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Introduction 
 

 1.  The n-dimensional manifolds that will be considered in this paper will be closed 
and continuously differentiable (1).  The question of whether a non-singular, continuous 
direction field exists on such a manifold is answered by the following well-known 
theorem (2): 
 
 Theorem A1 .  A singularity-free, continuous direction field exists on the manifold Mn 
iff the Euler characteristic of Mn has the value 0 (§ 5, no. 2). 
 
 Therefore, on the one hand, amongst all closed and orientable surfaces, the ones with 
the topological type of the torus are the only ones that admit the existence of a continuous 
direction field (3); on the other hand, one can endow any manifold of odd dimension – in 
particular, any three-dimensional manifold – with a continuous direction field (§ 6, no. 
1). 
 However, since one would not expect that all manifolds of odd dimension behave 
precisely the same way in relation to the continuous direction fields that exist on them, 
the contradiction that was formulated just now (e.g., between n = 2 and n = 3) compels 
one to look for a refinement of the original question.  The following question is closely 
related: Let an n-dimensional manifold Mn and a number m from the sequence 1, 2, …, n 
be given.  Is there a system of m direction fields on Mn that are linearly independent at 
every point of Mn? 
 This question, which is answered by Theorem A1 for m = 1, and which commands 
special and self-evident interest for m = n − 1 and m = n (cf., no. 5 of this introduction), 
defines the subject of the present paper.  Indeed, the question will not be answered 
completely, in the sense of presenting the generalization of Theorem A1 to a necessary 
and sufficient condition for the existence of a system of m independent direction fields – 
in the sequel, referred to briefly as an “m-field.”  Rather, some theorems will be proved 
that, on the one hand, serve to resolve the problem in many special cases, and which, on 
the other hand, represent new contributions to the general topology of closed manifolds. 

                                                
 (1) Cf., chap. XIV, § 4 of  Topologie (v. 1) of Alexandroff and Hopf (J. Springer, Berlin, 1935).  This 
book, whose terminology we will follow in this paper, will be briefly referred to as “AH” in the sequel. 
 (2) AH: chap. XIV, § 4, Theorem III. 
 (3) Poincaré, Journal de Liouville (4) I, pp. 203-208.  



Stiefel – Direction fields and teleparallelism in n-dimensional manifolds.                     2 

 2. Before we formulate the most important theorem, we recall a theorem that is 
related to Theorem A1 and is likewise well-known (4): 
 
 Theorem B1 .  There exists a direction field on any manifold Mn that is singular (i.e., 
discontinuous) at no more than finitely many points.  The number of these singularities, 
when counted with the correct multiplicities (“indices”), is independent of the particular 
field: It is always equal to the characteristic of Mn (§ 5, no. 2). 
 
 We shall prove the following generalization of this theorem: 
 
 Theorem Bm .  For any m (1 ≤ m ≤ n), there exist m-fields on any Mn whose 
singularities (i.e., points of discontinuity for the individual direction fields or points of 
linear dependency for the various fields) define a complex of dimension at most m – 1.  
With a correct enumeration of the multiplicities of the singularities, it is a cycle, and the 
homology class of this cycle is independent of the particular m-field: It is a distinguished 
element of the (m – 1)th Betti group (4a) of Mn (§ 4, no. 4, 5). 
 
 We shall call this homology class Fm−1 the “mth characteristic class” of Mn.  In the 
case of m = 1, it is the zero-dimensional homology class that consists of a point of Mn, 
multiplied by the Euler characteristic. 
 Theorem A1 will now be generalized, in a certain sense, by way of the following 
theorem: 
 
 Theorem Am .  There exists an m-field on Mn whose singularities define a complex of 
dimension at most m – 2 iff Fm−1 = 0 (i.e., the zero element of the (m – 1)th Betti group of 
Mn) (§ 4, no. 5). 
 
 It follows from this immediately that: 
 
 Theorem mA′ .  In order for a singularity-free m-field to exist on Mn, it is necessary 

that: 
F0 = F1 = … = Fm−1 = 0. 

 
 However, this condition might not be sufficient. 
 
 
 3.  This suggests the problem of determining the characteristic classes Fm−1 (m = 1, 2, 
…) for a given Mn.  In the case m = 1, the determination of Fm−1 is equivalent to the 
determination of the Euler characteristic of Mn, and on the basis of the Euler-Poincaré 
formula: 

∑ (−1)r ar = ∑ (−1)r pr, 
 

                                                
 (4) AH: chap. XIV, § 4, Theorem I.  
 (4a) The coefficient domain to which these Betti groups relates is defined in § 4, no. 3 (cf., also AH: 
chap. V).  
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in which the ar refer to the numbers of r-dimensional cells in a decomposition of Mn and 
pr means the rth Betti number of Mn, one can express it in two different ways: namely, in 
terms of the ar and in terms of the pr. 
 The first of these two possibilities seems to be capable of being carried over to an 
arbitrary m (§ 5, no. 3, footnote 22); however, the more important question is whether 
one can also represent the class Fm−1 in a way that corresponds to the representation of 
the characteristic on the right-hand side of the Euler-Poincaré formula, and thus in terms 
of known topological invariants of Mn.  Moreover, if the answer to this question, which 
was unknown to us up till now, is in the negative then that would teach us something 
new: Fm−1 would be a new topological invariant of a manifold. 
 There exists yet another relationship between the class Fm−1 and the Euler 
characteristic, in another regard: The intersection number of Fm−1 with an (n – m + 1)-
dimensional manifold that is embedded in Mn is congruent (mod 2) to the characteristic of 
that manifold, as long as the embedding fulfills certain requirements that are formulated 
in § 6, no. 2. 
 
 
 4.  The determination of Fm−1 for a given manifold is achieved in some cases with the 
help of Theorem Bm alone; on the basis of that theorem, one indeed needs to construct 
only a special m-field that is constructed so neatly that one can specify the complex by 
means of its singularities.  In this way, we will treat the (4k + 1)-dimensional projective 
spaces as an example; it will be shown that: 
 
 Theorem C.  For the (4k + 1)-dimensional real projective space P4k+1, F1 is the class 
that contains the projective line, so it is therefore non-zero (§ 6, no. 3). 
 
 This theorem, as well as in the fact that there is a continuous direction field on any 
odd-dimensional manifold, includes the fact that: 
 
 Theorem C′.  There is a continuous direction field on P4k+1, so for any pair of fields 
there exist points at which the directions of the two fields are either equal or opposite. 
 
 This property of projective spaces allows one to prove certain algebraic theorems 
whose proofs seem to be unknown, up to now, when one works with the usual algebraic 
lemmas (§ 6, no. 3). 
 
 
 5.  The question of whether an n-field exists on an Mn deserves a special and self-
evident interest; namely, the existence of such a field is equivalent to the idea that one 
can introduce a teleparallelism on Mn, or, as we also say, that Mn is “parallelizable.”  
Therefore, we call Mn parallelizable when one can decompose the totality of all directions 
in Mn into mutually disjoint, single-valued, and continuous direction fields that we call 
“parallel fields,” such that the following condition is fulfilled: If v1, v2, …, vk are 

directions at a point p of Mn and 1′v , 2′v , …, k
′v  are the same directions at another arbitrary 

point p′, as deduced from some parallel fields, then the linear independence of the i′v  
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follows from the linear independence of the vi .  We will briefly call directions “parallel” 

when they are taken from the same parallel field. 
 In fact, one easily sees that parallelizability is identical to the existence of an n-field: 
If an n-field exists then one calls two directions v, v′ at the points p and p′, resp., 

“parallel” in the event that their components relative to the directions of the n-field at p 
and p′, resp., agree with each other, up to a positive factor; one has then introduced a 
teleparallelism.  On the other hand, if a teleparallelism is defined then one distinguishes n 
linearly-independent directions at a fixed point; the directions that are parallel to these 
directions at the remaining points of Mn then define an n-field. 
 Non-orientable manifolds are not parallelizable.  On the other hand, one easily shows 
that the existence of an n-field on an orientable manifold already follows from the 
existence of an (n – 1)-field.  With that, the examination of parallelizability is completely 
converted into the examination of (n – 1)-fields.  It is therefore no restriction when we 
assume that m < n in what follows.  Theorem mA′  yields: 

 Theorem D.  The vanishing of all characteristic classes F0, F1, …, Fn−2 is necessary 
for the parallelizability of Mn. 

 Here, as well, – confer Theorem mA′  − one should not assume that the condition is 

sufficient. 
 Since a group manifold (5) is certainly parallelizable, Theorem D yields a necessary 
condition for a given manifold Mn to be able to be made into a group space. 
 
 
 6.  All manifolds for which the Euler characteristic is non-zero are certainly non-
parallelizable − like, e.g., the spheres of even dimension − so one indeed also has F0 ≠ 0; 
neither are the projective spaces of dimension 4k + 1 that were mentioned in Theorem C.  
By a product construction, one can further prove: 
 
 Theorem E.  For any dimension n that is different from 1 and 3, there are n-
dimensional (closed and orientable) manifolds that are non-parallelizable (§ 6, no. 2). 
 
 For n = 1, there is a single closed manifold, namely, the circle; it is trivially 
parallelizable.  The question of parallelizability is then first open only for n = 3, and there 
one has: 
 
 Theorem F.  Any three-dimensional closed and orientable manifold (5a) is 
parallelizable (§ 5, no. 3). 
 
 This remarkable special position of dimension three once again points to the difficulty 
in the search for a classification of three-dimensional manifolds; the attempt to divide the 
orientable three-dimensional manifolds into parallelizable and non-parallelizable ones 
would then fail. 
                                                
 (5) AH: Introduction, § 3, no. 17; there, you will also find references.  
 (5a) In addition, the manifold must fulfill certain differentiability assumptions (cf., § 5 and Appendix I).  
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 7.  The theorems that were stated in this introduction will be formulated and proved in 
§§ 4-6; §§ 1 and 2 have a preparatory character.  In § 1, only the definition in no. 1 and 
the results of no. 4 are important for the remaining part of the paper.  In Appendix I, the 
determination of the class F1 for three-dimensional, orientable manifolds will be 
discussed in detail that was only suggested in § 5, no. 3.  Appendix II subsequently 
arises; in it, it will be proved that a manifold with an odd characteristic that lies in 
Euclidian space cannot be represented by regular equations (6). 
 I have already reported on the individual partial results of this paper in other places 
(Verh. der schw. naturf. Gesellschaft, 1934, pp. 270; furthermore, Enseignement 
mathématique, 1934, 1, pp. 6). 
 At this point, I would like to thank Herrn Prof. H. Hopf for the impetus to do this 
work and for his enduring interest in its progress, as well as for his worthwhile advice at 
decisive moments. 
 
 

§ 1.  The manifolds Vn, m . 
 

 1.  Definitions.  In the sequel, we shall call an ordered, normalized orthogonal system 
σn, m of m vectors v1, v2, …, vm that contact a point in n-dimensional Euclidian space Rn 

an m-system in Rn.  In this, let m be constrained by the inequalities: 
 

0 < m < n.      (1) 
 
Vn, m is defined to be the set of all m-systems σn, m at a fixed point of Rn.  If one introduces 
a notion of neighborhood into this set in a natural way then Vn, m becomes a topological 
space whose points v are the m-systems σn, m . 
 Vn, 1 is homeomorphic to the (n − 1)-dimensional sphere Sn−1 that it traced out by the 
endpoints of the vector v1.  However, if m > 1 then we displace the vectors v2, …, vm 

of σn, m parallel to the endpoint of the vector v1.  Therefore, Vn, m can also be described as 

the set of all (m − 1)-systems in Rn that are tangential to Sn−1.  In particular, Vn, 2 is the set 
of directed line elements on Sn−1. 
 One can arrive at another representation of the space Vn, m by stereographic 
projection, which we will briefly denote by V in what follows: If one projects Sn−1 from 
its North Pole onto its equatorial space Rn−1 then a system σn, m−1 that contacts the sphere 
at a point p goes to an (m – 1)-system σn−1, m−1 in Rn−1 that contacts the image point p1 to 
p.  σn−1, m−1 is established uniquely by its contact point p1 and the (m – 1)-system that is 
parallel to σn−1, m−1 of a Vn−1, m−1 = 1V′  that is embedded in Rn−1.  A point v of V is thus 

given by a point p1 of Rn−1 and a point v1 of 1V′ .  We briefly write: 

 
v = p1 × v1 .      (2) 

 

                                                
 (6) One can also confer AH: Introduction, § 1, no. 7.  
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This representation breaks down only for those systems σn, m−1 that contact the North 
Pole.  In order to also treat these systems, we project Sn−1 onto Rn−1 from the South Pole.  
Analogous to (2), one gets: 

v = p2 × v2 .      (2) 
 
v2 is a point of the set 2V′  that features in place of 1V′  under the second projection.  If we 

denote the equatorial sphere of Sn−1 by Sn−2 then the two points p1 and p2 go to each other 
under the transformation by means of reciprocal radii in Sn−2. 
 Formula (2) describes a relationship between V and 1V′ ; i.e., between Vn, m and 

Vn−1,m−1.  By iteration, we obtain a relation between spaces of the sequence: 
 

Vn, m , Vn−1, m−1 , …, Vn−k, m−k, …, Vn−m+1, 1 = Sn−m.  (4) 

One can infer the following conclusions from this: 

 I. Any point of Vn, m possesses a neighborhood that is homeomorphic to the interior 
of a Euclidian ball. 

 II. Vn, m is connected.  (Due to (1), Sn−m is connected.) 

 III. One has the recursion formula for the dimension µn, m of Vn, m : 

µn, m = µn−1, m−1 + (n – 1),    (5) 
so 

µn, m = m ⋅⋅⋅⋅ 
1

2

m
n

+ − 
 

.    (6) 

 
 

 2.  Decomposition of Vn, m .  For our first projection, Sn−2 bounds the closed ball E1 in 
Rn−1.  We define: 

K1 = E1 × 1V′ .       (7) 

 
Analogously, for the second projection, one has: 
 

K2 = E2 × 2V′ .       (8) 

  
V is then the set union of K1 and K2 : 
 

V = K1 + K2 .      (9) 
 
 If one iterates this decomposition of Vn, m for the sequence (4) then it follows 
inductively that: 
 
 VI. Vn, m is a polyhedron. 
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 It now follows from I-IV that: 
 
 Theorem 1.  Vn, m is a closed manifold. 
 
 We call the manifolds of the sequence (4) the manifolds that are associated with Vn, m. 
 For the intersection of K1 and K2, one gets: 
 

For the first projection:  K1 ⋅⋅⋅⋅ K2  = Sn−2 × 1V′ ,    (10) 

 
For the second projection:  K1 ⋅⋅⋅⋅ K2  = Sn−2 × 2V′ .     (11) 

 
 We would like to derive the properties of the Betti groups of V from our 
decomposition (9) of the manifold V by induction on the sequence of associated 
manifolds.  For r > 0, we understand Br(K) to mean the r-dimensional Betti group of the 
complex K, while for r = 0, it is the group of 0-dimensional integer homology classes that 
contain only reducible cycles.  (A 0-dimensional cycle is reducible when the sum of its 
coefficients vanishes (7)).  We call algebraic subcomplexes of: 
 
 V = K1 + K2 , K1 ,  K2 ,  K1 ⋅⋅⋅⋅ K2 ,  1V′ ,  2V′  
 C, C1, C2, C12 , 1C′ , 2C′ , resp. 

 
 Cycles will always be denoted by z or Z. 
 We now make the following basic assumption: 
 

let Br(Vn−1, m−1) = 0 for a fixed r with 0 ≤ r < n – 2.   (J1) 
 
One then has (8), for an arbitrary (r + 1)-dimensional sub-cycle zr+1 of Vn, m : 
 

zr+1 = 1 1
1 2
r rz z+ ++ .      (12) 

 
( 1

1
rz +  is a sub-cycle of K1 and 1

2
rz +  is a sub-cycle of K2 .) 

 
 Proof: It follows from (J1) that 1( )rB V′  = 0, so one also has (9) 2

1( )r nB S V− ′×  = 0; it 

then follows from (10) that: 
Br(K1 ⋅⋅⋅⋅ K2) = 0.     (13) 

 
Now let zr+1 = C1 – C2 be any decomposition of zr+1 into two algebraic (r + 1)-
dimensional sub-complexes of K1 and K2 .  Taking the boundary yields 1Cɺ  = 2Cɺ ; this 

common boundary lies in K1, as well as in K2 , so it is a 12
rz . It follows from (13) that 12

rz  

                                                
 (7) AH: chap. IV, § 4, no. 7, and furthermore, chap. V, § 1, no. 5.   
 (8) This theorem is a special case of an addition theorem in combinatorial topology; cf., AH: chap. VII, 
§ 2, especially no. 5.  
 (9) For Betti groups of product complexes, see AH: chap. VII, § 3. 
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= 12Cɺ ⋅⋅⋅⋅ C1 – C12  and C2 – C12 are cycles z1, z2, resp., and one has zr+1 = z1 – z2 , with 

which (12) is proved. 
 
 Under the sharper assumption: 
 

Let Br(Vn−1, m−1) = 0 for a fixed r with 0 ≤ r < n – 3,   (J2) 
 
one then obtains the isomorphism: 
 

Br(Vn, m) ≈ Br(Vn−1, m−1).    (14) 
 
 Proof: From the theorem on the Betti groups of product complexes, it follows that: 
 

Br(K1) = Br+1(E1 × 1V′ ) = Br+1(E1 × Vn−1, m−1) ≈ Br+1(Vn−1, m−1). 

 
Analogously, one obtains, with consideration of the fact that r + 1 < n – 2: 
 

Br+1(K1 ⋅⋅⋅⋅ K2) = Br+1(Sn−2 × 1V′ )  = Br+1(Sn−2 × Vn−1, m−1) ≈ Br+1(Vn−1, m−1), (15) 

 
and therefore: 

Br+1(K1 ⋅⋅⋅⋅ K2) ≈ Br+1(K1). 
 
This isomorphism can be realized if one associates a homology class of K1 ⋅⋅⋅⋅ K2 , whose 
representative cycle is 1

12
rz + , with the homology class of 1

12
rz +  in K1 .  From that, we infer 

the following conclusions: 
 
 a) A cycle of K1 ⋅⋅⋅⋅ K2 is contained in any (r + 1)-dimensional homology class of K1 

(or K2). 
 
 b) From the homology 1

12
rz +  ~ 0 in K1 (or K2), it follows that: 

 
1

12
rz +  ~ 0 in K1 ⋅⋅⋅⋅ K2 . 

 
 If one associates a homology class of K1 ⋅⋅⋅⋅ K2, whose representative cycle is 1

12
rZ + , with 

the homology class of 1
12
rZ +  in K1 + K2 then a homomorphic map of Br+1(K1 ⋅⋅⋅⋅ K2) into 

Br+1(K1 + K2) comes about.  This map is an isomorphism, in the event that: 
 
 1. A cycle of K1 ⋅⋅⋅⋅ K2 is contained in any (r + 1)-dimensional homology class of K1 + 

K2 . 
 
 2. The homology 1

12
rZ +  ~ 0 in K1 ⋅⋅⋅⋅ K2 follows from the homology 1

12
rZ +  ~ 0 in K1 + K2. 

 
 1. follows from (12) and a). 
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 2.  is verified in the following way: 
1

12
rZ +  ~ 0 in K1 + K2 means that 1

12
rZ +  = Cɺ .  A decomposition C = C1 – C2 of C gives 1

12
rZ +  

= 1 2C C−ɺ ɺ .  This possible only when 1Cɺ  = 1
12
rz +  and 2Cɺ  = 1

12
rz + .  Since 1

12
rz +  ~ 0 in K1, one 

gets from b) that 1
12
rz +  ~ 0 in K1 ⋅⋅⋅⋅ K2, and likewise 1

12
rz +  ~ 0 in K1 ⋅⋅⋅⋅ K2 , and therefore also 

1
12
rZ +  ~ 0 in K1 ⋅⋅⋅⋅ K2 .  With that, we have Br+1(K1 + K2) ≈ Br+1(K1 ⋅⋅⋅⋅ K2). 

 
 Our proof then gives: 
 
 Lemma.  Under the assumption (J2), an (r + 1)-dimensional homology basis for K1 ⋅⋅⋅⋅ 
K2 is also a homology basis for V = K1 + K2. 
 
 The following theorem can now be proved easily: 
 
 Theorem 2.  For 0 ≤ r < n – m – 1, one has Br(Vn, m) = 0. 
 
The proof proceeds by complete induction on the sequence of associated manifolds; thus, 
let it be already proved that: 
 

Br+1(Vn−1, m−1) = 0 for 0 ≤ r < n – m – 1. 
 
It further follows from Theorem 1 that B0(Vn−1, m−1) = 0, so one also has Br(Vn−1, m−1) = 0.  
Since m > 1 was assumed, (J2) is true, and therefore (14), and therefore Theorem 2.  The 
induction will be anchored on the manifold Vn−m+1, 1 = Sn−m, for which Theorem 2 is 
trivial. 
 
 Theorem 3.  For m > 2, one has Bn−m(Vn, m) ≈ Bn−m(Vn−1, m−1). 
 
Proof: From Theorem 2, (J2) is true for r = n – m − 1.  (14) then gives the assertion. 
 
 
 3.  Topology of Vn,2 .  Bn−m(Vn, m) can be determined from Theorem 3 when 
Bn−m(Vn−m+2, 2) is known; therefore, the (n – 2)-dimensional Betti group of a manifold Vn, 2  
shall be calculated in this section.  The sequence of associated manifolds consists of only 
an (n – 2)-dimensional sphere in this case.  We use our first projection for the 
representation of Vn, 2 ; 1V′  is then a sphere 2

1
nS −′ .  Let the two spheres Sn−2 and 2

1
nS −′ be 

equally oriented, so we also denote the cycles that are provided by these orientations by 
Sn−2 and 2

1
nS −′ .  If s is an arbitrary, but chosen once and for all, point of  Sn−2, and 1s′  is a 

point of 2
1

nS −′  then, from (10), the two cycles z12 = s × 2
1

nS −′  and Sn−2 × 1s′  define an (n – 

2)-dimensional homology basis for K1 ⋅⋅⋅⋅ K2 .  (The case of n = 3 is represented in Fig. 1)  
Any (n−2)-dimensional cycle Z12 of K1 ⋅⋅⋅⋅ K2 thus satisfies a homology: 
 

Z12 ~ α z12 + β 12z  in K1 ⋅⋅⋅⋅ K2 ,    (17) 
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z12 

S Sn−2 

p1(t) 

p1 

Rn−1 

12Z∗  
Figure 1. 

12z  
2

1
nS −′  

1s′  

z12 

Sn−2 

Rn−1 

12Z∗  

Figure 2. 
 

where α and β are well-defined numbers.  We now pose the problem of determining the 
homologies (17) that Z12 fulfills in K1 or K2 .  We first solve this problem for a special 
cycle 12Z∗  that is defined in the first projection as the field of exterior normal vectors on 

Sn−2.  For this cycle, (17) reads: 

12Z∗   ~ z12 + 12z  in K1 ⋅⋅⋅⋅ K2 .   (17*) 

Proof: 12Z∗  fulfills a homology: 

12Z∗   ~ α* z12 + β* 
12z  in K1 ⋅⋅⋅⋅ K2 .    (17** ) 

 
The determination of the unknowns α* and β* is achieved in the following way: One 
associates a point p1 × v1 of K1 ⋅⋅⋅⋅ K2 [see (2)] with the point v1 of 1V′  = 2

1
nS −′ ; this 

continuous map f of K1 ⋅⋅⋅⋅ K2 into 2
1

nS −′  induces a homomorphic map of the Betti groups of 

K1 ⋅⋅⋅⋅ K2 into the Betti groups of 2
1

nS −′  that transforms (17** ) into the homology 12( )f Z∗ ~ 

α*⋅⋅⋅⋅ f(z12) + β* ⋅⋅⋅⋅ 12( )f z = α*⋅⋅⋅⋅ 2
1

nS −′ .  The fact that 12( )f Z∗  ~ 2
1

nS −′  yields α* = 1; one finds 

that β* = 1 in an analogous way. 
 
 Relative to K1, 12Z∗  fulfills the homology: 

 

12Z∗  ~ z12 in K1 .     (18*) 

 
The proof is by continuous variation of 12Z∗ : One lets an arbitrary point p1 × v1 of 12Z∗  run 

through the path that is suggested by the following schema: 
 

p1 × v1 , p1(t) × v1 , s × v1 .    (D) 
 
In this, t is a deformation parameter that ranges from 0 to 1; p1(t) moves uniformly and 
rectilinearly from p1 to the point s of Sn−2. 
 By performing the transformation through reciprocal radii on Sn−2, Figure 1 becomes 
Figure 2, where one finds, in an analogous way: 
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12Z∗  ~ (−1)n ⋅⋅⋅⋅ z12 in K2 .     (19*) 

 
For the arbitrary cycle Z12 , we now have, from (17) and (17*), that Z12 ~ (α – β) ⋅⋅⋅⋅  z12 + β 
⋅⋅⋅⋅ 12Z∗  in K1 ⋅⋅⋅⋅ K2 , and thus also in K1 ; it then follows from (18*) that Z12 ~ α ⋅⋅⋅⋅ z12 in K1 .  

Analogously, with the use of (19*), one gets: Z12 ~ [α − β + (−1)n ⋅⋅⋅⋅ β] ⋅⋅⋅⋅ z12 in K2 .  This 
then yields the following solution to our problem: 
 From the fact that: 
     Z12 ~ α z12 + β 

12z  in K1 ⋅⋅⋅⋅ K2 , 

it follows that: 
Z12 ~ α z12  in K1      (18) 

and 
Z12 ~ [α − β + (−1)n β] z12 in K2.    (19) 

 
 We now infer some consequences from these formulas: 
 
 Theorem 4.  The (n – 2)-dimensional Betti group of Vn,2 is cyclic and has order 0 for 
even n and order 2 for odd n. 
 
 In this, we understand a cyclic group of order 0 to mean a free cyclic group. 
 
 Proof: From (7), our cycle z12 defines an (n – 2)-dimensional homology basis in K1 ; 
however, since K1 and K2 are mapped to each other topologically by our transformation 
through reciprocal radii, z12 is also a homology basis for K2 .  Furthermore, from (12) [the 
assumption (J1) is fulfilled for r = n – 3], any (n – 2)-dimensional cycle of Vn,2 can be 
written as the sum of a cycle in K1 and a cycle in K2 .  From these facts, it follows that the 
homology class of z12 in Vn,2 generates the group Bn−2(Vn, 2), so that group is cyclic; in 
order to establish its order, we must determine the order of z12 .  Thus, let, say, γ ⋅⋅⋅⋅ z12 ~ 0 
in Vn, 2 – i.e., γ ⋅⋅⋅⋅ z12 = Cɺ .  A decomposition C = C1 + C2 of C then gives γ ⋅⋅⋅⋅ z12 = 1 2C C+ɺ ɺ .  

This is possible only for 1Cɺ  = Z12 and 2Cɺ  = 12Z .  We then find that: 

 
γ ⋅⋅⋅⋅ z12 = Z12 + 12Z  with Z12 ~ 0 in K1 and 12Z ~ 0 in K2 .  (20) 

 
If we assume that n is perhaps odd then it follows from Z12 ~ 0 in K1, by means of (18), 
that Z12 ~ β ⋅⋅⋅⋅ 12z  in K1 ⋅⋅⋅⋅ K2 .  By substituting this into (20), we find the homology γ ⋅⋅⋅⋅ z12 ~ 

2β ⋅⋅⋅⋅ z12 + (β +β ) ⋅⋅⋅⋅ 12z  in K1 ⋅⋅⋅⋅ K2 .  This homology is possible only for γ = 2 ⋅⋅⋅⋅ β ; it then 

follows that γ is even from the fact that γ z12 ~ 0 in Vn,2 .  The order of z12 is then at least 
2; the fact that it is exactly 2 follows from a consideration of − 12z . Namely, from (18), 

one has − 12z ~ 0 in Vn,2 , and from (19), − 12z ~ 2 ⋅⋅⋅⋅ z12 in Vn,2 . One then has, in fact, that 

2z12 ~ 0 in Vn,2 .  Since the case of even n can be examined analogously, Theorem 4 is 
proved. 
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 It is likewise shown that z12 is a basis cycle for the group Bn−2(Vn,2).  (This will be 
important later.)  We shall then given a definition of z12 that is independent of the 
decomposition of Vn,2 .  To this end, one considers all 2-systems σn,2 of Vn,2 (no. 1) that 
coincide in their first vector.  The endpoints of the second vectors of this system will run 
through an (n – 2)-dimensional sphere, which we think of as oriented.  The system σn,2  
then defines an (n − 2)-dimensional cycle that call zn,2 .  It is clear that zn,2 can be 
identified with z12 ; we then find the following: 
 
 Lemma: The cycle zn,2 is the basis element for the (n – 2)-dimensional Betti group of 
Vn,2 . 
 
 The manifold Vn,2 is orientable.  We will prove this later.  From Theorems 2 and 4, 
one can then determine all Betti groups of Vn,2 with the help of the Poincaré duality 
theorem.  One then obtains the following result: 
 
 Theorem 5.  For even n, the non-zero Betti numbers of Vn,2 are: p0 = pn−2 = pn−1 = 
p2n−3 = 1; no torsion is present.  For odd n, one also has pn−2 = pn−1 = 0, but an (n – 2)-
dimensional torsion of order 2 also enters in. 
 
 Furthermore, the relations (18) and (19) allow us to determine the continuous maps of 
an at most (n – 2)-dimensional sphere into Vn,2 .  One has, in fact: 
 
 Theorem 6.  Two continuous maps of an at most (n – 2)-dimensional sphere into Vn,2  
are homotopic if they have the same homology type (10) (10a). 
 
 We preface the proof with some preliminary considerations.  Let, perhaps, f be a 
given continuous map of the sphere 0

rS  (r ≤ n – 2) into Vn,2 , and let v0 be an arbitrary 

point of 0
rS .  If, as in no. 1, we think of Vn,2 as the set of all vectors in Rn that are tangent 

to Sn−1 then we can assume for all homotopy investigations that the image vector of point 
v0 does not contact Sn−1  at the North Pole.  (If this were not true then, since r < n − 1, one 
could always make it so by a continuous change in f.)  No image vectors are then lost 
under the transition to our first projection, and one has, from (2), that f(v0) = p1 × v1.  
Furthermore, one can actually assume that only the points s × v1 (see Fig. 1) can appear 
as image points.  (In fact, the continuous map v0 → p1 × v1 can be changed into a map 
that has the desired property by the deformation process (D) (beginning of this no.))  We 
then assume that: 

f(v0) = s × v1.       (21) 
 
We call the map ϕ(v0) = v1 of 0

rS  into the associated manifold 2
1

nS −′ to Vn,2 the associated 

map ϕ to the map f.  Now, if f  is a second map of 0
rS  into Vn,2 and ϕ  is its associated 

map then one has: 
                                                
 (10) AH: chap. VIII, § 3.  
 (10a) This theorem is a generalization of the theorem on the classification of sphere maps (AH: chap. 
XIII, § 2).  
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The homotopy of f and f  follows from the homotopy of ϕ and ϕ .  (22) 
 
This follows simply from the fact that multiplication by the fixed point s is a topological 
map of 2

1
nS −′ into Vn,2 . 

 We now go on to the proof of Theorem 6.  There are three cases to consider: 
 
 Case 1.  r < n – 2.  From Theorem 2, we must show that any map of 0

rS  into Vn,2 is 

homotopic to zero, so the image of 0
rS  can be contracted to a point.  However, from (22), 

this is a consequence of the fact that since r < n – 2, the associated map is homotopic to 
zero. 
 
 Case 2.  r = n – 2 and n is even.  Let f and f  be the two maps of which we spoke in 

Theorem 6.  If we understand 0
rS = 2

0
nS −  to also mean the cycle that this sphere represents 

with a chosen orientation then the assumption of Theorem 6 says that 2
0( )nf S −  ~ 2

0( )nf S −  

in Vn,2 = K1 + K2 .  From (21), 2
0( )nf S −  and 2

0( )nf S −  are cycles in K1 ⋅⋅⋅⋅ K2 , so they fulfill 

the homologies (17): 2
0( )nf S −  ~ α z12 , 

2
0( )nf S − ~ α  z12  in K1 ⋅⋅⋅⋅ K2 ; one then has α ⋅⋅⋅⋅ z12 ~  

α  z12  in Vn,2 .  From Theorem 4, this is possible only if α = α , and one finally gets that 
2

0( )nf S −  ~ 2
0( )nf S −  in K1 ⋅⋅⋅⋅ K2 .  We map this homology to 2

1
nS −′  by assigning the point p1 

× v1 in K1 ⋅⋅⋅⋅ K2 to the point v1 .  One thus finds that 2
0( )nSϕ −  ~ 2

0( )nSϕ −  in 2
1

nS −′ .  The two 

maps ϕ and ϕ  of 2
0
nS −  into 2

1
nS −′  thus have the same mapping degree, from which their 

homotopy follows.  (22) concludes the proof. 
 
 Case 3.  r = n – 2 and n is odd.  Theorem 4 then gives only that α ≡ α  (mod 2).  Let 
α  = α – 2k, perhaps.  The proof above will also work in this case if we can show that our 
map f with 2

0( )nf S − ~ α z12 in K1 ⋅⋅⋅⋅ K2 can be changed continuously into a map f2 with 
2

2 0( )nf S − ~ (α − 2k) z12 in K1 ⋅⋅⋅⋅ K2 that satisfies the condition (21).  To that end, let F be an 

arbitrary map of 2
0
nS −  into Sn−2 of degree k.  Next, f will be changed into a map f1 

according to the following schema: 
 

f(v0) = s × v1 ,  F(v0, 1 – t) × v1 , F(v0) × v1 = f1(v0). 
 
F(v0, t) again moves uniformly and rectilinearly from F(v0) to s.  The cycle 2

1 0( )nf S −  

again lies in K1 ⋅⋅⋅⋅ K2 and satisfies the homology 2
1 0( )nf S − ~ α z12 + k 12z  there, which one 

proves analogously to (17*).  From (19), one has 2
1 0( )nf S − ~ (α − 2k) z12 in K2 .  One now 

goes to Figure 2 by means of the transformation through reciprocal radii, and changes f1 
there by the deformation process that is analogous to (D).  The result is a map f2 with 

2
2 0( )nf S − ~ (α − 2k) z12 in K2 and 2

2 0( )nf S − ~ δ z12 in K1 ⋅⋅⋅⋅ K2 that satisfies the condition 

(21).  As for the unknown δ, one easily finds from (19) that δ = α – 2k.  With that, 
Theorem 6 is proved completely. 
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 It then follows from Theorems 2 and 6 that: 
 
 Theorem 7.  For n > 3, the manifold Vn,2 is simply-connected, and thus orientable. 
 
 As a non-simply-connected manifold, the manifold V3,2 then occupies a special place 
in the Vn,2, which we will later (§ 5, no. 3) exploit in our investigation of the 
parallelizability of three-dimensional manifolds.  We mention that V3,2 is homeomorphic 
to the three-dimensional projective space P3.  To prove this, one observes that V3,2, as the 
set of line elements on a two-dimensional sphere, is homeomorphic to the group of 
Euclidian rotations of that sphere.  Such a rotation is, however, determined uniquely by 
four homogeneous parameters. 
 
 
 4.  Topology of Vn,m .  The union of the results of sections 2 and 3 allows the 
derivation of further topological properties of the Vn,m .  One proves the following 
theorem by induction on the sequence (4) of associated manifolds − which is now, 
however, broken by the manifold Vn−m+2, 2 – in which one always assumes that m > 1: 
 
 1. The Betti group Bn−m(Vn,m) is cyclic of order 0 for even n – m and of order 2 for 
odd n − m. 
 
 The proof follows from Theorems 3 and 4.  In order to find a basis cycle for 
Bn−m(Vn,m), one considers all m-systems σn,m in Vn,m (no. 1) whose first (m − 1) vectors are 
given as fixed.  The endpoints of the latter vectors of this system run through an (n – m)-
dimensional sphere that we regard as being oriented.  The systems σn,m then define an (n 
– m)-dimensional cycle zn,m . 
 
 2. zn,m is a basis cycle for Bn−m(Vn,m). 
 
 The proof follows from the two lemmas in no. 2 and no. 3. 
 
 3. Two continuous maps of an at most (n – m)-dimensional sphere into Vn,m are 
homotopic when they have the same homology type. 
 
 To prove this, if f and f  are two maps then one defines the associated maps ϕ and ϕ  

into Vn−1,m−1 in a manner that is analogous to no. 3.  The homotopy of f and f  then 
follows from the homotopy of the associated maps. 
 From 3, Vn,m is simply-connected for m < n − 1, so it is also orientable.  Vn,n−1 is 
homeomorphic to the group of Euclidian rotations of an (n − 1)-dimensional sphere and, 
as a group manifold, it is therefore orientable.  For this manifold, one has, moreover: 
 
 4. The fundamental group of Vn,n−1 is a cyclic group of order 2 (n > 2). 
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 The proof of this differs from that of 3 in only inessential ways.  (In order to anchor 
the induction, one observes that 4. follows for V3,2 from its homeomorphism with 
projective space.) 
 In conclusion, we would like to derive some properties of Vn,m from these theorem 
that will be needed in what follows: 
  
 Theorem 8.  The continuous image of an at most (n – m – 1)-dimensional sphere in 
Vn,m (m arbitrary) can be contracted to a point. 
 
 Proof is from 3. and Theorem 2. 
 
 Theorem 9.  If f is a continuous map of an orientable sphere 0

n mS − into Vn,m then one 

has the homology: 

0( )n mf S −  ~ α zn,m in Vn,m . 

 
If n – m is even or m = 1 then α is determined uniquely, and two maps with the same 
value of α are homotopic. 
 However, if n – m is odd and m is different from 1 then α is determined only (mod 2) 
(11); two maps that are associated with values of α that are congruent (mod 2) are 
homotopic. 
 
 

§ 2.  The open manifolds ,n mV ∗ . 

 
 1. Definitions.  In this section, we would like to freely make the restriction to 
orthogonal and normalized m-systems.  We define: An ordered system ,n mσ ∗  of m 

linearly-independent vectors v1, v2, …, vm that contact a point of Rn is called an affine m-

system in Rn.  We now call the systems σn,m of § 1 orthogonal m-systems, in order to 
distinguish them from the affine m-systems;  m again fulfills the inequalities: 
 

0 < m < n.      (1) 
 
The set of all affine m-systems that contact Rn at a fixed point is called ,n mV ∗ .  A system 

,n mσ ∗  is given by the n ⋅⋅⋅⋅ m components of its vectors, so it can be regarded as a point in an 

(n ⋅⋅⋅⋅ m)-dimensional numerical space.  In this way of looking at things, ,n mV ∗  becomes a 

sub-domain of the numerical space, so it is an open manifold. 
 
 
 2.  Retraction mapping.  For any m-system of ,n mV ∗ , we replace the vector vi with the 

vector: 

                                                
 (11) Therefore, we can assume in what follows that α has the value 0 or 1 in this case.  
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i
′v = vi – (vi ⋅⋅⋅⋅ vj) vj .     (2) 

 
i and j are chosen to be fixed, but different from each other; (vi ⋅⋅⋅⋅ vj) means the scalar 

product of vi and vj .  This produces a continuous map f of ,n mV ∗  into itself; we denote the 

image set by ,( )n mf V ∗ .  By considering the family of maps: 

 
( )i t′v = vi – t (vi ⋅⋅⋅⋅ vj) vj  (0 ≤ t ≤ 1), 

 
one recognizes that f is a deformation; i.e., it belongs to the class of the identity.  If one 
replaces the vector vk in any system ,n mσ ∗  in ,n mV ∗  for a definite value of k with the vector: 

 

k
′v  = k

k

v

v
      (3) 

 
then this gives another continuous map g of ,n mV ∗  into itself.  g is also a deformation, as 

the family of maps: 

( )k t′v  = [t + (1 – t) ⋅⋅⋅⋅ | vk |] k

k

v

v
  (0 ≤ t ≤ 1) 

 
yields.  The two maps f and g leave the manifold Vn,m invariant, which is indeed a subset 
of ,n mV ∗ . 

 One can once more perform a deformation of type (2) [(3), resp.] with ,( )n mf V ∗  

[ ,( )n mg V∗ , resp.], and ultimately construct a deformation that maps ,n mV ∗  onto Vn,m 

continuously by composing finitely many deformations of this type.  This follows from 
the well-known fact of analytic geometry that any affine system ,n mσ ∗  in ,n mV ∗  can be 

orthogonalized by finitely many steps of type (2) and (3).  We call the deformation F the 
retraction mapping (12) of ,n mV ∗  onto Vn,m . 

 
 
 3. Topology of ,n mV ∗ .  With the help of our retraction, we can now carry over the 

results of § 1, no. 4 to the open manifold ,n mV ∗ : 

 
 Theorem 10.  ,n mV ∗ is completely homology-equivalent to Vn,m ; i.e., one has for an 

arbitrary r:  ,( )r
n mB V∗ ≈ Br(Vn,m); furthermore, all of the results that were proved for Vn,m 

in § 1, no. 4 are also true for the manifold ,n mV ∗ . 

 

                                                
 (12) This concept goes back to K. Borsuk; cf., AH: chap. VIII, § 6.  
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 Proof: The retraction map F induces a map of ,( )r
n mB V∗ to Br(Vn,m).  In order to prove 

that this homomorphism is an isomorphism, it suffices (since any r-dimensional 
homology class of Vn,m appears trivially as an image class) to show that its kernel consists 
of only the zero class.  Therefore, let, say, zr be a cycle of ,n mV ∗  and F(zr) ~ 0 in Vn,m , 

hence, also in ,n mV ∗ .  Since F(zr) goes to zr under deformation, one has F(zr) ~ zr in ,n mV ∗ , 

so, in fact, zr ~ 0 in ,n mV ∗ . 

 The second assertion of Theorem 10 can now be proved easily with the help of our 
retraction. 
 
 Remark.  All positively-oriented n-systems that contact a fixed point of Rn define a 
manifold that is homeomorphic to the group An of all proper affine maps of Rn.  From our 
analysis, it easily follows that An is completely homology-equivalent to Vn, n−1 and that the 
fundamental group of An is a cyclic group of order 2 for n > 2. 
 
 

§ 3.  Vector fields in Euclidian space.  Characteristic. 
 

 1.  Characteristic of an m-field on a sphere.  In this section, we understand Er+1 to 
mean an (r + 1)-dimensional curved cell that is embedded in the Euclidian space Rn and 
Sr to mean the boundary sphere of Er+1.  If we denote a point of Sr by p then we can 
establish the points of the cell Er+1 by means of a polar coordinate system ρ, p.  (ρ is a 
number that runs from 0 to 1, the point (0, p) is the origin of the coordinate system, and 
(1, p) is identical with p.) 
 If an affine m-system σ(p) of Rn is attached to every point of Sr then we speak of an 
m-field F on Sr.  The examination of this field is the objective of this paragraph.  To that 

end, we choose a set of vectors ,n mV ∗  that is embedded in Rn and associate the point p of Sr 

with the m-system of ,n mV ∗  that is parallel to σ(p).  A map f of the sphere Sr into the 

manifold ,n mV ∗  is given by this association that we call a mapping by parallel m-systems.  

We further call the field F continuous when f is continuous; this will always be assumed 

in what follows.  We define a continuous field on the cell Er+1 and the associated 
mapping by parallel m-systems in an analogous way. 
 Now, this immediately suggests the question: Under what conditions can a continuous 
field σ(p) that is given on Sr be extended to a continuous field σ(ρ, p) on Er+1?  [i.e., σ(1, 
p) = σ(p).]  If the dimension r of our sphere is less than  n – m then Theorem 8 (10) 
shows that this process is always possible.  In fact, if f(Sr) is then homotopic to zero in 

,n mV ∗  then (13) f can be extended to a continuous map of Er+1 into ,n mV ∗ .  However, if r = n 

– m then the sphere is (n – m)-dimensional (and oriented), and it follows from Theorem 9 
(10) that the desired process is possible iff the number α that is associated with our map f 
by parallel m-systems vanishes. 

                                                
 (13) AH: chap. XIII, § 1, Lemma II.  
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 This number α is called the characteristic of the m-field F on the sphere Sr = Sn−m.  

One then finds that: 
 
 Theorem 11.  A continuous m-field that is given on the boundary of a cell can be 
continuously extended into its interior: 
 
 a) If the dimension of the sphere is less than n – m. 
 b) If the sphere is (n – m)-dimensional and the characteristic of the field on it is 0. 
 
 Extension through central projection: 
 
 A boundary field can always be extended into the interior of the cell Er+1 by the 
definition: “σ(ρ, p) is parallel to σ(p).”  We call this process extension through central 
projection from the point (0, p).  However, the continuity of the extended field will then 
generally break down at the center of projection.  Moreover, if an arbitrary, not-
necessarily-continuous m-field is given on the boundary sphere Sr, and we denote the set 
of its discontinuities by M, then the field that is extended by central projection into the 
cell Er+1 is discontinuous at all points of the cone over M with the center of projection for 
its vertex. 
 
 
 2.  Remarks on the calculation of the characteristic.  In many cases, it proves to be 
useful to calculate the characteristic in some other way than by means of the mapping by 
parallel m-systems: Let a continuous field B of positively-oriented n-systems β(ρ, p) be 

given on the cell En−m+1.  Such a field is called a basis field on the cell En−m+1.  
(“Positively-oriented” means oriented the same as the system e1, e2, …, en of basis vector 

in Rn.)  In order to calculate the characteristic of an m-field σ(p) that is given on Sn−m, we 
proceed as follows: Let vµ (µ = 1, 2, …, m) be a vector of σ(p) and let vµi (i = 1, 2, …, n) 

be its components relative to the basis β(1, p).  If one now associates every vector vµ 

with the vector that contacts the origin of Rn and has the components vµi relative to e1, e2, 

…, en then this produces a continuous map f′ of Sn−m into the ,n mV ∗  at the origin of Rn.  

From Theorem 9 (10), a number α′ is associated with this map; we prove that α′ is the 
characteristic of the given m-field on Sn−m. 
 To that end, we construct a continuous family βt(p) (0 ≤ t ≤1) of basis fields on Sn−m 
such that β0(p) = β(1, p) and β1(p) is parallel to e1, e2, …, en .  (To construct this family, 

one defines, say, for 0 ≤ t ≤ 1
2 : βt(p) is parallel to β(1 – 2t, p); the systems β1/2(p) are then 

parallel to each other and can easily be made parallel to e1, …, en by a deformation in the 

interval 1
2  ≤ t ≤ 1.)  A map tf ′  of Sn−m into ,n mV ∗ that is continuous and continuously 

varying in t belongs to every basis field βt(p).  0f ′  is our f′, while 1f ′  is identical with the 

map f through parallel m-systems.  f and f′ are then homotopic; the assertion the follows 
from this. 
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 Calculation of the characteristic by recursion: 
 
 Our new method of calculation of the characteristic is very useful when one is dealing 
with the following situation: 
 
 a) The cell En−m+1 lies in an n′-dimensional plane Rn′ of Rn.  (n′ < n)  Rn′ will be 

spanned by, perhaps, the basis vectors en−n′+1 , …, en . 

 
 b) Suppose that the vectors v1 , v2 , …, vn−n′ of the system σ(p) are not contained in 

Rn′; they then define an (n − n′)-system in Rn, and all of these systems define an (n 
− n′)-field on Sn−m.  We assume that this field can be extended to an (n − n′)-field 
σ (ρ, p) on En−m+1. 

 
 c) Let the vectors vn−n′+1 , …, vm of σ(p) be contained in Rn′; they then define an m′-

system σ′(p) in Rn′.  (m′ = m – n + n′). 
 
 σ(p) and σ′(p) then possess characteristics α and α′ on Sn−m.  One then has: 
 

α ≡ α′  (mod 2). 
 

(One can actually prove the equality of α and α′ for certain orientation assumptions; for 
our purposes, however, it suffices to have congruence mod 2.) 
 Outline of proof: One chooses a basis field β′(r, p) on the cell En−m+1 in Rn′.  This 
basis field will be extended by σ (ρ, p) to a basis field β(ρ, p) in Rn.  One calculates the 
desired characteristics relative to this basis field, where one suitably lets the basic cycle 
zn, m of ,n mV ∗  (§ 1, no. 4) run through the orthogonal m-systems that contact the origin of 

Rn whose first (m − 1) vectors are e1, e2, …, em−1 . 

 
 
 3.  Characteristic of a field-pair on a cell.  If two continuous m-fields σ0(ρ, p) and 
σ1(ρ, p) are given on our cell Er+1, and if, moreover, a continuous family σt(p) of m-fields 
in constructed on the boundary sphere Sr for 0 ≤ t ≤ 1 that satisfies the boundary 
conditions σ0(p) = σ0(1, p) and σ1(p) = σ1(1, p) then we speak of a field-pair in Er+1.  A 
field-pair thus consists of two fields on a cell that are coupled on the boundary by a 
continuous family. 
 We would now like to examine the conditions under which this continuous coupling 
can be extended into the interior.  A continuous family of m-fields σt(ρ, p) shall then be 
constructed in Er+1 that satisfies the requirement σt(ρ, p) = σt(p).  This investigation can 
be carried out with the help of Theorems 8 and 9, with consideration given to Theorem 
10, if the dimension r + 1 of the cell is at most n – m: 
 Let T be, say, the (oriented) unit interval that the parameter t runs through.  We then 
construct the cylinder Z, in abstracto, which is defined as the topological product T × 
Er+1, and we denote its points by t × (ρ, p).  We further associate the point 0 × (ρ, p) of Z 
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with the system that is parallel to σ0(ρ, p) that contacts the origin in Rn [and analogously 
for 1 × (ρ, p)] and associate the point t × (ρ, p) with the system that is parallel to σt(p) 
that contacts the origin in Rn.  With that, a continuous map of the boundary of Z into ,n mV ∗  

is given.  If r + 1 < n – m then f can be extended to a continuous map of the entire 
cylinder into ,n mV ∗ , from which, the extension of our continuous coupling is also 

constructed.  However, if r + 1 = n − m then the extension is possible iff the number α 
that is associated with f according to Theorem 9 (10) vanishes, so we call it the 
characteristic of the field-pair on Er+1.  In order to calculate this characteristic, the 
cylinder boundary must be oriented; since Z is a product, an orientation can be given by 
an orientation of the cell Er+1.  One then has: 
 
 Theorem 12.  The boundary family that belongs to a field pair can be extended into 
the interior: 
 
 a) If the dimension of the cell on which the pair lies is less than (n – m). 
 
 b) If this dimension is (n – m) and the characteristic of the field-pair on the 

(oriented) cell is 0. 
 
 We then give a relation between the characteristic of a field and a field-pair.  Let two 
arbitrary continuous m-fields F and F′ be given on the sphere Sn−m with the characteristics 

α and α′, resp.  Furthermore, let Sn−m be decomposed into the cells n m
iE − , and let F and F′  

be coupled by a continuous family of fields on the complex K of the (n – m − 1)-
dimensional cells of this cell decomposition.  With that, a field-pair is given on any 
cell n m

iE − , whose characteristic we denote by αi .  (Let the cells n m
iE −  be coherently 

oriented with respect to the orientation of Sn−m that was employed for the calculation of α 
and α′.)  One then has: 
 
  α′ = α + 

( )
i

i

α∑   for even n – m or m = 1. 

(C) 
  α′ ≡ α + 

( )
i

i

α∑   (mod 2) for odd n – m and m ≠ 1. 

 
These formulas define the foundation for the following analysis; it is easy to prove: 

 One constructs the orientated product complex T × Sn−m = T × n m
iE −∑ = ∑ Zi , where 

the Zi are constructed over n m
iE −  and with the cylinder that was employed in the proof of 

Theorem 12.  Taking the boundary gives the relation: 
 

(1 × Sn−m) – (0 × Sn−m) = iZ∑ ɺ .    (R) 
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The cylinders Zi define a cell decomposition of T × Sn−m; if one maps each iZɺ  into ,n mV ∗ , 

as in the proof of Theorem 12 then a continuous map F is given from the complex of (n – 
m)-dimensional cells of this cell decomposition into ,n mV ∗ , and it follows from (R) that: 

 
F(1 × Sn−m) – F(0 × Sn−m) = ( )iF Z∑ ɺ  in ,n mV ∗ , 

 
and from the definition of α, α ′, and αi that: 
 

α ′ zn, m − α zn, m ~ ∑ αi zn, m in ,n mV ∗ . 

 
The assertion follows from this homology and Theorems 9 and 10. 
 Here, we must mention the following special case of a field-pair: We call a field-pair 
with σ0(1, p) = σt(p) = σ1(1, p) a field-pair with rigid boundary values; it consists of two 
continuous m-fields that are given on the cell Er+1 and coincide on the boundary S r.  (The 
connecting boundary family coincides with the common boundary values of the two 
fields.)  It now follows from Theorem 12 that: The first field of a given field-pair with 
rigid boundary values on En−m can be deformed into the second field while preserving its 
boundary values iff the characteristic of the pair vanishes on En−m. 
 
 
 4. Fields and field-pairs with given characteristics.  We need a topological lemma 
for what follows: 
 Let Sk be a k-dimensional sphere that is decomposed into the two k-dimensional cells 
E and E′, and let P be a connected polyhedron.  A continuous map f1 of E into the 
polyhedron P can be extended to a continuous map of Sk that belongs to a given mapping 
class of Sk into the polyhedron P. 
 Proof: Let F0 be any map of Sk into the polyhedron P that belongs to the given class, 
and let f0 be the map that F0 induces on E.  We construct a continuous family of maps ft 
(0 ≤ t ≤ 1) that connects f0 to f1 .  (Such a family can be found, since P is connected.)  The 
family ft can be extended to a family of maps Ft of Sk into the polyhedron P (14); F1 is our 
desired map. 
 If one identifies Sk with our cylinder Z over a cell En−m (no. 3) in this lemma and 
identifies P with the manifold ,n mV ∗  then this easily yields: 

 
 Theorem 13.  A continuous m-field that is given on the cell En−m can be extended 
through a second field on that cell to a field-pair with rigid boundary values (no. 3) and a 
given characteristic. 
 
 
 
 
 
                                                
 (14) AH: chap. XIII, § 1, lemma Ia.  
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§ 4.  Vector fields on manifolds 
 

 1. m-fields, parallelizability.  We now move on to the study of m-fields on a closed 
n-dimensional and differentiable manifold Mn.  For this, we must temporarily make the 
case distinction of Theorem 9: 
 
 Case 1.  n – m is even or m = 1.  Mn is then orientable. 
 
 Case 2.  n – m is odd and m ≠ 1.  Mn can then also be non-orientable. 
 
 We call Mn differentiable if the following condition is fulfilled:  Mn is endowed with a 
system of neighborhoods that is chosen once and for all, and which we will call elements 
in the sequel.  Each element is homeomorphic to a Euclidian space Rn and is equipped 
with a Cartesian coordinate system.  The coordinate transformation that is induced on the 
overlap of two coordinate systems shall be continuously differentiable and possess a 
nowhere-vanishing, and in Case 1, positive functional determinant. 
 With these assumptions, one can define vectors on Mn and apply the conceptual 
structures and theorems of § 3 to it; One must only replace the Euclidian space with an 
element in Mn, which is reasonable. 
 If an m-system is attached to every point of Mn then we speak of an m-field on Mn; 
this field is called continuous in the event that it is continuous on every element.  If there 
are continuous µ-fields on Mn but no continuous (µ + 1)-fields then we call µ the degree 
of parallelizability of Mn; A manifold with µ = n will be referred to as a parallelizable 
manifold.  The basis for this terminology is easy to see: If µ = n then there is a continuous 
basis field (§ 3, no. 2) on Mn.  If we establish an arbitrary vector on Mn with the contact 
point p by its components relative to the basis that is given at p then two vectors are 
called parallel when the possess positively-proportional components.  With that, a 
continuous teleparallelism is constructed on Mn, from which it follows, for example, that 
the manifold of directed line elements in Mn is homeomorphic to the topological product 
of Mn with an (n – 1)-dimensional sphere.  Examples of parallelizable manifolds are easy 
to give: The product of two parallelizable manifolds is again parallelizable, so the n-
dimensional torus (i.e., the product of n circles) provides an example of a parallelizable 
Mn.  We further remark that one can calculate characteristics by parallel translation of all 
the distributed vectors to a fixed point of Mn, precisely as one does in Euclidian spaces (§ 
3, no. 2). 
 The central problem of this paper, towards whose solution some steps will be made in 
what follows, is the determination of the degree µ of a given manifold.  We are justified 
in calling this problem a topological one, since two manifolds that correspond by means 
of a map that is one-to-one and differentiable in both directions will obviously have the 
same degree. 
 
 
 2. Frameworks and framework-pairs.  Let a fixed cell decomposition of Mn be 
established for the following considerations; we denote an r-dimensional, oriented cell by 
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xr and the cell that is dual to xr in the dual decomposition (15) by ξn−r.  Let the cell 
decomposition be sufficiently fine that the star of xr (which is the totality of all cells that 
have points in common with xr) lies completely in some element of Mn.  In Case 1 (no. 
1), we would further like to orient the dual cell ξn−r to xr as is customary in orientable 
manifolds (15); in Case 2, orientations will play no role whatsoever. 
 Now, a framework is a continuous m-field that is defined on all cells of a sub-
complex K of the dual cell-decomposition.  If K is homogeneously ρ-dimensional (16) 
then we also briefly speak of a ρ-dimensional framework.  In the case that is most 
important for us, K is the complex of all ρ-dimensional cells of the dual cell-
decomposition; a framework that belongs to this complex is called an r-dimensional 
framework that is defined everywhere on the manifold Mn.  In the sequel, it will always be 
assumed that the cells of K are at most (n – m)-dimensional. 
 One then has: 
 
 Theorem 14.  Any framework on Mn can be extended to an (n – m)-dimensional 
framework that is defined on all of the manifold Mn.  (0 < m < n). 
 
 Proof: Let ξρ be the cells of K and let ρξ  be the cells of the dual cell-decomposition 

that do not belong to K.  One now attaches an arbitrary m-system to every vertex 0ξ .  

With that, an m-field is given on the boundary of every cell 1ξ , which, from Theorem 11, 
can be extended continuously into the interior.  Now, the m-field that is given on the 
boundary of every cell 2ξ  can again (in the event that m < n – 1) be extended into the 
interior of the cell.  (Theorem 11)  One proves the theorem by pursuing the construction 
further.  It follows from this that: 
 
 Corollary.  There exists an (n – m)-dimensional framework that is defined on all of 
Mn. 
 Such a framework will always be denoted by G. 

 

 We will understand ɺG  to mean the framework that G induces on the complex of (n – 

m – 1)-dimensional cells of the dual cell decomposition, while an arbitrary (n – m – 1)-
dimensional framework that is defined on all of Mn will be denoted by g. 

 Two frameworks G0 and G1 define a framework-pair when a continuous family gt (0 

≤ t ≤ 1) of frameworks g is given with g0 = 0
ɺG  and g1 = 1

ɺG .  G0 and G1 are then 

connected to each other on the complex of (n – m – 1)-dimensional cells of Mn by a 
continuous family. 
 
 Theorem 15.  Two arbitrary frameworks G0 and G1 can always be combined into a 

framework-pair. 

                                                
 (15) cf., Seifert-Threlfall: Lehrbuch der Topologie (B. G. Teubner, 1934), and furthermore, AH: chap. 
XI, § 1,  § 68. 
 (16) cf., AH: chap. IV, § 1, no. 2.  
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 The proof proceeds analogously to that of Theorem 14.  One then connects the two m-
systems that are given by G0 and G1 at a vertex ξ0 of the dual cell decomposition by 

means of a continuous family of m-systems and then extends this connection to the 
higher-dimensional cells using Theorem 12. 
 
 
 3.  Preliminary remarks on characters in Λn−r.  We next choose a coefficient ring J 
that will serve for the definition of algebraic complexes in Mn (17), and, in fact, let J be 
the ring of whole numbers in Case 1 (no. 1) and the ring of residue classes (mod 2) in 
Case 2.  We denote algebraic sub-complexes of the x-cell decomposition by C and 
algebraic sub-complexes of the ξ-cell decomposition by Γ.  All (n – m)-dimensional 
complexes Γn−r define a group Λn−r that contains the group Zn−r of (n – r)-dimensional 
cycles and the group Hn−r of (n – r)-dimensional boundaries as subgroups.  The difference 
group Zn−r − Hn−r is, as is well-known, the (n – r)-dimensional Betti group Bn−r of Mn. 
 A character χ in Λn−r is a homomorphic map from Λn−r to the coefficient ring J.  
Therefore, if Γ1 and Γ2 are complexes in Λn−r and α is an element of J then one has: 
 
 a)  χ(Γ1 + Γ2) = χ(Γ1) + χ(Γ2);  b)  χ(α Γ1) = α χ(Γ1). 
 
From these two facts, it follows that: 
 
 c) A character χ is known when its values for the complex defined by a basis of Λn−r 

are given.  (e.g., all cells ξ n−r define such a basis.) 
 
 d) If C is an r-dimensional sub-complex of the x-cell decomposition that is chosen to 

be fixed then a character χ in Λn−r will be generated by setting: 
 

χ(Γ) = φ(C, Γ). 
 

  (In this, Γ is an arbitrary complex of Λn−r and φ means the intersection number of 
the complexes in parentheses.) 

  
 e) Any character in Λn−r can be generated by a complex C in the way that is 

suggested by d).  C is determined uniquely, and is called the complex that is 
associated with χ. 

 
The proof best proceeds by giving C explicitly.  One has: 
 

C = 
( )

( )n r r
j j

j

xχ ξ −∑ . 

 
In this, the summation is extended over all r-dimensional cells r

jx . 

 

                                                
 (17) AH: chap, IV.  
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 Our next objective is to determine the properties of the generated complex C from the 
properties of the characters χ: 
 
 f) C is a cycle iff χ vanishes in the group Hn−r; i.e., if for every (n – r + 1)-

dimensional complex ∆ of the ξ-cell decomposition one has: 
 

( )χ ∆ɺ = 0.     (I) 
 
The proof follows from the fact that for any character χ and an arbitrary ∆ one has the 
relation: 

( )χ ∆ɺ  = ( , )Cφ ∆ɺ  = ± ( , )Cφ ∆ɺ . 
 

 g) Between two characters χ0 and χ1 in Λn−r and a character χɺ  in Λn−r−1, there exists 
the following relation: 

χ1(Γ) − χ0(Γ) = ( )χ Γɺɺ ,      (II) 
 
  so between the associated complexes C0 , C1, and D, there exists the relation: 
 

C1 – C0 = ± Dɺ . 
 

Proof: For an arbitrary (n – r)-dimensional complex Γ, one has: 
 

φ(C1 – C0 , Γ) = φ(C1 , Γ) – φ(C0 , Γ) = χ1(Γ) − χ0(Γ) 
= ( )χ Γɺɺ  = φ(D, Γɺ ) = ± φ( Dɺ , Γ). 

 
Since Γ was arbitrary, the assertion follows from this that: 
 
 h) Let a set of characters χi in the group Λn−r be given, each of which satisfies the 

condition (I), and any two of which fulfill a relation of the form (II).  One then 
has: 

 
  α) The given set determines a character χ* in the Betti group Bn−r whose elements 

(these are homology classes) we denote by Ξ. 
 
  β) The complexes that are associated with χi are, from f), cycles and lie in a 

single r-dimensional homology class A. 
 
  γ) One has: χ*(Ξ) = φ(A, Ξ). 
 
Proof: 
 Of α): From the existence of (II), it then follows that all characters χi in the cycle 
group Zn−r coincide, and thus induce a single character in that group.  Due to (I), this 
character has the same value for homology cycles, moreover, so it actually determines a 
single character χ* in the Betti group Bn−r. 
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 Of β):  Due to (II), one has the assertion g), from which, it follows that the cycles that 
are associated with two characters of the given set are homologous. 
 Of γ):  This follows directly from the definitions of χ* and A. 
 
 
 4. The characters that are determined by frameworks; main theorems.  Now, 
let an (n – m)-dimensional framework G that is defined on all of the manifold Mn be 

given.    (cf., corollary to Theorem 14.)  We now define a character χ in Λn−m+1 by giving 
the values of χ for the cells ξn−m+1, as in no. 3, c): Let χ(ξn−m+1) be the characteristic of the 
continuous m-field that is given by G on the boundary sphere 1n mξ − +ɺ  of ξn−m+1.  

(Naturally, the orientation 1n mξ − +ɺ  is the one that was employed in the calculation of this 
characteristic.  One further observes that the characteristic is an element of J.)  The 
character thus defined is called the character χ that is associated with G. 

 In addition, we consider all (n – m)-dimensional frameworks Gi that are also defined 

on all of Mn.  The characters χi that are associated with them define a set like the one that 
we considered in no. 3, h).  We assert that this set fulfills the assumption of no. 3, h). 
 
 Proof: Let, say, G0 and G1 be two frameworks, and let χ0 and χ1, resp., be the 

associated characters.  We next show that a character χɺ  exists in Λn−m such that χ0 , χ1, 
and χɺ  fulfill the relation (II) of no. 3.  Due to no. 3, c), it suffices to defineχɺ  for the 

cells ξn−m.  To that end, we couple the frameworks G0 and G1 into a framework-pair using 

Theorem 15; let ( )n mχ ξ −
ɺ be the characteristic of the field-pair that is induced on ξn−m by 

this framework-pair.  Due to formula (C) of § 3, no. 3, one has: 
 

χ1(ξn−m+1) − χ0(ξn−m+1) = 1( )n mχ ξ − +ɺɺ . 
 

The relation (II) now follows from no. 3a) and b), in fact.  Furthermore, we have to show 
that each of our characters satisfies the condition (I) of no. 3.  If we apply the relation (II) 
that we just proved to the complex ∆ɺ  then this yields: 
 

χ1( ∆ɺ ) = χ0( ∆ɺ ), 
 
so it suffices to prove (I) for a single character that is induced by a special framework G0.  

Moreover, due to a) and b), it suffices that ∆ be a cell ξn−m+2.  We now construct G0 as 

follows: Let the m-systems of G0 be parallel to each other on the boundary 2n mξ − +ɺ .  (This 

definition makes sense, since ξn−m+2 lies in an element (no. 1).)  From Theorem 14, such a 
framework can always be found.  For the associated character χ0, one now has, trivially: 
χ0(ξn−m+2) = 0, with which all parts of (I) are proved. 
 
 From the assertion of no. 3, h), it now follows that: 
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 The character χ that is associated with a framework G has a cycle for its associated 

complex, which will be called the singular cycle of G, and from no. 3, e), it is given by: 

 
z = 1 1

( )

( )n m m
j j

j

xχ ξ − + −∑ . 

 
All of the characters χi determine a character χ* in the (n – m+ 1)-dimensional Betti 
group Bn−m+1, which we will call χn−m+1 in the sequel (18).  One further has: 
 
 Theorem 16. (First main theorem).  The singular cycles of all (n – m)-dimensional 
frameworks G that consist of m-systems and can be defined on the entire manifold Mn lie 

in a single (m – 1)-dimensional homology class; it is called the characteristic homology 
class Fm−1.  If Ξ is an arbitrary (n – m + 1)-dimensional homology class then one has:  
 

χn−m+1(Ξ) = φ(Fm−1, Ξ). 
 
 In the next paragraph, we shall see that the character χn−m+1 represents a 
generalization of the Euler characteristic. 
 
 To these immediate consequences of the discussion in no. 3, we must add a somewhat 
deeper theorem: 
 
 Theorem 17 (Second main theorem).  Any cycle that is contained in the 
characteristic class Fm−1 is the singular cycle of a framework. 
 
 Proof: Let, say, z be the given cycle in the class Fm−1.  We choose an arbitrary, but 
fixed, initial framework G0 with the singular cycle z0 .  From Theorem 16, z0 also lies in 

Fm−1, so one has z ~ z0, and therefore z − z0 = Dɺ .  Our framework G0 induces an m-field 

F0 on the cell ξn−m, which we extend by means of another field F1 to a field-pair with 

rigid boundary values (§ 3, no. 3) whose characteristic on ξn−m possesses the value φ(D, 
ξn−m) (Theorem 13).  The m-field F1 that is thus constructed on all cells ξn−m combines 

into a framework G1 .  G0 and G1 together define a framework-pair that gives rise to a 

character χɺ  as in the beginning of this section.  By construction, one has ( )n mχ ξ −
ɺ  = φ(D, 

ξn−m); i.e., the complex that is associated with χɺ  is the complex D. 

 We have seen that the relation (II) of no. 3 exists between the characters χ0 of G0 and 

χ1 of G1 and the characterχɺ , so the assertion of no. 3, g) is true; i.e., z1 – z0 = ± Dɺ , if we 

denote the singular cycle of G1 by z1 .  The given cycle z is then a singular cycle of G1, 

with which, Theorem 17 is proved. 
 

                                                
 (18) The character χn−m+1 is, ex definitone, independent of the choice of framework; it is given by the 
geometric properties of Mn. 
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 The meaning of the characteristic class Fm−1 for the problem of this paper is based in 
the following Theorem: 
 
 Theorem 18 (Existence theorem).  The exists an (n – m + 1)-dimensional framework 
that is defined on the entire manifold Mn iff the characteristic class Fm−1 is the zero class. 
 
 Proof: a)  Let an (n – m + 1)-dimensional framework that is defined on all of Mn be 
given.  It induces a framework G on the complex of cells ξn−m, and thus an m-field F on 

each cell boundary 1n mξ − +ɺ .  Since F is extended into the interior of the cell ξn−m+1, its 

characteristic vanishes on 1n mξ − +ɺ , so the character χ that is associated with G also 

vanishes, and one has z = 0 for the singular cycle z of G, so z ~ 0 precisely. 

 
 b) Let the characteristic class Fm−1 be the zero class.  From Theorem 17, there is a 
framework G whose singular cycle is the zero cycle.  The characteristic χ that is 

associated with G then vanishes; however, from Theorem 11, the field that is induced by 

G on 1n mξ − +ɺ  can be extended into the interior. 

 
 
 5.  Fields with singularities.  Our endeavors to construct a continuous m-field on the 
manifold Mn step-wise by frameworks are obstructed by the existence of the class Fm−1; 
however, we can always find m-fields whose continuity is broken at certain “singular” 
points.  In order to not go into dimension-theoretic difficulties, we would like to consider 
only m-fields that satisfy the following assumption: If a cell xr−1 of our x-cell 
decomposition contains a singular point in its interior then it consists of nothing but 
singular points.  All of these cells define an absolute complex Kr−1 – viz., the singularity 
complex of the field in question.  [The number (r − 1) means the dimension of the 
highest-dimensional cell in this complex.] Now, a field with the singularity complex Kr−1 
obviously induces an (n – r)-dimensional framework that is defined on all of Mn.  
However, the converse is also true: Every (n – r)-dimensional framework that is defined 
on all of Mn is associated with an m-field on Mn with a singularity complex Kr−1.  In order 
to see this, one extends the m-field that is given by the framework on the cells ξn−m by 
central projection (§ 3, no. 11) into the higher-dimensional cells ξn−m+k.  If one then 
chooses the projection center to be the intersection point of ξn−m+k with the dual cell xr−k 
then the necessary cone construction can be performed simplicially on a common 
subdivision U of the x and ξ-cell decompositions.  With this relationship between 
frameworks and singular fields, it now follows from the corollary to Theorem 14 and 
from Theorem 18 that: 
 
 Theorem 19.  There always exists an m-field with an (m – 1)-dimensional singularity 
complex on a manifold Mn; the necessary and sufficient condition for the existence of an 
m-field with an at most (m − 2)-dimensional singularity complex is the vanishing of the 
characteristic class Fm−1. 
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 Since any singular m-field an (m − 1)-dimensional singularity complex on Mn 
uniquely determines an (n – m)-dimensional framework G that is defined on all of Mn, we 

can briefly call the singular cycle that is associated with G (no. 14) the singular cycle of 

the given field.  One then has: 
 
 Theorem 19a.  The singular cycle of an m-field with the (m − 1)-dimensional 
singularity complex Km−1 is an algebraic sub-complex of Km−1 in the subdivision that it 
induces through U; it measures the multiplicities of the (m – 1)-dimensional singularities 
and represents the characteristic class Fm−1. 
 
 In order to prove this, one employs the explicit representation of the singular cycle z = 

1 1

( )

( )n m m
j j

j

xχ ξ − + −∑  and Theorem 11. 

 
 

§ 5.  Determination of the characteristic classes in special cases. 
 

 1. Differential simplicial decompositions.  A simplicial decomposition K of a 
given manifold is called differentiable when any simplex of K, along with its perimeter, 
lies in an element of Mn (§ 4, no. 1) and is either a Euclidian simplex (19) or the image of 
a Euclidian simplex by means of a topological map that is continuously differentiable in 
both directions in this element. 
 For what follows, we will need the barycentric subdivision (20) K  of such a simplicial 
decomposition K.  If we denote the center of mass of an r-dimensional simplex of K by ar 
then the simplexes xs = 

0 1
( , , , )

sr r ra a a…  are the simplexes of K .  (r0 < r1 < … < rs) and (s 

= 0, 1, …, n).   Now, letK  be our x-cell decomposition of § 4; we denote the dual cell 
ξn−s of xs by ξn−s = 

0 1( )sr r rξ
…

. 

 
 
 2.  Single vector fields.  In this number, we concern ourselves with the theory of 1-
fields (in the sequel, we briefly refer to them as vector fields) on a manifold Mn.  This 
theory has already been developed for some time (21), and the concluding results go back 
to H. Hopf. 
 Theorem 19 then shows that there is always a vector field F with a 0-dimensional 

singularity complex in Mn; F is then singular at only finitely many vertices 0
ix  of the x-

cell decomposition.  We understand the index ji of the singularity 0
ix  to mean the 

characteristic of the 1-field that is given by F on the boundary n
iξɺ  of the cell n

iξ  that is 

dual to 0
ix .  (We find ourselves in Case 1 of § 4, no. 1; Mn is therefore orientable, and the 

                                                
 (19) AH: chap. III, § 1, no. 1.  
 (20) AH: chap. III, § 2, no. 3. 
 (21) AH: chap. XIV, § 4. 
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cells n
iξ  are coherently oriented.)  A simple argument gives the singular cycle of F (§ 4, 

no. 5) as: 
z = 0

( )
i i

i

j x∑ .      (1) 

 
The characteristic class F0 will then be represented by the cycle x0 ∑ j i (x

0 is an arbitrary, 
but fixed, vertex of the x-cell decomposition).  The index sum ∑ j i is called the algebraic 
number of singularities.  If one denotes the n-dimensional homology class that is 
represented by the sum of all cells ξn by Ξn then, from Theorem 16, this yields for the 
character χn in the Betti group Bn : 

χn(Ξn) = φ(F, Ξn) = ∑ j i .      (2) 
 
Since Ξn is the single basis element for Bn, (2) determines the character χn completely. 
 
 It now follows from Theorem 16 and 18 that: 
 
 Theorem 20.  The algebraic number of singularities is the same for all vector fields 
on Mn; one then has vector fields that are continuous at all points of Mn iff this number 
vanishes. 
 
One further has: 
 
 Theorem 20a.  For a suitable orientation of Mn, the algebraic number of 
singularities of any vector field on Mn is equal to the Euler characteristic χ(Mn) of Mn. 
 
 This theorem is equivalent to the following assertion: 
 
 The characteristic class F0 can be represented by x0 ⋅⋅⋅⋅ χ(Mn).  Moreover, the formula: 
 

χn(Ξn) = χ(Mn)      (3) 
 
also says precisely the same thing.  We will prove the theorem for the simplest case of n 
= 2 in this latter form.  We carry out the proof under the assumption that M2 possesses a 
differentiable simplicial decomposition.  (Theorem 20a is still true without this 
assumption.)  We then construct a special one-dimensional framework G that consists of 

1-systems on the barycentric subdivision of the dual cell decomposition whose associated 
character χ we determine.  The part of G that lies in a simplex (a0, a1, a2) (no. 1) of the 

barycentric subdivision K  is depicted in Fig. 3.  From this figure, it is clear that the 
vectors of G that lie on the boundary of a cell of type ξ(0) (no. 1) point to the exterior of 

ξ(0) , and on the boundary of a cell of type ξ(2) , they point to the interior of ξ(2) .  [In Fig. 
3, the parts of three cells that lie in (a0, a1, a2) are suggested by ξ(0) , ξ(1) , ξ(2) .]  For a 
suitable orientation, one finds that the characteristic of the field that is induced by G on 

the boundary of a cell ξ(r) has the value (−1)r, so one has: 
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χ(ξ(r)) = (−1)r  (r = 0, 1, 2),    (4) 
 
and the singular cycle z of G will be: 

 
z = ∑(−1)r ar,      (4a) 

 
where the summation is taken over all vertices of K .  If one denotes the number of cells 
of type ξ(r) by ar then that would yield for the character χn = χ2: 
 

χ2(Ξ2) = χ(∑ ξ2) = ∑ χ(ξ2) = ∑ χ(ξ(0)) + ∑ χ(ξ(1)) + ∑ χ(ξ(2)) = a0 – a1 + a2 . 
 

 

a0 a1 

a2 

ξ(2) 

ξ(0) ξ(1) 

 
Figure 3. 

 
However, by definition, a0 – a1 + a2 is the Euler characteristic χ(M2); with that, (3) is 
proved in the special case n = 2.  Theorem 20a) can be proved for n-dimensional 
manifolds in an analogous way. 
 Formula (3) confirms the fact that was mentioned in § 4 that the character χn−m+1 can 
be regarded as a generalization of the Euler characteristic. 
 
 If follows from Theorems 20 and 20a) that: 
 
 Corollary.  There exists a continuous vector field on the manifold Mn iff the Euler 
characteristic χ(Mn) vanishes (21a). 
 
 This theorem is true for non-orientable manifolds, but this is not directly provable by 
our methods.  Our argument can also be carried out for non-orientable manifolds in the 
event that we introduce the ring of residue classes (mod 2) in place of the ring of whole 
numbers (§ 4, no. 3).  If we understand Ξn in this case to mean the n-dimensional 
homology class that is represented by the sum of the (unoriented) cells ξn then one has: 
 

χn(Ξn) ≡ χ(Mn)  (mod 2).   (3a) 
 
 

                                                
 (21a) Cf., AH: chap. XIV, § 4, Theorem 3.  
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 3. Three-dimensional manifolds.  We now examine the parallelizability (§ 4, no. 1) 
of three-dimensional manifolds.  One has the important result: 
 
 Theorem 21.  Any orientable, three-dimensional, closed manifold that admits a 
differentiable simplicial decomposition is parallelizable. 
 
 Before we give the proof of this theorem, we mention that it follows from the 
considerations of § 4, no. 1 that: 
 
 Corollary.  If a three-dimensional manifold M3 fulfills the assumptions of Theorem 
21 then the manifold of its directed line elements is homeomorphic to the topological 
product of M3 with a two-dimensional sphere. 
 
 The proof of Theorem 21 proceeds in four steps: 
 
 I. Determination of the characteristic class F1. 
 
 We can satisfy ourselves with the following hints for the solution of this problem, 
since in Appendix I we have rigorously determined the characteristic class F1 for three-
dimensional, orientable manifolds under somewhat different assumptions and by other 
methods. 
 F1 is the characteristic class of the 2-fields, so we must set m = 2 and n = 3.  We are 
then in Case 2 of § 4, no. 1; J is then the ring of residue classes (mod 2).  In order to 
determine F1, one can, in analogy to no. 2 (Fig. 3), construct a special 1-dimensional 
framework G that is defined on all of M3, and which is coupled with the barycentric 

subdivision K .  I will not go into the somewhat tedious construction of this framework 
that is composed of 2-systems here; one finds for the associated character χ that: 
 

0 1( , )( )r rχ ξ  = 1,      (5) 

 
such that the singular cycle z of G is given by (22): 

 

z = ( )
0 1
,r ra a∑ .     (5a) 

 
This cycle (mod 2) thus consists of all edges of the barycentric subdivision K .  One can 
now show that z always bounds in an orientable manifold M3, while this does not 

                                                
 (22) Formulas (4a) and (5a) are closely related to the conjecture that for arbitrary n and m the 
characteristic class Fm−1 can be represented: 
   in Case I of § 4, no. 1 by ( )0 1 1

0 1 1
, ,( 1) ,m

m

r r r
r r ra a a−

−

+ + +∑ − ⋯

…  

   and in Case II, by ( )
0 1 1

, ,,
mr r ra a a

−
∑ … . 

The summation is therefore taken over all (m − 1)-dimensional cells of K ; the complexes above are, in 
fact, cycles of the coefficient ring J. 
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necessarily need to be the case in a non-orientable manifold (23).  This then yields that in 
an orientable M 3 the characteristic class F1 is always the zero class. 
 
 II. There exists a framework H that is defined on all of M3 and consists of 2-systems. 

 
 Since, from I, the class F1 vanishes in our orientable M3, this fact is a direct 
consequence of the existence Theorem 16. 
 
 III. There exist continuous 2-fields on M3. 
 
 In order to prove this, we show that the 2-field F that is given by H on the boundary 

3ξɺ  of a cell ξ3 can be continuously extended into the interior of ξ3.  Since ξ3 lies in an 
element (§ 4, no. 1), we must therefore prove the following theorem: A continuous 2-
field F that is given on the boundary sphere S2 of a 3-dimensional cell E3 that lies in 

Euclidian space R3 can be continuously extended into the interior of E3. 
 The following statement is equivalent to this theorem: The map of S2 into the 
manifold 3,2V ∗  by parallel 2-systems (§ 3, no. 1) that is associated with F is homotopic to 

zero.  Our statement III can thus be expressed in the following form: Any continuous map 
of a 2-dimensional sphere S2 into 3,2V ∗  is homotopic to zero.  Now, since, from § 2, no. 2, 

the closed manifold V3,2 is a deformation retract of 3,2V ∗ , it suffices to prove this assertion 

for maps of S2 into V3,2 .  However, since V3,2 is homeomorphic to the projective space P3 
(§ 1, no. 3), and since any map of S2 into P3 is, in fact, homotopic to zero, we have 
proved the assertion III. 
 
 IV. There exist continuous 3-fields on M3. 
 
 The fact that the existence of continuous 3-fields follows from the existence of 
continuous 2-fields on an orientable M3 is easily proved. 
 
 

§ 6.  Theorems on characteristic cohomology classes.  Applications. 
 

 1.  Order of the characteristic class.  In this section, we pose the problem of 
determining the order of a non-vanishing characteristic class.  This problem is 
meaningful only in Case 1 of § 4, no. 1, for which the coefficient ring J is the ring of 
whole numbers.  We will solve it for even (n – m). 
 We preface the following analysis with a subsidiary consideration that relates to the 
manifolds ,n mV ∗  (§ 2) for which n – m is even.  Namely, we shall examine the topological 

map ϕ of ,n mV ∗  to itself that comes about when one replaces the mth vector vm in any m-

system of ,n mV ∗  with its opposite vector – vm .  On the (n – m)-dimensional sphere that is 

                                                
 (23) Cf., problem 187 in the Jahresbericht der deutschen Mathematikervereinigung, Band 45, pp. 22. 
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provided by the basis cycle zn, m of § 1, no. 4 for a fixed orientation, ϕ is the diameteral 
map; since this sphere possesses an even dimension, this yields: 
 

ϕ(zn, m) = − zn, m .     (1) 
 
 With those preparations, a framework G that consists of m-systems will be 

constructed on the given manifold Mn by employing the notations and assumptions of § 4, 
and we let n – m be even.  We thus find ourselves in Case 1 of § 4, no. 1, and the 
coefficient ring J is therefore the ring of whole numbers.  The framework G induces an 

m-field on the boundary of any (n – m + 1)-dimensional cell ξ whose characteristic χ(ξ) 
is established by means of the map f of ξɺ  into ,n mV ∗  by parallel m-systems (§ 3, no. 1). 

 If one now replaces the mth vector on any m-system of G with its opposite vector then 

a new framework G  arises that is associated with the characteristic ( )χ ξ  and the map 

f .  Obviously, f  arises from the composition of f and ϕ; it then follows from (1) that: 

( )χ ξ  = − χ(ξ).  The relation: 

χ  = − χ      (2) 
 
then exists between the characters χ and χ  that belong to G and G , resp.  χ, as well as 

χ , then induce the character χn−m+1 in the (n – m + 1)-dimensional Betti group; it then 
follows from (2) that: χn−m+1 = − χn−m+1, so ultimately χn−m+1 = 0. 
 It would be incorrect to conclude the vanishing of the characteristic class Fm−1 from 
the vanishing of χn−m+1; this conclusion is only permissible when no (m − 1)-dimensional 
torsion is present in Mn. 
 If we set, say, m = 1 then we find that χn = 0 for manifolds of odd dimension; 
however, from § 5, formula (3), it follows from this that the characteristic of an orientable 
manifold of odd dimensions vanishes (24).  From the corollary to Theorem 20 it then 
follows, moreover, that any orientable manifold of odd dimension possesses a continuous 
vector field. 
 
 Theorem 22.  If Mn is orientable, (n – m) is even, and the class Fm−1 is not the zero 
class then that class has order 2. 
 
 Proof: We have to show: For even (n – m), one always has 2 ⋅⋅⋅⋅ Fm−1 = 0.  Now, from 
(2), the relation z = − z  exists between the singular cycles z and z  of the frameworks G 

and G , resp., that were employed above.  Since both of these cycles lie in Fm−1, one has 
Fm−1 = − Fm−1; this was to be proved. 
 
 Corollary.  If (n – m) is even and no (m – 1)-dimensional torsion is present in Mn 
then Fm−1  is the zero class. 
                                                
 (24) To my knowledge, J. Hadamard was the first to derive the vanishing of the Euler characteristic of a 
manifold of odd dimension from the theory of vector fields.  Cf., Tannery: Introduction à la théorie des 
fonctions (Paris, Hermann, 1910), t. II, note by Hadamard, no. 42, pp. 475. 
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 2. An intersection theorem.  In what follows, Cases 1 and 2 of § 4, no. 1 will no 
longer be distinct; all consideration will be based upon the ring of residue classes (mod 
2) as the coefficient ring J, and Mn can be either an orientable or non-orientable manifold. 
 In order to bring our theory to a definite conclusion, we must find manifolds in which 
non-zero characteristic classes exist; only then will the theorems of § 4 contain non-
trivial statements.  The analysis of this section will serve to resolve this problem. 
 We call a ν-dimensional manifold Mν that is embedded in the given manifold Mn a 
hypersurface when the following conditions are fulfilled: 
 
 a) Let Mν be the image of a differentiable parameter manifold by means of a 

topological and continuously-differentiable map of this parameter manifold into 
Mn. 

 
 b) Mν admits a cell decomposition that is a sub-complex of the ξ-cell decomposition 

(§ 4, no. 2) of the manifold Mn. 
 
 Due to a), vectors on Mν are also vectors on Mn, and the totality of all vectors on Mν 
that contact a point p of Mν defines a ν-dimensional vector structure on Mn.  If the vectors 
in a (n – ν)-system on Mn that contact p do not belong to this structure then we call the 
system foreign to Mν.  If a continuous field of (n – ν)-systems exists on Mn that are 
foreign to Mν then we say that Mν possesses an external (n – ν)-field (25).  If ν = n − 1 
then this simply means that Mν is two-sided in Mn. 
 Due to b), Mν is a cycle (mod 2) of the ξ-cell decomposition that represents a ν-
dimensional homology class Ξν of Mn and a ν-dimensional homology class νΞ  in Mν.  
One has: 
 
 Theorem 23.  If a hypersurface Mν that lies in Mn possesses an external (n – ν)-field 
then the intersection number of the characteristic class Fn−ν of Mn with Mν is the (mod 2) 
reduced Euler characteristic of Mν. 
 
 Before we prove this theorem, we introduce the following relations: Let ξ  be the 

cells of the ξ-cell decomposition that induce a cell decomposition of Mν using b); a (ν − 
1)-dimensional framework that is defined on all of Mn and consists of (n – ν + 1)-systems 
will be denoted by G, and associated character in the group Λν of Mn (§ 4, no. 4), by χ.  A 

(ν − 1)-dimensional framework that is defined on all of Mν and consists of 1-systems will 
be denoted by G , and the associated character in the group Λν of Mν, by χ .  The 

characters χ determine the character χν (§ 4, no. 4) in the ν-dimensional Betti group of 
Mn, while the charactersχ  determine the character νχ  in the ν-dimensional Betti group 

of Mν in an analogous way. 
 We then prove the following: 
 

                                                
 (25) A hypersurface with an external (n – ν)-field that lies in an orientable manifold is orientable. 
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 Lemma.  If there exist two frameworks G and G  such that for every cell νξ  the 

relation: 
( )νχ ξ ≡ ( )νχ ξ  (mod 2)    (2) 

 
is fulfilled then the assertion of Theorem 23 is true. 
 
 Proof: By summing over all cells νξ , one gets from (2) that: 
 

χν(Ξν) ≡ ( )ν νχ Ξ  (mod 2).    (3) 
 
From Theorem 16, the left-hand side of (3) is the intersection number of φ(Fn−ν, Ξν), 
while, from § 5, formula (3a), the right-hand side is congruent to the Euler characteristic 
of Mν.  With that, we have proved the lemma. 
 In order to prove Theorem 23 now, we have to construct the frameworks G and G  

that satisfy the assumption of the lemma: First, G  is chosen arbitrarily.  Furthermore, the 
system of G on the cells 1νξ −  shall be the system of external (n – ν)-fields, extended by 

the vectors of G ; in the remaining part of Mn, G will be constructed arbitrarily with the 

use of Theorem 14.  (2) is, in fact, fulfilled with this choice of G and G , as one easily 

confirms by applying the process of calculating the characteristic by recursion (§ 3, no. 
2). 
 We shall not go into the closely-related generalizations of Theorem 23, but merely 
apply this theorem to the solution of the problem that was posed at the start of this 
paragraph: 
 
 Theorem 24.  For a given n and m with n ≡ m − 1 (mod 2), there exists a manifold 
Mn in which the characteristic class Fm−1 is not the zero class. 
 
 Addendum.  If n ≡ m − 1 (mod 4) then there is indeed an orientable Mn in which Fm−1 
does not vanish. 
 
 The following remarks suffice for the proof of these theorems: 
 
 1. The assumption of Theorem 25 is fulfilled when Mn is the topological product of 
Mν and an arbitrary (n – ν)-dimensional manifold. 
 
 2. If the assumption of Theorem 23 is fulfilled and if Mν possesses an odd Euler 
characteristic then it follows from this theorem that the class Fn−ν does not vanish in Mn. 
 
 3. There exist manifolds of even dimension that have odd characteristics, and there 
exist orientable manifolds with dimensions that are divisible by 4 and have odd 
characteristics.  One now sets m − 1 = n – n and constructs Mn as a product manifold. 
 
 By a special choice of m, it follows easily from the Addendum that: 
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 Theorem 25.  For any dimension n that is not equal to 1 or 3, there exists an 
orientable, but not parallelizable, n-dimensional manifold. 
 
 (One observes that, from Theorem 19, the vanishing of all characteristic classes is a 
necessary condition for parallelizability.) 
 
 
 3.  Examples and applications.  Let x0, x1, x2, …, xn be coordinates in an (n + 1)-
dimensional number-space Rn+1, and let p mean the position vector (x0, x1, x2, …, xn) in 

that space.  Let m vector fields vµ  (µ = 1, 2, …, m) be given in Rn+1, and for every µ, let 

the components ivµ  (i = 0, 1, 2, …, n) of the vector vµ be homogeneous functions of first 

degree of the independent variables x0, x1, x2, …, xn .  We project this vector field from 
the origin of Rn+1 onto the n-dimensional projective space Pn that completes Rn+1 into an 
(n + 1)-dimensional projective space.  From our homogeneity condition, it follows that in 
order for m vector fields in Pn to define an m-field in the sense of § 4, no. 1, the (m + 1) 
vectors p = v0, v1, v2, …, vm would have to be linearly independent at all points of Rn+1, 

except for the origin. 
 We shall employ this convenient representation for the vector fields in projective 
spaces in the sequel in order to discuss the characteristic classes of n-dimensional 
projective spaces.  So, for example, for n = 3 and m = 3, the vectors: 
 

0
0 1 2 3

1
1 0 3 2

2
2 2 0 1

3
3 2 1 0

( , , , )

( , , , )

( , , , )

( , , )

x x x x

x x x x

x x x x

x x x x

− −
− −
− −

v

v

v

v

     (I) 

 
provide a continuous 3-field in 3-dimensional projective space P3, with which the 
parallelizability of P3, and therefore the 3-dimensional sphere, is established by example.  
One can also find an analogous example in dimension 7 that parallelizes P7 and the 7-
dimensional sphere (26). 
 We now examine the case n = 5, m = 2, so we concern ourselves with 2-fields in P5.  
The three vectors: 

0
0 1 2 3 4 5

1
1 0 3 2 5 4

2
2 2 0 1

( , , , , , )

( , , , , , )

( , , , , 0, 0)

x x x x x x

x x x x x x

x x x x

− − −
− −

v

v

v

     (II) 

 
are linearly-independent only for x0 = x1 = x2 = x3 = 0, so except for the projective line P1 
that is given by x0 = x1 = x2 = x3 = 0, they provide two linearly-independent vector fields 
on P5 that that we again denote by v1 and v2, for the sake of simplicity.  We now 

construct a ξ-cell decomposition of P5, with the use of the notations of no. 2, in which the 

                                                
 (26) Cf., H. Hurwitz: “Über die Komposition der quadratischen Formen von beliebig vielen Variabeln” 
(Math. Werke, Band II, pp. 565-571, especially pp. 570, where one finds the matrix that is analogous to I.) 
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4-dimensional projective space P4 lies as the hypersurface x4 = 0.  The intersection point 
P of P1 and P4 lies in the interior of a cell 4

0ξ  of the cell decomposition of P4.  

Furthermore, two frameworks G and G  shall be constructed that satisfy the assumptions 

of the lemma in no. 2: Let the vectors of G  be the vectors v2 on the cells 3ξ , while the 2-

systems of G shall be the system v1, v2 on the cells 3ξ ; G is arbitrary on the remaining 

cells ξ3 of P5 and can be constructed using Theorem 14.  The characters χ and χ  that are 

associated with G and G , resp., actually fulfill the congruence (2) that was required in 

the lemma: 
4( )χ ξ  ≡ 4( )χ ξ  (mod 2). 

 
In order to prove this, one observes that for any cell 4ξ , except 4

0ξ , the relation 4( )χ ξ  ≡ 
4( )χ ξ  = 0 exists, since G, as well as G , can be continuously extended into the interior 

of the cell.  One verifies the assertion for the cell 4
0ξ  by calculating the characteristic by 

recursion (§ 3, no. 2); in order to be able to apply this method, it suffices that the cell 40ξ  

be foreign to the projective space x5 = 0; the vectors v1 whose contact points are points of 
4

0ξ  do not lie in P4 then. 

 From the statement of the lemma, it now follows that the intersection number of the 
class F1 of P5 with the hypersurface P4 is the (mod 2) reduced characteristic of P4; 
however, this characteristic has the value 1.  Therefore, the class F1 is not the zero class, 
and will be represented by a projective line. 
 One achieves the determination of the class F1 in projective spaces of dimension 4k + 
1 (k > 0) with the help of analogous vector fields; one finds: 
 
 Theorem 26.  The one-dimensional characteristic class in a real projective space of 
dimension (4k + 1) (k > 0) will be represented by a projective line; it is therefore 
impossible to find two linearly-independent continuous vector fields in these spaces. 
 
 An algebraic application.  We would like to relate our investigation of projective 
spaces to an algebraic problem that has a close connection with the older investigations 
(27). 
 We call (m + 1) linearly-independent quadratic (n + 1)-sequences of real matrices: 
 

A(µ) = ( )ikaµ    
0,1,2, ,

, 0,1,2, ,

m

i k n

µ = 
 = 

…

…
   (1) 

 
linearly-independent when any matrix ∑ A(µ) yµ that comes about through linear 
combination is non-singular, as long as only one of the real numbers yµ is non-zero.  One 
then has the following: 

                                                
 (27) Cf., Hurwitz: Werke, Band II, pp. 565-571 and pp. 641-666; furthermore, Radon: Abh. math. 
Seminar der Univ. Hamburg, Band I, pp. 1-14.  
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 Lemma.  If there are (m + 1) linearly-independent matrices (1) then there exists an 
everywhere-continuous m-field in projective space Pn. 
 
 Proof:  If B is any non-singular (n + 1)-rowed matrix then obviously the matrices B 
A(µ) (µ = 0, 1, …, m) are also linearly-independent; since we can choose B = (A(0))−1, we 
can assume from now on that: 

0
ika  = 

0 for ,

1 for .

i k

i k

≠
 =

     (2) 

We now understand vµ, for µ = 0, 1, …, m, to mean the vectors of Rn+1 whose i th 

component (i = 0, 1, 2, …, n) is given by: 
 

ivµ  = 
0

n

ik k
k

a xµ

=
∑ ;     (3) 

 
if one recalls (2) then v0 is the position vector p = (x0, x1, …, xn) in Rn+1.  From no. 3, it 

follows that the statement of the lemma will be proved, as long as one can show that the 
(m + 1) vectors vµ are linearly-independent for p ≠ 0. 

 Therefore, let 
0

m

y µ
µ

µ =
∑ v = 0 for a certain vector p ≠ 0; i.e.: 

,
ik k

k

a x yµ
µ

µ
∑  = 0  (i = 0, 1, 2, …, n). 

 

Since p ≠ 0, the rank of the matrix ( )ika yµ
µ

µ
∑  is less than (n + 1).  Since the matrices A(µ) 

= ( )ikaµ  are linearly independent, this is possible only when all yµ = 0.  This was to be 

proved. 
 The lemma now permits the following algebraic formulation of Theorem 26: 
 
 Theorem 27.  Any three quadratic (4k + 2)-rowed matrices are linearly independent 
(k ≥ 0). 
 
 

APPENDIX I 
 

The one-dimensional characteristic class 
of an orientable three-dimensional manifold 

 
 In § 5, no. 3, we saw that that for a three-dimensional manifold M3, the vanishing of 
the one-dimensional characteristic class F1 is a necessary and sufficient condition for 
parallelizability.  We further mentioned that for an orientable M3 with a differentiable 
simplicial decomposition, F1 is always the zero class, but left the reader responsible for 
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the proof of this fact.  It shall now be returned to under somewhat different 
differentiability assumptions. 
 
 
 1.  A combinatorial lemma.  The following lemma is interesting in its own right and 
is useful for the study of three-dimensional manifolds. 
 

 

S1 

S4 

S3 

S2 

x2 ∆1 

∆2 

 
Figure 4. 

 
  Lemma.  Any cell decomposition of a three-dimensional manifold M3 can be 
refined to a subdivision U such that any two-dimensional homology class (mod 2) of M3 
can be represented by a sub-cycle of U that consists of one or more disjoint two-
dimensional manifolds. 
 
 One must then show that any two-dimensional cycle z2 of the given cell 
decomposition in U gives one or more disjoint surfaces that collectively define a cycle 
that is homologous to z2.  The proof proceeds in two steps: 
 
 1. z2 is a cycle (mod 2), so an even number of polygons of z2 meet along an edge of 
z2.  We now consider an edge ξ1 of z2 at which more than two (say, 2n) polygons meet.  
Let 0

1ξ  and 0
2ξ  be the boundary points of ξ1 and let x2 be the dual cell to ξ1 in the given 

cell decomposition of M3.  We denote the intersecting line segments of x2 with the 2n 
polygons that meet at ξ1 by s1, s2, …, s2n , where the numbering shall be given by the 
natural cyclic ordering of these line segments (see Fig. 4 for n = 2).  Between two 
successive line segments s2k−1 and s2k (k = 1, 2, …, n), we now interpolate a small triangle 
∆k and construct the cone Kk1 over the boundary of ∆k that has its vertex at 0

1ξ .  

Analogously, Kk2 will be constructed with its vertex at 02ξ .  Kk1 + Kk2 is a two-

dimensional cycle that is homologous to zero, so z2 + 1 2
( )

( )k k
k

K K+∑  is a cycle 

homologous to z2, in which ξ1 is replaced with edges, each of which is incident with 
precisely two polygons of this new cycle.  One naturally introduces a suitable sub-
division of the given cell decomposition by carrying out this construction. 
 If all edges of z2 at which more than two polygons met were removed by this 
construction then one would obtain a cycle 2z  that would be homologous to z2 and would 
consist of one or more disjoint pseudo-manifolds. 
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 2.  Let ξ0 be an arbitrary vertex of 2z .  We construct a sub-division U in which the 
stars of the vertices ξ0 are disjoint.  Let S2 be the boundary sphere of the star of ξ0.  The 
intersection of 2z  with S2 consists of some disjoint closed polygon perimeters that bound 
a sub-complex C2 of S2.  We construct the cone K2 that has its vertex at ξ0 over the 
boundary C2.  C2 + K2 is a two-dimensional cycle that is homologous to zero, so 2z + C2 
+ K2 is a cycle that is homologous to 2z , which we replace 2z  with. 
 If one carries out this construction for every vertex then a cycle arises that is 
homologous to 2z , as well as z2, that consists of some disjoint two-dimensional surfaces. 
 
 
 3.  Determination of the class F1.  We now determine the class F1 of a given 
orientable manifold M3 by comparing M3 to a “standard manifold” 3

0M .  3
0M  is either the 

three-dimensional projective space P3 or the topological product T 3 = S2 × S1 of a sphere 
and a circle.  Both standard manifolds are parallelizable.  (The parallelizability of P3 was 
proved in § 6, no. 3; from Theorem 23, the class F1 is the zero class in T 3, so T 3 is 
parallelizable.  One can, moreover, also give a continuous 3-field on T 3 directly.)  The 
given manifold M3 now fulfills the following assumption: 
 Any two-dimensional manifold that is embedded in M3 without singularities 
possesses a neighborhood that can be mapped into a standard manifold topologically and 
continuously differentiably. 
 This assumption is only a differentiability assumption, since any two-dimensional 
manifold F that is embedded in M3 without singularities possesses a neighborhood that 
can be mapped topologically into one of the standard manifolds.  In order to show this, 
one constructs a manifold without singularities F′ in P3 or T 3 that is homeomorphic to F.  
(Three cases must be distinguished in the process of making this construction: a)  F is 
orientable; F′ can then be constructed in P3 or T 3.  b) F is not orientable and possesses an 
odd Euler characteristic; F′ can then be constructed in P3.  c) F is not orientable and 
possesses an even Euler characteristic; F′ can be constructed in T 3.)  Now, since M3 is 
orientable, F′ is two-sided (28) in 3

0M , as long as F is two-sided in M3, and likewise F′ is 

one-sided in 3
0M  when F is one-sided in M3; a topological map of F onto F′ can then 

always be extended to a topological map of a neighborhood of F to a neighborhood of F′.  
With that, our assertion is proved. 
 We now consider the cell decomposition U of M3 that was mentioned in the lemma, 
whose cells we denote by ξ r; furthermore, let F now be a sub-cycle (mod 2) of U, in 
particular, that consists of the cells 3ξ  of U.  If we imagine that a continuous 2-field is 

constructed on the standard manifold 30M  then the map of a neighborhood of F into 3
0M , 

which exists by assumption, induces a continuous 2-field F on that neighborhood.  The 2-

systems of F that contact the points of the cells 1ξ  define a one-dimensional framework 

(§ 4, no. 2) that, from Theorem 14, can be extended to a one-dimensional framework G 

that is defined on all of M3 and consists of 2-systems.  The character χ (§ 4, no. 4) that is 
                                                
 (28) On the relationships between the concepts of “orientable” and “two-sided,” cf., Seifert-Threlfall, § 
76.  
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associated with G has the value 0 for every cell 2ξ  if the 2-field that is induced by G on 

2ξɺ  is continuously extended into the interior of 2ξ .  One then has χ(F) = 0.  In other 
words: The characteristic class F1 has intersection number zero with F.  Now, since F1 
has intersection number zero with any surface F, and on the other hand, from our lemma, 
any two-dimensional homology class (mod 2) can be represented by one or more two-
dimensional manifolds F, F1 has intersection number zero with any two-dimensional 
homology class, so from the Poincaré-Veblen duality theorem, it is the zero class (mod 
2). 
 
 

APPENDIX II 
 

On the representation of hypersurfaces in Euclidian space  
by systems of equations (29) 

 
 In this appendix, we deduce a consequence of the intersection theorem 23.  In analogy 
to § 6, no. 2, we understand a ν-dimensional hypersurface that is embedded in n-
dimensional Euclidian space to mean a sub-complex of the cell decomposition of Rn that 
is the topological image of a ν-dimensional parameter manifold by means of a 
topological continuously-differentiable map (1 < ν < n). 
 Now, let x1, x2, …, xn be Cartesian coordinates in Rn and let (n – ν) continuously-
differentiable functions fi(x1, x2, …, xn) (i = 1, 2, …, n – ν) of these coordinates be given.  
Now, the equations: 

fi(x1, x2, …, xn)  = 0     (1) 
 
define a ν-dimensional hypersurface Mν, and if the functional matrix of the functions fi 
has rank (n – ν) at every point of Mν then we will call Mν a “hypersurface that is regularly 
representable by equations.” 
 
 Theorem 28.  Any hypersurface that is regularly representable by equations has an 
even Euler characteristic. 
 
 Proof: The gradients grad fi of the functions fi that contact the points of Mν are disjoint 
to Mν (§ 6, no. 2), and the gradients that contact a point of Mν are, by assumption, linearly 
independent, so they define an (n – ν)-system.  Since this system varies continuously 
with its contact point, moreover, Mν possesses an external (n – ν)-field, in the sense of § 
6, no. 2. 
 We close the Euclidian space Rn into the n-dimensional sphere Sn with an infinitely 
distant point.  Our hypersurface Mν that lies in Sn fulfills the assumption of Theorem 23, 
so, from that theorem, its characteristic is congruent (mod 2) to the intersection number 
of the characteristic class Fn−ν of Sn with Mν.  Since Fn−ν is trivially the zero class in Sn, 
this intersection number vanishes, with which our assertion is proved. 

                                                
 (29) This Appendix came about as a follow-up to a question of H. Seifert.  
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 It follows, in particular, from Theorem 28 that a hypersurface that is regularly 
representable by equations and homeomorphic to a real or complex plane cannot lie in 
any Euclidian space of any dimension (30). 
 
 
  
 
 
 
 
 
  
 
 
 

                                                
 (30) The Euler characteristic of the real projective plane is 1, while that of the complex projective plane is 
3 (cf., B. L. van der Waerden: “Topologische Begründung des Kalkuls der abzählenden Geometrie,” Math. 
Ann. 102 (1929), 337-362, especially pp. 361.)   The fact that the real projective plane cannot be regularly 
represented by equations in any Rn follows from the general theorem that any manifold that is regularly 
representable in Rn is orientable.  (For the proof, cf., footnote 25.)  This theorem was already proved by 
Poincaré (J. Ec. poly. (2), I, pp. 3).  The representation of the projective plane in R4 that was given in pp. 
301 of the book by Hilbert and Cohn-Vossen on intuitive geometry (Berlin, J. Springer, 1932) is not 
regular. 


