On a class of problems in dynamics

Note by P. STAECKEL, presented by Darboux

Translated by D. H. Delphenich

One knows that the surfaces whose linear elements are reducible to the Liouville form constitute a class for which the problem of geodesic lines admits an integral that is homogeneous of degree two with respect to the velocities.

With the goal of generalizing that theorem, I imagine some problems in dynamics in which the force function is constant. Let $q_{1}, q_{2}, \ldots, q_{n}$ be the independent variables upon which the position of the moving system depends. Let $q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{n}^{\prime}$ denote their derivatives with respect to time, and furthermore let $2 T$ be the vis viva, which is defined by the formula:

$$
2 T=\sum_{k, \lambda} a_{k, \lambda} q_{k}^{\prime} q_{\lambda}^{\prime} \quad(k, \lambda=1,2, \ldots, n),
$$

in which the coefficients are given functions of $q_{1}, q_{2}, \ldots, q_{n}$. Moreover, let:

$$
\varphi_{k \lambda}\left(q_{k}\right) \quad(k, \lambda=1,2, \ldots, n)
$$

be n^{2} functions that depend upon only the indicated argument and whose determinant we denote by:

$$
\Phi=\underset{(k, \lambda=1,2, \ldots, n)}{\left|\varphi_{k \lambda}\right|}=\sum_{k=1}^{n} \varphi_{k \lambda} \Phi_{k \lambda} \quad(\lambda=1,2, \ldots, n) .
$$

Now suppose that the quadratic form of the differentials $d q_{1}, d q_{2}, \ldots, d q_{n}$:

$$
\sum_{k, \lambda} a_{k, \lambda} d q_{k} d q_{\lambda}
$$

is reducible to the form:

$$
\sum_{k=1}^{n} \frac{\Phi}{\Phi_{k 1}} d q_{k}^{2}
$$

I therefore say that there exists not only the vis viva integral:

$$
\sum_{k=1}^{n} \frac{\Phi}{\Phi_{k 1}} q_{k}^{\prime 2}=\alpha_{1}
$$

but also $n-1$ other integrals of the differential equations of motion that are homogeneous of degree two with respect to the velocities, namely:

$$
\sum_{k=1}^{n} \frac{\Phi \cdot \Phi_{k \lambda}}{\Phi_{k 1}^{2}} q_{k}^{\prime 2}=\alpha \lambda \quad(\lambda=2,3, \ldots, n)
$$

in which the quantities $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are arbitrary constants.
Having said that, one easily sees that the problem is soluble by quadratures, and one finds the integrable equations:

$$
\begin{aligned}
& \sum_{k=1}^{n} \int \frac{\varphi_{k 1} d q_{k}}{\sqrt{\sum_{\lambda=1}^{n} \alpha_{\lambda} \varphi_{k \lambda}}}=\tau-t \\
& \sum_{k=1}^{n} \int \frac{\varphi_{k \mu} d q_{k}}{\sqrt{\sum_{\lambda=1}^{n} \alpha_{\lambda} \varphi_{k \lambda}}}=\beta_{\mu} \quad(\mu=2,3, \ldots, n),
\end{aligned}
$$

in which the quantities $t, \beta_{2}, \beta_{3}, \ldots, \beta_{\mu}$ are arbitrary constants.
For $n=2$, one recovers the equations that Liouville gave $\left({ }^{1}\right)$.

[^0]
[^0]: $\left({ }^{1}\right)$ One can also consult the celebrated paper by Liouville: "Sur les équations différentielles du movement d'un nombre quelconque de points matériels," J. de Math. (4), t. 14, in which one will find a special case of the remarkable theorem that was discovered by Staeckel that is already given for arbitrary n.

