayj 2

(2)

1 (0C O0A 1
Y= ——| ——— |+—,,
? 87w(6x azj v,

() SOMIGLIANA, “Sulle derivate secondo della funzione grutiale di superficie,” Att della R. Acc.
delle Sc. di Torind1 (1916).
(®) SOMIGLIANA, “Sulle equazioni dell’elasticita,” Annaliidatem. (1889).
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1 6A 0B 1
Wy = —| —-— |+—u;,
8mu\ dy 0x

in which A, i are the elastic constants of the medium.
The explicit expressions for these potentials ardlyitlae following ones:

A = [kXrds+| Lrds-2uf 2y
(3) B :J.kYrdS+J' M rds+2yj VAR

C:J.erdS+J' Nrds+2,uJ' W

o= ] (ug2 a2 wic) <

on 0n on
(4)
oc ob) ds 6a oc) ds db oOa)ds
= _— —\W— , = Uu—-—
. J(Van Wanj ve= J( an anj v J( on anj
in which:

=

represents the distance from the poxi/(2) to the moving point of
the field of integrationg, b, c).
Z  the unitary components of the volume force.
, N the unitary components of the surface force.
the density.
the internal normal to the bo@that is bounded by the surfage

<<

S XTI X

These expressions for the formulas of representatiorediately lend themselves to
the introduction of vectorial symbols that | prefer te wsver the methods that are more
frequently used in mechanics.

The potentials (3), (4) have a well-defined significancallimf space (i.e., including
the space that is external to the b&lyand | have had occasion to show the utility that
one can derive for certain applications precisely hystering them in all of infinite
space, as one does with the usual Newtonian potentialssill then address their
singularities when one traverses the suratelependently of whether that surface does
or does not bound a finite-dimensional body.

From the preceding formulas, it therefore appearsthiealeft-hand sides of formulas
(1) are composed of the second derivatives of the bild@cnpmtentialsA, B, C and the
first derivatives of the Newtonian potentia#s ¢4, ¢b, ¢5 . We wish to determine the
discontinuities in not justi, v, w, but also in the components of the deformation and
strain, so we will know the formula that gives thecdistinuity of the first and second
derivative of the Newtonian potentials of the surfaoe] in addition, the one that gives
the dependency of the discontinuity on the first, sdc@nd third derivatives of the
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spatial potentials and surface biharmonics. The disagtés in the first and second
derivative of the harmonic potentials are known. We s first of all, that the other
biharmonic potential can be deduced from them, in additi®e.can then easily prepare
all of the formulas that occur in the calculationsttive shall encounter without having to
resort to the delicate processes of passing to thé tmt complicate the research
regarding questions of this genre in the theory of thenpiatéo an extraordinary degree.

We have called the potentigis B, C in (3) biharmonig since they are composed by
the same process as ordinary Newtonian — or harmemotentials in space and on
surfaces and double layers, except that in place of ¢neeakary potential 1r/ one will
find the functiorr. One therefore has relations for the equation:

A2A2¢:0

that are analogous to the ones that the Newtonian isemtave for the Laplace
equation:

A2¢ =0.

The fundamental formulas (1) are formed from denwestiof biharmonic potentials
and Newtonian potentials. Therefore, the express@nsoptain potentials of two kinds:
We generically saglastic potentialgo mean all expressions that are defined as sums of
biharmonic and harmonic potentials (or their derivatives)nahe right-hand sides of (1)
and (2), precisely, and that satisfy the indefinite equatof elastic equilibrium.

Letn, n" be the two opposing directions of the normal atiatpmn the surface. Let
fn, fv be the two values of a functidron the two sides of the surfaséhat correspond to
those normals. The jump that the function suffers upawersing the surface in the
directionn will f, —f,. For brevity, we introduce the notation:

fn - fn' = D [f]

If U is an ordinary surface potential:
ds
U=|h—,
Ins

in whichh is a regular function of the points §fthen one will have:
D[U]=0,
and the formulas for the discontinuities in thetfalgrivatives can be represented in the

following way when one takes the directions of thesaxesuch a way that has the
direction of the normah, and thex, y are parallel to the tangent plane at the point

considered:
D[a_u}: O, D a_U :0, D[a_u:|:—4]7'h
0x oy 0z
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The discontinuities in the second derivatives can ladscepresented in a simple way
if, in addition to the preceding hypothesis with respec¢héz-axis, one supposes that the
X, y axes are tangents to the lines of curvature of thecasfat the point considered. In
such a case, one will have the following relations:

[ A2 2 2
D au}:—ﬂ, D{au}:—ﬂ, D|:6U}:—4m(i+_1j,

| ox? R oy’ R, 0z’ R R
5
2 2 2
D oV :—477@, D oV :—477@, D oV =0,
| 0X0Z 0x dyoz oy oxoy

in which Ry, R; represent the radii of curvature of the surfackictv correspond to the
lines of curvature that are tangent to xrexis and to thg axis, respectively. In addition,
the radii of curvatur&®;, R, must be taken to be positive when their directiwgs, to the
center of curvature to the surface) coincide whtdt of the positive normal— i.e., in our
case, with the positive direction of thaxis ¢).

One can establish the corresponding propertyefltecontinuities in the biharmonic
potentials and their derivatives by means of thaperty of the Newtonian potentials.

Discontinuitiesin the biharmonic potential.

a) Surface potentials. — Let:
Vv :Jh rds

be such a potential. We suppose that the funttisrregular at all points of the surface
s. If one supposes that the poirty, 2) is outside of that surface then deriving thisl wil
give:

Y 9 d
= :jha—;ds:—j h?ds+>3{ hr—S

when one lets, b, ¢ indicate the coordinates of the current point lo@ surfaces and
when:

r=4(a=%7+(b-y°+(c- 3°.

The first derivatives ofV are then composed of Newtonian surface potential
functions, and there will therefore be no doubtoatheir continuity.
Consider the second derivative. One has:

() Cf., the paper that was cited above: “Sulla derivatersie; etc.”
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oV ot
> jh —+(x a)— ds,

namely:
1 P 1

0~
62\/ jh d+>{h—ds—j ha—d

The first integral is continuous upon crossg@nd the other two are discontinuous, but

their discontinuities are equal and opposite im.sigThat second derivative is then
continuous.

One has, analogously:

a1

= j h(x- a)—

6x6

so that derivative is also continuous, and the s#mmy can be said for all of the
remaining second derivatives.
For the third derivatives, one has:

,1 1
oV =2 haFd ha—Fd h r d
= ——ds+ s a—- d,

oxe J 4 0xX J 0X

51 , 1

oV 0

h—rds+ h— ds-| ha— d.

0y oxay 0xdy

Suppose that the axes are oriented as we indieatie end of the preceding section
(call this orientationcanonica), so one sees immediately that these derivatives a
continuous on the basis of the formula for the @hsimuity in the second derivative of
the Newtonian surface potential. The same thirgbeitrue for the other two:

v oV
ax® ' ox*dy
by reason of symmetry.
In addition, the formula:
1 a2 L > 1

P
6x622 jh_rds J iz g d
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1 1
0= 92 =
o [y
dyo7 =Jn oy 4* J = ¢aza ’
oV yl
—L ds
0x0yoz j n(x= ayaz

prove the continuity of that derivative. All that raims to be considered @V / 02, for
which one has:

61 61
:J'a—rs'[i'(z—¢r d,

oV
0z

from which, it will result immediately that:

(6) D BZV} = - 8rrh.

23

One can then conclude that:

All of the first and second derivatives of the Ithanic surface potentials are
continuous upon traversing the surface in question.

Of the third derivatives, if one supposes thatdhentation of the axes is canonical
then onlyd®V / 82> will be discontinuous, and its corresponding junifh e — 877h.

L) Spatial potentials. — It is very easy to prove that the biharmonicepbll of a
spaceSis:

U=Jkrds

in which k is the function that is analogous to density, #&adirst, second, and third
derivatives are continuous when one crosses tli@cgsthat bounds the spaée
Indeed, the continuity df is obvious, and one will have:

9 :—J'k ds = Ikrada+J‘ —rdS

62U Ik ds+j—ards+j %rds,

U '[

6k 6r 0%k or
ox® d J

227 gs

ka —ds+
o0&’ dx

ox?

for its first derivatives, and one will have analog formulas for the other derivatives.
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Now, the first of these formulas proves the continaf the first derivative. The
second one proves that of the second derivative (takingaccount the continuity that
was just proved of the first derivatives of the biharmsuoidace potentials). Finally, that
of the third derivatives results from the continuibat was just proved of the second
derivatives of the biharmonic surface potential.

The spatial biharmonic potentials and their first, second, and third deresare
continuous upon crossing the surface that bounds the space that is occupied bysthe mas

)) Double-layer potentials. — First of all, suppose that the surface on which the
double layer is distributed with a momeyis closed. Let its potential be:

W= jg—ds

and suppose, in addition, that the functipis continuous inside of it with no interruption
in the continuity of its derivatives either. By @res lemma, we will then have:

0
(o8 o o

if we denote the space that is enclosed by S and this formula will be valid regardless
of whether the pointx( y, 2) is internal or external t8 Therefore, if it were internal then
one could easily see that the only integral to be exdluarild have the limit zero.

At this point, it results that the functidM has the expression:

W= j rds— ZJ‘ g—+J‘ rA,gdS,

which is valid at every point in space. This formul@luees the search for the
discontinuity in W to that of the discontinuity in the surface potestighe spatial
potential that was just studied, and the known Newtonian patenand one finds it
easily by the prevailing methods that are currently used clear that the limitation on
the surfaces that it must be closed is not essential, and oneeeaily remove it by
observing that if it is open then it will suffice to poog the functiorg in an arbitrarily
fashion, continuing arbitrarily until it is closed, buhie preserving the continuity.

At this point, one can write:

W=W; - 2W, + W5,

in which:

lej.g?]rds sz.[ngS, W3:jrA2gdS.

These three functions and their first derivatives @ntinuous upon crossiisg The
same thing will then be true fo¥ and its first derivatives.
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As one can see, the second derivatived/pdndW; are continuous. As for those of
W,, one will easily find that when the axes have the oead orientation, they will all be
continuous, except fa¥ W, / 87, which has a jump of —7g; it will then follow that we
will have:

) D BZW} = 8719

ZZ

for W, and the remaining second derivatives will be continuous.
We have already seen how the third derivative§Vpfand W; behave; we find the
following formulas for those o\, :

D {GS\NZ}: 477(i+i —4776—9,

0z° R R z
D{aswz}z—él—ﬂg, D{aa\Nﬂ:_éma_g’
x>0z R Gra ox
D{aavvz}:_in, D{aawz}:_éma_g,
oy*az R, oyoz oy

while the remaining ones are continuous. One chabksh the discontinuities in the
third derivatives ofVV on the basis of this formula and the precedingdhat were found
for Wi, W5. One can conclude:

Of the ten third derivatives of the biharmonic diedlayer potentials, five of them are

continuous, when the axes are oriented canonicalllge discontinuities in the other five
are determined by the following formulas:

D {63\/;/}: - SN(i+ij g,
0z R R

(8) D —63W = 8—”9, D —63W = 8776—9,
| 0x*0z] R | 0x0Z" | 0x

D g = 8_779, D ﬂ = 8]7'6_9
| dy?0z| R, | dyoZ | oy

We note that the values of these discontinuitresexpressed in terms gfand the
derivativesdg / 0x, dg / 0x, and that these quantities depend upon only theesafg on
the surfaces. The intervention of arbitrary auxiliary valuesgin all of the spac& that
we have considered will therefore have no influemaé¢he final result.
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1.
Discontinuitiesin the elastic potentials.

In order to study the discontinuities in the fundarakekpressions (1) for the elastic
displacements and the corresponding components of thendgions and stresses that
are derived from them, we consider separately the expnsss these formulas that
depend upon the biharmonic spatial, surface, and double-layentipts that are
contained inA, B, C, and finally, the ones that depend upon the Newtonian felteg,
i, Y. The general deformation that results from thi d@compose into four types of
deformations (and it is easy to verify that each dafnthsatisfy the equations of
equilibrium), whose characteristic properties we wilidy separately. In that way, we
can recompose the properties of the complete expreswmobristrepresented by formula

(2).
Type 1.

For these deformations, one can take:
A=|kXrds B=|kYrds c=[kzrds
and therefore, in formula (1):

.1 (oa,08,0C
8m(A+2u) ox dy 0z)

_ 1 (oB oC _ 1 (6C GAJ _ 1 (0A 0B
l'IJ]_—— - T — |y l'IJZ—_ e l'IJ3—— - .
8mu\ 0z 0y 8mu\ ox 0z 8u\ dy 0x

The displacements can also be put into the form:

*

) (u,v,W):—/H’u 0P +1

Mo 0%y, 2) 8mu

A, (A, B, C).

In this caseA, B, C are biharmonic spatial potentials and they wilrthbe continuous
in all of space, along with their first, seconddahird derivatives.A, B, C will become
infinite at infinity, but their second derivativesill stay finite, and indeed, will be
annulled. Thereforay, v, w are finite and continuous in all of space andaameulled at
infinity. The components of the deformations anmcesses likewise stay finite and
continuous in all of space and go to zero at itffiniThese deformations thus present no
singularities. They were found by W. Thomson idesrto represent the deformations
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that were produced in an indefinitely-extended space by vofonges that act upon a
finite portion of it ¢).

Type 2.

If we intend thatd, B, C should have the values:

A:Jers, B:JMrds C:JNrds

then these deformations can be again put into the form (9)

These are biharmonic surface potentials, and theirdirdtsecond derivatives are all
continuous upon crossing the surfaceThe second derivatives are annulled at infinity,
so the deformations (9) will have no discontinuitesd they will be annulled at infinity.

On the contrary, since the components of the defamadre formed linearly from
the derivatives ofi, v, w, will contain the third derivatives &, B, C, and we have seen
that these are discontinuous, in general. In ordstudy such a discontinuity at a point
of s, we can suppose that the orientation of the axesi@gni@al with respect to the point
that is considered on the surface, and we can then applyformulas for the
discontinuities that were previously established witHurther discussion. The passage
to arbitrarily-oriented axes can be achieved with the usaladformation formulas.

If we introduce the usual notations for the coeffisesitdeformation:

XX:% y :ﬂ ZZ:a_VV
ox’ Yoy’ 0z’
_ 0w, 0V _du , 0w _ov, ou
V= —+—, Z = —+—, Xy = —+—
dy 0x 0z 0xX ox oy

then the discontinuities in these expressions caestablished immediately on the basis
of (6), which gives the only non-null discontinuity in thkird derivative of the
biharmonic surface potential. One then finds from (1fy tha

1 1 0°C 1
9 D[xJ=0, DI[w]=0, D[z]=— D =- N
9) [X [l [z] 874+ 21 {azz} A+

One finds, analogously:

@) Diyl=-+M,  Dlzal=-SL  Dlyl=0
U U

() W. THOMSON, “Note on the Integration of the Equaticof Equilibrium of an Elastic Solid,”
Cambridge and Dublin Math. Journ. (1848); Math. and Phys. Rajoérd, art. XXXVII; THOMSON and
TAIT, Treatise on Natural Philosophgect. 731.
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When these relations are substituted in the expresfwrithe components of the
stress:

XX :A €+2,UXX, YZ:ﬂyZl
Yy =A6+2uyy, Ly = U %,
Z, =A0+2uz,  Xy=px,
in which, @ddenotes the coefficient of cubic dilatation:
O=X+Yyy +7,

one will get discontinuities in the stresses, whiahtae following:

D [X] :‘Afzﬂ'\" DIV] =-M,
(10) DY) =~ fzﬂ N, D[z] =-L,
D[z] =-N, D [X] = 0.

Now, consider a surface element that is normalhéz-axis. The components of the
stress that acts upon its positive side willXeeY,, Z, while X_,, Y-, Z-, will be the
components on the negative side, and by the pregdalimula, we will have:

Xz+X+L =0, Y2+Y,+M=0, Z;+Z,+N=0.

Now, these are precisely the equations that mudtalisfied in order for the element
considered to be found in equilibrium under theoacof the two elastic stresses that act
upon its two sides and an external surface forcesetunitary components areM, N.
More generally, if one abandons the canonical tait@n of the axes then the latter
relations can be written:

Xn+Xn+L=0, Yo+ Y-n+M =0, Zn+Z,+N=0,

which are precisely the equations that must besfgadi on the surfacs in order for
equilibrium to exist when it is considered to béemal to the body and subject to the
actions of the external forde M, N.

This property immediately gives the mechanicahiigance of the deformations of
the type considered. It represents the deformatian indefinite medium when surface
forces whose unitary components areM, N act upon a surfacethat is situated at a
finite distance, and the medium can be assumect thomnogeneous and immobile at
infinity.

These deformations can be considered to be thenigrdeformations to which the
deformations of the first type will reduce when #p&ace in which the volume force acts
becomes a surface.
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One can make an interesting observation on the basamula (10). Consider a
surface element that passes throughzthgis — i.e., it is normal to the elemedt that
was considered first and has thaxis for its normal. The components of the strhas t
correspond to it ar&y, Yy, Zx, and the values that these quantities take on when the
surface element is considered to belong to the regitm which the positivez axis
penetrates are different from the ones that they &hen the element belongs to the
region of negative. As a result of (10), one will have:

A

D[xx] :_A+2/,[

N, D [YJ =0, D [Z] =

while those differences must all be zero in ordettiiose stresses to be equal.
If the element considered has thaxis for its normal then one will have:

A

D [X] =0, D[YY]:_/]+2,U

, D[Z]=-

instead.

An analogous fact will be true for an arbitraryfage element that passes through the
z-axis, namely, for the normal to the surfacd the point considered.

That singular fact will not impede continuous &@aequilibrium from existing for the
elements considered, since the elastic stressebawdontinuous when one crosses those
elements in the sense of their normal, and thezefoey will always be subject to equal
and opposite stresses in the region of the boahtoh they belong.

Type 3.

If we set:
g

A:Iuands, B= Iv—ds C= Iw—ds

then the deformations of this type can be writtethe form (9):

4rru :ai 6_A+6_B oc + AoA,
ox\ 0x dy 0z
47TV :ai 0A @ aC + AB, a=- A+,U’
oy\ ox 0y 9z A+2u
477W:ai oA @ 6C + A,C.
0z\ 0x 0y 9z

Suppose that the axes are oriented canonicallpngothe second derivatives with
respect t@ of the three biharmonic double-layer potenta|8, C will be discontinuous,
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and those discontinuities will be determined from foemi). Namely, one then finds
immediately that:
(11) Du=2u, DJ[v=2v, D[w=2(@+1)w,

in which relations the values afv, win the right-hand sides will be the same as the ones
that appear in the integras B, C. In order to calculate the discontinuities in the
components of the deformations, recall the continoitythe third derivatives of the
double-layer potentials that correspond to the derivation sgmbo

D}, DI DD, D,D? DyDyD;.

Xy =y

We will then have:

| 9'C | 9°A]
41 %] =D |a + ,
[l | 0x*0z 0x07 |
- 9°C _ 9°B |

4o =D |a + : etc.
Wl =Dy e 0y z

The results that one obtains when one applies thaulas that relate to these
discontinuities (8) are the following ones:

D [%{ :2a% +23—”,
X

w ov
D =20 —+2 —,
[l R dy

D[z] =2a (a—u+a—vj—2a(i+—ljw,

ox oy R R
(12)
\Y; ow
Dly] =4a —+2 (2a+ 1) —,
[y 0R2+ (20 + )6y
D [z] :4aé+2(2a+1)‘3—"x",
_p[2u, v
D [x/] _2(6y+6xj’
in which:

D[A=2(a+ 1)(%+g;j.
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Those formulas lead to the following discontinuitiesthe components of the stress:

ou ov ou w
X1 =24 (@+ 1| Goaao |+ | orap
ou ov ov w
13 DIY)] =2 (a+ 1)| —+— |+ 4u | —+a— |,
(13) [Yy] ( ) ox  ay U VAR
ou ov 1 1
D[Z] =-2u| —+— |- 4ua | —+— |w.
- ”(ax ayj ”(Rl RJ

The other three components of the stress have disciies that are proportional to
the right-hand sides of the last three equations (12).
The mechanical significance of this third type of defdroma will result from
composing it with the fourth type, which we shall nowdst
Type4.

On the basis of the formulas (1), (2), the deforomatif type 4 can be written:

A0 oy, oy,

4y = - :
A+2u 0x 0y 0z
v —— A 08 0y 0y,
A+2u0dy 0z 0X
b A 0P 3y, 0y,

CA+2u0z ox  ay’

in which the function®, ¢, ¢, (s are defined by formula (4).

These displacements are discontinuous when cop$sensurfaces, as are the first
derivatives of the Newtonian surface potentialsakifig into account the formula that
gives those discontinuities and the canonical taten of the axes, which one again
assumes, one finds immediately that:

D %}:0, D 99 =0, D %}:—MTW,
| OX | oy | 0z

D %—% :_47TU, D %—%} :—4]TV’ D %—% =0
| o0y 0z | 0z  0Xx | Ox  dy

from which, it follows that:
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A
—W,
A+2u

(14) D[u=-u, D[M=-v, D[w=-

in which, as in the preceding case, the valuas wfw in the right-hand side are the same

as the ones that appeared in the integrals (4).

In order to establish the discontinuity in the mments of the deformation, recall
that we denoted the direction cosines for the nbtanthe surface by a, S, ; and if we
take the origin to be the point on it at which welwto study the discontinuity and
suppose that the axes have the canonical oriemtdten, taking into account only the
terms of second order xandy, we will have:

2R R

for the equation of the surface, if the signs eftadii of curvature preserve the previous
convention that we used.
We will then have:

a:—%y ﬁ:—%y y= 1+(%j2+ a_Z i
ox ay " ox ay)

and at the origin of the coordinates:

a=0, B=0, y=1,
da _ 1 B _q w_y
X R [0)4 [0)4
a_a:O’ %:i’ a_y:O
oy ox R 0X

If one makes these assignments and applies theif@1(5) then one will find that:

D{ﬁ}:—4ﬂﬂ, D{%} =0,
ox? R oxay

D {%} =- 4n[i(wa—uy)} =- 477(&—%},
0X0z ox 0 R 0x

and so on. The results that one derives for theodtinuities in the components of the
deformation are the following ones:
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w ou w oV 1 1 ou ov
D[x]=-20 ———, D[p]=-20—-—, D[z]=20| =—+= |w+—+—,
%] R o O = oy DM [Rl ij X3y

(15)
\Y} ow
Dly,]=-4a —-2(2a +1)—,
[v4] aRZ ( +)6y

D[zx]:—4a%—2(2a+1)g—v)\(l,

y X

from which, it will follow that:
D [x+yy +2z] =0.
One will then have:
D [Xy] = 2u D [x4], etc.
(16)
D[Y]= uDly] etc.
for the components of the stress.
The search for the discontinuities that relateh® four types of deformation that
appear in the fundamental formulas (1) is now cetepl
However, in order find the mechanical significaméehe deformations that depend
upon the surface valuesv, win (1), we must consider the deformation that lkedtom
the composition of the last two types that we abei®d. The property of the
discontinuity that corresponds to this resultarfodeation can be deduced immediately
by summing the right-hand sides of (11), (14), €f), (15), and (13), (16), respectively.
In that way, one will find the following charactstic property of the discontinuity in the
indicated deformation:
a7) D [u] = u, D[v]=v, Diw = w;

i.e., the jumps that the components of the disptece suffer when one passes across the
surfaces are precisely equal to the values of the functions, w that appear in the
integralsg, ¢. In addition, one has:

D[x] = D[x] =0,
ox
ov
(18) D [w] =5y D[z] =0,
y
A ou ov ou ov
Dlz] =- —+—|, DI[x] = —+—,
12 )l+2,u(6x ayj % ox oy

and for the components of the stress, one will have



Somigliana — On the discontinuities in elastic potésntia 18

D[x] = 224 [, V), 5,00
T a+2ulox oy ox’

DY = 24 [N, V5,0
A+2ul ox ady oy
(19)
D[Z] =0,

DIY]=0, D[z]=0, DIX] :u(a—”ﬁ—Vj.
ox oy
These are then the properties of the discontinuiteshe components of the
deformation and stress for the deformation considerexveMer, it is easy to see, as was
proved recently jJ, that if one associates the following three of fbar preceding
conditions:
D[X] =0, DJ[Y] =0, D[Z] =0

with the conditions (17), which can be written:
(20) D[X)] =0, DI[Y)] =0 DI[z]=0

when one abandons the canonical orientation, and ast assume that the resultant
deformation that corresponds to indefinitely-extended spaaketermined completely
and uniquely verified on all of the surfasgthen this deformation, for the above, is
nothing but the result of composing types 3 and 4 that amg bensidered.

From the mechanical standpoint, the significance of saictieformation is the
following:

It is the deformation that is produced in an indefinitely-extended ellastlg when
one makes a slit in a finite surface s and displaces the edgesegjithct to each other in
such a way that any point experiences a displacement that is reprelbgrbedvecto(u,

v, W) when no force-either volume or surface acts upon the body.

It is clear that the analytical conditions that teenponentsl, v, w must satisfy in that
case (other than continuity, in general, and vanishingpfatity) will be precisely the
relations (17) for the surface However, the stresses must satisfy the conditiahthe
deformation must maintain equilibrium on the two edgethefslit, and that condition is
the one that is represented by the relations (20) ptgcis Therefore, mechanical
intuition agrees with the analytical result that gheblem and its conditions determine
uniquely.

One can then conclude that the deformation repreaeigsortion of the indefinitely-
extended elastic space, which is assumed to be fixediratyi, with the significance that
has been given to that term in all of the recentash that was cited above.

() Rend. della R. Acc. dei Lincei (1914-15).



Somigliana — On the discontinuities in elastic potésntia 19

Furthermore, that deformation is precisely the onelhatserved me for a general study
of the problem of elastic distortions.

It should be mentioned here that credit is due to Wetiegain particular, for having
drawn attention of mechanicians to that class of dedtions in a note that was inserted
in the “Rendiconti della R. Accademia dei Lincei” in 1901d¢ ahat in 1905, Volterra
subsequently published an interesting series of studiessa tRendiconti” in which the
pecularities of those deformations were studied in #sesthat their physical realization
can present. However, the conditions that Weingaest¢ablished for the two edges of
the slit are more restrictive than the ones thatiltdrom (20), in which one assumes that
all six components of the stress must be continuous upsaiag the slit.

The conditions that must be satisfied in order fortiisccur will result immediately
from our formulas (18), (19). The vectons ¢, w) along the slit will no longer be
arbitrary in this case, but they must satisfy the camst

au_o 6v:O ou odv _

= - —+—=0
0x oy dy 0X

for all points of the surface, in which it is intendéattthe variableg, y are referred to
the canonical orientation.

The Volterra conditions are even more restrictiveses in addition to the Weingarten
conditions, one supposes thhe first and second derivatived the components of the
stress are continuous upon crossing the slit, as weilbimamounts to conditions that are
even more limiting on the vectou,(v, w). It turns out that the two edges of the slit
cannot be subjected to displacements that are relatigély

The opportunity of giving a definition that is broaderstcope than the one that |
proposed for the deformations that are produced in elsties by slits and successive
relative displacements of the two edges results ftmrfact that is imposed upon us by
physical reality, in which we will proceed in a differenayvand exclude phenomena
from the theory that actually exist in nature, asbie®n pointed out on various occasions.

However, the proposed definition presents itself spaatasly from a standpoint that
is very important analytically, as well. Thereforlepne accepts that definition on the
basis of the results that were obtained in this rand,from its most general conclusion,
one can state the following proposition:

An arbitrary deformation of a bounded isotropic lgod the superposition of the
three deformations that are provoked in a homogesgelastic space that is indefinitely
extended and assumed to be fixed at infinity, namel

1. A system of volume forces that act in the spadetlieabody occupies.

2. A surface force that acts upon its surface

3. A distortion that is due to a slit in the surfacé the body and a relative
displacement of the various points of the slit tisaequal to the surface values of the
displacement?).

() Cf., GEBBIA, “Le deformazione tipiche dei corpi soliglastici,” Annali di Matematica, v. VII, pp.
3; MAGGI, “Sull'interpretazione del nuovo teorema di \éoha sulla teoria dell’elasticita,” Rend. Acc.
Lincei (1905), 2° sem.; “Sugli spostamenti elastici discontinui,” RendcALincei,” (1908), T sem.
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The analogy between this theorem and the property widwgan potentials that they
can always be considered to the superposition of a spatehtial, a surface potential,
and a double-layer potential is obvious. This characteribes elastic potentials
analytically, in a way, establishes the mechanigaliBcance of the integrals that appear
in the general formulas, and can be considered to tlst gemeral foundation for the
application of the methods of the theory of potentimsthe problems of elastic
equilibrium.

Secretary of the Academy

CORRADO SEGRE



