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Introduction

1. Then-dimensional manifolds that will be considered in thager will be closed
and continuously differentiablé)(  The question of whether a non-singular, continuous
direction field exists on such a manifold is answered H®y following well-known
theorem 9):

Theorem A; . A singularity-free, continuous direction field exists on the manifdld M
iff the Euler characteristic of Mhas the valu@ (§ 5, no. 2).

Therefore, on the one hand, amongst all closed andtalle surfaces, the ones with
the topological type of the torus are the only onesatanit the existence of a continuous
direction field ¢); on the other hand, one can endow any manifold of oddrdiion — in
particular, any three-dimensional manifold — with a camus direction field (8 6, no.
1).

However, since one would not expect that all manifelfi®edd dimension behave
precisely the same way in relation to the continudrecton fields that exist on them,
the contradiction that was formulated just now (e.gtwkeenn = 2 andn = 3) compels
one to look for a refinement of the original questiorhe Tollowing question is closely
related: Let am-dimensional manifoldM" and a numbem from the sequence 1, 2, .n,
be given. Is there a system of m direction fields oh thiat are linearly independent at
every point of N

This question, which is answered by Theopfor m = 1, and which commands
special and self-evident interest for=n — 1 andm = n (cf., no. 5 of this introduction),
defines the subject of the present paper. Indeed, the ayuesili not be answered
completely, in the sense of presenting the generaizatf TheoremA; to a necessary
and sufficient condition for the existence of a systémm independent direction fields —
in the sequel, referred to briefly as an-field.” Rather, some theorems will be proved
that, on the one hand, serve to resolve the problem iy sy@ecial cases, and which, on
the other hand, represent new contributions to the geo@aogy of closed manifolds.

() Cf., chap. XIV, § 4 ofTopologie(v. 1) of Alexandroff and Hopf (J. Springer, Berlin, 193%his
book, whose terminology we will follow in this paper, Mi€ briefly referred to as “AH” in the sequel.

() AH: chap. XIV, § 4, Theorem lIl.

() Poincaré, Journal de Liouville (#)pp. 203-208.
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2. Before we formulate the most important theorem, reeall a theorem that is
related to Theorer; and is likewise well-knowr{Y:

Theorem B; . There exists a direction field on any manifold that is singular (i.e.,
discontinuous) at no more than finitely many points. The number of thgskasiies,
when counted with the correct multiplicities (“indices”), is ip@adent of the particular
field: It is always equal to the characteristic of (& 5, no. 2)

We shall prove the following generalization of this ttezo:

Theorem B, . For any m(1 < m < n), there exist m-fields on any "Mvhose
singularities (i.e., points of discontinuity for the individual direntifields or points of
linear dependency for the various fields) define a complex of dimensiansatm -1.
With a correct enumeration of the multiplicities of the singulagijtieis a cycle, and the
homology class of this cycle is independent of the particular m-fiellal distinguished
element of the (m —"1Betti group(*? of M" (§ 4, no. 4, 5)

We shall call this homology clagd™ the ‘m™ characteristic class’of M". In the
case ofm = 1, it is the zero-dimensional homology class thatsists of a point oM",
multiplied by the Euler characteristic.

TheoremA; will now be generalized, in a certain sense, by wayheffollowing
theorem:

Theorem A, . There exists an m-field on"Mvhose singularities define a complex of
dimension at most mz-iff F™* = 0 (i.e., the zero element of the (m & Betti group of
M") (8§ 4, no. 5).

It follows from this immediately that:

Theorem A . In order for a singularity-free m-field to exist on" Mt is necessary

that:
FP=F'=..=F"'=0.

However, this condition might not be sufficient.

3. This suggests the problem of determining the charadtesiasses™* (m= 1, 2,
...) for a givenM". In the casen = 1, the determination d&¥™* is equivalent to the
determination of the Euler characteristicMf, and on the basis of the Euler-Poincaré
formula:

Y (-1)ya =X (-1) p,

(") AH: chap. XIV, § 4, Theorem I.
(*3 The coefficient domain to which these Betti groupisites is defined in § 4, no. 3 (cf., also AH:
chap. V).
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in which thea' refer to the numbers ofdimensional cells in a decompositionMf and
p means the™ Betti number oM", one can express it in two different ways: namely, in
terms of thea” and in terms of thp'.

The first of these two possibilities seems to be capablbeing carried over to an
arbitrarym (8 5, no. 3, footnote 22); however, the more important quest whether
one can also represent the cl&85' in a way that corresponds to the representation of
the characteristic on the right-hand side of the EEBtEncaré formula, and thus in terms
of known topological invariants dfl". Moreover, if the answer to this question, which
was unknown to us up till now, is in the negative theat twould teach us something
new: F™* would be anew topological invarianbf a manifold.

There exists yet another relationship between the did5% and the Euler
characteristic, in another regard: The intersectionbamof F™* with an 6 —m + 1)-
dimensional manifold that is embeddediis congruent (mod 2) to the characteristic of
that manifold, as long as the embedding fulfills certagurements that are formulated
in 8§ 6, no. 2.

4. The determination df™* for a given manifold is achieved in some cases with the
help of TheorenB,, alone; on the basis of that theorem, one indeedsnte construct
only aspecial mfield that is constructed so neatly that one can Spéwe complex by
means of its singularities. In this way, we will tréla¢ (& + 1)-dimensional projective
spaces as an example; it will be shown that:

Theorem C. For the (4k + 1)-dimensional real projective spacé'® F!is the class
that contains the projective line, so it is therefore non-zero (®63).

This theorem, as well as in the fact that there e¢orinuous direction field on any
odd-dimensional manifold, includes the fact that:

Theorem C'. There is a continuous direction field offB, so for any pair of fields
there exist points at which the directions of the two fields iinereequal or opposite.

This property of projective spaces allows one to provéicealgebraic theorems
whose proofs seem to be unknown, up to now, when onkswath the usual algebraic
lemmas (8 6, no. 3).

5. The question of whether amfield exists on arM" deserves a special and self-
evident interest; namely, the existence of such a feeleguivalent to the idea that one
can introduce aeleparallelismon M", or, as we also say, thit" is “parallelizable’
Therefore, we caM" parallelizable when one can decompose the totalia}l afirections
in M" into mutually disjoint, single-valued, and continuous atiom fields that we call
“parallel fields,” such that the following condition fslfilled: If v, vy, ..., vk are

directions at a poirp of M" and v}, v}, ...,b, are the same directions at another arbitrary
point p', as deduced from some parallel fields, then the linedependence of the
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follows from the linear independence of the We will briefly call directions “parallel”

when they are taken from the same parallel field.
In fact, one easily sees that parallelizabilitydentical to the existence of arfield:
If an n-field exists then one calls two directions v’ at the pointsp and p’, resp.,

“parallel” in the event that their components relativetie directions of the-field at p
andp', resp., agree with each other, up to a positive factiog; has then introduced a
teleparallelism. On the other hand, if a teleparahels defined then one distinguishres
linearly-independent directions at a fixed point; the diogst that are parallel to these
directions at the remaining pointsMf then define an-field.

Non-orientable manifolds are not parallelizable. Onater hand, one easily shows
that the existence of amnfield on an orientable manifold already follows frommet
existence of ann(— 1)-field. With that, the examination of parallebday is completely
converted into the examination af £ 1)-fields. It is therefore no restriction when we
assume thain < n in what follows. Theoren#, yields:

Theorem D. The vanishing of all characteristic classe$ F, ..., F"? is necessary
for the parallelizability of M.

Here, as well, — confer Theore#y, — one should not assume that the condition is

sufficient.
Since agroup manifold(®) is certainly parallelizable, Theorebnyields a necessary
condition for a given manifol" to be able to be made intayeoup space.

6. All manifolds for which the Euler characteristic nen-zero are certainly non-
parallelizable- like, e.g., the spheres of even dimensiocso one indeed also h&S# 0;
neither are the projective spaces of dimensior 4 that were mentioned in Theor&n
By a product construction, one can further prove:

Theorem E. For any dimension n that is different from 1 and 3, there are n-
dimensional (closed and orientable) manifolds that are non-parallelizable (8 8).no.

For n = 1, there is a single closed manifold, namely, thelesi it is trivially
parallelizable. The question of parallelizability isritfeést open only fon = 3, and there
one has:

Theorem F. Any three-dimensional closed and orientable manif¢l® is
parallelizable (8 5, no. 3).

This remarkable special position of dimension three @gain points to the difficulty
in the search for a classification of three-dimensionanifolds; the attempt to divide the
orientable three-dimensional manifolds into paralléigaand non-parallelizable ones
would then fail.

() AH: Introduction, § 3, no. 17; there, you will alsodireferences.
*» In addition, the manifold must fulfill certain differentiliy assumptions (cf., § 5 and Appendix I).
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7. The theorems that were stated in this introductidinbeiformulated and proved in
88 4-6; 88 1 and 2 have a preparatory character. In 8§ ltlenlyefinition in no. 1 and
the results of no. 4 are important for the remaining pathe paper. In Appendix I, the
determination of the clas§' for three-dimensional, orientable manifolds will be
discussed in detail that was only suggested in 8 5, no. 3. ndpp#d subsequently
arises; in it, it will be proved that a manifold witlm @dd characteristic that lies in
Euclidian space cannot be represented by regular equdions (

| have already reported on the individual partial tssaf this paper in other places
(Verh. der schw. naturf. Gesellschaft, 1934, pp. 270; furthexm&nseignement
mathématique, 1934, 1, pp. 6).

At this point, | would like to thank Herrn Prof. H. Hofair the impetus to do this
work and for his enduring interest in its progress, as$ agefor his worthwhile advice at
decisive moments.

8 1. ThemanifoldsVy m.

1. Definitions. In the sequel, we shall call an ordered, normalizéabgonal system
Oh, m Of m vectorsvy, vy, ..., by that contact a point in-dimensional Euclidian spad®

anm-system in R In this, letm be constrained by the inequalities:
0<m<n. (1)

Vi, m is defined to be the set of alksystemsa, , at a fixed point oR". If one introduces
a notion of neighborhood into this set in a natural WeanV,, » becomes a topological
space whose pointsare them-systemsa, m.

V,., 1 is homeomorphic to then( 1)-dimensional spher@™ that it traced out by the
endpoints of the vectar;. However, ifm > 1 then we displace the vectars ..., vy

of an, m parallel to the endpoint of the vectar ThereforeV, n can also be described as

the set of allifh — 1)-systems ifR" that are tangential t8"™. In particular\V,, 2 is the set
of directed line elements &

One can arrive at another representation of the space by stereographic
projection which we will briefly denote by in what follows: If one project§™ from
its North Pole onto its equatorial spaR€® then a systersr, -1 that contacts the sphere
at a pointp goes to anni— 1)-systenoi-1 m1 in R that contacts the image pojmtto
p. On-1, m1 IS established uniquely by its contact p@pntand the ifh — 1)-system that is
parallel togh-1, m-1 Of @Vn1, m1 =V, that is embedded iR"*. A pointv of V is thus

given by a poinp; of R"* and a point; of V. We briefly write:

V=pP1XV;1. (2)

(®) One can also confer AH: Introduction, § 1, no. 7.
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This representation breaks down only for those syst@gmg that contact the North
Pole. In order to also treat these systems, we prSjeconto R"™ from the South Pole.
Analogous to (2), one gets:

V=pP2X%XVa. (2)

V; is a point of the se¥, that features in place & under the second projection. If we

denote the equatorial sphereSt by S then the two pointp; andp, go to each other
under the transformation by means of reciprocal radiiih
Formula (2) describes a relationship betw&emand V| ; i.e., betweenV, n and

Vh-im-1. By iteration, we obtain a relation between spadeke sequence:
Vi,my, Vo-1,m-1, --+y Vak meks -+-5 Vo1, 1= s, (4)
One can infer the following conclusions from this:

I. Any point ofV, n possesses a neighborhood that is homeomorphic to én@int
of a Euclidian ball.

Il. Vi mis connected. (Due to (19, " is connected.)
[ll. One has the recursion formula for the dimengiQm, of Vi, m:

Unm = th-1,m1+ (N—1), (%)
: _m+l
,un,m—mE(n > j (6)

2. Decomposition of Vi, m . For our first projectiorS™ bounds the closed bdl in
R We define:

SO

Ki=E1xV,. (7)
Analogously, for the second projection, one has:

Ko=Exx V. (8)
Vis then the set union &k andKs:

V=K +Ks. (9)

If one iterates this decomposition &, ., for the sequence (4) then it follows
inductively that:

VI. Vi, mis a polyhedron.
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It now follows from I-1V that:
Theorem 1. V, nis a closed manifold

We call the manifolds of the sequence (4)rtanifolds that are associated with M
For the intersection df; andK,, one gets:

For the first projection: Ky K, =S x V/, (20)
For the second projection: Ky (K, =S x V,. (11)

We would like to derive the properties of the Betti grouwgdsV from our
decomposition (9) of the manifoly by induction on the sequence of associated
manifolds. For > 0, we understanB'(K) to mean the-dimensional Betti group of the
complexK, while forr = 0, it is the group of O-dimensional integer homologgsda that
contain only reducible cycles. (A O-dimensional cycleeducible when the sum of its
coefficients vanishes)). We call algebraic subcomplexes of:

V=K +Ky, Ki, Kz, KiKy, V/, V,
C, Ci, Ca, Cio, Ci, C;, resp.

Cycles will always be denoted hyr Z.
We now make the following basic assumption:

let B'(Vi-1,m-1) = O for a fixedr with 0<r <n-2. 01)
One then had), for an arbitraryr(+ 1)-dimensional sub-cyc®&™ of Vi, m :
7" =727+ 21, (12)
(Z™ is a sub-cycle dk; and Z,"* is a sub-cycle oK, .)

Proof: It follows from ;) that B'(\/) = 0, so one also had (B'(S"?x V) = 0; it

then follows from (10) that:
Br(Kl |:K2) =0. (13)

Now let Z*' = C; — C, be any decomposition af** into two algebraic r( + 1)-
dimensional sub-complexes &f andK, . Taking the boundary yield€, = C,; this

common boundary lies iK1, as well as irK; , so it is az, . It follows from (13) thatz,

() AH: chap. IV, § 4, no. 7, and furthermore, chap. \1, §0. 5.

() This theorem is a special case of an addition #medn combinatorial topology; cf., AH: chap. VII,
§ 2, especially no. 5.

() For Betti groups of product complexes, see AH: chap.8/3.
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= C,0C1 — C1; andC, — Cy; are cycless, z, resp., and one ha&' =z — 2 , with
which (12) is proved.
Under the sharper assumption:
Let B"(Vi-1,m-1) = O for a fixedr with 0<r <n -3, 02)
one then obtains the isomorphism:
B'(Vn,m) = B (Va-1,m-1). (14)
Proof: From the theorem on the Betti groups of producipéexas, it follows that:
B'(Ky) = B™HE1 x V) = B"NE1 X V-1, m1) = B™ (Vi1 moa).
Analogously, one obtains, with consideration of thé flaatr + 1 <n— 2:
B™(Ky Ky =B™HS™?x V) =B"{S™? X Vo1, m1) = B (Vaer.ma),  (15)

and therefore:
B"(Ky [K2) = B™Y(Ky).

This isomorphism can be realized if one associates albggnclass oK; [K; , whose

r+l r+1

representative cycle ig,”, with the homology class of,” in K;. From that, we infer
the following conclusions:

a) A cycle ofK; [K; is contained in anyr (+ 1)-dimensional homology class kf
(or Ky).

b) From the homology,,* ~ 0 inK; (or Ky), it follows that:
Zgl ~0 inKl K.

If one associates a homology clas&ofK,, whose representative cyclezs;*, with

the homology class oZ[,* in K; + K, then a homomorphic map 8 (K, OKy) into
B"(K + K2) comes about. This map is an isomorphism, in the ¢hant

1. A cycle ofK; [K; is contained in any (+ 1)-dimensional homology class ¥f +
K>.

2. The homologyz;;* ~ 0 inK; [X; follows from the homologyZ;;* ~ 0 inK; + Ko.

1. follows from (12) and a).
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2. is verified in the following way:
Z3' ~ 0 inKy + K2 means thaZ;* = C. A decompositioi€ = C; — C; of C gives Z[;*
= C,—-C,. This possible only whe€, = z;* andC, = Z,*. Sincez,;' ~ 0inKjy, one
gets from b) thatz;* ~ 0 inK; [K,, and likewisez,* ~ 0 inK; K, and therefore also

Z3* ~ 0inKy K. With that, we hav8™(K; + K2) = B™(K; [K»).

Our proof then gives:

Lemma. Under the assumptiofd,), an (r + 1)-dimensional homology basis for K
K is also a homology basis fora/K; + Ko.

The following theorem can now be proved easily:
Theorem 2. ForO<r <n-—m- 1, one ha8'(V, m) = 0.

The proof proceeds by complete induction on the sequerassotiated manifolds; thus,
let it be already proved that:

B (Va-t.m1) =0  forO<sr<n-m-1.

It further follows from Theorem 1 th&"(Vh-1 m1) = 0, so one also h&(Vy-1. m1) = O.
Sincem > 1 was assumed) is true, and therefore (14), and therefore Theoremmt
induction will be anchored on the manifolf}-m+1, 1 = S™™, for which Theorem 2 is
trivial.

Theorem 3. For m> 2,0ne has B™(Vi m) = B" ™(Vn-1,m1).

Proof: From Theorem 2J{) is true forr =n—m- 1. (14) then gives the assertion.

3. Topology of Vh2> . B"™(V, m) can be determined from Theorem 3 when
B"™(Vh-ms2, ) is known; therefore, then(- 2)-dimensional Betti group of a manifol »
shall be calculated in this section. The sequenceswfcgated manifolds consists of only
an ( — 2)-dimensional sphere in this case. We use our firgjegion for the

representation o¥, » ; V. is then a spher&§" 2. Let the two sphereS" and §"?be
equally oriented, so we also denote the cycles thaprakeded by these orientations by
S™and S"2. If sis an arbitrary, but chosen once and for all, poin8bf, and s, is a
point of S"2 then, from (10), the two cycles, =sx S"2 andS'™?x s define anif —
2)-dimensional homology basis i (K, . (The case of = 3 is represented in Fig. 1)
Any (n—-2)-dimensional cycl&;, of K; [K; thus satisfies a homology:

Zior~azo+ ,8212 in K; [Ks, (17)
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? Figure 1. Figure 2.

wherea and  are well-defined numbers. We now pose the problenetaroining the
homologies (17) thaZ;, fulfills in K; or K, . We first solve this problem for a special

cycle Z;, that is defined in the first projection as the fieldeaferior normal vectors on
S"2. For this cycle, (17) reads:

Z) ~z+72, in Ky K. (17)
Proof: Z;, fulfills a homology:

20 ~a na+f 7, inKy [Ks. 7"

The determination of the unknowms and 8 is achieved in the following way: One
associates a poim; x v; of K; OK; [see (2)] with the pointy of V) = §"?; this
continuous mayp of K; [K; into §"* induces a homomorphic map of the Betti groups of
K1 [K; into the Betti groups 05" that transforms (17 into the homologyf (Z))~

a M(z) + F F(z,)= aOS"2. The fact thatf (Z) ~ S"? yieldsa = 1; one finds
that8 =1 in an analogous way.

Relative toK;, Z,, fulfills the homology:
ZlD2 ~ 212 in K. (1é)

The proof is by continuous variation &f,: One lets an arbitrary poipi x v; of Z, run
through the path that is suggested by the following schema:

P1 X V1, pat) Xvi,  Sxvi. O)

In this, t is a deformation parameter that ranges from 0 fm(); moves uniformly and
rectilinearly fromp; to the points of S,

By performing the transformation through reciprocaliradiS'?, Figure 1 becomes
Figure 2, where one finds, in an analogous way:
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Z0 ~ (1) Oue inKs . (19)

For the arbitrary cycl&;, , we now have, from (17) and (17%), ttat ~ (a—p) Oz, + 5
0z,, in K; Kz, and thus also iK; ; it then follows from (18*) thaZi, ~ a Oz2 in Ky .
Analogously, with the use of (19 one getsZi, ~ [a@ - B+ (-1)" 08 Oz2in K, . This
then yields the following solution to our problem:
From the fact that:
Ziz~aznxt 7, inKi[Ks,

it follows that:

Zi1o~ a7 in Ky (18)
and

Ziy~[a- B+ (-1)' A n2inKz. (19)

We now infer some consequences from these formulas:

Theorem 4. The(n —2)-dimensional Betti group of,Y is cyclic and has orded for
even n and orde2 for odd n

In this, we understand a cyclic group of order O to meageacyclic group.

Proof: From (7), our cycle, defines anr{— 2)-dimensional homology basiskj ;
however, sincd; andK, are mapped to each other topologically by our transfooma
through reciprocal radig, is also a homology basis f&p . Furthermore, from (12) [the
assumption Jy) is fulfilled for r = n — 3], any ( — 2)-dimensional cycle o¥,, can be
written as the sum of a cyclefa and a cycle ifK, . From these facts, it follows that the
homology class of;» in V,,» generates the grou %(V,, »), so that group is cyclic; in
order to establish its order, we must determine the @fdes . Thus, let, sayy [z, ~ 0
in Vi, 2—i.e.,yu, = C. A decompositior€ = C; + C, of C then givesy[z» = C, +C,.

This is possible only fo€, =Z;, andC, = Z,,. We then find that:
yOno=2Z1p+ 2,  withZ;;~0inKyandZ,~ 0 inK; . (20)

If we assume that is perhaps odd then it follows frof, ~ 0 inK;, by means of (18),
thatZy, ~ S0z, in Ky K> . By substituting this into (20), we find the homolagi:,» ~
2B 0y + (B+P) Oz, inKy [Ky. This homology is possible only fgr= 2B ; it then
follows that yis even from the fact thatzi, ~ 0 inV,,2. The order oty is then at least
2; the fact that it is exactly 2 follows from a cores@tion of-Z,. Namely, from (18),
one has-Z,~ 0 inV,2, and from (19);-7,~ 2 Oz in V,2. One then has, in fact, that

221, ~ 0 inV,2. Since the case of evencan be examined analogously, Theorem 4 is
proved.
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It is likewise shown thati; is a basis cycle for the gro®(Vi2). (This will be
important later.) We shall then given a definition zf that is independent of the
decomposition ol,> . To this end, one considers all 2-systems of V,» (no. 1) that
coincide in their first vector. The endpoints of tkead vectors of this system will run
through anif — 2)-dimensional sphere, which we think of as orientete Jysteng .
then defines ann(—- 2)-dimensional cycle that ca#l,, . It is clear thatz,» can be
identified withz, ; we then find the following:

Lemma: The cycle z is the basis element for the (n — 2)-dimensional Betti group of
Vn’2 .

The manifoldV,; is orientable. We will prove this later. From Thems 2 and 4,
one can then determine all Betti groups\at with the help of the Poincaré duality
theorem. One then obtains the following result:

Theorem 5. For even n, the non-zero Betti numbers g &te: @ = p"2 =p™* =
p?"3 = 1; no torsion is present. For odd n, one also had p p"™* = 0, but an(n — 2)-

dimensional torsion of orde&t also enters in.

Furthermore, the relations (18) and (19) allow us to deterthe continuous maps of
an at mostr{— 2)-dimensional sphere ini,>. One has, in fact:

Theorem 6. Two continuous maps of an at mfst 2)-dimensional sphere into,Y
are homotopic if they have the same homology (¥p¢€°3.

We preface the proof with some preliminary considenatio Let, perhapd, be a
given continuous map of the sphe® (r < n — 2) intoV,» , and letv, be an arbitrary

point of §. If, as in no. 1, we think of,, as the set of all vectors Rl that are tangent

to S"! then we can assume for all homotopy investigatioristhieaimage vector of point
Vo does not conta@'™ at the North Pole. (If this were not true thengsir <n - 1, one
could always make it so by a continuous changk)inNo image vectors are then lost
under the transition to our first projection, and one lfrasn (2), thatf(vp) = p1 X vi.
Furthermore, one can actually assume that only theg®i; (see Fig. 1) can appear
as image points. (In fact, the continuous m@p- p; X vi can be changed into a map
that has the desired property by the deformation pro®gsbéginning of this no.)) We
then assume that:

f(vo) =S X% vi. (21)

We call the magb(vo) = v; of §) into the associated manifol§"*to V,, theassociated

map ¢ to the mag. Now, if f is a second map o, into V. and @ is its associated
map then one has:

(%  AH: chap. VIII, § 3.
(% This theorem is a generalization of the theorenmhenclassification of sphere maps (AH: chap.
X, § 2).



Stiefel — Direction fields and teleparallelismrirdimensional manifolds. 13

The homotopy of and f follows from the homotopy of and @ . (22)

This follows simply from the fact that multiplicatidoy the fixed poins is a topological
map of §"?into Vi 2.
We now go on to the proof of Theorem 6. There amethases to consider:

Case 1.r <n—2. From Theorem 2, we must show that any maf§ointo V, is

homotopic to zero, so the image §f can be contracted to a point. However, from (22),

this is a consequence of the fact that smeen — 2, the associated map is homotopic to
zero.

Case 2.r =n—2 andh is even. Lef and f be the two maps of which we spoke in
Theorem 6. If we understarf = )% to also mean the cycle that this sphere represents
with a chosen orientation then the assumption obfidra 6 says thaf (§?) ~ (%)
iN Vo2 =Ky + Ko . From (21),f(S)?) and (S)?) are cycles irk; [Kz, so they fulfill
the homologies (17)f (S)?) ~a ziz, T(S?)~ @ z» in Ky [Kz; one then hag [z, ~
@ z12 inVh2. From Theorem 4, this is possible onlyrit @, and one finally gets that
f(S7?) ~ F(S?) inKy K2. We map this homology t8"2 by assigning the poi;

x vq in Ky [K; to the pointv; . One thus finds thap(S) %) ~ #(S7?) in §"*. The two
maps¢g and @ of S)* into §"* thus have the same mapping degree, from which their
homotopy follows. (22) concludes the proof.

Case 3.r =n—2 andnis odd. Theorem 4 then gives only tlef @ (mod 2). Let
a =a- X, perhaps. The proof above will also work in this caseeican show that our
map f with f (§7%)~ a z, in K; OK; can be changed continuously into a nfiavith
f,(S57?) ~ (a - 2k) z12 in K; [K; that satisfies the condition (21). To that endFlée an
arbitrary map of§~ into S"? of degreek. Next, f will be changed into a maf
according to the following schema:

f(Vo) =SXV, F(Vo, 1 —t) XV, F(Vo) XV, = f]_(Vo).

F(vo, t) again moves uniformly and rectilinearly froRfvo) to s. The cycle f,(S)?)
again lies inK; [K; and satisfies the homologf;(S)*)~ a z» + kZ, there, which one

proves analogously to ()7 From (19), one has,(S*)~ (@ - 2k) z2 in K, . One now
goes to Figure 2 by means of the transformation througiproeal radii, and changés
there by the deformation process that is analogouB)}o The result is a mafp with
f,(S7?)~ (@ - 2K) z2 in Kz and f,(S)?) ~ dzi2 in K; [K; that satisfies the condition
(21). As for the unknowrd, one easily finds from (19) thal= a — X. With that,
Theorem 6 is proved completely.
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It then follows from Theorems 2 and 6 that:
Theorem 7. For n> 3,the manifold V, is simply-connected, and thus orientable

As a non-simply-connected manifold, the manifgld then occupies a special place
in the V2, which we will later (8 5, no. 3) exploit in our investiga of the
parallelizability of three-dimensional manifolds. Weention thatVs ; is homeomorphic
to the three-dimensional projective sp&e To prove this, one observes thgp, as the
set of line elements on a two-dimensional sphere, is domhic to the group of
Euclidian rotations of that sphere. Such a rotatipimasvever, determined uniquely by
four homogeneous parameters.

4. Topology of Vom . The union of the results of sections 2 and 3 alltves
derivation of further topological properties of tMgm . One proves the following
theorem by induction on the sequence (4) of associated nasnifowhich is now,
however, broken by the manifo\§ 2, 2— in which one always assumes tiret 1:

1. The Betti grouB" " (Vam) is cyclic of order O for even —m and of order 2 for
oddn—-m.

The proof follows from Theorems 3 and 4. In orderfitm a basis cycle for
B"™(Vam), One considers ath-systemsdnm in Vam (No. 1) whose firstri— 1) vectors are
given as fixed. The endpoints of the latter vector$igfaystem run through an £ nm)-
dimensional sphere that we regard as being oriented. syi8temsr, , then define ann(
— m)-dimensional cycle,m .

2. Zumis a basis cycle fa8" ™(Vnm).
The proof follows from the two lemmas in no. 2 and310.

3. Two continuous maps of an at most-«{ n)-dimensional sphere int¥,n are
homotopic when they have the same homology type.

To prove this, if and f are two maps then one defines the associated ¢gnapd @

iNto Vy-1m-1 iN @ manner that is analogous to no. 3. The homotogdyaofl f then
follows from the homotopy of the associated maps.

From 3,Vhm is simply-connected fom < n - 1, so it is also orientableV, -1 is
homeomorphic to the group of Euclidian rotations ofrar ()-dimensional sphere and,
as a group manifold, it is therefore orientable. Forntasifold, one has, moreover:

4. The fundamental group ¥f -1 is a cyclic group of order 21¢ 2).



Stiefel — Direction fields and teleparallelismrirdimensional manifolds. 15

The proof of this differs from that of 3 in only inestal ways. (In order to anchor
the induction, one observes that 4. follows ¥y, from its homeomorphism with
projective space.)

In conclusion, we would like to derive some propertied/,pf from these theorem
that will be needed in what follows:

Theorem 8. The continuous image of an at m@st- m — 1)-dimensional sphere in
Vhm (M arbitrary) can be contracted to a point.

Proof is from 3. and Theorem 2.

Theorem 9. If f is a continuous map of an orientable sph&g™into \i,m then one
has the homology:
f (Sg_m) -~ aZn’m |n Vn’m .

If n — mis even or m 1then a is determined uniquely, and two maps with the same
value ofa are homotopic.
However, if n — m is odd and m is different frbthen a is determined onlymod 2)

*Y; two maps that are associated with valuesaofhat are congruen{mod 2) are
homotopic.

§ 2. Theopen manifolds V, .

1. Definitions. In this section, we would like to freely make the nieBbn to
orthogonal and normalized+systems. We define: An ordered systejﬁm of m
linearly-independent vectors, v,, ..., b, that contact a point d¥" is called araffine m-

systemin R". We now call the systems,, of § 1 orthogonal m-systemsn order to
distinguish them from the affin@-systems;m again fulfills the inequalities:

0<m<n. (1)

The set of all affinen-systems that conta&’" at a fixed point is calle?,’,. A system

o’ is given by than Cm components of its vectors, so it can be regarded asaip@in

n,m

(n Om)-dimensional numerical space. In this way of Iookingjha'angs,vn?m becomes a
sub-domain of the numerical space, so it is an open oddnif

2. Retraction mapping. For anym-system of\/n?m, we replace the vector with the
vector:

() Therefore, we can assume in what follows thhts the value 0 or 1 in this case.
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b} = i — (0i [b)) v . (2)

i andj are chosen to be fixed, but different from each otfweril;) means the scalar
product ofo; andv; . This produces a continuous nfapf V. into itself; we denote the
image set byf (me) . By considering the family of maps:

o (t) = vi —t (v;i Oby) v (O<st<),

one recognizes thdtis a deformation; i.e., it belongs to the class efitentity. If one
replaces the vectai in any systenu,, . in V, . for a definite value ok with the vector:

% =77 (3)

then this gives another continuous neapf Vn?m into itself. g is also a deformation, as
the family of maps:

v (1) = [t+ (1) Ooo|]

Oy

O<t<1)
|0,

yields. The two mapsandg leave the manifol&/, » invariant, which is indeed a subset
of V..
One can once more perform a deformation of type (), fesp.] with f(\/n?m)

[g(me), resp.], and ultimately construct a deformation th&tpssnvfm onto Vpm

continuously by composing finitely many deformations of tigge. This follows from
the well-known fact of analytic geometry that anyiraffsystemo,’ in V,,, can be

orthogonalized by finitely many steps of type (2) and (Bje call the deformatiok the
retraction mapping*?) of V.. ontoVm.

3. Topology of me. With the help of our retraction, we can now caswer the
results of § 1, no. 4 to the open manifg,,:

Theorem 10. meis completely homology-equivalent tq.V; i.e., one has for an
arbitrary r: B’ (me):: B'(Vam); furthermore, all of the results that were proved fg,V
in § 1, no. 4 are also true for the manifald ..

(*3) This concept goes back to K. Borsuk; cf., AH: chapil, \86.
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Proof: The retraction malp induces a map oB' (Vn?m) to B'(Vnm). In order to prove
that this homomorphism is an isomorphism, it sufficegce anyr-dimensional
homology class o¥,, appears trivially as an image class) to show that nsekeonsists
of only the zero class. Therefore, let, saybe a cycle otV andF(Z) ~ 0 inVym,

hence, also itV,,,. SinceF(Z) goes toz under deformation, one h&$z) ~Z in V",
so, in factZ ~0inV,,,.

The second assertion of Theorem 10 can now be provéy wak the help of our
retraction.

Remark. All positively-orientech-systems that contact a fixed pointRf define a
manifold that is homeomorphic to the grofpof all proper affine maps &¥". From our
analysis, it easily follows th&, is completely homology-equivalent Ya -1 and that the
fundamental group d&, is a cyclic group of order 2 for> 2.

8 3. Vector fieldsin Euclidian space. Characteristic.

1. Characteristic of an m-field on a sphere. In this section, we understaffi* to
mean anr(+ 1)-dimensional curved cell that is embedded in the Eadlidpac&" and
S to mean the boundary sphere®t’. If we denote a point o by p then we can
establish the points of the c&8** by means of a polar coordinate systenp. (o is a
number that runs from 0 to 1, the point |g,is the origin of the coordinate system, and
(1, p) is identical withp.)

If an affine msystemo(p) of R" is attached to every point &f then we speak of an
m-fieldg onS. The examination of this field is the objective oftparagraph. To that

end, we choose a set of vect&’[%1 that is embedded R" and associate the pojniof S
with the m-system oan?m that is parallel too(p). A mapf of the spheres into the
manifold Vn?m Is given by this association that we cathapping by parallel m-systems.

We further call the fiel§ continuouswhenf is continuous; this will always be assumed
in what follows. We define a continuous field on thel &I* and the associated
mapping by parallah-systems in an analogous way.

Now, this immediately suggests the question: Under adraditions can a continuous
field o(p) that is given orS be extended to a continuous fieip, p) onE™**? [i.e.,a(1,
p) = a(p).] If the dimensiorr of our sphere is less than — mthen Theorem 8 (10)
shows that this process is always possible. In faftS) is then homotopic to zero in
V., then {%) f can be extended to a continuous maf'6finto V... However, ifr =n
— mthen the sphere is  n)-dimensional (and oriented), and it follows from Theoi@

(10) that the desired process is possible iff the nuralibat is associated with our map
by parallelm-systems vanishes.

(** AH: chap. XIII, § 1, Lemma Il
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This numbera is called thecharacteristicof the m-field § on the spher& = S'™.
One then finds that:

Theorem 11. A continuous m-field that is given on the boundary of a cell can be
continuously extended into its interior:

a) If the dimension of the sphere is less than n — m.
b) If the sphere ig¢n — m)-dimensional and the characteristic of the field on @.is

Extension through central projection:

A boundary field can always be extended into the mteof the cellE™* by the
definition: “o(p, p) is parallel too(p).” We call this processxtension through central
projectionfrom the point (Op). However, the continuity of the extended field whien
generally break down at the center of projection. Meeeoif an arbitrary, not-
necessarily-continuous-field is given on the boundary sphede and we denote the set
of its discontinuities by, then the field that is extended by central projectiba the
cellE** is discontinuous at all points of the cone dViewith the center of projection for
its vertex.

2. Remarkson the calculation of the characteristic. In many cases, it proves to be
useful to calculate the characteristic in some othayr than by means of the mapping by
parallelm-systems: Let a continuous field of positively-oriented tsystems3(p, p) be

given on the celE™?!. Such a field is called hasis fieldon the cellE™™.
(“Positively-oriented” means oriented the same asstts¢eny, ¢, ..., ¢, Of basis vector

in R".) In order to calculate the characteristic ohafield o(p) that is given oi8'™, we
proceed as follows: Laet, (=1, 2, ...,m) be a vector ot(p) and letv,; (i =1, 2, ...,n)

be its componenteelative to the basig(1, p). If one now associates every vector
with the vector that contacts the originRfand has the components relative toes, e,
.., en then this produces a continuous nfapf S'™ into theV, . at the origin ofR".

From Theorem 9 (10), a number is associated with this map; we prove thdis the
characteristic of the givem-field onS'™.

To that end, we construct a continuous fani{p) (0 <t <1) of basis fields o8'™
such thatf(p) = A1, p) andBi(p) is parallel toes, ¢z, ..., en. (TO construct this family,

one defines, say, forOt< 1: Z(p) is parallel tof1 — 2, p); the systemg@,»(p) are then
parallel to each other and can easily be made paralgl ..., ¢, by a deformation in the
interval £ <t < 1.) A map f' of S™ into V, that is continuous and continuously
varying int belongs to every basis fielé(p). f, is ourf’, while f is identical with the

mapf through parallem-systems.f andf” are then homotopic; the assertion the follows
from this.
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Calculation of the characteristic by recursion:

Our new method of calculation of the characteristiery useful when one is dealing
with the following situation:

a) The cellE"™! lies in ann’-dimensional plan&?” of R". (" <n) R" will be
spanned by, perhaps, the basis veat@rss , ..., en .

b) Suppose that the vectars, v2, ..., bpy Of the systeno(p) are not contained in

R": they then define am(-n)-system inR", and all of these systems define an (
-n')-field onS'™. We assume that this field can be extended tm am()-field
7 (p, p) onE"™,

c) Let the vectors,-n+1 , ..., bm Of a(p) be contained ifR"; they then define am'-
systemd'(p) iNR". (M =m—n+n).

o(p) and d'(p) then possess characteristicanda’ onS'™. One then has:
a=a (mod 2).

(One can actually prove the equality@find @ for certain orientation assumptions; for
our purposes, however, it suffices to have congruence2mod

Outline of proof: One chooses a basis figlf, p) on the celE"™' in R". This
basis field will be extended b§ (o, p) to a basis fielgX o, p) in R". One calculates the
desired characteristics relative to this basis fieldere one suitably lets the basic cycle

Zy, m Of me (8 1, no. 4) run through the orthogonakystems that contact the origin of
R" whose first fn— 1) vectors arey, ¢z, ..., em-1.

3. Characteristic of a field-pair on a cell. If two continuousnfields a(p, p) and
oi(p, p) are given on our celt”™?, and if, moreover, a continuous fami(p) of m-fields
in constructed on the boundary sph&efor 0 < t < 1 that satisfies the boundary
conditionsap(p) = (1, p) and i(p) = ai(1, p) then we speak of eld-pair in E™. A
field-pair thus consists of two fields on a cell tha¢ aoupled on the boundary by a
continuous family.

We would now like to examine the conditions under whigs continuous coupling
can be extended into the interior. A continuous fawilyn-fields a(po, p) shall then be
constructed irE™! that satisfies the requiremesi{p, p) = a(p). This investigation can
be carried out with the help of Theorems 8 and 9, wathsideration given to Theorem
10, if the dimension + 1 of the cell is at most —m

Let T be, say, the (oriented) unit interval that the parantetens through. We then
construct the cylindeg, in abstractg which is defined as the topological prodick
E™!, and we denote its points by (o, p). We further associate the poink@po, p) of Z
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with the system that is parallel tg(p, p) that contacts the origin iR" [and analogously
for 1 x (o, p)] and associate the pointx (o, p) with the system that is parallel @m(p)
that contacts the origin iR". With that, a continuous map of the boundarg afto V",

is given. Ifr + 1 <n — mthenf can be extended to a continuous map of the entire
cylinder into V", from which, the extension of our continuous couplingalso

n,m?
constructed. However, if+ 1 =n —m then the extension is possible iff the number
that is associated with according to Theorem 910) vanishes, so we call it the
characteristic of the field-paion E™**. In order to calculate this characteristic, the
cylinder boundary must be oriented; siites a product, an orientation can be given by
an orientation of the celi™*. One then has:

Theorem 12. The boundary family that belongs to a field pair can be extended into
the interior:

a) If the dimension of the cell on which the pair lies is less thanm).

b) If this dimension is(n — m) and the characteristic of the field-pair on the
(oriented) cell i9.

We then give a relation between the characterist& fedld and a field-pair. Let two
arbitrary continuousnfields § andg’ be given on the sphe®8™ with the characteristics
aandd’, resp. Furthermore, I&™ be decomposed into the celi8™™, and lety andg’

be coupled by a continuous family of fields on the compenf the f — m- 1)-
dimensional cells of this cell decomposition. Witlattha field-pair is given on any

cellE™™, whose characteristic we denote &y. (Let the cellsE™™ be coherently

oriented with respect to the orientation3T" that was employed for the calculationaf
andd’.) One then has:

ad=a+).a for evenn —morm-= 1.
0)
©)
ad=a+) a (mod2) for oddh —mandm# 1.
0)

These formulas define the foundation for the followinglgsis; it is easy to prove:
One constructs the orientated product complexS'™ =T x Z E""= Y. Z , where

theZ are constructed ovef™ ™ and with the cylinder that was employed in the proof of
Theorem 12. Taking the boundary gives the relation:

(1xS™)-(0xS™M=Y7. ®



Stiefel — Direction fields and teleparallelismrirdimensional manifolds. 21

The cylindersz; define a cell decomposition @fx S'™; if one maps eacl, into V"

as in the proof of Theorem 12 then a continuous E&pgiven from the complex oh(—
m)-dimensional cells of this cell decomposition mﬁﬂ and it follows from R) that:

F(IxS'™ —FO0xS™=> F(Z)inV,,,
and from the definition ofr, a', anda; that:
a' Zom—AZm~2 GZom NV

The assertion follows from this homology and Theor8rasd 10.

Here, we must mention the following special case adld-pair: We call a field-pair
with ap(1, p) = a(p) = ai(1, p) afield-pair with rigid boundary valuest consists of two
continuousm-fields that are given on the c&™* and coincide on the bounda®y. (The
connecting boundary family coincides with the commauraary values of the two
fields.) It now follows from Theorem 12 that: The fifgeld of a given field-pair with
rigid boundary values oB"™ can be deformed into the second fieldile preserving its
boundary valuedf the characteristic of the pair vanishesBn".

4. Fieldsand field-pairswith given characteristics. We need a topological lemma
for what follows:

Let S be ak-dimensional sphere that is decomposed into thekidimensional cells
E andE', and letP be a connected polyhedron. A continuous rapf E into the
polyhedronP can be extended to a continuous maf‘dhat belongs to a given mapping
class ofs into the polyhedrof®.

Proof: LetF, be any map o8 into the polyhedrot® that belongs to the given class,
and letfo be the map thdf, induces orE. We construct a continuous family of mdps
(0<t<1)that connectly tof; . (Such a family can be found, sireés connected.) The
family f; can be extended to a family of mdpf Sfinto the polyhedrof® (*%): Fy is our
desired map.

If one identifiesS* with our cylinderZ over a cell

identifiesP with the manifoldV,’ . then this easily yields:

En—m

(no. 3) in this lemma and

Theorem 13. A continuous m-field that is given on the c€ll"Ecan be extended
through a second field on that cell to a field-pair with rigid boundary valnes3) and a
given characteristic

(Y AH: chap. XIII, § 1, lemma la.
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84. Vector fields on manifolds

1. mfields, parallelizability. We now move on to the study wéfields on a closed
n-dimensional and differentiable manifol”. For this, we must temporarily make the
case distinction of Theorem 9:

Case 1.n — mis even om= 1. M" is then orientable.
Case 2.n — mis odd andn# 1. M" can then also be non-orientable.

We callM" differentiableif the following condition is fulfilled: M" is endowed with a
system of neighborhoods that is chosen once and farallwhich we will calelements
in the sequel. Each element is homeomorphic to a EutlgbaceR" and is equipped
with a Cartesian coordinate system. The coordinatsfsemation that is induced on the
overlap of two coordinate systems shall be continuousfgrentiable and possess a
nowhere-vanishing, and in Case 1, positive functional detant

With these assumptions, one can define vectorddrand apply the conceptual
structures and theorems of § 3 to it; One must only ceptlae Euclidian space with an
element inM", which is reasonable.

If an m-system is attached to every point\df then we speak of am-field on M";
this field is calleccontinuousin the event that it is continuous on every eleméhthere
are continuoug~fields onM" but no continuousy(+ 1)-fields then we caji thedegree
of parallelizability of M"; A manifold with = n will be referred to as parallelizable
manifold. The basis for this terminology is easy to segz3fn then there is a continuous
basis field (§ 3, no. 2) oll". If we establish an arbitrary vector M with the contact
point p by its components relative to the basis that is gaep then two vectors are
called parallel when the possess positively-proportional components. h Wiat, a
continuous teleparallelism is constructedMt from which it follows, for example, that
the manifold of directed line elementshti is homeomorphic to the topological product
of M" with an g — 1)-dimensional sphere. Examples of parallelizableifoids are easy
to give: The product of two parallelizable manifolds is agaarallelizable, so the-
dimensional torus (i.e., the productrotircles) provides an example of a parallelizable
M". We further remark that one can calculate chariatitar by parallel translation of all
the distributed vectors to a fixed pointMf, precisely as one does in Euclidian spaces (§
3, no. 2).

The central problem of this paper, towards whose solstone steps will be made in
what follows, is the determination of the degreef a given manifold. We are justified
in calling this problem a topological one, since two n@dg that correspond by means
of a map that is one-to-one and differentiable in lwbtéctions will obviously have the
same degree.

2. Frameworks and framework-pairs. Let a fixed cell decomposition &f" be
established for the following considerations; we denotedimensional, oriented cell by



Stiefel — Direction fields and teleparallelismrirdimensional manifolds. 23

X" and the cell that is dual & in the dual decompositiort’] by &™. Let the cell
decomposition be sufficiently fine that the staxofwhich is the totality of all cells that
have points in common witk) lies completely in some element Mf. In Case 1 (no.
1), we would further like to orient the dual céll” to X as is customary in orientable
manifolds ¢°); in Case 2, orientations will play no role whatsoever

Now, aframeworkis a continuouanfield that is defined on all cells of a sub-
complexK of the dual cell-decomposition. 1K is homogeneously-dimensional )
then we also briefly speak of @dimensional framework In the case that is most
important for us,K is the complex of allpo-dimensional cells of the dual cell-
decomposition; a framework that belongs to this compderalled anr-dimensional
framework that is defined everywhere on the manifdld IM the sequel, it will always be
assumed that the cells i¥fare at mostn — m-dimensional.

One then has:

Theorem 14. Any framework on Mcan be extended to am — nm)-dimensional
framework that is defined on all of the manifoltl MO <m < n).

Proof: Let& be the cells oK and let” be the cells of the dual cell-decomposition
that do not belong t&. One now attaches an arbitrarysystem to every verte$°.
With that, arm-field is given on the boundary of every céll, which, from Theorem 11,
can be extended continuously into the interior. Now,nHfield that is given on the
boundary of every celf? can again (in the event that< n — 1) be extended into the

interior of the cell. (Theorem 11) One proves the @by pursuing the construction
further. It follows from this that:

Corollary. There exists afn — n)-dimensional framework that is defined on all of
M",
Such a framework will always be denotedthy

We will understand® to mean the framework thét induces on the complex af €
m — 1)-dimensional cells of the dual cell decompositishile an arbitraryf — m— 1)-
dimensional framework that is defined on alMfwill be denoted by.

Two frameworks®, and®; define aframework-pairwhen a continuous family (O
< t < 1) of frameworksg is given withgy = &, andgs = &,. &, and ®; are then

connected to each other on the complexrmf(m— 1)-dimensional cells df1" by a
continuous family.

Theorem 15. Two arbitrary frameworkss, and &; can always be combined into a
framework-pair.

() cf., Seifert-Threlfall:Lehrbuch der TopologiéB. G. Teubner, 1934), and furthermore, AH: chap.
Xl, 81, §68.
(*%) cf., AH: chap. IV, § 1, no. 2.
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The proof proceeds analogously to that of Theorem 14.tl@@meconnects the two-
systems that are given I, and ; at a vertex® of the dual cell decomposition by

means of a continuous family of-systems and then extends this connection to the
higher-dimensional cells using Theorem 12.

3. Preliminary remarkson charactersin A"". We next choose @oefficient ring J
that will serve for the definition of algebraic comygs inM" (*'), and, in fact, let] be
thering of whole numberin Case 1 (no. 1) and thiang of residue classe@nod 2) in
Case 2. We denote algebraic sub-complexes oixitell decomposition byC and
algebraic sub-complexes of tlfecell decomposition by". All (n — nj)-dimensional
complexed™ "™ define a group\"™ that contains the groud'™ of (n — n-dimensional
cycles and the groug"™ of (n — 1)-dimensional boundaries as subgroups. The difference
groupZ™™ - H"" is, as is well-known, then(- r)-dimensional Betti group"™ of M".

A character y in A" is a homomorphic map from\"™ to the coefficient ring.
Therefore, iff; andl, are complexes iN"™ anda is an element aof then one has:

a) )((Fl + F2) :)((Fl) +)((F2); b) )((0' r]_) = a)((rl).
From these two facts, it follows that:

c) A charactey is known when its values for the complex defined bysasbafA"™
are given. (e.g., all cell8"™ define such a basis.)

d) If Cis anr-dimensional sub-complex of tixecell decomposition that is chosen to
be fixed then a charactgrin A" will be generated by setting:

XTI =dCT).

(In this, T is an arbitrary complex gf"" and @ means the intersection number of
the complexes in parentheses.)

e) Any character i\"" can be generated by a compl€xin the way that is
suggested by d).C is determined uniquely, and is called tt@mplex that is
associated withy.

The proof best proceeds by giviGgexplicitly. One has:

C=2 XX .

(1

In this, the summation is extended overalimensional cellsq )

() AH: chap, IV.



Stiefel — Direction fields and teleparallelismrirdimensional manifolds. 25

Our next objective is to determine the properties ofjgheerated comple® from the
properties of the characteys

f) C is a cycle iff y vanishes in the groupl"™; i.e., if for every f — r + 1)-
dimensional comple& of the é-cell decomposition one has:

x@)=0. (1

The proof follows from the fact that for any characyeand an arbitraryA one has the

relation:
X&) = @C,A) =+ ¢C,A).

g) Between two charactegs andy; in A" and a charactef in A", there exists

the following relation:
x(r) = x(r) = x(), (I1)

so between the associated complé&xesC;, andD, there exists the relation:
Ci-Cy== D .
Proof: For an arbitraryn(— r)-dimensional complek, one has:

AC1—Co, M) =C1,T) =G0, T) = xa() — Yo(T')
:X(r) =¢D,N)=x¢dD,IN).

Sincel” was arbitrary, the assertion follows from this that:

h) Let a set of charactegs in the groupA"™ be given, each of which satisfies the
condition (1), and any two of which fulfill a relatioof the form (Il). One then

has:

a) The given set determines a charagtein the Betti grouB" ™" whose elements
(these are homology classes) we denoté.by

£ The complexes that are associated wyttare, from f), cycles and lie in a
singler-dimensional homology clags

) One hasy (Z) = ¢A, =).

Proof:
Of a): From the existence of (ll), it then follows thait charactersy; in the cycle

group Z"™ coincide, and thus induce a single character in that grdye to (1), this
character has the same value for homology cyclesgawer, so it actually determines a
single charactex in the Betti groupB" ™.
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Of £): Due to (ll), one has the assertion g), from whicfgllows that the cycles that
are associated with two characters of the givenrsgh@mologous.
Of J): This follows directly from the definitions gf andA.

4. The characters that are determined by frameworks, main theorems. Now,
let an o — m)-dimensional frameworks that is defined on all of the manifod" be

given. (cf., corollary to Theorem 14.) We now defa charactey in A"™* by giving
the values o for the cellsé"™*, as in no. 3, c): Le(&"™) be the characteristic of the
continuous m-field that is given by® on the boundary spheré™™*! of &™

(Naturally, the orientatiod™™"* is the one that was employed in the calculation & thi
characteristic. One further observes that the chaistateis an element 0d.) The
character thus defined is called tti@racter y that is associated wité.

In addition, we consider alh(— m)-dimensional frameworke; that are also defined

on all ofM". The characterg that are associated with them define a set like thehate
we considered in no. 3, h). We assert that thisutitsfthe assumption of no. 3, h).

Proof: Let, say,®, and &; be two frameworks, and lefo and xi1, resp., be the
associated characters. We next show that a chargceists inA"™ such thatyo , i,
and y fulfill the relation (I1) of no. 3. Due to no. 3, dj, suffices to defingr for the
cells ™. To that end, we couple the framewoeksand®; into a framework-pair using

Theorem 15; lex(é"™) be the characteristic of the field-pair that is inducad®d™ by
this framework-pair. Due to formul&) of 8§ 3, no. 3, one has:

X&) = xo(87™) = x (M™Y.

The relation (1) now follows from no. 3a) and b),fact. Furthermore, we have to show
that each of our characters satisfies the conditjoof 0. 3. If we apply the relation (I1)
that we just proved to the compléxthen this yields:

xi(A) = xo(A),

so it suffices to prove (I) for a single characteattis induced by a special framewdbk
Moreover, due to a) and b), it suffices tihabe a celld ™2 We now construc®, as
follows: Let them-systems o, be parallel to each other on the bound&ty™2. (This

definition makes sense, sinéd&™? lies in an element (no. 1).) From Theorem 14, such a
framework can always be found. For the associate@ctayo, one now has, trivially:
xo(&™2) = 0, with which all parts of (1) are proved.

From the assertion of no. 3, h), it now followatth
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The charactey that is associated with a framewatkhas a cycle for its associated
complex, which will be called th&ingular cycleof &, and from no. 3, e), it is given by:

7= ZX(Q(Jn—rml) ij—l .

(1

All of the charactersy; determine a charactgr in the f — m+ 1)-dimensional Betti
groupB"™* which we will cally™™* in the sequel'f). One further has:

Theorem 16. (First main theorem).The singular cycles of a(h — m-dimensional
frameworks® that consist of m-systems and can be defined oarttie manifold M lie

in a single (m — 1)-dimensional homology classs italled thecharacteristic homology
classF™ ™. If = is an arbitrary(n — m+ 1)-dimensional homology class then one has:

XTE) = fFT 2),

In the next paragraph, we shall see that the ctergy"™' represents a
generalization of the Euler characteristic.

To these immediate consequences of the discussitn 3, we must add a somewhat
deeper theorem:

Theorem 17 (Second main theorem). Any cycle that is contained in the
characteristic class F* is the singular cycle of a framework.

Proof: Let, sayz be the given cycle in the claf&". We choose an arbitrary, but
fixed, initial framework®, with the singular cycle, . From Theorem 16 also lies in

F™ so one hag ~ z, and thereforg — z = D. Our framework®, induces am-field
To on the cell&™, which we extend by means of another figldto a field-pair with

rigid boundary values (8§ 3, no. 3) whose charastieron "™ possesses the valgéD,
&™) (Theorem 13). Thenfield §; that is thus constructed on all cefl§™ combines

into a framework®;. &, and®; together define a framework-pair that gives risat
charactery as in the beginning of this section. By consiamtone hasy(é"™) = ¢D,
&™) i.e., the complex that is associated wjithis the comple.

We have seen that the relation (II) of no. 3 eximtween the characteysof &, and
1 of &1 and the charactgr, so the assertion of no. 3, g) is true; ze=2 = = D, if we
denote the singular cycle ¢&f; by zz . The given cycle is then a singular cycle @f;,
with which, Theorem 17 is proved.

(*®) The charactey”™" is, ex definitong independent of the choice of framework; it is given Hy t
geometric properties ofl".
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The meaning of the characteristic cl&Ss" for the problem of this paper is based in
the following Theorem:

Theorem 18 (Existence theorem)The exists aiin — m+ 1)-dimensional framework
that is defined on the entire manifold Kf the characteristic class"F* is the zero class.

Proof: @) Let ann(—m + 1)-dimensional framework that is defined on al\fbe
given. It induces a framewow on the complex of celld"™, and thus am-field § on

each cell boundary™™*. SinceJ is extended into the interior of the cél™", its
characteristic vanishes 0™ ™!, so the charactey that is associated witks also
vanishes, and one has 0 for the singular cycleof &, soz ~ 0 precisely.

b) Let the characteristic clas8"™ be the zero class. From Theorem 17, there is a
framework & whose singular cycle is the zero cycle. The charatte y that is

associated witl® then vanishes; however, from Theorem 11, the field thetduced by
@& on ™™ can be extended into the interior.

5. Fiddswith singularities. Our endeavors to construct a continuoufeld on the
manifold M" step-wise by frameworks are obstructed by the existehttee @lassF™*;
however, we can always fina-fields whose continuity is broken at certain “singtilar
points. In order to not go into dimension-theoreticiclitties, we would like to consider
only mfields that satisfy the following assumption: If allc&’™ of our x-cell
decomposition contains a singular point in its interleent it consists of nothing but
singular points. All of these cells define an absotaeplexk'™ — viz., thesingularity
complexof the field in question. [The number £ 1) means the dimension of the
highest-dimensional cell in this complex.] Now, a fielhwthe singularity complek"™
obviously induces ann(- 1-dimensional framework that is defined on all f.
However, the converse is also true: Evary-(r)-dimensional framework that is defined
on all ofM" is associated with an-field onM" with a singularity compleK'™. In order
to see this, one extends thefield that is given by the framework on the ceflS" by
central projection (§ 3, no. 11) into the higher-dimemaiocells & ™. If one then
chooses the projection center to be the intersepiomt of & ™ with the dual celk
then the necessary cone construction can be perfosmeglicially on a common
subdivision U of the x and é-cell decompositions. With this relationship between
frameworks and singular fields, it now follows from tterollary to Theorem 14 and
from Theorem 18 that:

Theorem 19. There always exists an m-field with @n —1)-dimensional singularity
complex on a manifold the necessary and sufficient condition for the existence of an
m-field with an at mosfm — 2)-dimensional singularity complex is the vanishing of the
characteristic class ™.
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Since any singulam-field an fn - 1)-dimensional singularity complex oll"
uniguely determines am & m)-dimensional framewor that is defined on all dfI", we

can briefly call the singular cycle that is associatéh & (no. 14) thesingular cycleof
the given field. One then has:

Theorem 19a. The singular cycle of an m-field with tHen — 1)-dimensional
singularity complex R is an algebraic sub-complex of"K in the subdivision that it
induces through U; it measures the multiplicities of (the- 1)-dimensional singularities
and represents the characteristic class’F

In order to prove this, one employs the explicitrespntation of the singular cyde

D x(E ™) x™ and Theorem 11.
M

8 5. Determination of the characteristic classesin special cases.

1. Differential smplicial decompositions. A simplicial decompositiorK of a
given manifold is calledlifferentiablewhen any simplex oK, along with its perimeter,
lies in an element d¥1" (§ 4, no. 1) and is either a Euclidian simpl&% 6r the image of
a Euclidian simplex by means of a topological maat is continuously differentiable in
both directions in this element.

For what follows, we will need the barycentric disfision ¢°) K of such a simplicial
decompositiorK. If we denote the center of mass ofradimensional simplex df by a;

then the simplexes’ = (a,.8,,---,a ) are the simplexes df. (fo<ri<..<rgand6

=0, 1, ...,n. Now, letK be ourx-cell decomposition of § 4; we denote the dual cell
Eﬂ_s Of XS by Eﬂ_s = éf(rorl.“rs) '

2. Single vector fields. In this number, we concern ourselves with thethef 1-
fields (in the sequel, we briefly refer to themwastor fieldy on a manifoldM". This
theory has already been developed for some tifheand the concluding results go back
to H. Hopt

Theorem 19 then shows that there is always a wdield § with a 0-dimensional

singularity complex irM"; § is then singular at only finitely many vertice$ of thex-

cell decomposition. We understand timglex j of the singularity X’ to mean the
characteristic of the 1-field that is given Byon the boundary of the cell&" that is
dualtox’. (We find ourselves in Case 1 of § 4, noML;is thereforeorientable and the

9 AH: chap. Ill, § 1, no. 1.

9
(*% AH: chap. Ill, § 2, no. 3.
(*Y) AH: chap. XIV, § 4.
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cells &' arecoherently oriented A simple argument gives the singular cyclesag 4,
no. 5) as:

2=3j,x°. (1)

0]

The characteristic clagd will then be represented by the cygleX ji (< is an arbitrary,
but fixed, vertex of the-cell decomposition). The index suxj; is called thealgebraic
number of singularities. If one denotes tha&-dimensional homology class that is
represented by the sum of all ceflsby =" then, from Theorem 16, this yields for the
charactery” in the Betti grouB" :

Y(E) = dF =N =2 2)
Since="is the single basis element B, (2) determines the characpgrcompletely.
It now follows from Theorem 16 and 18 that:

Theorem 20. The algebraic number of singularities is the sawreall vector fields
on M"; one then has vector fields that are continuoualbpoints of M iff this number
vanishes.

One further has:

Theorem 20a. For a suitable orientation of N the algebraic number of
singularities of any vector field onNk equal to the Euler characteristi¢M") of M".

This theorem is equivalent to the following assertion:

The characteristic clag® can be represented BYOy(M"). Moreover, the formula:

X'(E") = x(M") 3

also says precisely the same thing. We will prove hberem for the simplest caserof

= 2 in this latter form. We carry out the proof underabksumption thal* possesses a
differentiable simplicial decomposition. (Theorema2@® still true without this
assumption.) We then construcs@ecialone-dimensional framewor that consists of
1-systems on the barycentric subdivision of the dallldecomposition whose associated
charactery we determine. The part ¢f that lies in a simplexag, a1, a) (no. 1) of the

barycentric subdivisiorK is depicted in Fig. 3. From this figure, it is clear thse
vectors of® that lie on the boundary of a cell of tygg) (no. 1) point to the exterior of
&o) , and on the boundary of a cell of tyfig , they point to the interior af2 . [In Fig.
3, the parts of three cells that lie i,(a1, &) are suggested b , &) , &) .] For a
suitable orientation, one finds that the characierdat the field that is induced b$ on

the boundary of a ceff;) has the value-{)", so one has:
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X(éo) = 1) (r=0,1,2), (4)
and the singular cycleof & will be:
z=(-1) a, (4a)

where the summation is taken over all vertices(of If one denotes the number of cells
of type & by a then that would yield for the characpgr= X

X(E)=XE &) =ZME) =Z Méo) +Z M) +Z X&) =a0—a+ 2.

p Ao

@)

&o) $u)

Figure 3.

However, by definitionay, — a; + a; is the Euler characteristigM?); with that, (3) is
proved in the special case = 2. Theorem 2§ can be proved fon-dimensional
manifolds in an analogous way.

Formula (3) confirms the fact that was mentioned in Bad the charactey’ ™* can
be regarded as a generalization of the Euler charstateri

If follows from Theorems 20 and apthat:

Corollary. There exists a continuous vector field on the noéohif1" iff the Euler
characteristicy(M") vanisheg**9.

This theorem is true faron-orientable manifoldsut this is not directly provable by
our methods. Our argument can also be carried out foionentable manifolds in the
event that we introduce the ring of residue classes @haal place of the ring of whole
numbers (§ 4, no. 3). If we understafll in this case to mean thedimensional
homology class that is represented by the sum ofttariented) cell§” then one has:

X'(Z") = x(M") (mod 2). (32)

(**3 Cf., AH: chap. XIV, § 4, Theorem 3.
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3. Three-dimensional manifolds. We now examine the parallelizability (8§ 4, no. 1)
of three-dimensional manifolds. One has the imporesult:

Theorem 21. Any orientable, three-dimensional, closed manifold that admits a
differentiable simplicial decomposition is parallelizable.

Before we give the proof of this theorem, we mentibat tit follows from the
considerations of § 4, no. 1 that:

Corollary. If a three-dimensional manifold Mulfills the assumptions of Theorem
21 then the manifold of its directed line elements is homeomorphie ttopological
product of M with a two-dimensional sphere.

The proof of Theorem 21 proceeds in four steps:
|. Determination of the characteristic cl&s

We can satisfy ourselves with the following hints foe golution of this problem,
since in Appendix | we have rigorously determined the chearistic clas$=" for three-
dimensional, orientable manifolds under somewhat difteesssumptions and by other
methods.

F! is the characteristic class of the 2-fields, so wistrsetm = 2 andn = 3. We are
then in Case 2 of § 4, no. J1;is then the ring of residue classes (mod 2). In omler t
determineF!, one can, in analogy to no. 2 (Fig. 3), construspecial 1-dimensional
framework & that is defined on all of1°, and which is coupled with the barycentric

subdivision K . | will not go into the somewhat tedious constructif this framework
that is composed of 2-systems here; one finds for secaded charactgrthat:

X(ry) =1, ®)

such that the singular cycteof & is given by t):

2= (a,a,)- (5a)

This cycle (mod 2) thus consistsaif edges of the barycentric subdivisi¢h. One can
now show thatz always bounds in aorientable manifold M3, while this does not

(*® Formulas (4a) and (5a) are closely related to thwecture that for arbitraryn and m the
characteristic class™* can be represented:
in Case | of § 4, no. 1 by (-1)*"*"(a, ,3,...3,)

and in Case Il, by (a, ,a,...a, ).

The summation is therefore taken over all{ 1)-dimensional cells oK ; the complexes above are, in
fact, cycles of the coefficient ringy
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necessarily need to be the case in a non-orientabldaiaa(f). This then yields that in
an orientabléV 3 the characteristic clag? is always the zero class.

Il. There exists a framewo that is defined on all d¥1* and consists of 2-systems.

Since, from |, the clas&® vanishes in our orientabl®, this fact is a direct
consequence of the existence Theorem 16.

I1l. There exist continuous 2-fields o,

In order to prove this, we show that the 2-figldhat is given by) on the boundary

£® of a cell & can be continuously extended into the interiogof Since& lies in an
element (8 4, no. 1), we must therefore prove thevadlg theorem: A continuous 2-
field § that is given on the boundary sph&eof a 3-dimensional celE® that lies in
Euclidian spac&® can be continuously extended into the interioEbf

The following statement is equivalent to this theoréihe map ofS into the
manifold VS?Z by parallel 2-systems (8 3, no. 1) that is associatéugvis homotopic to

zero. Our statement Il can thus be expressed irotloeving form: Any continuous map
of a 2-dimensional sphef into V,, is homotopic to zero. Now, since, from § 2, no. 2,
the closed manifolt¥s . is a deformation retract af;’,, it suffices to prove this assertion

for maps of¥ into Vs, . However, sinc#s, is homeomorphic to the projective sp&ce
(§8 1, no. 3), and since any map $finto P? is, in fact, homotopic to zero, we have
proved the assertion IIl.

IV. There exist continuous 3-fields oA,

The fact that the existence of continuous 3-fields Wedlorom the existence of
continuous 2-fields on asrientable M is easily proved.

8 6. Theoremson characteristic cohomology classes. Applications.

1. Order of the characteristic class. In this section, we pose the problem of
determining the order of a non-vanishing characteristisscla This problem is
meaningful only in Case 1 of § 4, no. 1, for which the coieffit ring J is the ring of
whole numbers. We will solve it for evem € n).

We preface the following analysis with a subsidiargstderation that relates to the

manifoldsvﬁm (8 2) for whichn — mis even. Namely, we shall examine the topological
map ¢ of V', to itself that comes about when one replacesriheectorv,, in anym-
system of\/n?m with its opposite vector s, . On the i — n)-dimensional sphere that is

(*® Cf., problem 187 in the Jahresbericht der deutschen Kiatfileervereinigung, Band 45, pp. 22.
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provided by the basis cycig m of 8 1, no. 4 for a fixed orientatiog, is the diameteral
map; since this sphere possesses an even dimensioyiekthés

P(znm) == Zym - (1)

With those preparations, a framewoek that consists ofm-systems will be
constructed on the given manifdil' by employing the notations and assumptions of § 4,
and we letn — mbe even. We thus find ourselves in Case 1 of § 4, nondltre
coefficient ringJ is therefore the ring of whole numbers. The franma induces an
m-field on the boundary of any (— m+ 1)-dimensional celf whose characteristig(<)
is established by means of the nfiags ¢ into Vn?m by paralleim-systems (8 3, no. 1).

If one now replaces the" vector on anyn-system of$ with its opposite vector then

a new framework® arises that is associated with the characterg(i€) and the map
f. Obviously, f arises from the composition band ¢; it then follows from (1) that:

X(&) =— x(&. The relation:
X=X (2)

then exists between the charactermnd ¥ that belong ta® and &, resp. x, as well as
¥, then induce the charactg?™* in the o — m+ 1)-dimensional Betti group; it then

follows from (2) thaty"™* = - Y™, so ultimatelyy™™* = 0.

It would be incorrect to conclude the vanishingh# characteristic clagg™* from
the vanishing of"™; this conclusion is only permissible when mo 1)-dimensional
torsion is present iM".

If we set, saym = 1 then we find thay" = 0 for manifolds of odd dimension;
however, from § 5, formula (3), it follows from ghihat the characteristic of an orientable
manifold of odd dimensions vanishé$)( From the corollary to Theorem 20 it then
follows, moreover, that any orientable manifoldodifd dimension possesses a continuous
vector field.

Theorem 22. If M" is orientable, (n — m) is even, and the cla8s' fs not the zero
class then that class has order 2.

Proof: We have to show: For evan£ n), one always has &F™ = 0. Now, from
(2), the relatiorz = —Z exists between the singular cycieand Z of the frameworkss

and &, resp., that were employed above. Since bothexfe cycles lie iiF™*, one has
F™! = — F™ this was to be proved.

Corollary. If (n — m) is even and no (m — 1)-dimensional torsion is present'in M
then F™* is the zero class.

(*") To my knowledge, J. Hadamard was the first to derivevéinéshing of the Euler characteristic of a
manifold of odd dimension from the theory of vector fieldsf., Tanneryintroduction a la théorie des
fonctions(Paris, Hermann, 1910), t. I, note by Hadamard, no. 42} .
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2. An intersection theorem. In what follows, Cases 1 and 2 of § 4, no. 1 will no
longer be distinctall consideration will be based upon the ring of residue clagsesl
2) as the coefficient ring,.andM" can be either an orientable or non-orientable manifold.

In order to bring our theory to a definite conclusiae must find manifolds in which
non-zero characteristic classes exist; only then thél theorems of § 4 contain non-
trivial statements. The analysis of this section salve to resolve this problem.

We call av-dimensional manifoldv” that is embedded in the given manifdit a
hypersurfacevhen the following conditions are fulfilled:

a) Let M” be the image of a differentiable parameter manifoldniBans of a
topological and continuously-differentiable map of thisapaeter manifold into
M".

b) MY admits a cell decomposition that is a sub-complexe#ficell decomposition
(8 4, no. 2) of the manifoltn".

Due to a), vectors okl” are also vectors od", and the totality of all vectors dv”
that contact a point of M" defines av-dimensional vector structure off'. If the vectors
in a (W — v)-system orM" that contacp do not belong to this structure then we call the
systemforeign to M". If a continuous field of( — V)-systems exists oM" that are
foreign toM" then we say tha¥l” possesses axternal(n — v)-field (*3. If v=n-1
then this simply means thist” is two-sided irM".

Due to b),M" is a cycle (mod 2) of thé-cell decomposition that represents/a
dimensional homology class” of M" and av-dimensional homology class’ in M".
One has:

Theorem 23. If a hypersurface Mthat lies in M possesses an external (nv)-field
then the intersection number of the characteristic clds§df M" with M” is the (mod 2)
reduced Euler characteristic of 'M

Before we prove this theorem, we introduce the follmmielations: Leté be the
cells of theé&cell decomposition that induce a cell decompositioMbfising b); a ¢ -
1)-dimensional framework that is defined on alMifand consists of\(— v + 1)-systems
will be denoted by, and associated character in the gratpf M" (8 4, no. 4), by. A
(v - 1)-dimensional framework that is defined on alMfand consists of 1-systems will
be denoted by®, and the associated character in the gratmpf MY, by ¥. The
charactersy determine the charactgt (8 4, no. 4) in the~dimensional Betti group of
M", while the charactefg determine the charactgf’ in the v-dimensional Betti group

of M"” in an analogous way.
We then prove the following:

(*® A hypersurface with an externa £ v)-field that lies in an orientable manifold is orientable.
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Lemma. If there exist two framework& and & such that for every celf’ the
relation:

X&) = x(&") (mod 2) (2)
is fulfilled then the assertion of Theorem 23 is true.

Proof: By summing over all cell§”, one gets from (2) that:

X(EN=x"(=") (mod 2). 3)

From Theorem 16, the left-hand side of (3) is the inttime number ofgF"™, =),
while, from 8 5, formula (3a), the right-hand side isgrolent to the Euler characteristic
of M". With that, we have proved the lemma.

In order to prove Theorem 23 now, we have to consthecframeworks$ and &
that satisfy the assumption of the lemma: Fi#stis chosen arbitrarily. Furthermore, the
system of® on the cellsé’™ shall be the system of external<{ v)-fields, extended by
the vectors of%; in the remaining part df1", & will be constructed arbitrarily with the

use of Theorem 14. (2) is, in fact, fulfilled with thisoice of® and &, as one easily
confirms by applying the process of calculating the charetic by recursion (8 3, no.
2).

We shall not go into the closely-related generabzretiof Theorem 23, but merely
apply this theorem to the solution of the problem that p@sed at the start of this
paragraph:

Theorem 24. For a given n and m with am - 1 (mod 2),there exists a manifold
M" in which the characteristic clas$"F is not the zero class.

Addendum. If n=m- 1 (mod 4)then there is indeed an orientablé' M which F"*
does not vanish.

The following remarks suffice for the proof of thesedtems:

1. The assumption of Theorem 25 is fulfilled whdhis the topological product of
MY and an arbitraryn(— v)-dimensional manifold.

2. If the assumption of Theorem 23 is fulfilled andvif possesses an odd Euler
characteristic then it follows from this theoremtttige clas$""" does not vanish iN".

3. There exist manifolds of even dimension that have bddacteristics, and there
exist orientable manifolds with dimensions that are sine by 4 and have odd
characteristics. One now s@ts- 1 =n — nand constructd” as a product manifold.

By a special choice an, it follows easily from the Addendum that:
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Theorem 25. For any dimension n that is not equal to 1 or 3, there exists an
orientable, but not parallelizable, n-dimensional manifold.

(One observes that, from Theorem 19, the vanishingl chatacteristic classes is a
necessary condition for parallelizability.)

3. Examples and applications. Let Xo, X1, X2, ..., X» be coordinates in am @ 1)-
dimensional number-spad®*?, and letp mean the position vectory( X1, Xz, ..., X, in

that space. Lanh vector fieldso” (u=1, 2, ...,m) be given inR™?, and for everyy, let

the components” (i =0, 1, 2, ... ) of the vecton” be homogeneous functions of first

degree of the independent variabdgsxi, Xz, ..., Xa. We project this vector field from
the origin ofR™* onto then-dimensional projective spad® that complete®™* into an
(n + 1)-dimensional projective space. From our homogeweitgition, it follows that in
order form vector fields inP" to define amm-field in the sense of § 4, no. 1, the € 1)
vectorsp = v°, v, v% ..., v™ would have to be linearly independent at all point&Bf,

except for the origin.

We shall employ this convenient representation foruéetor fields in projective
spaces in the sequel in order to discuss the charactetrlaSses oh-dimensional
projective spaces. So, for example,rcr 3 andm = 3, the vectors:

0°( X X X %)
o' (=X, X X %) 0
0°( X X, X —X)

0°( X =X X, %)

provide a continuous 3-field in 3-dimensional projective spBtewith which the
parallelizability ofP?, and therefore the 3-dimensional sphere, is establishesdample.
One can also find an analogous example in dimensiontpémallelizesP’ and the 7-
dimensional spheré®.

We now examine the case= 5,m = 2, so we concern ourselves with 2-fieldh
The three vectors:

0°( Xoo X X% X X %)
0'( X, X% "X % =%, %) (In
0°( =X %, %, =%, 0, 0)

are linearly-independent only f&g = x1 = X2 = x3 = 0, so except for the projective liRé
that is given by, = x;3 = X2 = x3 = 0, they provideéwo linearly-independent vector fields
on P° that that we again denote Iy and v® for the sake of simplicity. We now

construct a-cell decomposition oP°, with the use of the notations of no. 2, in which the

(*®) Cf., H. Hurwitz: “Uber die Komposition der quadratisehieormen von beliebig vielen Variabeln”
(Math. Werke, Band I, pp. 565-571, especially pp. 570, wherdinde the matrix that is analogous to 1.)
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4-dimensional projective spaé® lies as the hypersurfasg = 0. The intersection point
P of P' and P* lies in the interior of a cellE;' of the cell decomposition of”.

Furthermore, two framework and & shall be constructed that satisfy the assumptions
of the lemma in no. 2: Let the vectors®fbe the vectors? on the cellsZ®, while the 2-
systems of5 shall be the systent, v? on the cells®; & is arbitrary on the remaining
cells & of P°> and can be constructed using Theorem 14. The charaaesy that are
associated witl and &, resp., actually fulfill the congruence (2) that was neglin

the lemma:
X(EY) = X(&EY (mod 2).

In order to prove this, one observes that for any £&llexcepté,’, the relationy(&*) =
Y(&*) = 0 exists, since, as well as®, can be continuously extended into the interior
of the cell. One verifies the assertion for the & by calculating the characteristic by
recursion (§ 3, no. 2); in order to be able to apply thishaktit suffices that the cedl;’

be foreign to the projective spaxe= 0; the vectors® whose contact points are points of

& do not lie inP* then.

From the statement of the lemma, it now followat ttihe intersection number of the
classF* of P> with the hypersurfac®* is the (mod 2) reduced characteristic Rf
however, this characteristic has the value 1. Thezefbe clas§’ is not the zero class,
and will be represented by a projective line.

One achieves the determination of the clls® projective spaces of dimensiok 4
1 (k> 0) with the help of analogous vector fields; one finds

Theorem 26. The one-dimensional characteristic class in a real projective space
dimension(4k + 1) k > 0) will be represented by a projective line; it is therefore
impossible to find two linearly-independent continuous vector fieldesetspaces.

An algebraic application. We would like to relate our investigation of projective
spaces to an algebraic problem that has a close camedath the older investigations
(27).

We call (n + 1) linearly-independent quadratit€ 1)-sequences of real matrices:

A(/l) — (3{:)

( ©=0,1,2,.. mj 1)

i,k=0,12,.. n

linearly-independentwhen any matrixy, A% y, that comes about through linear
combination is non-singular, as long as only one of¢laé mumbery, is non-zero. One
then has the following:

(*) Cf., Hurwitz: Werke, Band I, pp. 565-571 and pp. 641-666;h&urhore, Radon: Abh. math.
Seminar der Univ. Hamburg, Band I, pp. 1-14.
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Lemma. If there are (m + 1) linearly-independent matrices (1) then thgistean
everywhere-continuous m-field in projective spRte

Proof: IfB is any non-singulam(+ 1)-rowed matrix then obviously the matrid@s
A (1= 0, 1, ...,m) are also linearly-independent; since we can ch8os¢A®)™, we
can assume from now on that:

o {O fori zk, )

% 711 fori =k.

We now understand”, for # = 0, 1, ...,m, to mean the vectors d¥"! whosei™
componenti(=0, 1, 2, ...n) is given by:

W=i%&: 3)

k=0

if one recalls (2) ther® is the position vectas = (X, X4, ..., X,) in R From no. 3, it

follows that the statement of the lemma will be gabyvas long as one can show that the
(m+ 1) vectors” are linearly-independent forz 0.

m
Therefore, Ietz y, 0" = 0 for a certain vectgr# 0; i.e.:
#=0

> alixy, =0 (=0,1,2 ..5).
k,u

Sincep # 0, the rank of the matri)((z a,y,) is less thann(+ 1). Since the matrices”
U

= (a{j) are linearly independent, this is possible onlyewfally, = 0. This was to be

proved.
The lemma now permits the following algebraic fatation of Theorem 26:

Theorem 27. Any three quadrati¢dk + 2)+owed matrices are linearly independent
(k= 0).

APPENDIX |

The one-dimensional characteristic class
of an orientable three-dimensional manifold

In § 5, no. 3, we saw that that for a three-dinmra manifoldM?, the vanishing of
the one-dimensional characteristic cl&sis a necessary and sufficient condition for
parallelizability. We further mentioned that fon arientableM® with a differentiable
simplicial decompositionF* is always the zero class, but left the readeramsiple for
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the proof of this fact. It shall now be returned to undemewhat different
differentiability assumptions.

1. A combinatorial lemma. The following lemma is interesting in its own rigdrd
is useful for the study of three-dimensional manifolds.

Figure 4.

Lemma. Any cell decomposition of a three-dimensional manifofdcih be
refined to a subdivisiok) such that any two-dimensional homology class (mod 2)%f M
can be represented by a sub-cycle of U that consists of one or m@mtdig/o-
dimensional manifolds.

One must then show that any two-dimensional cyfeof the given cell
decomposition inJ gives one or more disjoint surfaces that collectivddyine a cycle
that is homologous t#. The proof proceeds in two steps:

1. Zis a cycle (mod 2), so an even number of polygors pfeet along an edge of
Z. We now consider an eddé of Z at which more than two (sayn2polygons meet.
Let £ and &0 be the boundary points gt and let be the dual cell t@* in the given
cell decomposition oM®. We denote the intersecting line segmentsofith the 2
polygons that meet af by s;, S, ..., S , where the numbering shall be given by the
natural cyclic ordering of these line segments (see &ifpr n = 2). Between two
successive line segmenss; andsy (k= 1, 2, ...,n), we now interpolate a small triangle
Ay and construct the conk over the boundary of\c that has its vertex ag;.

Analogously, Ko will be constructed with its vertex afy. K + Ke is a two-

dimensional cycle that is homologous to zero, Ao+ Z(Kkl+Kk2) is a cycle
(k)

homologous ta?, in which & is replaced with edges, each of which is incideith
precisely two polygons of this new cycle. One raty introduces a suitable sub-
division of the given cell decomposition by caryiout this construction.

If all edges ofZ at which more than two polygons met were removgdthis
construction then one would obtain a cyzfe that would be homologous # and would
consist of one or more disjoint pseudo-manifolds.
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2. Let & be an arbitrary vertex 0f?. We construct a sub-divisidn in which the
stars of the vertice&’ are disjoint. Le be the boundary sphere of the staébf The
intersection ofz? with & consists of some disjoint closed polygon perimetettshiiand
a sub-complexC? of €. We construct the coné® that has its vertex af° over the
boundaryC?. C? + K? is a two-dimensional cycle that is homologous to zso@?+ C?

+ K?is a cycle that is homologous &, which we replac&? with.

If one carries out this construction for every vertéen a cycle arises that is

homologous taz®, as well as, that consists of some disjoint two-dimensional siesa

3. Determination of the class F*. We now determine the clagg of a given
orientablemanifold M by comparingv® to a “standard manifoldM . M. is either the

three-dimensional projective spaegor the topological produdt® = & x S' of a sphere
and a circle. Both standard manifolds are parallelizaplée parallelizability oP® was

proved in § 6, no. 3; from Theorem 23, the clgss the zero class iff 3, soT % is

parallelizable. One can, moreover, also give a naatis 3-field orT * directly.) The
given manifoldM* now fulfills the followingassumption:

Any two-dimensional manifold that is embedded M without singularities
possesses a neighborhood that can be mapped into ardtenatafold topologically and
continuously differentiably.

This assumption is only a differentiability assumptismce any two-dimensional
manifold F that is embedded ikI® without singularities possesses a neighborhood that
can be mapped topologically into one of the standardfaildsi In order to show this,
one constructs a manifold without singularitiésn P? or T 2 that is homeomorphic 6.
(Three cases must be distinguished in the process ahgn#tkis construction: a)F is
orientable;F’ can then be constructedRfior T . b)F is not orientable and possesses an
odd Euler characteristi&' can then be constructed . c) F is not orientable and
possesses an even Euler characteriBtican be constructed i) Now, sinceM? is

orientable F' is two-sided {) in M¢$, as long af is two-sided invi®, and likewiseF' is
one-sided inM_: whenF is one-sided ifvi®, a topological map of onto F' can then

always be extended to a topological map of a neighborbbBdo a neighborhood d'.
With that, our assertion is proved.

We now consider the cell decompositiorof M® that was mentioned in the lemma,
whose cells we denote b¥; furthermore, letF now be a sub-cycle (mod 2) bf, in

particular, that consists of the cefS of U. If we imagine that a continuous 2-field is
constructed on the standard manifditf then the map of a neighborhoodrointo M,
which exists by assumption, induces a continuous 2-§iedd that neighborhood. The 2-
systems off that contact the points of the celf$ define a one-dimensional framework
(8 4, no. 2) that, from Theorem 14, can be extendedotweadimensional framewor&
that is defined on all d¥1® and consists of 2-systems. The charagt 4, no. 4) that is

(*® On the relationships between the concepts of “origeitaand “two-sided,” cf., Seifert-Threlfall, §
76.
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associated witls has the value O for every cdl® if the 2-field that is induced b on

&? is continuously extended into the interior f. One then hag(F) = 0. In other
words: The characteristic cla$ has intersection number zero wiEh Now, sinceF*

has intersection number zero with any surfacand on the other hand, from our lemma,
any two-dimensional homology class (mod 2) can be reptexsdry one or more two-
dimensional manifoldd=, F* has intersection number zero with any two-dimensional
homology class, so from the Poincaré-Veblen dualieptém, it is the zero class (mod
2).

APPENDIX I1

On therepresentation of hypersurfacesin Euclidian space
by systems of equations (%)

In this appendix, we deduce a consequence of the interséatiorem 23. In analogy
to 8 6, no. 2, we understand tadimensional hypersurface that is embedded-in
dimensional Euclidian space to mean a sub-complékeo€ell decomposition d¥" that
is the topological image of a~dimensional parameter manifold by means of a
topological continuously-differentiable map (< n).

Now, letx;, X, ..., X, be Cartesian coordinates R and let 6 — V) continuously-
differentiable function$i(x;, X, ..., %)) (i =1, 2, ...,n — V) of these coordinates be given.
Now, the equations:

fi(xy, X2, ..., %) =0 (1)

define av-dimensional hypersurfadd’, and if the functional matrix of the functiofis
has rankif — V) at every point oM" then we will callM” a “hypersurface that is regularly
representable by equations.”

Theorem 28. Any hypersurface that is regularly representable by equations has an
even Euler characteristic.

Proof: The gradients grddof the functiond; that contact the points &f" are disjoint
to M" (8 6, no. 2), and the gradients that contact a poikt'aire, by assumption, linearly
independent, so they define am £ v)-system. Since this system varies continuously
with its contact point, moreove]” possesses an external« V)-field, in the sense of §

6, no. 2.

We close the Euclidian spa&8 into then-dimensional spher&€' with an infinitely
distant point. Our hypersurfadé” that lies inS' fulfills the assumption of Theorem 23,
so, from that theorem, its characteristic is congrymod 2) to the intersection number
of the characteristic clags'™ of S' with M". SinceF"™ is trivially the zero class i,
this intersection number vanishes, with which our assei$ proved.

(*® This Appendix came about as a follow-up to a question &difert.
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It follows, in particular, from Theorem 28 that a hypeface that is regularly
representable by equations and homeomorphic to a real gecoplane cannot lie in
any Euclidian space of any dimensidf.(

(*% The Euler characteristic of the real projective planl, while that of the complex projective plane is
3 (cf., B. L. van der Waerden: “Topologische Begriindung<dgkuls der abzahlenden Geometrie,” Math.
Ann. 102 (1929), 337-362, especially pp. 361.) The fact that the repdgtive plane cannot be regularly
represented by equations in aRYyfollows from the general theorem that any manifold thaiegularly
representable ilR" is orientable. (For the proof, cf., footnote 25.) isTheorem was already proved by
Poincaré (J. Ec. poly. (2), pp. 3). The representation of the projective plar ithat was given in pp.
301 of the book by Hilbert and Cohn-Vossen on intuitive geéigm@erlin, J. Springer, 1932) is not
regular.



