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 The second communication concerns a general theorem of geometrical optics, and 
indeed one that comes from the physically-realizable domain in its own right.  The 
theorem has a geometric nature, insofar as it includes only spatial elements, except for the 
refraction exponents, and a physical nature, insofar as it can be proved using the 
assumption (and in fact, the only one) that the paths of the pencil considered are the 
shortest (or longest) paths between two points. 
 The theorem splits into two sub-theorems, according to whether one is dealing with a 
planar or spatial pencil.  However, it shall be expressly emphasized from the outset that 
one should understand “planar” pencils to means not only the ones that remain in the 
same plane during the entire course of their motion, but also pencils with planar aperture 
angles. 
 
 
 I.  The theorem for “planar” pencils.  An infinitely-thin plane pencil with the 
aperture angle dw emanates from a point, which should possess the linear width ds′ at an 
arbitrary point of its path, which has been constructed from the principle of least time.  
Conversely, we then let a second infinitely-thin pencil emanate from a point with the line 
element ds′ in the plane that goes through ds′ and the path to the second point, and 
indeed, in such a way that the axes coincide.  Let the angle of that pencil at the second 
point and the linear width at the first point be dw′ and ds, resp.; the theorem then reads 
(†): 

n ds dw = n′ ds′ dw′. 
 
n and n′ are the refraction exponents of the medium at the first and second point, resp. 
 If the line element (which is now denoted by dl) is not perpendicular to the pencil, but 
defines the angle w with its normal, then the theorem will read: 
 

n cos w dw dl = n′ cos w′ dw′ dl′. 
 
 

                                                
 (1) A more thorough presentation will be given later.  
 (†) Translator’s note: A minor editorial revision of the notation has been made here and in the following 
equations for the sake of clarity and emphasis.  
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 II.  Theorem for spatial pencils.  If we replace the two plane pencils with two 
spatial ones with the aperture angles dω and dω′, and denote their cross-sections at the 
two points by dq and dq′, resp., then the corresponding theorem will read: 
 

n2 dω dq = n′2 dω′ dq′. 
 
If the normal to the surface element (which is now denoted by df) defines an angle ϑ with 
the pencil then the last equation will now take the form: 
 

n2 cos ϑ ⋅⋅⋅⋅ dω ⋅⋅⋅⋅ df = n′2 cos ϑ′ ⋅⋅⋅⋅ dω′ df′. 
 
 

Proof 
 

 The proofs of the two theorems follow easily from the principle of least time; e.g., 
when one follows a path that is similar to the one that Kirchhoff  and Clausius followed 
in their well-known treatises. 
 If one defines a rectangular, planar, coordinate system around the starting point of the 
pencil whose xz-plane coincides with the pencil plane and whose z-axis points in the 
direction of the light ray, and further lets c denote the speed of light in empty space and 
lets T denote the time that the light takes between the two points, then one will 
immediately get: 
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or 
n dw ds = n′ dw′ ds′. 

 
If we preserve the origin and position of the z-axis for the coordinate system for a spatial 
pencil then we will find analogously that the ratios of the aperture angles and cross-
sections are: 
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or 
n2 dω dq = n′2 dω′ dq′. 

 
 It is remarkable that Kirchhoff  and Clausius have overlooked the theorems above, 
and especially for spatial pencils, or at least they have refrained from formulating them.  
For Clausius, this is perhaps explained by the fact that, from the outset, he started with 
the relationship between the elements of the pencil at conjugate points.  In any case, the 
aforementioned authors had the apparatus that was necessary for the proof of the theorem 
so well in hand that Professor Abbe – who, as he communicated to me, had known of the 
theorem that relates to spatial pencils for a long time – was almost of the opinion that the 
theorem belongs to Kirchhoff  or Clausius. 
 The theorems above (or, at least, the one that relates to spatial pencils) seem obvious, 
with no further assumptions, when they are considered from an energetic viewpoint (a 
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minor argument will necessitate the introduction of the refraction exponents), and in fact, 
the theorems are first found energetically by a search for homologues of the general 
theorems of geometrical optics, on the one hand, and the theory of diffraction and 
interference, on the other. 
 Just the same, it would be much more proper to prove a so-to-speak geometrical 
theorem by mathematical tools to the greatest extent possible. 
 One can ask whether there are further such general theorems that are based upon the 
assumption of the principle of least light duration.  Now, it can be easily recognized that 
there are no further theorems that include only the pencil elements that were used above, 
namely, the aperture angle and width (cross-section, resp.), as well as the refraction 
exponents. 
 

Applications 
 

 I.  To photometry.  As is known, the laws of photometry seem very simple in their 
theoretical treatment, but in fact, there have been many errors made in their 
implementation, up to now.  Now, it is a particular advantage of our theorems that they 
can be most easily applied to the question of photometry.  Naturally, in order to employ 
them, one must fulfill the assumption that light follows the shortest paths in the domain in 
question.  The fact that the theorems are so convenient to apply is based, on the one hand, 
upon their simple form, and on the other, and most importantly, upon the fact that one is 
not dealing with a special relationship – such as, e.g., the one between object and image – 
but with a general one between two spatial elements that are associated by the principle 
of shortest light duration. 
 At this point, I would like to prove the convenience of the applicability of the 
theorems to the problem of photometry by a simple example. 
 If we have a small, illuminated surface and an arbitrary optical system then we would 
like to answer the known question of what specific intensity is possessed by an arbitrary 
surface that lies after or between the system of lenses – i.e., how much light emanates 
from a unit area of this surface into the spatial aperture angle of measure 1.  If one 
denotes the specific intensities of the light source and the surface by L and L′, resp., the 
surface element of the ray angles by dq and dω, and further denotes the quantities that are 
associated with them by the principle of least light duration by dω′ and dq′ then, if one 
ignores the losses that are due to reflection and absorption, one will have: 
 

L dω dq = L′ dω′ dq′. 
 

However, on the other hand, from the theorem above for spatial pencils, one will have: 
 

n2 dω dq = n′2 dω′ dq′, 
 

and one will then obtain the known result.  The specific luminosity of the light source and 
any of the light from this intermediate surface will be directly proportional to the square 
of the refraction exponent.  If one interpolates the surface at any other place in a body 
then the specific intensity will be raised by the ratio of the squares of the refraction 
exponents. 
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 II.  Application to the dioptrics of the atmosphere.  A few years ago, A. Gleichen 
(1) examined how a cylindrical ray bundle that entered the atmosphere would be modified 
by it; the pencil was astigmatic.  Some interesting consequences came out of that: The 
luminosity of stars is larger at the zenith than it would be with no atmosphere, and the 
luminosity would be the same at 60o, and then it decreases rapidly and amount to only 83 
% at the horizon. 
 The calculation of the change in cross-section that such an infinitely-thin pencil of 
rays experiences does not result from a very simple process.  However, the simple final 
formula that Gleichen arrived at seemed to me to prove that a simple proof must also 
exist. 
 A plane that goes through a star, which is thought of as infinitely-distant, and the 
center of the Earth, shall be called a meridianal plane, and any plane that is perpendicular 
to it, a sagittal plane.  Now, as one easily sees, the determination of the ratios of the 
widths of the pencil in sagittal sections raises no difficulties at all, but the same is not true 
for the meridianal sections.  From the theorem above that is valid for plane pencils, that 
determination can be reduced to the determination of the ratios of the ratios of the angles 
involved, namely, dw and dw′. 
 We draw (cf., the Fig.) an auxiliary light path from one end (e.g., the upper one) of 
the first linear cross-section to the other one (i.e., under the second one) and imagine that 
the center of the eye has been placed at the intersection of the light paths AB and AC.  We 
call the apparent distance from the zenith to the light path dζ.  Moreover, if we draw 
tangents to the upper light path and the auxiliary path at the place where the former enters 
the atmosphere then if one denotes the angle of refraction by ϑ then the angle between 
those tangents will be d(ζ + ϑ).  With that, the problem is essentially solved.  One then 
easily obtained the formula that was given by Gleichen for the ratios of the cross-
sections: 

                                                
 (1) Verh. der deutschen Phys. Gesellschaft, II Jahrg., nos. 2 and 16, 1900. 
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in which n means the refraction exponent at the position of the observer. 
 
 
 III.  Application to the theory of mappings.  In the theorems above, it was always 
assumed that the plane or spatial pencil considered possessed linear or planar cross-
sections, resp., that had the same order of magnitude as the angle.  However, one can also 
consider the case that was excluded up to now in which the rays intersect.  To that end, 
one does not need to do anything but apply the theorem yet a second time, when one 
assigns the point of intersection to the second location.  Here, we would like to consider 
only the simplest case of a spatial pencil for which the light rays that emanate 
homocentrically from the first point unite again homocentrically.  As one sees, the 
theorems yield the following relations at the conjugate points: 
 

n cos w ⋅⋅⋅⋅ dw ⋅⋅⋅⋅ dl = n′ cos w′ ⋅⋅⋅⋅ dw′ ⋅⋅⋅⋅ dl′, 
n2 cos ϑ dω df = n′2 cos ϑ′ dω′ df′. 

 
 The theorems thus remain completely valid, although the relationships between the 
elements have changed: The angles, lines, and surface elements now correspond to others 
of the same kind. 
 One sees the following consequence, among others: Should a line element from any 
infinitely-thin sub-pencil of a plane pencil of finite aperture be mapped with the same 
magnification then one would have a kind of sine law.  That law would not then seem to 
be specific to the centered line systems, but would have a more general sort of validity. 
 If a light ray that emanates normal to the first line element likewise falls upon the 
second line element normally then the sine law would be valid in its usual form.  Similar 
considerations can be posed for spatial pencils, but we shall not go into them here. 
 Let us further remark: One obtains the sine law for centered systems immediately 
from the theorem for spatial pencils, which is something that needs only to be suggested.  
The geometric character of the sine law – as the condition for the map of a surface 
element that lies on the axis to give it the same magnification in all zones – is clear with 
no further assumptions, just like the proof that is given in the Handbuch der Physik. 
 Helmholtz has proved the sine law energetically, but with all reverence for 
Helmholtz, and despite his correct result, I must say that I do not regard the manner of 
proof to be correct.  Mostly, he generalized the theorem about the ratio of the 
luminosities of the object and image that had been proved only for infinitely-thin pencils 
to one with finite apertures.  In my opinion, one must prove the theorem on the 
luminosity ratio by a combination of the energy theorem and the sine law, and not, as 
Helmholtz did, derive the sine law from the energy theorem and the luminosity ratio. 
 

(From the transcript that was reviewed by Dr. B. Borchardt ) 
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